JP2010071666A - Airtight melting facility - Google Patents

Airtight melting facility Download PDF

Info

Publication number
JP2010071666A
JP2010071666A JP2008236259A JP2008236259A JP2010071666A JP 2010071666 A JP2010071666 A JP 2010071666A JP 2008236259 A JP2008236259 A JP 2008236259A JP 2008236259 A JP2008236259 A JP 2008236259A JP 2010071666 A JP2010071666 A JP 2010071666A
Authority
JP
Japan
Prior art keywords
optical fiber
metal tube
airtight
molten metal
coated optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008236259A
Other languages
Japanese (ja)
Inventor
Masahiro Tadokoro
昌宏 田所
Hiroki Nishikawa
弘樹 西河
Tomoharu Kobayashi
智晴 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2008236259A priority Critical patent/JP2010071666A/en
Publication of JP2010071666A publication Critical patent/JP2010071666A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres

Abstract

<P>PROBLEM TO BE SOLVED: To provide an airtight melting facility capable of accurately measuring the temperature of molten metal continuously by using an optical fiber. <P>SOLUTION: The airtight melting facility 1 includes an airtight tank 2 for housing a melting furnace 3 and holding the furnace in an airtight atmosphere, an optical fiber 4 in a metal tube whose one end 4a is dipped in the molten metal 3a inside the melting furnace 3, a temperature detecting section 6 connected to the other end of the optical fiber 4, a guide section 7 for inserting the optical fiber 4 and guiding the fiber from the outside of the airtight tank 2 into its inside, an optical fiber feed section 6 for continuously feeding the optical fiber 4 through the guide section 7 into the molten metal 3a, and a hermetic seal section 72 for hermetically sealing the insertion portion of the optical fiber 4 in the guide section 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光ファイバを用いて連続的に溶湯の温度を計測することを可能にする気密溶解設備に関するものである。   The present invention relates to an airtight melting facility that enables continuous measurement of the temperature of a molten metal using an optical fiber.

金属を溶解する溶解炉内の溶湯の温度を計測する温度計や、このような温度計を備えた溶解設備が従来より種々知られている。このうち、大気圧下で金属の溶解を行う開放型溶解設備においては、長尺な光ファイバの先端部を溶湯内に順次送り込み、光ファイバの先端部から入射した放射光を他端部の温度検出部で検出することで溶湯の温度を連続的に検出するように構成したものが考えられている(例えば、特許文献1参照)。   Various thermometers for measuring the temperature of the molten metal in the melting furnace for melting metals and melting equipment equipped with such thermometers are conventionally known. Among these, in an open-type melting facility that melts metal at atmospheric pressure, the end of a long optical fiber is sequentially fed into the melt, and the radiated light incident from the end of the optical fiber is sent to the temperature at the other end. A configuration in which the temperature of the molten metal is continuously detected by detection by a detection unit is considered (see, for example, Patent Document 1).

一方、溶解炉を真空状態とする真空溶解設備においては、溶解炉を収容する真空槽の上部にバルブで接続された補助室が設けられており、この補助室には真空槽内の溶湯まで測温素子を案内する挿入棒と、測温素子の交換のための真空排気装置が設けられている。このような真空槽に適用されている測温素子は、一般に消耗式ランス熱電対と称するものであり、熱電対の先端部を内部に収容した石英ガラス部を保護管により保持した構成を有している。そして、この石英ガラス部を溶湯に浸漬させて溶湯の温度を測定するたびに真空槽と補助室との間のバルブを閉じ、真空排気装置を開放して測温素子を取り出し、新しい測温素子と交換することで、次の測温を行うようになっている。
特開2005−227277号公報
On the other hand, in a vacuum melting facility that places the melting furnace in a vacuum state, an auxiliary chamber connected by a valve is provided above the vacuum chamber that houses the melting furnace. An insertion rod for guiding the temperature element and an evacuation device for replacing the temperature measuring element are provided. A temperature measuring element applied to such a vacuum chamber is generally called a consumable lance thermocouple, and has a configuration in which a quartz glass portion in which the tip of the thermocouple is housed is held by a protective tube. ing. And whenever this quartz glass part is immersed in the molten metal and the temperature of the molten metal is measured, the valve between the vacuum chamber and the auxiliary chamber is closed, the vacuum evacuation device is opened, the temperature measuring element is taken out, and a new temperature measuring element is obtained. The next temperature measurement is carried out by exchanging with.
JP 2005-227277 A

ところが、上述した光ファイバを用いた溶湯の連続測温が可能な温度計測装置が適用される溶解炉は開放型であるため、光ファイバの溶湯への供給や交換は容易であるが、より高品質の溶融金属が得られる真空型又は気密型の溶解設備においては、厳密な温度管理が要求されることなどから、上述したような光ファイバによる温度計測装置をそのまま適用することはできない。一方、上述したような測温素子を利用する真空溶解設備では、石英ガラス部は溶湯に浸漬するとすぐに損傷してしまうため1度の測温しかできないものであり、また応答速度も遅く、溶湯の温度の最大値を示すのにも数秒を要するものである。さらに、測温素子の交換は、補助室まで挿入棒を上昇させたうえで真空排気装置を開放して行うという、時間と手間を要する作業であり、その間に溶湯の温度が低下してしまうため、溶湯の温度管理が難しく、再加熱が必要となるなどの時間的、品質的なロスも大きい。また一般に、金属を真空下で溶融する場合、金属の蒸発が生じるため、外部から真空槽内が見えづらくなり、明るく光る溶湯でさえもその表面が見えにくくなる場合がある。そのために、真空槽内に不活性ガスを導入して金属の蒸発を抑えるという方法も考えられるが、それでは蒸発を完全に抑えることは難しく、また真空槽内に照明器具を装備しても見えづらさを完全に解消することがでいない。そのため、上述した従来の方法では、測温素子を溶湯内に浸漬しすぎたり、挿入棒の先端部までも溶湯に浸漬してしまう虞がある。   However, since the melting furnace to which the temperature measuring device capable of continuously measuring the molten metal using the optical fiber described above is applied is an open type, it is easy to supply or replace the molten optical fiber. In a vacuum-type or air-tight type melting facility that can obtain a molten metal of quality, strict temperature control is required. Therefore, the above-described temperature measuring device using an optical fiber cannot be applied as it is. On the other hand, in the vacuum melting equipment using the temperature measuring element as described above, the quartz glass portion is damaged immediately when immersed in the molten metal, and therefore only one temperature measurement can be performed, and the response speed is slow. It takes several seconds to show the maximum temperature. Furthermore, the replacement of the temperature measuring element is an operation that requires time and labor to raise the insertion rod to the auxiliary chamber and then open the vacuum exhaust device, during which the temperature of the molten metal decreases. The temperature and quality of the molten metal is difficult to control, and reheating is necessary. In general, when a metal is melted under vacuum, the metal evaporates, so that it is difficult to see the inside of the vacuum chamber from the outside, and even the brightly shining molten metal may be difficult to see. For this reason, a method of suppressing the evaporation of metal by introducing an inert gas into the vacuum chamber is conceivable, but it is difficult to completely suppress the evaporation, and it is difficult to see even if a lighting fixture is installed in the vacuum chamber. It is not possible to completely eliminate this problem. Therefore, in the conventional method described above, there is a possibility that the temperature measuring element is excessively immersed in the molten metal, or even the tip of the insertion rod is immersed in the molten metal.

このような問題に鑑みて本発明は、光ファイバを用いて連続的に溶湯の温度を正確に計測することが可能な気密溶解設備を提供することを主たる目的とするものである。   In view of such a problem, the main object of the present invention is to provide an air-tight melting facility capable of accurately measuring the temperature of a molten metal continuously using an optical fiber.

すなわち本発明に係る気密溶解設備は、内部に溶解炉を収容し気密雰囲気下に保持する気密槽と、一端を溶解炉内の溶湯に浸漬される光ファイバを金属管で被覆してなる金属管被覆光ファイバと、気密槽外において金属管被覆光ファイバの他端に接続された温度検出部と、金属管被覆光ファイバを挿通させて気密槽の外部から内部へと導くガイド部と、このガイド部を通じて金属管被覆光ファイバを溶湯内に連続供給する光ファイバ供給部と、ガイド部における金属管被覆光ファイバの挿入部位を密閉する気密シール部とを備えていることを特徴としている。   In other words, the hermetic melting equipment according to the present invention includes a metal tube in which a melting furnace is housed and held in an airtight atmosphere, and an optical fiber immersed at one end in the molten metal in the melting furnace is covered with a metal tube. A coated optical fiber, a temperature detection unit connected to the other end of the metal tube-coated optical fiber outside the hermetic tank, a guide unit that guides the metal tube-coated optical fiber from the outside to the inside, and the guide An optical fiber supply unit that continuously supplies the metal tube-coated optical fiber into the molten metal through the unit and an airtight seal unit that seals the insertion portion of the metal tube-coated optical fiber in the guide unit are provided.

このような構成の気密溶解設備では、光ファイバを利用した金属管被覆光ファイバを気密槽内の溶解炉の溶湯に連続的に挿入・浸漬して迅速且つ正確に測温することが可能であり、しかも気密槽の密閉状態を気密シール部によって維持することができる。すなわち、本発明によれば、従来のように測定するたびに気密槽のバルブを操作して補助室を開閉し測温素子を交換する必要がなくなるため、溶湯の温度管理が容易となり、測温に要する時間や手間も大幅に低減することが可能となる。また、溶湯の蒸気によって気密槽内部が視認できなくても、ガイド部を溶湯に浸漬しない程度の位置に留めておいて金属管被覆光ファイバのみを溶湯に浸漬するようにしておけばよいので、従来のように測温素子の浸漬のしすぎや挿入棒の浸漬といった問題が生じる虞もなくすことができる。なお、本発明において「気密雰囲気」とは、気密槽が内部を密封した状態に維持した状態をいい、その状態で気密槽の内部は、大気圧よりも圧力が低い真空状態とするか、若しくはアルゴン等の不活性ガスを充満させた状態とすることが好ましい。   With the hermetic melting equipment having such a structure, it is possible to measure the temperature quickly and accurately by continuously inserting and immersing the metal tube coated optical fiber using the optical fiber into the molten metal of the melting furnace in the hermetic tank. Moreover, the sealed state of the hermetic tank can be maintained by the hermetic seal portion. That is, according to the present invention, it is no longer necessary to open and close the auxiliary chamber and replace the temperature measuring element by operating the valve of the hermetic tank every time measurement is performed. It is possible to significantly reduce the time and labor required for the process. In addition, even if the inside of the airtight tank is not visible due to the molten metal vapor, it is sufficient to keep the guide part in a position where it is not immersed in the molten metal so that only the metal tube-coated optical fiber is immersed in the molten metal. It is possible to eliminate the possibility of problems such as excessive immersion of the temperature measuring element and immersion of the insertion rod as in the prior art. In the present invention, the “airtight atmosphere” refers to a state where the airtight tank is maintained in a sealed state, and the inside of the airtight tank is in a vacuum state in which the pressure is lower than the atmospheric pressure in that state, or It is preferable to be in a state filled with an inert gas such as argon.

このような本発明においては、ガイド部を、金属管被覆光ファイバの一端を溶解炉内の溶湯に浸漬した使用位置と溶湯から引き上げた退避位置との間で移動させるガイド部移動手段を備えたものとすることで、ガイド部の先端から延出する金属管被覆光ファイバの長さを一定に保ちながら、溶湯の測温を行う際にのみ金属管被覆光ファイバの先端部を溶湯に挿入し、測温を行わない場合はガイド部ごと金属管被覆光ファイバを溶解炉から退避させておくことで、溶解炉への金属の出し入れ操作などの邪魔にならないようにすることができる。   In the present invention, the guide portion is provided with a guide portion moving means for moving the guide portion between a use position where one end of the metal tube-coated optical fiber is immersed in the molten metal in the melting furnace and a retracted position pulled up from the molten metal. By doing so, the tip of the metal tube-coated optical fiber is inserted into the melt only when measuring the temperature of the melt while keeping the length of the metal tube-coated optical fiber extending from the tip of the guide portion constant. When the temperature measurement is not performed, the metal tube-coated optical fiber with the guide portion is retracted from the melting furnace, so that it does not interfere with the operation of putting the metal into and out of the melting furnace.

特に、ガイド部に設けられるガイド部移動手段には、使用位置と退避位置との間でのガイド部の移動速度を変更可能な速度調節機構を設けることができる。このように構成すれば、溶湯と金属管被覆光ファイバとの距離が遠い場合はガイド部を高速で移動させ、溶湯と金属管被覆光ファイバとの距離が近くなればガイド部を低速で移動させるなどすることで、時間的なロスを低減しつつ、ガイド部が溶湯に浸漬するという事態を有効に回避することができる。   In particular, the guide part moving means provided in the guide part can be provided with a speed adjusting mechanism capable of changing the moving speed of the guide part between the use position and the retracted position. If comprised in this way, a guide part will be moved at high speed when the distance between a molten metal and a metal tube coating optical fiber is long, and if the distance between a molten metal and a metal tube coated optical fiber will become near, a guide part will be moved at low speed. By doing so, it is possible to effectively avoid a situation in which the guide portion is immersed in the molten metal while reducing time loss.

またガイド部が動作する場合、特にガイド部を気密槽に対して動作させる場合には、ガイド部と気密槽との間でも気密状態を維持する必要がある。そのためには、ガイド部と気密槽との取着部位を密閉する第2気密シール部をさらに設けることが適切である。   Further, when the guide portion operates, particularly when the guide portion is operated with respect to the airtight tank, it is necessary to maintain an airtight state between the guide portion and the airtight tank. For this purpose, it is appropriate to further provide a second hermetic seal portion for sealing the attachment site between the guide portion and the hermetic tank.

また、ガイド部として簡易な構成で占有するスペースが小さく、操作も容易なものとしては、金属管被覆光ファイバを内部に挿入させ且つ気密槽に挿入されるようにした管状部材を挙げることができる。   In addition, as a guide portion, a simple structure that occupies a small space and is easy to operate can include a tubular member in which a metal tube-coated optical fiber is inserted into an airtight tank. .

本発明によれば、溶解炉内の溶湯に金属管被覆光ファイバの先端部を連続的に浸漬することができる構成を気密溶解設備に適用し、金属管被覆光ファイバをガイド部により気密槽に導入するに際して、金属管被覆光ファイバとガイド部との間の摺動部分をシール部によって気密状態に保持するように構成しているため、光ファイバの計測ごとの交換作業を行うことによる手間や時間、溶湯の温度管理の困難性を解消することができるうえに、溶湯温度の連続的で正確な計測を行うことができ、操作の安定性や信頼性、製品の品質向上を図ることができる。   According to the present invention, the configuration in which the tip of the metal tube-coated optical fiber can be continuously immersed in the molten metal in the melting furnace is applied to the hermetic melting equipment, and the metal tube-coated optical fiber is applied to the hermetic tank by the guide unit. At the time of introduction, the sliding portion between the metal tube-coated optical fiber and the guide portion is configured to be kept in an airtight state by the seal portion. In addition to eliminating the difficulty of time and temperature control of the molten metal, it is possible to measure the molten metal temperature continuously and accurately, improving operational stability and reliability, and improving product quality. .

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態である気密溶解設備1の一部を省略して示す概観図である。この気密溶解設備1は、気密槽2と、気密槽2内に配置された溶解炉3と、溶解炉3内の溶湯3aの温度を計測するために用いられる金属管被覆光ファイバ4と、金属管被覆光ファイバ4を送り出す光ファイバ供給部5と、金属管被覆光ファイバ4を通じて溶湯3aの温度を検出する温度検出部5と、金属管被覆光ファイバ4を溶解炉3内へ導くガイド部7と、ガイド部7を気密槽2に対して移動させるガイド部移動手段8とを主要構成として備えている。   FIG. 1 is an overview diagram showing a part of the airtight melting facility 1 according to the present embodiment with a part thereof omitted. The hermetic melting equipment 1 includes a hermetic tank 2, a melting furnace 3 disposed in the hermetic tank 2, a metal tube-coated optical fiber 4 used for measuring the temperature of the molten metal 3a in the melting furnace 3, a metal An optical fiber supply unit 5 that feeds the tube-coated optical fiber 4, a temperature detection unit 5 that detects the temperature of the molten metal 3 a through the metal tube-coated optical fiber 4, and a guide unit 7 that guides the metal tube-coated optical fiber 4 into the melting furnace 3. And the guide part moving means 8 which moves the guide part 7 with respect to the airtight tank 2 is provided as a main structure.

気密槽2は、内部を真空に保持することができる気密性容器であり、溶湯3aの高温に耐えられるように設計されたものである。図1では、この気密槽2の上端部側のみを示しており、下端部側及びその他の部位を省略している。気密槽2の上端部には、後述するガイド部4を収容して気密槽2内へ導く導管21が斜め上方に向けて突出させて設けられている。この導管21は、例えばステンレス管等から構成されるものであり図2及び図3に示すように、気密槽2の上端部に設けられた台座22に設けられた支柱23,24等によりその傾斜姿勢を支持されている。   The airtight tank 2 is an airtight container capable of maintaining the inside in a vacuum, and is designed to withstand the high temperature of the molten metal 3a. In FIG. 1, only the upper end part side of this airtight tank 2 is shown, and the lower end part side and other parts are omitted. At the upper end of the hermetic tank 2, a conduit 21 that accommodates a guide part 4 to be described later and guides it into the hermetic tank 2 is provided so as to protrude obliquely upward. The conduit 21 is made of, for example, a stainless steel tube or the like, and as shown in FIGS. 2 and 3, the conduit 21 is inclined by support columns 23 and 24 provided on a pedestal 22 provided at the upper end of the airtight tank 2. The posture is supported.

気密槽2内に設置される溶解炉3は、本実施形態では溶解ルツボ31をその胴部に巻回した誘導コイル32により加熱する誘導炉を適用している。   In the present embodiment, the melting furnace 3 installed in the hermetic tank 2 is an induction furnace in which a melting crucible 31 is heated by an induction coil 32 wound around its body.

金属管被覆光ファイバ4は、図4及び図5に一部を断面図として示すように、光ファイバ41を柔軟な金属管42で保護した形態を有するものである。金属管42は、溶湯3aに光ファイバと共に溶解しても溶湯3aには影響を与えない材質であれば適宜のものを採用することができるが、例えば溶湯が鉄であれば金属管42を鉄製、溶湯がチタンであれば金属管42をチタン製とすることができる。   The metal tube-coated optical fiber 4 has a configuration in which the optical fiber 41 is protected by a flexible metal tube 42 as shown in part in cross-sectional views in FIGS. 4 and 5. As long as the metal tube 42 is made of a material that does not affect the molten metal 3a even if the molten metal 3a is melted together with the optical fiber, an appropriate material can be adopted. If the molten metal is titanium, the metal tube 42 can be made of titanium.

光ファイバ供給部5は、金属管被覆光ファイバ4を巻回して保持するドラム51と、ドラム51から引き出した金属管被覆光ファイバ4を連続的に繰り出す送出部52とから構成される。ドラム51には、例えば50m〜100m程度の金属管被覆光ファイバ4を巻回しておくことができるものを採用している。また送出部52は、例えば金属管被覆光ファイバ4を挟んで回転するピンチローラ52aと、このピンチローラ52aを回転駆動するモータ52bとから構成することができる。   The optical fiber supply unit 5 includes a drum 51 that winds and holds the metal tube-coated optical fiber 4 and a sending unit 52 that continuously feeds the metal tube-coated optical fiber 4 drawn from the drum 51. As the drum 51, a drum 51 in which a metal tube-covered optical fiber 4 of, for example, about 50 to 100 m can be wound is adopted. Moreover, the sending part 52 can be comprised, for example from the pinch roller 52a rotated on both sides of the metal pipe coating | coated optical fiber 4, and the motor 52b which rotationally drives this pinch roller 52a.

温度検出部6には、ドラム51に巻回された側の金属管被覆光ファイバ4の一端を接続した放射温度計を適用しており、検出素子としては例えばInGaAsを利用することができる。放射温度計は、溶湯3aに浸漬した金属管被覆光ファイバ4のうち光ファイバ41の先端から入射して光ファイバ41を伝達してきた放射光を検出するものであり、連続的な温度検出が可能となっている。   A radiation thermometer connected to one end of the metal tube-covered optical fiber 4 on the side wound around the drum 51 is applied to the temperature detection unit 6. For example, InGaAs can be used as the detection element. The radiation thermometer detects radiation emitted from the tip of the optical fiber 41 and transmitted through the optical fiber 41 in the metal tube-coated optical fiber 4 immersed in the molten metal 3a, and continuous temperature detection is possible. It has become.

ガイド部7は、本実施形態では、気密槽2内の高温に耐え得る金属パイプからなる挿入棒71を主体とするものである。この挿入棒71の内径は金属管被覆光ファイバ4の外径よりも若干大きく、挿入棒71の内部71を金属管被覆光ファイバ4が自在に摺動し得るように挿通されており、挿入棒71の先端部71aから金属管被覆光ファイバ4の先端部4aを突出させている。そして、挿入棒71の上端部における金属管被覆光ファイバ4との摺動部位には、挿入棒71の内壁と金属管被覆光ファイバ4の外壁との間を封止する気密シール部72を設けている。本実施形態ではこの気密シール部72として、ウィルソンシールを適用している。すなわち、気密シール部72は、図4に拡大して模式的に示すように、挿入棒71の上端部に設けられたウィルソンシールの本体部72aの内部に上下複数枚ずつのエラストマーシート72bを設けるとともに、上下のエラストマーシート72bの間に真空グリスを充填したものであり、それらの中心部に金属管被覆光ファイバ4を挿通することで、ガイド部7と金属管被覆光ファイバ4との気密性を保持している。   In this embodiment, the guide portion 7 is mainly composed of an insertion rod 71 made of a metal pipe that can withstand the high temperature in the airtight tank 2. The inner diameter of the insertion rod 71 is slightly larger than the outer diameter of the metal tube-coated optical fiber 4, and the insertion rod 71 is inserted through the inside 71 of the insertion rod 71 so that the metal tube-coated optical fiber 4 can freely slide. The tip portion 4 a of the metal tube-coated optical fiber 4 is projected from the tip portion 71 a of 71. An airtight seal portion 72 that seals between the inner wall of the insertion rod 71 and the outer wall of the metal tube-coated optical fiber 4 is provided at the sliding portion of the upper end portion of the insertion rod 71 with the metal tube-coated optical fiber 4. ing. In this embodiment, a Wilson seal is applied as the hermetic seal portion 72. That is, the hermetic seal portion 72 is provided with a plurality of upper and lower elastomer sheets 72b inside the Wilson seal main body portion 72a provided at the upper end portion of the insertion rod 71, as schematically shown in FIG. At the same time, vacuum grease is filled between the upper and lower elastomer sheets 72b, and the metal tube-coated optical fiber 4 is inserted into the central portion thereof, whereby the airtightness between the guide portion 7 and the metal tube-coated optical fiber 4 is achieved. Holding.

ガイド部移動手段8は、金属管被覆光ファイバ4を挿通させた挿入棒71を、金属管被覆光ファイバ4の先端部4aを溶解炉3内の溶湯3aに浸漬した使用位置(図2)と、金属管被覆光ファイバ4の先端部4aを溶解炉3から引き上げた退避位置(図3)との間で、気密槽2(より詳細には導管21)に対してスライド移動させるものである。具体的にガイド部移動手段8は、図2及び図3に詳細に示すように、モータ81と、導管21の長手方向所定範囲に亘って架け回され一部を挿入棒71の上端部71bに取り付けてモータ81により回転駆動されるローラーチェーン82とから構成される。なお、挿入棒71と導管21との間にはケーブルベア83も設けられており、これにより、モータ81や補償導線等の配線類が乱雑になったり絡まったりすることを防止しており、また挿入棒71の動作時のブレの抑制も期待できる。   The guide part moving means 8 has a use position (FIG. 2) in which the insertion rod 71 through which the metal tube-coated optical fiber 4 is inserted is immersed in the molten metal 3a in the melting furnace 3 with the tip 4a of the metal tube-coated optical fiber 4. The tip 4a of the metal tube-coated optical fiber 4 is slid relative to the airtight tank 2 (more specifically, the conduit 21) between the retracted position (FIG. 3) where the tip 4a is pulled up from the melting furnace 3. Specifically, as shown in detail in FIGS. 2 and 3, the guide portion moving means 8 is routed over a predetermined range in the longitudinal direction of the motor 81 and the conduit 21, and a part thereof is connected to the upper end portion 71 b of the insertion rod 71. The roller chain 82 is attached and rotated by a motor 81. A cable bear 83 is also provided between the insertion rod 71 and the conduit 21 to prevent the motor 81 and the compensating conductors from becoming messy or tangled. Suppression of blurring during the operation of the insertion rod 71 can also be expected.

このように、ガイド部移動手段8により挿入棒71が気密槽2に対して動作するため、挿入棒71の気密槽2への取着部位である導管21の適宜部位には、第2気密シール部25を設けることによって、この部分での気密性を保持するようにしている。この第2気密シール部25では、図5に示すように、導管21の中途高さ位置を区切りその上部を空間的に隔てる一対の蓋体25a,25b及びそれらの間に挟み込んだOリング25cと、上側の蓋体25aに立設されて挿入棒71に外嵌された筒体25dと、この筒体25dの上端部に嵌合させて挿入棒71に外嵌されたキャップ25eと、筒体25dの内壁と挿入棒71の外壁との間に密着して取り付けられる上下2つのOリング25f,25gとから構成されている。   Thus, since the insertion rod 71 operates with respect to the airtight tank 2 by the guide portion moving means 8, the second airtight seal is provided at an appropriate portion of the conduit 21, which is the attachment portion of the insertion rod 71 to the airtight tank 2. By providing the portion 25, the airtightness at this portion is maintained. In the second hermetic seal portion 25, as shown in FIG. 5, a pair of lid bodies 25a and 25b that divide the mid-height position of the conduit 21 and spatially separate the upper portion thereof, and an O-ring 25c sandwiched between them. A cylinder 25d erected on the upper lid 25a and fitted on the insertion rod 71; a cap 25e fitted on the upper end of the cylinder 25d and fitted on the insertion rod 71; The upper and lower O-rings 25f and 25g are attached in close contact between the inner wall of 25d and the outer wall of the insertion rod 71.

ガイド部移動手段8におけるモータ81は、回転速度を適宜に変更することができるものであり、本発明の速度調節機構の一部として機能する。例えば挿入棒71及び金属管被覆光ファイバ4を退避位置から使用位置まで移動させる場合には、図2及び図3に示すように、金属管被覆光ファイバ4の先端部4aが溶解炉31内の溶湯3aから最も離れた位置である退避位置から所定範囲(図中、領域A)にあるときは挿入棒71を高速で動作させ、この領域Aから金属管被覆光ファイバ4の先端部4aが溶湯3aに少し接近する所定範囲(図中、領域B)にあるときは挿入棒71を減速して低速で動作させ、この領域Bから金属管被覆光ファイバ4の先端部4aが溶湯3aにさらに接近した所定範囲(図中、領域C)にあるときは挿入棒71をより減速して極低速で動作させ、挿入棒71の先端部が溶湯31に浸漬した時点で挿入棒71を停止させるように、モータ81の回転速度が調節されるようにしている。領域Aと領域Bとの境界は予め設定しておき、リミットスイッチ等の位置検出手段(図示省略)によってモータ81の回転の高速から低速への切り替えを行う。また、金属管被覆光ファイバ4の先端が溶湯3aの表面に接触するか若しくはその近傍に達した際に温度検出部6が所定温度を検出した際にモータ81の回転の低速から極低速への切り替えを行い、金属管被覆光ファイバ4の先端が溶湯3aに浸漬したことを温度検出部6で検出すると、モータ81の回転を停止する。そして、モータ81が停止すると、光ファイバ供給部5のモータ51bを動作させ、ドラム51aから金属管被覆光ファイバ4を送り出すことで、挿入棒71の先端部71aから金属管被覆光ファイバ4を繰り出して、連続的に溶湯3aの測温を行うようにしている。このように、挿入棒71の退避位置から使用位置への移動にあたって速度制御を行うことで、測温操作の確実性や安全性が向上し、さらに挿入棒71が誤って溶湯3aに浸漬したり、金属管被覆光ファイバ4を無駄に消耗したりすることを有効に防止することができる。ここで、1回の測温で消耗する金属管被覆光ファイバ4の長さは約10mm程度であるので、光ファイバ供給部5から金属管被覆光ファイバ4を順次送り出すことで、連続して5000回以上の測温が可能である。なお、挿入棒71及び金属管被覆光ファイバ4を使用位置から退避位置へ移動させる場合には、モータ81を高速で回転させて迅速に金属管被覆光ファイバ4を溶湯3aから引き上げて、金属管被覆光ファイバ4の消耗を防ぐようにすればよい。   The motor 81 in the guide portion moving means 8 can change the rotation speed as appropriate, and functions as a part of the speed adjustment mechanism of the present invention. For example, when the insertion rod 71 and the metal tube-coated optical fiber 4 are moved from the retracted position to the use position, as shown in FIGS. 2 and 3, the tip 4 a of the metal tube-coated optical fiber 4 is placed in the melting furnace 31. When it is within a predetermined range (area A in the figure) from the retracted position that is the position farthest from the molten metal 3a, the insertion rod 71 is operated at a high speed, and the distal end portion 4a of the metal tube-coated optical fiber 4 extends from the area A to the molten metal. When it is within a predetermined range (region B in the figure) slightly approaching 3a, the insertion rod 71 is decelerated and operated at a low speed, and the tip 4a of the metal tube-coated optical fiber 4 further approaches the molten metal 3a from this region B. When it is within the predetermined range (region C in the figure), the insertion rod 71 is further decelerated and operated at an extremely low speed, and the insertion rod 71 is stopped when the tip of the insertion rod 71 is immersed in the molten metal 31. The rotation speed of the motor 81 is adjusted. It has to be. The boundary between the region A and the region B is set in advance, and the rotation of the motor 81 is switched from high speed to low speed by position detection means (not shown) such as a limit switch. In addition, when the temperature detection unit 6 detects a predetermined temperature when the tip of the metal tube-coated optical fiber 4 comes into contact with or near the surface of the molten metal 3a, the rotation of the motor 81 is changed from a low speed to a very low speed. When the switching is performed and the temperature detection unit 6 detects that the tip of the metal tube-coated optical fiber 4 is immersed in the molten metal 3a, the rotation of the motor 81 is stopped. When the motor 81 stops, the motor 51b of the optical fiber supply unit 5 is operated to feed the metal tube-coated optical fiber 4 from the drum 51a, thereby feeding the metal tube-coated optical fiber 4 from the tip 71a of the insertion rod 71. Thus, the temperature of the molten metal 3a is continuously measured. Thus, by controlling the speed when the insertion rod 71 is moved from the retracted position to the use position, the reliability and safety of the temperature measurement operation is improved, and the insertion rod 71 is accidentally immersed in the molten metal 3a. It is possible to effectively prevent the metal tube-coated optical fiber 4 from being wasted. Here, since the length of the metal tube-coated optical fiber 4 consumed by one temperature measurement is about 10 mm, the metal tube-coated optical fiber 4 is successively sent out from the optical fiber supply unit 5 so that the length is 5000 continuously. Temperature measurement more than once is possible. When the insertion rod 71 and the metal tube-coated optical fiber 4 are moved from the use position to the retracted position, the motor 81 is rotated at a high speed to quickly lift the metal tube-coated optical fiber 4 from the molten metal 3a. What is necessary is just to prevent consumption of the coated optical fiber 4.

このように、本実施形態の気密溶解設備1によれば、真空雰囲気とした気密槽2内における溶湯3aの温度を連続的に測定できるのみならず、溶湯3aに浸漬する金属管被覆光ファイバ4を無駄なく使用することができ、測温操作の安定性や容易性を向上することができる。また、金属管被覆光ファイバ4のガイド部7への挿入部位と、ガイド部7の気密槽2に対する動作部位を気密状態に維持するようにしていることから、溶湯3aの温度を低下させることなく真空下での溶湯3aの連続測温が可能であるため、溶湯3aの温度管理が容易となり、溶湯3aの品質向上をも図ることができる。   Thus, according to the hermetic melting equipment 1 of the present embodiment, not only can the temperature of the molten metal 3a in the hermetic tank 2 in a vacuum atmosphere be continuously measured, but also the metal tube-coated optical fiber 4 immersed in the molten metal 3a. Can be used without waste, and the stability and ease of temperature measurement can be improved. Moreover, since the insertion site | part to the guide part 7 of the metal pipe covering optical fiber 4 and the operation | movement site | part with respect to the airtight tank 2 of the guide part 7 are maintained in an airtight state, without reducing the temperature of the molten metal 3a. Since it is possible to continuously measure the temperature of the molten metal 3a under vacuum, the temperature management of the molten metal 3a becomes easy, and the quality of the molten metal 3a can be improved.

なお、本発明は上述した実施形態に限定されるものではない。例えば気密槽内は、真空状態だけでなく、内部の気圧を大気圧よりも若干低い状態としたり、アルゴンガス等の不活性ガスを充満させた状態としてもよい。さらに、ガイド部や、気密シール部及び第2気密シール部等の、気密溶解設備における各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, this invention is not limited to embodiment mentioned above. For example, the inside of the airtight tank may be not only in a vacuum state, but also in a state where the internal atmospheric pressure is slightly lower than the atmospheric pressure or filled with an inert gas such as argon gas. Further, the specific configuration of each part in the airtight melting equipment such as the guide part, the airtight seal part, and the second airtight seal part is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. Is possible.

本発明の一実施形態である気密溶解設備の一部を省略して示す概観図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 同気密溶解設備におけるガイド部を使用位置に位置付けた状態の要部を示す図。The figure which shows the principal part of the state which has located the guide part in the same airtight melt | dissolution installation in a use position. 同気密溶解設備におけるガイド部を退避位置に位置付けた状態の要部を示す図。The figure which shows the principal part of the state which has located the guide part in the same airtight melt | dissolution equipment in the retracted position. 同気密溶解設備における気密シール部の概要を示す模式的断面図。The typical sectional view showing the outline of the airtight seal part in the airtight dissolution equipment. 同気密溶解設備における第2気密シール部の概要を示す模式的断面図。The typical sectional view showing the outline of the 2nd airtight seal part in the airtight dissolution equipment.

符号の説明Explanation of symbols

1…気密溶解設備
2…気密槽
3…溶解炉
3a…溶湯
4…金属管被覆光ファイバ
5…光ファイバ供給部
6…温度検出部
7…ガイド部
8…ガイド部移動手段
25…第2気密シール部
41…光ファイバ
42…金属管
71…挿入棒(管状部材)
72…気密シール部
81…モータ(速度調節機構)
DESCRIPTION OF SYMBOLS 1 ... Airtight melting equipment 2 ... Airtight tank 3 ... Melting furnace 3a ... Molten metal 4 ... Metal pipe coating optical fiber 5 ... Optical fiber supply part 6 ... Temperature detection part 7 ... Guide part 8 ... Guide part moving means 25 ... 2nd airtight seal Part 41 ... Optical fiber 42 ... Metal tube 71 ... Insertion rod (tubular member)
72 ... Hermetic seal part 81 ... Motor (speed adjustment mechanism)

Claims (5)

内部に溶解炉を収容し気密雰囲気下に保持する気密槽と、一端を前記溶解炉内の溶湯に浸漬される光ファイバを金属管で被覆してなる金属管被覆光ファイバと、前記気密槽外において前記金属管被覆光ファイバの他端に接続された温度検出部と、前記金属管被覆光ファイバを挿通させて前記気密槽の外部から内部へと導くガイド部と、当該ガイド部を通じて前記金属管被覆光ファイバを前記溶湯内に連続供給する光ファイバ供給部と、前記ガイド部における前記金属管被覆光ファイバの挿入部位を密閉する気密シール部と、を具備してなることを特徴とする気密溶解設備。 A hermetic tank containing a melting furnace therein and maintained in a hermetic atmosphere; a metal tube-coated optical fiber having one end coated with a metal pipe and an optical fiber immersed in the molten metal in the melting furnace; and the outside of the hermetic tank A temperature detection unit connected to the other end of the metal tube-coated optical fiber, a guide unit for inserting the metal tube-coated optical fiber from the outside to the inside of the hermetic tank, and the metal tube through the guide unit An optical fiber supply unit that continuously supplies a coated optical fiber into the molten metal, and an airtight seal unit that seals an insertion site of the metal tube coated optical fiber in the guide unit. Facility. 前記ガイド部を、前記金属管被覆光ファイバの一端を前記溶解炉内の溶湯に浸漬した使用位置と溶湯から引き上げた退避位置との間で移動させるガイド部移動手段をさらに具備している請求項1に記載の気密溶解設備。 The guide part moving means is further provided for moving the guide part between a use position where one end of the metal tube-coated optical fiber is immersed in the molten metal in the melting furnace and a retracted position pulled up from the molten metal. The airtight dissolution facility according to 1. 前記ガイド部移動手段に、前記使用位置と前記退避位置との間での前記ガイド部の移動速度を変更可能な速度調節機構を設けている請求項2に記載の気密溶解設備。 The hermetic melting equipment according to claim 2, wherein the guide part moving means is provided with a speed adjusting mechanism capable of changing a moving speed of the guide part between the use position and the retracted position. 前記気密槽における当該ガイド部の取着部位を密閉する第2気密シール部をさらに具備している請求項2又は3の何れかに記載の気密溶解設備。 The airtight dissolution facility according to any one of claims 2 and 3, further comprising a second airtight seal portion that seals an attachment site of the guide portion in the airtight tank. 前記ガイド部を、前記金属管被覆光ファイバを内部に挿入し且つ前記気密槽に挿入される管状部材としている請求項2乃至4の何れかに記載の気密溶解設備。 The hermetic melting equipment according to any one of claims 2 to 4, wherein the guide portion is a tubular member into which the metal tube-coated optical fiber is inserted and inserted into the hermetic tank.
JP2008236259A 2008-09-16 2008-09-16 Airtight melting facility Pending JP2010071666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236259A JP2010071666A (en) 2008-09-16 2008-09-16 Airtight melting facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008236259A JP2010071666A (en) 2008-09-16 2008-09-16 Airtight melting facility

Publications (1)

Publication Number Publication Date
JP2010071666A true JP2010071666A (en) 2010-04-02

Family

ID=42203621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236259A Pending JP2010071666A (en) 2008-09-16 2008-09-16 Airtight melting facility

Country Status (1)

Country Link
JP (1) JP2010071666A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278870B1 (en) 2010-09-01 2013-07-01 주식회사 우진 Vacuum preservation for temperature measuring and sampling device
US20140321504A1 (en) * 2013-04-30 2014-10-30 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
DE102014012698A1 (en) * 2014-09-01 2016-03-03 Minkon GmbH Measuring device for the optical temperature determination of a molten metal and sealing plug
CN105823572A (en) * 2015-01-28 2016-08-03 贺利氏电子耐特国际股份公司 Immersion device for optical fiber for measuring temperature of melt
US10416074B2 (en) 2015-04-16 2019-09-17 Heraeus Electro-Nite International N.V. Spectrometer calibration method and reference material
RU2768559C1 (en) * 2020-06-22 2022-03-24 Хераеус Электро-Ните Интернациональ Н.В. Device and method for molten metal temperature measurement
EP4009019A1 (en) 2020-12-02 2022-06-08 Heraeus Electro-Nite International N.V. Method and system for determining a temperature value of a molten metal bath
CN115490418A (en) * 2022-09-06 2022-12-20 烽火通信科技股份有限公司 Gas sealing device and gas sealing method for smelting-shrinkage furnace
CN117553918A (en) * 2024-01-12 2024-02-13 国工恒昌新材料(义乌)有限公司 Copper alloy temperature measurement equipment with protection mechanism and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057224A (en) * 1983-09-09 1985-04-03 Ulvac Corp Temperature measuring device by radiation thermometer
JPH0323327U (en) * 1989-07-18 1991-03-11
JPH05237629A (en) * 1992-02-27 1993-09-17 Ulvac Japan Ltd Automatical temperature controller for induction heating type vacuum melting furnace
JPH07151607A (en) * 1993-11-29 1995-06-16 Nkk Corp Temperature measuring instrument
JPH1054763A (en) * 1996-08-12 1998-02-24 Hisashi Okuhara Light receiving part of optical temperature measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057224A (en) * 1983-09-09 1985-04-03 Ulvac Corp Temperature measuring device by radiation thermometer
JPH0323327U (en) * 1989-07-18 1991-03-11
JPH05237629A (en) * 1992-02-27 1993-09-17 Ulvac Japan Ltd Automatical temperature controller for induction heating type vacuum melting furnace
JPH07151607A (en) * 1993-11-29 1995-06-16 Nkk Corp Temperature measuring instrument
JPH1054763A (en) * 1996-08-12 1998-02-24 Hisashi Okuhara Light receiving part of optical temperature measuring device

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278870B1 (en) 2010-09-01 2013-07-01 주식회사 우진 Vacuum preservation for temperature measuring and sampling device
KR101679115B1 (en) * 2013-04-30 2016-11-23 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Method and apparatus for measuring the temperature of a molten metal
US20140321504A1 (en) * 2013-04-30 2014-10-30 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
EP2799824A1 (en) * 2013-04-30 2014-11-05 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
CN104132750A (en) * 2013-04-30 2014-11-05 贺利氏电子耐特国际股份公司 Method and device for measuring temperature of molten metal
KR20140130075A (en) * 2013-04-30 2014-11-07 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Method and apparatus for measuring the temperature of a molten metal
JP2014219395A (en) * 2013-04-30 2014-11-20 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイHeraeus Electro−NiteInternational N.V. Apparatus and method of measuring temperature of dissolved metal
TWI493161B (en) * 2013-04-30 2015-07-21 Heraeus Electro Nite Int Method and apparatus for measuring the temperature of a molten metal
US9726545B2 (en) 2013-04-30 2017-08-08 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
US10378824B2 (en) 2014-04-30 2019-08-13 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
CN105136305A (en) * 2014-04-30 2015-12-09 贺利氏电子耐特国际股份公司 Device for measuring the temperature of a molten metal
RU2589271C1 (en) * 2014-04-30 2016-07-10 Хераеус Электро-Ните Интернациональ Н.В. Device for measuring temperature of molten metal
AU2015202171B2 (en) * 2014-04-30 2019-08-15 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
JP2015212693A (en) * 2014-04-30 2015-11-26 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイHeraeus Electro−NiteInternational N.V. Device for measuring temperature of molten metal
TWI561798B (en) * 2014-04-30 2016-12-11 Heraeus Electro Nite Int Device for measuring the temperature of a molten metal
KR101766009B1 (en) * 2014-04-30 2017-08-07 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Device for measuring the temperature of a molten metal
US20150323258A1 (en) * 2014-04-30 2015-11-12 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
US9863709B2 (en) 2014-04-30 2018-01-09 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
DE102014012698A1 (en) * 2014-09-01 2016-03-03 Minkon GmbH Measuring device for the optical temperature determination of a molten metal and sealing plug
DE102014012698B4 (en) * 2014-09-01 2016-03-24 Minkon GmbH Measuring device for the optical temperature determination of a molten metal and sealing plug
DE102014012698B8 (en) * 2014-09-01 2016-07-14 Minkon GmbH Measuring device for the optical temperature determination of a molten metal
US10024731B2 (en) 2015-01-28 2018-07-17 Heraeus Electro-Nite International N.V. Immersion device for an optical fiber for measuring the temperature of a melt
CN105823572B (en) * 2015-01-28 2018-11-27 贺利氏电子耐特国际股份公司 For measuring the immersion system of the optical fiber of melt temperature
EP3051264A1 (en) * 2015-01-28 2016-08-03 Heraeus Electro-Nite International N.V. Immersion device for an optical fiber for measuring the temperature of a melt
CN105823572A (en) * 2015-01-28 2016-08-03 贺利氏电子耐特国际股份公司 Immersion device for optical fiber for measuring temperature of melt
US10416074B2 (en) 2015-04-16 2019-09-17 Heraeus Electro-Nite International N.V. Spectrometer calibration method and reference material
RU2768559C1 (en) * 2020-06-22 2022-03-24 Хераеус Электро-Ните Интернациональ Н.В. Device and method for molten metal temperature measurement
US11959813B2 (en) 2020-06-22 2024-04-16 Heraeus Electro-Nite International N.V. Device and method for measuring a temperature of a molten metal
EP4009019A1 (en) 2020-12-02 2022-06-08 Heraeus Electro-Nite International N.V. Method and system for determining a temperature value of a molten metal bath
WO2022117627A1 (en) 2020-12-02 2022-06-09 Heraeus Electro-Nite International N.V. Method and system for determining a temperature value of a molten metal bath
CN115490418A (en) * 2022-09-06 2022-12-20 烽火通信科技股份有限公司 Gas sealing device and gas sealing method for smelting-shrinkage furnace
CN115490418B (en) * 2022-09-06 2023-11-03 烽火通信科技股份有限公司 Gas sealing device and gas sealing method for melting shrinkage furnace
CN117553918A (en) * 2024-01-12 2024-02-13 国工恒昌新材料(义乌)有限公司 Copper alloy temperature measurement equipment with protection mechanism and method
CN117553918B (en) * 2024-01-12 2024-03-29 国工恒昌新材料(义乌)有限公司 Copper alloy temperature measurement equipment with protection mechanism and method

Similar Documents

Publication Publication Date Title
JP2010071666A (en) Airtight melting facility
TWI493161B (en) Method and apparatus for measuring the temperature of a molten metal
JP6122902B2 (en) Equipment for measuring the temperature of molten metal
KR101750650B1 (en) Feeding device for an optical fiber for measuring the temperature of a melt
KR101860620B1 (en) Optical fiber drawing method and optical fiber drawing device
US5931984A (en) Device for drawing down an optical fiber preform
JP2007205691A (en) Graphite heating furnace
MY159636A (en) Support head for handling a ladle shroud
CN109642825A (en) Optics core-spun yarn immersion ozzle
CN104334505B (en) The system and method that the partial vacuum operation of arc discharge for controllably heating is provided
JP2009156550A (en) Multi-chamber type heat treatment apparatus and temperature control method
JPH07229791A (en) Temperature measuring device and temperature measuring method for molten metal
KR20190053183A (en) Optical fiber cutting method and cutting device
KR102384027B1 (en) Method for optically determining the temperature of a molten metal, and reeling device for carrying out said method
TW201114501A (en) Liquid supplying apparatus
JP2012148923A (en) Sealing method of optical fiber drawing furnace, and optical fiber drawing furnace
JP2822875B2 (en) Molten metal temperature measuring device
JPH09243459A (en) Optical temperature-measuring apparatus for hightemperature solution and measuring method by the apparatus
JP2004051414A (en) Method of controlling positive pressure in optical fiber preform heating furnace
JP2003240450A (en) Closed sealing device for electroslag melting furnace
JP2000247774A (en) Pulling apparatus of silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130208