JP2010072491A - Device and method for measuring height - Google Patents

Device and method for measuring height Download PDF

Info

Publication number
JP2010072491A
JP2010072491A JP2008241727A JP2008241727A JP2010072491A JP 2010072491 A JP2010072491 A JP 2010072491A JP 2008241727 A JP2008241727 A JP 2008241727A JP 2008241727 A JP2008241727 A JP 2008241727A JP 2010072491 A JP2010072491 A JP 2010072491A
Authority
JP
Japan
Prior art keywords
sample
image
height
value
confocal microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008241727A
Other languages
Japanese (ja)
Other versions
JP5255968B2 (en
Inventor
Tetsuya Ito
哲也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2008241727A priority Critical patent/JP5255968B2/en
Priority to PCT/JP2009/064142 priority patent/WO2010032567A1/en
Publication of JP2010072491A publication Critical patent/JP2010072491A/en
Application granted granted Critical
Publication of JP5255968B2 publication Critical patent/JP5255968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0028Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders specially adapted for specific applications, e.g. for endoscopes, ophthalmoscopes, attachments to conventional microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged

Abstract

<P>PROBLEM TO BE SOLVED: To improve tact time while ensuring accuracy of measurement, when measuring a height of a sample by moving a focusing position for the sample in an optical axis direction. <P>SOLUTION: A device for measuring the height by employing a confocal microscope 12 is equipped with: a Z axis drive unit 125 for varying the focusing position in the optical axis (Z axis) direction; a linear scale 126 for measuring a Z axial coordinate; and a control measurement processor 17. The control measurement processor has: a function for capturing data of the linear scale 126 and an image of the microscope 12, and for leaving a pixel with a higher luminance value and the Z coordinate thereof, while comparing the luminance value of the image with that before one, when moving a sample stand 123 to an end point position from a starting point position on the Z axis; a function for comparing a luminance value of an area on a specified image with a certain specification value; and a function for decelerating a Z axis movement velocity if the comparison value is large, and for returning the Z axis movement velocity to an original velocity if the comparison value is small during deceleration. In this arrangement, a slow mode is set only when obtaining a luminance above a certain level, thereby reducing measuring time without lowering a measurement accuracy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば医療あるいは産業に用いられ、共焦点顕微鏡のような光学的手段を用いて、コントラストの高い試料の高さを測定する高さ測定装置とその測定方法に関する。   The present invention relates to a height measuring apparatus and a measuring method for measuring the height of a sample having a high contrast by using an optical means such as a confocal microscope used in, for example, medicine or industry.

近年、LCD基板や半導体ウェハ等の試料の共焦点画像を取得し、その画像を用いて試料の高さを測定し、高さ方向の変化から表面形状を提示する高さ測定装置が提供されている。この種の測定装置は、例えば被写界深度の浅い共焦点光学顕微鏡を用い、この共焦点顕微鏡の合焦位置を光軸方向に移動させながら当該顕微鏡により拡大された試料の光学像をカメラで撮像して、その撮像画像データをメモリに格納する。そして、この撮像画像データの中から輝度が最大となる画素を検出し、その最大輝度の画素を集めて1枚の画像を合成することで全焦点画像(extened focus image)を取得することができる。また、その最大輝度が得られたときの合焦位置(高さ)を各画素の位置であるとして1枚の画像を作成することで、高さ方向の形状を示す高さ画像または断面プロファイルを取得することができる。   In recent years, a height measurement device has been provided that acquires a confocal image of a sample such as an LCD substrate or a semiconductor wafer, measures the height of the sample using the image, and presents the surface shape from a change in the height direction. Yes. This type of measuring apparatus uses, for example, a confocal optical microscope with a shallow depth of field, and an optical image of a sample magnified by the microscope is moved with a camera while moving the focal position of the confocal microscope in the optical axis direction. The captured image data is stored in the memory. Then, the pixel having the maximum luminance is detected from the captured image data, and the pixel having the maximum luminance is collected and a single image is synthesized to obtain an extended focus image. . In addition, by creating one image assuming that the focus position (height) when the maximum luminance is obtained is the position of each pixel, a height image or a cross-sectional profile indicating the shape in the height direction can be obtained. Can be acquired.

尚、上記のような高さ測定装置の先行文献として、例えば特許文献1があげられる。この特許文献1に記載の測定装置は、反射率の大きく異なる2以上の物質を含む試料を撮影するために、試料から反射光の受信信号レベルが予め設定された適正範囲にあるか否かを判断し、適正範囲外である場合に、受光利得可変手段を制御することで、該信号レベルが適正範囲内となるように調整するというものである。   For example, Patent Document 1 is cited as a prior document of the height measuring apparatus as described above. The measurement apparatus described in Patent Document 1 determines whether or not the reception signal level of reflected light from a sample is within a preset appropriate range in order to photograph a sample containing two or more substances having greatly different reflectances. When it is determined that the signal level is out of the proper range, the light receiving gain variable means is controlled to adjust the signal level to be within the proper range.

特許第3568286号公報Japanese Patent No. 3568286

ところで、上記高さ測定装置に用いられる共焦点顕微鏡では、合焦位置を光軸方向に移動させる場合に、サンプリングレートがカメラのフレームレートで決定されることになる。共焦点顕微鏡は焦点深度が極度に狭いため、速度が高速になると、高さの異なるそれぞれの位置で画像を撮像し損ない、測定精度が低下する。そのため、移動速度を極端に低くして、測定精度を確保して測定する必要があり、タクトタイムが悪化することがあった。   By the way, in the confocal microscope used in the height measuring apparatus, when the in-focus position is moved in the optical axis direction, the sampling rate is determined by the frame rate of the camera. Since the confocal microscope has an extremely narrow depth of focus, if the speed is increased, an image cannot be captured at each position having a different height, and the measurement accuracy decreases. For this reason, it is necessary to make the measurement with extremely low movement speed and ensure measurement accuracy, and the tact time may be deteriorated.

本発明は上記の課題を解決するためになされたもので、試料に対する合焦位置を光軸方向に移動させて試料の高さを測定する場合に、測定精度を確保しつつタクトタイムを向上させることのできる高さ測定装置とその測定方法を提供することを目的とする。   The present invention has been made to solve the above-described problem, and improves the tact time while ensuring the measurement accuracy when measuring the height of the sample by moving the in-focus position with respect to the sample in the optical axis direction. An object of the present invention is to provide a height measuring apparatus and a measuring method thereof.

上記目的を達成するため、本発明に係る高さ測定装置は、試料の光学像を一定のレートで走査し拡大する共焦点顕微鏡と、前記共焦点顕微鏡により拡大された前記試料の光学像を撮像するカメラと、前記試料に対し前記撮像のための光を照射する光源と、前記試料に対する前記共焦点顕微鏡の焦点位置をその光軸方向に移動させるもので、その移動速度として低速モードと高速モードを有する駆動機構と、前記駆動機構を通じて試料に対する前記共焦点顕微鏡の焦点位置を変化させながら前記カメラにより前記試料の光学像を撮像させてその撮像画像を取得する制御ユニットとを具備し、前記制御ユニットは、前記撮像画像の指定領域の輝度を計算して基準値と比較する比較手段と、前記焦点位置の移動範囲内で、前記指定領域の輝度値が基準値に満たない範囲では前記駆動機構を高速モードに、基準値以上となる範囲では前記駆動機構を低速モードに選択的に切替制御する速度制御手段と、前記低速モードの際に取得された撮像画像から輝度値が予め設定した最大範囲に含まれる画素領域を抽出し、この抽出した画素領域の輝度値が前記最大範囲内となる画像が取得されたときの前記共焦点顕微鏡の焦点位置をもとに前記試料の高さを算出する算出手段とを備えることを特徴とする。   To achieve the above object, a height measuring apparatus according to the present invention captures a confocal microscope that scans and magnifies an optical image of a sample at a constant rate, and an optical image of the sample that is magnified by the confocal microscope. Camera, a light source that irradiates the sample with light for imaging, and a focal position of the confocal microscope with respect to the sample is moved in the direction of the optical axis. And a control unit that captures an optical image of the sample by the camera while changing the focal position of the confocal microscope with respect to the sample through the drive mechanism, and acquires the captured image. The unit calculates the brightness of the designated area of the captured image and compares it with a reference value, and the brightness value of the designated area is based on the moving range of the focal position. Speed control means for selectively switching the drive mechanism to the high speed mode in a range less than the value, and the drive mechanism to selectively switch to the low speed mode in a range equal to or greater than a reference value, and a captured image acquired in the low speed mode Based on the focal position of the confocal microscope when the pixel area in which the luminance value is included in the maximum range set in advance is extracted, and the image in which the luminance value of the extracted pixel area is in the maximum range is acquired And a calculating means for calculating the height of the sample.

また、本発明に係る高さ測定装置の高さ測定方法は、試料の光学像を共焦点顕微鏡により一定のレートで走査拡大し、駆動機構により試料に対する前記共焦点顕微鏡の焦点位置を変化させながらカメラにより前記試料の光学像を撮像させてその撮像画像を取得する場合に、前記撮像画像の指定領域の輝度を計算して基準値と比較し、前記焦点位置の移動範囲内で、前記指定領域の輝度値が基準値に満たない範囲では前記駆動機構を高速モードに、基準値以上となる範囲では前記駆動機構を低速モードに選択的に切替制御し、前記低速モードの際に取得された撮像画像から輝度値が予め設定した最大範囲に含まれる画素領域を抽出し、この抽出した画素領域の輝度値が前記最大範囲内となる画像が取得されたときの前記共焦点顕微鏡の焦点位置をもとに前記試料の高さを算出することを特徴とする。   Further, the height measuring method of the height measuring apparatus according to the present invention scans and enlarges an optical image of a sample at a constant rate with a confocal microscope, and changes the focal position of the confocal microscope with respect to the sample by a driving mechanism. When the optical image of the sample is captured by a camera and the captured image is acquired, the brightness of the designated area of the captured image is calculated and compared with a reference value, and the designated area is within the moving range of the focal position. In the range where the luminance value is less than the reference value, the driving mechanism is selectively switched to the high speed mode, and in the range where the luminance value is equal to or higher than the reference value, the driving mechanism is selectively switched to the low speed mode. The focal position of the confocal microscope when the pixel area whose luminance value is included in the preset maximum range is extracted from the image, and the image in which the luminance value of the extracted pixel area is within the maximum range is acquired And calculates the height of the sample on the basis.

本発明により、光軸上で試料を始点位置から終点位置に移動させる時、共焦点顕微鏡の画像を取り込み、最大輝度が得られる画素領域とその焦点位置を取得し、指定した画像上の領域の輝度値を基準値と比較し、その比較値が基準値を超える場合には移動速度を低速モードとし、低速モードで比較値が小さければ移動速度を元の高速モードに戻すようにして、一定以上の輝度が得られるときのみ低速モードに設定することで、測定精度を落とすことなく測定時間を短縮することが可能となる。   According to the present invention, when the sample is moved from the start point position to the end point position on the optical axis, the image of the confocal microscope is captured, the pixel area where the maximum luminance is obtained and the focal position thereof are obtained, and Compare the brightness value with the reference value, and if the comparison value exceeds the reference value, the moving speed is set to the low speed mode, and if the comparison value is small in the low speed mode, the moving speed is returned to the original high speed mode. By setting the low-speed mode only when the luminance can be obtained, the measurement time can be shortened without reducing the measurement accuracy.

本発明によれば、試料に対する合焦位置を光軸方向に移動させて試料の高さを測定する場合に、測定精度を確保しつつタクトタイムを向上させることのできる高さ測定装置とその測定方法を提供することができる。   According to the present invention, when measuring the height of a sample by moving the in-focus position with respect to the sample in the optical axis direction, the height measuring device capable of improving the tact time while ensuring measurement accuracy, and the measurement A method can be provided.

以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明に係る高さ測定装置の一実施形態を概略的に示す構成図である。図1において、光源11から放射される平行光は共焦点光学顕微鏡12の光学処理部121に入射され、当該光学処理部121から対物レンズ122を通り、試料台123に載置された試料124に到達する。試料124からの反射光は再び対物レンズ122を通り、光学処理部121の処理を受けてカメラ13の撮像面で結像する。上記共焦点顕微鏡12は、上記対物レンズ122の光軸(以下、Z軸)の方向に試料台123を移動させるZ軸駆動部125を備え、その高さはZ軸上の座標値(以下、Z座標値)としてリニアスケール126によって計測される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram schematically showing an embodiment of a height measuring apparatus according to the present invention. In FIG. 1, the parallel light emitted from the light source 11 enters the optical processing unit 121 of the confocal optical microscope 12, passes through the objective lens 122 from the optical processing unit 121, and enters the sample 124 placed on the sample stage 123. To reach. The reflected light from the sample 124 passes through the objective lens 122 again, undergoes processing by the optical processing unit 121, and forms an image on the imaging surface of the camera 13. The confocal microscope 12 includes a Z-axis drive unit 125 that moves the sample stage 123 in the direction of the optical axis (hereinafter referred to as Z-axis) of the objective lens 122, and the height thereof is a coordinate value (hereinafter referred to as Z-axis). Z coordinate value) is measured by the linear scale 126.

上記カメラ13で撮影された映像は制御測定処理装置14に入力される。この制御測定処理装置14はコンピュータ(PC)15内のプログラムによって遂行され、主に光源11の光量とZ軸駆動部125を制御する。制御測定処理装置14はカメラ13の映像とリニアスケール126のZ座標値より、高さ測定を行い、測定結果をコンピュータ15に出力する。また、制御測定処理装置14は試料124と対物レンズ122の距離を制御するために、Z軸駆動部125を制御する。   The video imaged by the camera 13 is input to the control measurement processing device 14. The control measurement processing device 14 is executed by a program in a computer (PC) 15 and mainly controls the light amount of the light source 11 and the Z-axis drive unit 125. The control measurement processing device 14 measures the height from the image of the camera 13 and the Z coordinate value of the linear scale 126 and outputs the measurement result to the computer 15. In addition, the control measurement processing device 14 controls the Z-axis drive unit 125 in order to control the distance between the sample 124 and the objective lens 122.

図2は、上記高さ測定装置に用いられる共焦点顕微鏡12の構成を概略的に示す概念図である。図2において、外部の光源11から与えられる平行光は、光学処理部121に入射され、結像レンズ121aによりニポウ(Nipkow)ディスク121b上の特定のピンホール121cに結像される。ニポウディスク121bの前にはハーフミラー121dが配置される。このハーフミラー121dは結像レンズ121aからの光を透過させる。   FIG. 2 is a conceptual diagram schematically showing the configuration of the confocal microscope 12 used in the height measuring apparatus. In FIG. 2, the parallel light given from the external light source 11 is incident on the optical processing unit 121 and is focused on a specific pinhole 121c on the Nipkow disc 121b by the imaging lens 121a. A half mirror 121d is arranged in front of the Niipou disc 121b. The half mirror 121d transmits the light from the imaging lens 121a.

上記ピンホール121cを通過した光は、対物レンズ122に入り、試料124に到達する。試料124からの反射光は、対物レンズ122に戻り、再びピンホール121cを通過して共焦点効果を得る。この反射光はハーフミラー121dに入射される。このハーフミラー121dに入射された反射光は、90度方向を変え、結像レンズ121eを通過して、カメラ13の撮像面に結像される。   The light that has passed through the pinhole 121 c enters the objective lens 122 and reaches the sample 124. The reflected light from the sample 124 returns to the objective lens 122 and again passes through the pinhole 121c to obtain a confocal effect. This reflected light is incident on the half mirror 121d. The reflected light incident on the half mirror 121d changes direction by 90 degrees, passes through the imaging lens 121e, and forms an image on the imaging surface of the camera 13.

上記構成において、ニポウディスク121bは数千のピンホールを持っており、これらのピンホールが回転することで、数千本の光が試料124をスキャンすることとなる。その結果、試料124の反射光はカメラ13の撮像面をスキャンするようになり、これによって撮像面で1枚の画像を得ることができる。   In the above configuration, the Nipkow disk 121b has thousands of pinholes, and these pinholes rotate, so that thousands of lights scan the sample 124. As a result, the reflected light of the sample 124 scans the imaging surface of the camera 13, whereby one image can be obtained on the imaging surface.

このように、共焦点顕微鏡12は、合焦点位置と光学的に共役な位置にピンホール121cを設け、合焦点以外の光の通過を遮断することで、通常の光学顕微鏡より精細な画像を得ることが可能な顕微鏡であるが、合焦点以外の光を通さないために、通常の光学顕微鏡よりも、被写界深度が極めて狭いという特性を有する。   As described above, the confocal microscope 12 provides the pinhole 121c at a position optically conjugate with the in-focus position and blocks the passage of light other than the in-focus position, thereby obtaining a finer image than a normal optical microscope. However, since it does not transmit light other than the focal point, it has a characteristic that the depth of field is extremely narrower than that of a normal optical microscope.

一方、上記制御測定処理装置14は、基本的に図3に示すように構成される。すなわち、カメラ13で得られた撮像画像の指定領域の輝度を計算して基準値と比較する比較部141と、焦点位置の移動範囲内で、指定領域の輝度値が基準値に満たない範囲ではZ軸駆動部125を高速モードに、基準値以上となる範囲ではZ軸駆動部125を低速モードに選択的に切替制御する速度制御部142と、低速モードの際に取得された撮像画像から輝度値が予め設定した最大範囲に含まれる画素領域を抽出し、この抽出した画素領域の輝度値が最大範囲内となる画像が取得されたときの共焦点顕微鏡12の焦点位置(Z座標値)をもとに試料124の高さを算出する算出部143とを備える。算出部143は、具体的には、1つ前の画像の輝度値を比較しながらより輝度値の高い画素とそのZ座標を残すことで最大輝度の画像とその高さ情報を取得する。   On the other hand, the control measurement processing device 14 is basically configured as shown in FIG. That is, the comparison unit 141 that calculates the luminance of the designated area of the captured image obtained by the camera 13 and compares it with the reference value, and within the range where the luminance value of the designated area does not meet the reference value within the moving range of the focal position. A speed control unit 142 that selectively switches the Z-axis drive unit 125 to the low-speed mode in a range that is equal to or higher than the reference value in the Z-axis drive unit 125, and brightness from the captured image acquired in the low-speed mode. A pixel region whose value is included in the preset maximum range is extracted, and the focal position (Z coordinate value) of the confocal microscope 12 when the image in which the luminance value of the extracted pixel region is within the maximum range is acquired is obtained. A calculation unit 143 that calculates the height of the sample 124 is provided. Specifically, the calculation unit 143 obtains an image with the maximum luminance and its height information by comparing the luminance value of the previous image while leaving the pixel with the higher luminance value and its Z coordinate.

ここで、図4を参照して上記共焦点顕微鏡12を用いた高さ測定の方法を簡単に説明する。
まず、図4(a)に示すように、なだらかな山形をした試料124をZ軸方向(光軸方向)に向かって、裾野から頂上に移動しながら、映像を取得すると共にその時のZ座標を記録していく。図4(a)に示す点線の画素の輝度値を縦軸に高さ、横軸に輝度をとると、図4(b)に示すように、各Z位置(Z1,Z2,Z3,…,Z7,Z8)によって、輝度値のピーク(I1,I2,I3,…,I7,I8)を見ることができる。この曲線を以後、Zカーブと呼ぶ。このZカーブは光学的顕微鏡よりも被写界深度が狭いために、急峻なカーブとなる。そのため、このピーク位置は各Z位置の合焦点位置を特定することができる。撮像面の各画素に対して、Zカーブを得ることで各画素位置の高さ情報を得ることができる。
Here, a method of measuring the height using the confocal microscope 12 will be briefly described with reference to FIG.
First, as shown in FIG. 4A, a sample 124 having a gentle mountain shape is moved in the Z-axis direction (optical axis direction) from the base to the top, and an image is acquired and the Z coordinate at that time is obtained. Record it. If the luminance value of the dotted line pixel shown in FIG. 4 (a) is the height on the vertical axis and the luminance is on the horizontal axis, as shown in FIG. 4 (b), each Z position (Z1, Z2, Z3,. Z7, Z8) allows the peak of luminance values (I1, I2, I3,..., I7, I8) to be seen. This curve is hereinafter referred to as a Z curve. This Z curve is a steep curve because the depth of field is narrower than that of an optical microscope. Therefore, this peak position can specify the focal position of each Z position. The height information of each pixel position can be obtained by obtaining the Z curve for each pixel on the imaging surface.

続いて、上記共焦点顕微鏡12を用いた本発明の高さ測定シーケンスについて、図5及び図6を参照して説明する。
図5は、高さ測定の全体的な処理の流れを示すフローチャートである。図5において、初めにZ軸移動範囲設定処理(ステップS11)でZ軸に沿って試料台123を移動させるZ座標の範囲を指定する。高さ測定はZ軸移動範囲設定処理(ステップS11)で設定したZ座標の範囲で、Z座標を移動しながら、画像とそのZ座標位置を取得し、より明るい輝度を持つ画素とそのZ座標位置を残す処理である。次に、Z軸移動速度設定(ステップS12)により、Z軸に沿って試料台123を移動させる速度を一定速度に設定する。
Next, the height measurement sequence of the present invention using the confocal microscope 12 will be described with reference to FIGS.
FIG. 5 is a flowchart showing the overall processing flow of height measurement. In FIG. 5, first, a Z coordinate range in which the sample stage 123 is moved along the Z axis is designated in the Z axis movement range setting process (step S11). In the height measurement, the image and its Z-coordinate position are acquired while moving the Z-coordinate within the range of the Z-coordinate set in the Z-axis movement range setting process (step S11). This is a process of leaving a position. Next, the speed at which the sample stage 123 is moved along the Z axis is set to a constant speed by setting the Z axis moving speed (step S12).

高さ測定シーケンス(ステップS13)は1枚の画像の各画素位置に相当する高さ(Z座標)を決定する処理である。高さ測定シーケンス(ステップS13)については、図6にて詳述する。高さ測定シーケンス(ステップS13)を終了すると、最後に高さデータ1と全焦点画像1の取得処理(ステップS14)でその結果を取得する。高さデータ1は全画素に対する高さのデータであり、全焦点画像1とはZ軸移動範囲に渡って、輝度値が高いデータを残して得られた画像である。   The height measurement sequence (step S13) is a process for determining the height (Z coordinate) corresponding to each pixel position of one image. The height measurement sequence (step S13) will be described in detail with reference to FIG. When the height measurement sequence (step S13) is completed, the result is finally acquired by the acquisition processing (step S14) of the height data 1 and the omnifocal image 1. The height data 1 is height data for all pixels, and the omnifocal image 1 is an image obtained by leaving data with a high luminance value over the Z-axis movement range.

図6は、上記高さ測定シーケンス(ステップS13)の具体的な処理の流れを示すフローチャートである。高さ測定シーケンスは1枚の画像の各画素位置に相当する高さ(Z座標)を決定するシーケンスで、図6に示すように、Z軸のスタート位置に試料台123を移動させる処理(ステップS131)でZ軸上のスタート位置に試料台123を移動させ、画像1取得処理(ステップS132)でスタート位置の画像1を取得し、Z座標取得処理(ステップS133)でZ座標を取得する。次に、高速設定処理(ステップS134)でZ軸移動速度を高速モードに設定する。   FIG. 6 is a flowchart showing a specific processing flow of the height measurement sequence (step S13). The height measurement sequence is a sequence for determining the height (Z coordinate) corresponding to each pixel position of one image. As shown in FIG. 6, the process of moving the sample stage 123 to the start position of the Z axis (step In step S131, the sample stage 123 is moved to the start position on the Z axis, the image 1 at the start position is acquired in the image 1 acquisition process (step S132), and the Z coordinate is acquired in the Z coordinate acquisition process (step S133). Next, the Z-axis moving speed is set to the high speed mode in the high speed setting process (step S134).

この時点で、全ての指定領域完了判定処理(ステップS135)を行い、画像の指定領域の輝度値比較が完了したかどうかを判定する。もし、完了していないのならば、輝度計算処理(ステップS136)で指定領域の輝度値を計算する。この指定領域内の輝度値は指定領域内の画素の輝度値の平均値やピーク値などを指定する。続いて、指定領域の輝度は高いか否かの判定処理(ステップS137)を行い、指定領域の輝度値が暗い場合には、Z軸移動処理(ステップS139)に移り、明るい場合には低速設定処理(ステップS138)でZ軸移動速度を低速モードに設定し、Z軸移動処理(ステップS139)に移る。Z軸移動処理(ステップS139)はZ座標のスタート位置から終了位置の方向に指定した低速モードの速度で移動させる。   At this time, all designated area completion determination processing (step S135) is performed, and it is determined whether the luminance value comparison of the designated area of the image is completed. If not completed, the brightness value of the designated area is calculated in the brightness calculation process (step S136). The luminance value in the designated area designates the average value or peak value of the luminance values of the pixels in the designated area. Subsequently, a process for determining whether or not the brightness of the designated area is high (step S137) is performed. If the brightness value of the designated area is dark, the process proceeds to the Z-axis movement process (step S139), and if the brightness is bright, the low speed setting is performed. In the process (step S138), the Z-axis movement speed is set to the low speed mode, and the process proceeds to the Z-axis movement process (step S139). In the Z-axis movement process (step S139), the movement is performed at the speed of the low-speed mode designated from the start position of the Z coordinate to the end position.

画像2取得処理(ステップS1310)は新たな画像で画像2を更新し、Z座標取得処理(ステップS1311)でその画像のZ座標を取得する。輝度値比較処理(ステップS1312)は画像1と画像2の各画素に対応する輝度値を比較する。輝度値とZ座標の更新処理(ステップS1313)は比較した輝度値でより輝度値が高い画素で画像1を更新し、同時にその更新画素のZ座標を記録する処理である。Z座標終了位置の判定処理(ステップS1314)はZ座標が終了位置かどうかを判別し、終了位置でない場合は高速設定処理(ステップS134)に戻ってZ軸移動を高速モードに設定して試料台123を高速移動させ、シーケンスを続ける。終了位置の場合、エンド(ステップS1315)となり、画像1は全画素位置に対応するZ軸移動範囲で最も明るい輝度値のみを残した画像となり、全画素がZ座標値を持つ。   The image 2 acquisition process (step S1310) updates image 2 with a new image, and the Z coordinate acquisition process (step S1311) acquires the Z coordinate of the image. In the luminance value comparison process (step S1312), the luminance values corresponding to the pixels of the image 1 and the image 2 are compared. The brightness value and Z coordinate update process (step S1313) is a process of updating the image 1 with a pixel having a higher brightness value than the compared brightness value and simultaneously recording the Z coordinate of the updated pixel. The determination process of the Z coordinate end position (step S1314) determines whether or not the Z coordinate is the end position. If it is not the end position, the process returns to the high speed setting process (step S134) to set the Z axis movement to the high speed mode and set the sample stage. 123 is moved at high speed and the sequence is continued. In the case of the end position, it becomes end (step S1315), and image 1 is an image in which only the brightest luminance value remains in the Z-axis movement range corresponding to all pixel positions, and all the pixels have Z coordinate values.

ここで、図7に示すような立体的な形状を持つ試料の高さを測定することを想定する。この試料は、図7の断面1で断面プロファイルを見ると、図8に示すような、高い順に高さA、B、Cを持つプロファイルになっている。
Z軸を高さCから高さAに向かって一定速度で移動させる場合、サンプリングレートはカメラのフレームレートで決定される。共焦点顕微鏡12は、焦点深度が極度に狭いため、速度が高速であると、高さA、B、Cの位置で画像を撮像し損ない、測定精度が低下する。そのため、従来では、Z軸移動速度を極端に下げることで、測定精度を確保して測定しており、タクトタイムが悪化することがあった。
Here, it is assumed that the height of a sample having a three-dimensional shape as shown in FIG. 7 is measured. This sample has a profile having heights A, B, and C in descending order as shown in FIG.
When the Z-axis is moved from the height C to the height A at a constant speed, the sampling rate is determined by the camera frame rate. Since the confocal microscope 12 has an extremely narrow depth of focus, if the speed is high, an image cannot be captured at the positions of heights A, B, and C, and the measurement accuracy decreases. For this reason, conventionally, measurement is performed while ensuring measurement accuracy by extremely reducing the Z-axis movement speed, and the tact time may be deteriorated.

そこで、本発明に係る高さ測定装置は、画像内の指定領域の輝度が指定輝度以上になった場合に、Z軸移動速度を指定速度に減速し、減速中に指定輝度以下になった場合は元の速度に戻す事が可能な手段を有するようにした。これにより、共焦点顕微鏡12を用いた高さ測定の精度を落とすことなく、タクトタイムを向上させることが可能となる。   Therefore, the height measuring device according to the present invention reduces the Z-axis movement speed to the designated speed when the brightness of the designated area in the image exceeds the designated brightness, and falls below the designated brightness during the deceleration. Has a means to return to the original speed. As a result, the tact time can be improved without degrading the accuracy of height measurement using the confocal microscope 12.

以下、図9乃至図11に示す具体例を参照して説明する。
図9は図7に示した試料の画像を示しており、斜線は設定された指定領域を示している。図10(a)〜(d)は、全てZ軸の開始座標Zsから終了座標Zeに1回移動した時のグラフである。図10(a)は領域A,Bの輝度・Z座標曲線を示しており、実線は領域A、破線は領域Bを示している。図のように、破線は高さZb0からZb1の区間で輝度閾値を超え、実線は高さZa0からZa1の区間で輝度閾値を超える。図10(b)はZ軸移動速度・Z座標曲線を示しており、輝度閾値を超えた場合の速度をV2(低速モード)、輝度閾値を超えない場合の速度をV1(高速モード)とすると、図10(b)のようなグラフとなる。
Hereinafter, description will be made with reference to specific examples shown in FIGS.
FIG. 9 shows an image of the sample shown in FIG. 7, and hatched lines indicate the designated areas that have been set. FIGS. 10A to 10D are graphs when all of the Z-axis start coordinates Zs are moved once to the end coordinates Ze. FIG. 10A shows the luminance / Z-coordinate curves of the areas A and B. The solid line indicates the area A and the broken line indicates the area B. As shown in the figure, the broken line exceeds the luminance threshold in the interval from height Zb0 to Zb1, and the solid line exceeds the luminance threshold in the interval from height Za0 to Za1. FIG. 10B shows a Z-axis moving speed / Z coordinate curve, where the speed when the luminance threshold is exceeded is V2 (low speed mode), and the speed when the luminance threshold is not exceeded is V1 (high speed mode). FIG. 10B shows a graph.

図11は本発明のZ軸制御を行った時の移動時間T1と速度V2で移動した時の移動時間T2を比較したものである。図11において、縦軸はZ座標、横軸は時間を示しており、実線は本発明のZ軸制御を行った場合、破線は速度V2で移動した時の直線、細線は速度V1で移動した時の直線を示している。   FIG. 11 compares the movement time T1 when the Z-axis control of the present invention is performed and the movement time T2 when moving at the speed V2. In FIG. 11, the vertical axis represents the Z coordinate, the horizontal axis represents time, the solid line represents the straight line when moving at the speed V2, and the thin line moved at the speed V1 when the Z-axis control of the present invention is performed. A straight line of time is shown.

図11から明らかなように、本発明のZ軸制御を行うと、Zb0からZb1の区間とZa0からZa1の区間で速度V2となり、それ以外では速度V1となる。本発明の移動時間T1と速度V2の移動時間T2を比較すると、T1<T2となり、本発明を使用することで、高速に測定することができ、タクトタイムが向上することがわかる。
図10(c)は速度V1で速度一定にしたときの画像の撮像タイミング(サンプリング位置)を黒丸が示しおり、2つの輝度値のピーク値周辺で画像を取得できていないのがわかる。図10(d)は本発明のZ軸制御を行った時の画像の撮像タイミング(サンプリング位置)を黒丸が示しており、輝度値のピーク値周辺で速度が落ちるために、2つの輝度値のピーク値周辺で画像を取得し、精度の高い測定が期待できる。このように、本発明を用いることで、精度を落とさずタクトタイムの向上が可能になる。
As is apparent from FIG. 11, when the Z-axis control of the present invention is performed, the speed V2 is obtained in the zone Zb0 to Zb1 and the zone Za0 to Za1, and the speed V1 is obtained otherwise. When the movement time T1 of the present invention is compared with the movement time T2 of the speed V2, T1 <T2, and it can be seen that by using the present invention, the measurement can be performed at a high speed and the tact time is improved.
In FIG. 10C, the black image indicates the image capturing timing (sampling position) when the speed is constant at the speed V1, and it can be seen that the image cannot be acquired around the peak values of the two luminance values. FIG. 10D shows the image capturing timing (sampling position) of the image when the Z-axis control of the present invention is performed. The black circle indicates the speed around the peak value of the luminance value. An image is acquired around the peak value, and high-precision measurement can be expected. Thus, by using the present invention, the tact time can be improved without degrading accuracy.

以上、説明してきた、Z軸の移動範囲(上限、下限)、Z軸速度指定(低速、高速)、輝度閾値はレシピと呼ばれる、制御パラメータを保存する電子データに格納される。図12はレシピを設定するアプリケーションソフトのユーザーインターフェース画面の一例である。図のように、Z軸の移動範囲(上限、下限)、Z軸速度指定(低速、高速)、輝度閾値を画面内で指定できるようになっている。   The Z-axis movement range (upper limit, lower limit), Z-axis speed designation (low speed, high speed), and luminance threshold that have been described above are stored in electronic data that saves control parameters called recipes. FIG. 12 shows an example of a user interface screen of application software for setting a recipe. As shown in the figure, the Z-axis movement range (upper limit, lower limit), Z-axis speed designation (low speed, high speed), and luminance threshold can be designated on the screen.

したがって、上記構成による高さ測定装置によれば、光軸(Z軸)上で試料台123を始点位置から終点位置に移動させる時、リニアスケール126のデータと顕微鏡12の画像を取り込み、1つ前の画像の輝度値を比較しながらより輝度値の高い画素とそのZ座標を残すようにし、指定した画像上の領域の輝度値をある指定値と比較し、その比較値が大きければZ軸移動速度を減速し、減速中に比較値が小さければZ軸移動速度を元の速度に戻すようにして、一定以上の輝度が得られるときのみ低速モードに設定するようにしているので、測定精度を落とす事なく測定時間を短縮することができる。   Therefore, according to the height measuring apparatus having the above configuration, when moving the sample stage 123 from the start position to the end position on the optical axis (Z axis), the data of the linear scale 126 and the image of the microscope 12 are acquired. While comparing the luminance value of the previous image, the pixel having the higher luminance value and its Z coordinate are left, the luminance value of the area on the designated image is compared with a certain designated value, and if the comparison value is large, the Z axis Since the movement speed is decelerated and if the comparison value is small during deceleration, the Z-axis movement speed is returned to the original speed, and the low-speed mode is set only when a certain level of brightness is obtained. Measurement time can be shortened without dropping

以上、本発明について詳細に説明したが、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成することもできる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。   Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can also be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

本発明に係る高さ測定装置の一実施形態を概略的に示す構成図。The block diagram which shows roughly one Embodiment of the height measuring apparatus which concerns on this invention. 上記実施形態の高さ測定装置に用いられる共焦点顕微鏡12の構成を概略的に示す概念図。The conceptual diagram which shows roughly the structure of the confocal microscope 12 used for the height measuring apparatus of the said embodiment. 上記実施形態の高さ測定装置に用いられる制御測定処理装置14の基本的な構成を示すブロック図。The block diagram which shows the basic composition of the control measurement processing apparatus 14 used for the height measuring apparatus of the said embodiment. 上記実施形態の共焦点顕微鏡を用いた高さ測定の方法を簡単に説明するための概念図。The conceptual diagram for demonstrating simply the method of the height measurement using the confocal microscope of the said embodiment. 上記実施形態の高さ測定の全体的な処理の流れを示すフローチャート。The flowchart which shows the flow of the whole process of the height measurement of the said embodiment. 図5に示した高さ測定シーケンスの具体的な処理の流れを示すフローチャート。The flowchart which shows the flow of the specific process of the height measurement sequence shown in FIG. 上記実施形態において、立体的な形状を持つ試料の高さを測定することを想定するための立体図。In the said embodiment, the three-dimensional figure for assuming measuring the height of the sample which has a three-dimensional shape. 図7に示した試料の断面プロファイルを示す図。The figure which shows the cross-sectional profile of the sample shown in FIG. 図7に示した試料の撮影画像を示す図。The figure which shows the picked-up image of the sample shown in FIG. 図9に示す撮影画像を取得している状態で、Z軸の開始座標Zsから終了座標Zeに1回移動した時の条件別のグラフを示す図。The figure which shows the graph according to conditions at the time of moving to the end coordinate Ze once from the start coordinate Zs of a Z-axis in the state which has acquired the picked-up image shown in FIG. 上記実施形態のZ軸制御を行った時の移動時間T1と速度V2で移動した時の移動時間T2を比較した図。The figure which compared the movement time T2 when moving with the speed V2 and the movement time T1 when performing Z-axis control of the said embodiment. 上記実施形態のレシピ設定画面を示す図。The figure which shows the recipe setting screen of the said embodiment.

符号の説明Explanation of symbols

11…光源、12…共焦点光学顕微鏡、121…光学処理部、122…対物レンズ、123…試料台、124…試料、125…Z軸駆動部、126…リニアスケール、13…カメラ、14…制御測定処理装置、15…コンピュータ(PC)、121a…結像レンズ、121b…ニポウ(Nipkow)ディスク、121c…ピンホール、121d…ハーフミラー、121e…結像レンズ、141…比較部、142…速度制御部、143…高さ算出部。   DESCRIPTION OF SYMBOLS 11 ... Light source, 12 ... Confocal optical microscope, 121 ... Optical processing part, 122 ... Objective lens, 123 ... Sample stand, 124 ... Sample, 125 ... Z-axis drive part, 126 ... Linear scale, 13 ... Camera, 14 ... Control Measurement processing device, 15 ... computer (PC), 121a ... imaging lens, 121b ... Nipkow disk, 121c ... pinhole, 121d ... half mirror, 121e ... imaging lens, 141 ... comparison unit, 142 ... speed control Part, 143... Height calculation part.

Claims (3)

試料の光学像を一定のレートで走査し拡大する共焦点顕微鏡と、
前記共焦点顕微鏡により拡大された前記試料の光学像を撮像するカメラと、
前記試料に対し前記撮像のための光を照射する光源と、
前記試料に対する前記共焦点顕微鏡の焦点位置をその光軸方向に移動させるもので、その移動速度として低速モードと高速モードを有する駆動機構と、
前記駆動機構を通じて試料に対する前記共焦点顕微鏡の焦点位置を変化させながら前記カメラにより前記試料の光学像を撮像させてその撮像画像を取得する制御ユニットと
を具備し、
前記制御ユニットは、
前記撮像画像の指定領域の輝度を計算して基準値と比較する比較手段と、
前記焦点位置の移動範囲内で、前記指定領域の輝度値が基準値に満たない範囲では前記駆動機構を高速モードに、基準値以上となる範囲では前記駆動機構を低速モードに選択的に切替制御する速度制御手段と、
前記取得された撮像画像から輝度値が予め設定した最大範囲に含まれる画素領域を抽出し、この抽出した画素領域の輝度値が前記最大範囲内となる画像が取得されたときの前記共焦点顕微鏡の焦点位置をもとに前記試料の高さを算出する算出手段と
を備えることを特徴とする高さ測定装置。
A confocal microscope that scans and magnifies the optical image of the sample at a constant rate;
A camera that captures an optical image of the sample magnified by the confocal microscope;
A light source for irradiating the sample with light for the imaging;
The focal position of the confocal microscope with respect to the sample is moved in the direction of the optical axis, and a driving mechanism having a low speed mode and a high speed mode as the moving speed;
A control unit for capturing an optical image of the sample by the camera while changing a focal position of the confocal microscope with respect to the sample through the driving mechanism,
The control unit is
Comparing means for calculating the brightness of the designated area of the captured image and comparing it with a reference value;
The drive mechanism is selectively switched to the high speed mode when the luminance value of the designated area is less than the reference value within the moving range of the focal position, and the drive mechanism is selectively switched to the low speed mode when the brightness value is equal to or greater than the reference value. Speed control means,
The confocal microscope when a pixel area whose luminance value is included in a preset maximum range is extracted from the acquired captured image, and an image in which the luminance value of the extracted pixel area is within the maximum range is acquired. And a calculating means for calculating the height of the sample based on the focal position.
前記算出手段は、1つ前の撮像画像の輝度値と比較してより輝度値の高い画素とそのZ座標を残すことを特徴とする請求項1記載の高さ測定装置。   The height measuring apparatus according to claim 1, wherein the calculating unit leaves a pixel having a higher luminance value and its Z coordinate than the luminance value of the previous captured image. 試料の光学像を共焦点顕微鏡により一定のレートで走査拡大し、駆動機構により試料に対する前記共焦点顕微鏡の焦点位置を変化させながらカメラにより前記試料の光学像を撮像させてその撮像画像を取得する高さ測定装置の測定方法において、
前記撮像画像の指定領域の輝度を計算して基準値と比較し、
前記焦点位置の移動範囲内で、前記指定領域の輝度値が基準値に満たない範囲では前記駆動機構を高速モードに、基準値以上となる範囲では前記駆動機構を低速モードに選択的に切替制御し、
前記取得された撮像画像から輝度値が予め設定した最大範囲に含まれる画素領域を抽出し、この抽出した画素領域の輝度値が前記最大範囲内となる画像が取得されたときの前記共焦点顕微鏡の焦点位置をもとに前記試料の高さを算出することを特徴とする高さ測定装置の測定方法。
The optical image of the sample is scanned and enlarged at a constant rate by the confocal microscope, and the optical image of the sample is captured by the camera while changing the focal position of the confocal microscope with respect to the sample by the driving mechanism, and the captured image is acquired. In the measuring method of the height measuring device,
Calculate the brightness of the specified area of the captured image and compare with the reference value,
The drive mechanism is selectively switched to the high speed mode when the luminance value of the designated area is less than the reference value within the moving range of the focal position, and the drive mechanism is selectively switched to the low speed mode when the brightness value is equal to or greater than the reference value. And
The confocal microscope when a pixel area whose luminance value is included in a preset maximum range is extracted from the acquired captured image, and an image in which the luminance value of the extracted pixel area is within the maximum range is acquired. A height measuring device measuring method, wherein the height of the sample is calculated based on the focal position.
JP2008241727A 2008-09-19 2008-09-19 Height measuring device and measuring method Active JP5255968B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008241727A JP5255968B2 (en) 2008-09-19 2008-09-19 Height measuring device and measuring method
PCT/JP2009/064142 WO2010032567A1 (en) 2008-09-19 2009-08-10 Sample measurement device by means of confocal microscope and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241727A JP5255968B2 (en) 2008-09-19 2008-09-19 Height measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2010072491A true JP2010072491A (en) 2010-04-02
JP5255968B2 JP5255968B2 (en) 2013-08-07

Family

ID=42039409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241727A Active JP5255968B2 (en) 2008-09-19 2008-09-19 Height measuring device and measuring method

Country Status (2)

Country Link
JP (1) JP5255968B2 (en)
WO (1) WO2010032567A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158498A1 (en) * 2010-06-15 2011-12-22 パナソニック株式会社 Image capture device and image capture method
JP2012022135A (en) * 2010-07-14 2012-02-02 Olympus Corp Confocal microscope device
JP2013024906A (en) * 2011-07-15 2013-02-04 Yokogawa Electric Corp Laser microscope
WO2016031214A1 (en) * 2014-08-29 2016-03-03 Canon Kabushiki Kaisha Image acquisition apparatus and control method thereof
JP2020034487A (en) * 2018-08-31 2020-03-05 株式会社モリタ製作所 Three-dimensional measuring system, three-dimensional measuring device, and control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247817A (en) * 2002-02-27 2003-09-05 Takaoka Electric Mfg Co Ltd Linearly scanning type confocal surface form measuring instrument
JP2004239890A (en) * 2003-01-16 2004-08-26 Keyence Corp Magnifying observation device, magnified image observing method, magnifying observation device operation program, and computer-readable recording medium
JP2005114713A (en) * 2003-09-19 2005-04-28 Keyence Corp Magnification observation device, method of observing magnified image, operation program for magnification observation, and computer-readable recording medium
JP2006162554A (en) * 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd Ranging method, skew detection method, and flip-chip implementation method
JP2007286284A (en) * 2006-04-14 2007-11-01 Olympus Corp Confocal scanning type microscopic system and observation method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247817A (en) * 2002-02-27 2003-09-05 Takaoka Electric Mfg Co Ltd Linearly scanning type confocal surface form measuring instrument
JP2004239890A (en) * 2003-01-16 2004-08-26 Keyence Corp Magnifying observation device, magnified image observing method, magnifying observation device operation program, and computer-readable recording medium
JP2005114713A (en) * 2003-09-19 2005-04-28 Keyence Corp Magnification observation device, method of observing magnified image, operation program for magnification observation, and computer-readable recording medium
JP2006162554A (en) * 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd Ranging method, skew detection method, and flip-chip implementation method
JP2007286284A (en) * 2006-04-14 2007-11-01 Olympus Corp Confocal scanning type microscopic system and observation method using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158498A1 (en) * 2010-06-15 2011-12-22 パナソニック株式会社 Image capture device and image capture method
CN102472619A (en) * 2010-06-15 2012-05-23 松下电器产业株式会社 Image capture device and image capture method
JP5868183B2 (en) * 2010-06-15 2016-02-24 パナソニック株式会社 Imaging apparatus and imaging method
JP2012022135A (en) * 2010-07-14 2012-02-02 Olympus Corp Confocal microscope device
JP2013024906A (en) * 2011-07-15 2013-02-04 Yokogawa Electric Corp Laser microscope
WO2016031214A1 (en) * 2014-08-29 2016-03-03 Canon Kabushiki Kaisha Image acquisition apparatus and control method thereof
JP2020034487A (en) * 2018-08-31 2020-03-05 株式会社モリタ製作所 Three-dimensional measuring system, three-dimensional measuring device, and control program

Also Published As

Publication number Publication date
WO2010032567A1 (en) 2010-03-25
JP5255968B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
US9383569B2 (en) Magnification observation device
JP6325816B2 (en) Magnification observation apparatus, magnification image observation method, magnification image observation program, and computer-readable recording medium
US20120002034A1 (en) Microscope and area determination method
JP5255968B2 (en) Height measuring device and measuring method
WO2014069053A1 (en) Image acquisition device and method for focusing image acquisition device
EP3035104B1 (en) Microscope system and setting value calculation method
JP6147006B2 (en) Imaging apparatus, microscope system, and imaging method
JP2013104864A (en) Hardness tester and hardness testing method
JP4812325B2 (en) Scanning confocal microscope and sample information measuring method
JP6355023B2 (en) Measuring object alignment method and surface shape measuring apparatus in surface shape measuring apparatus
JP2009258436A (en) Three-dimensional measuring device
CN110057839A (en) Focusing control apparatus and method in a kind of Optical silicon wafer detection system
JP4874069B2 (en) Confocal microscope
JP5981241B2 (en) Microscope imaging apparatus and microscope imaging method
JP2006145793A (en) Microscopic image pickup system
JP2012042525A (en) Three-dimensional shape measuring apparatus and program
JP2009058377A (en) Inspection apparatus
JP5055081B2 (en) Height measuring device
JP2013160815A (en) Microscope
JP2010266406A (en) Measuring device
US20200278527A1 (en) Observation apparatus, method of operating observation apparatus, and observation control program
JP2015102694A (en) Alignment device, microscopic system, alignment method, and alignment program
JP2015210396A (en) Aligment device, microscope system, alignment method and alignment program
JP2003029138A (en) Autofocusing method and ultraviolet microscope
WO2024014079A1 (en) Cell observation device and imaging method used in cell observation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5255968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250