JP2010071120A - Bearing lubricant circulation device for gas turbine generating facility - Google Patents

Bearing lubricant circulation device for gas turbine generating facility Download PDF

Info

Publication number
JP2010071120A
JP2010071120A JP2008237305A JP2008237305A JP2010071120A JP 2010071120 A JP2010071120 A JP 2010071120A JP 2008237305 A JP2008237305 A JP 2008237305A JP 2008237305 A JP2008237305 A JP 2008237305A JP 2010071120 A JP2010071120 A JP 2010071120A
Authority
JP
Japan
Prior art keywords
lubricant
bearing
tank
discharge
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008237305A
Other languages
Japanese (ja)
Other versions
JP5055233B2 (en
Inventor
Susumu Nakano
晋 中野
Tomoaki Inoue
知昭 井上
Hiroyuki Shiraiwa
弘行 白岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008237305A priority Critical patent/JP5055233B2/en
Publication of JP2010071120A publication Critical patent/JP2010071120A/en
Application granted granted Critical
Publication of JP5055233B2 publication Critical patent/JP5055233B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing lubricant circulation device for a gas turbine generating facility increasing power generating efficiency of the generating facility by reducing accessory motive power necessary for circulating lubricant and maintaining a good discharge state of lubricant. <P>SOLUTION: The length of a discharge pipe from a bearing part to a sub tank 11 is shortened, influence of conduit resistance is reduced, and good lubricant discharge from a bearing part is materialized by providing a discharge channel composed of two tanks of a sub tank 11 and a main tank 10 opened to atmospheric pressure. A liquid level of lubricant in the sub tank 11 is kept constant, and a good discharge condition is maintained without using an accessory for lubricant discharge by connecting the sub tank 11 and the main tank 10 by piping of a piping diameter securing a flow rate same as the flow rate for supply to the bearing part by a circulation pump from flow speed determined by a head between the two tanks. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガスタービン発電設備の軸受潤滑剤循環装置に係り、特に、店舗や病院等に設置される自家発電設備として好適なガスタービン発電設備の軸受潤滑剤循環装置に関する。   The present invention relates to a bearing lubricant circulation device for a gas turbine power generation facility, and more particularly to a bearing lubricant circulation device for a gas turbine power generation facility suitable as a private power generation facility installed in a store or a hospital.

一般に自家発電設備として用いられるガスタービン発電設備のうち、100kWから250kWクラスの容量のガスタービン発電設備は、特許文献1に開示されているように、発電機の軸受として油潤滑軸受を用いている。   Among gas turbine power generation facilities generally used as private power generation facilities, gas turbine power generation facilities with a capacity of 100 kW to 250 kW class use oil-lubricated bearings as generator bearings as disclosed in Patent Document 1. .

特開2002−221090号公報(明細書の段落番号〔0007〕)JP 2002-221090 A (paragraph number [0007] of the specification)

特許文献1に開示のガスタービン発電設備は、軸受潤滑剤としての油をポンプで圧送して軸受部に供給する。軸受部では、通常は大気圧に開放されるため、軸受を潤滑した油を再びポンプ上流の油タンクまで戻し、しかも、潤滑剤の軸受部からの排出を完全にするため、油タンクは排煙ファンによってタンク内の空気を外部に排気してタンク内圧を大気よりも低減させている。軸受を潤滑した油は、上記の油タンクでの排煙によるタンク内負圧と軸受部の大気圧との圧力差を利用して軸受部分からの排出が行われる。ここで、軸受部の潤滑剤の排出を良好に行うためには、油タンクでの減圧を大きくする必要があり、発電装置の補機動力の消費が増すため、発電量の一部がその動力に消費され、結果として発電効率の低下を招くことになる。また、油タンクまでの戻りの排出配管長が長くなると、管路抵抗の増加分、潤滑剤の排出が悪くなり、結果として排煙ファンの容量が増加し補機動力が増し発電効率が低下する。   The gas turbine power generation facility disclosed in Patent Document 1 pumps oil as a bearing lubricant by a pump and supplies the oil to a bearing portion. Since the bearing is normally opened to atmospheric pressure, the oil that lubricated the bearing is returned to the oil tank upstream of the pump, and the oil tank is exhausted to completely discharge the lubricant from the bearing. The air in the tank is exhausted to the outside by a fan to reduce the tank internal pressure from the atmosphere. Oil that has lubricated the bearing is discharged from the bearing portion by utilizing the pressure difference between the negative pressure in the tank due to smoke exhaustion in the oil tank and the atmospheric pressure in the bearing portion. Here, in order to discharge the lubricant from the bearing part satisfactorily, it is necessary to increase the pressure reduction in the oil tank, and the consumption of auxiliary power of the power generator increases. As a result, power generation efficiency is reduced. Also, if the return pipe length to the oil tank becomes longer, the lubricant discharge becomes worse by the increase in pipe resistance, resulting in an increase in the capacity of the smoke exhaust fan, an increase in auxiliary power, and a decrease in power generation efficiency. .

本発明の目的は、ガスタービン発電設備(例えば、自家発電設備で100〜250kWクラスのガスタービン発電設備)に適用する軸受潤滑剤循環装置での、潤滑剤の循環に必要な補機動力を低減して、発電設備の発電効率を増加でき、しかも潤滑剤の良好な排出状態を維持できる軸受潤滑剤循環装置を提供することにある。   The object of the present invention is to reduce the auxiliary power required for the circulation of the lubricant in the bearing lubricant circulation device applied to the gas turbine power generation equipment (for example, a gas turbine power generation equipment of 100 to 250 kW class with private power generation equipment). Thus, it is an object of the present invention to provide a bearing lubricant circulation device that can increase the power generation efficiency of the power generation equipment and can maintain a good discharge state of the lubricant.

本発明は、上記目的を達成するために、潤滑剤タンクを大気圧に開放された2つのタンクで構成し、この2つのタンクを、軸受部の下方に設置した潤滑剤排出タンク(サブタンク)とこの潤滑剤排出タンクより低位置に設置された潤滑剤供給タンク(メインタンク)とから構成し、サブタンクで軸受から排出される潤滑剤を一旦受け入れ、サブタンクからメインタンクに潤滑剤を重力作用で流すようにしたものである。   In order to achieve the above object, the present invention comprises a lubricant tank composed of two tanks opened to atmospheric pressure, and these two tanks are provided with a lubricant discharge tank (sub tank) installed below the bearing portion. It consists of a lubricant supply tank (main tank) installed at a position lower than this lubricant discharge tank, and once receives the lubricant discharged from the bearing in the sub tank, and flows the lubricant from the sub tank to the main tank by gravity. It is what I did.

潤滑剤排出タンク(サブタンク)は軸受部の直下に設置することが好ましく、また、軸受部から潤滑剤排出タンクに潤滑剤を排出する潤滑剤排出配管を直管とするのが好ましい。   The lubricant discharge tank (sub tank) is preferably installed directly below the bearing portion, and the lubricant discharge pipe for discharging the lubricant from the bearing portion to the lubricant discharge tank is preferably a straight pipe.

また、潤滑剤排出タンク(サブタンク)は、潤滑剤排出管よりも断面積が十分大きく大気圧に開放された配管としても良い。   The lubricant discharge tank (sub tank) may be a pipe having a sufficiently larger cross-sectional area than the lubricant discharge pipe and opened to the atmospheric pressure.

本発明によれば、軸受部の下方に潤滑剤を受け止める大気に開放されたサブタンクを設け、このタンクで受けた潤滑剤を、サブタンクよりも低位置に設置される大気圧に開放されたメインタンクに重力作用のみで流すようにしている。その結果、第一に補機動力を低減するため排煙ファンを取り除くことができ、かつ、第二に位置エネルギーの差、つまりヘッド差だけで良好な排出が実現できる。従って、発電機軸受部下流の潤滑剤排出部に潤滑剤排出のための補機動力を必要とせず、潤滑剤の排出を良好に行えることができるため、さらに補機動力を低減できるガスタービン発電設備の軸受潤滑剤循環装置を提供することができる。   According to the present invention, a sub tank opened to the atmosphere for receiving the lubricant is provided below the bearing portion, and the lubricant received by the tank is opened to the atmospheric pressure installed at a lower position than the sub tank. It is made to flow only by gravity action. As a result, firstly, the smoke exhaust fan can be removed in order to reduce the auxiliary machine power, and second, good discharge can be realized only by the difference in potential energy, that is, the head difference. Therefore, it is not necessary to use auxiliary power for discharging the lubricant in the lubricant discharge section downstream of the generator bearing section, and it is possible to discharge the lubricant satisfactorily, so that the gas turbine power generation can further reduce auxiliary power. An equipment bearing lubricant circulation device can be provided.

特に、軸受部の直下にサブタンクを設置し、軸受部とサブタンク間の潤滑剤排出管距離を短く、また、直線状に配管することで、軸受部とサブタンク間の配管抵抗を減少して潤滑剤の排出を良好にできる。   In particular, a sub-tank is installed directly under the bearing section, the lubricant discharge pipe distance between the bearing section and the sub-tank is shortened, and the piping is straight, thereby reducing the piping resistance between the bearing section and the sub-tank. Can be discharged well.

このように軸受の潤滑剤の排出経路を、共に大気圧に開放されるサブタンクとメインタンクの2つのタンクから構成される排出流路を設けることで、軸受部からサブタンクまでは排出管長を短くできて管路抵抗の影響を少なくでき、軸受部からの良好な潤滑剤の排出が実現できる。また、サブタンクとメインタンクとは2つのタンク間のヘッド差で決まる流速から、循環ポンプで軸受部に供給する流量と同じ流量が確保できる配管径の配管で連結することで、サブタンク内の潤滑剤の液位を一定に保て、結果として、排出のための補機を用いないで良好な排出状態を維持できる。   Thus, by providing a discharge passage composed of two tanks, a sub tank and a main tank that are both open to the atmospheric pressure, the bearing lubricant discharge path can shorten the discharge pipe length from the bearing section to the sub tank. Therefore, the influence of the pipe resistance can be reduced, and good lubricant discharge from the bearing portion can be realized. Also, the sub tank and main tank are connected by a pipe with a pipe diameter that can secure the same flow rate as the flow rate supplied to the bearing by the circulation pump from the flow rate determined by the head difference between the two tanks. As a result, it is possible to maintain a good discharge state without using auxiliary equipment for discharge.

以下、本発明による第1の実施の形態を図1に示すガスタービン発電設備の軸受潤滑剤の循環システムを用いて説明する。   Hereinafter, a first embodiment of the present invention will be described using a bearing lubricant circulation system of a gas turbine power generation facility shown in FIG.

図1には、発電機本体と軸受潤滑剤循環装置を示す。発電機本体は、発電機1と、発電機ロータ5と、そのロータを指示する軸受4と、発電機ロータに取り付けられた圧縮機2とタービン3からなる。図1では、発電機本体を模式的に示したもので、発電機,圧縮機、及びタービンの詳しい構造と、ケーシング等の構成要素は省いている。軸受潤滑剤は、メインタンク10に貯えられていて、循環ポンプ7によって、潤滑剤供給管6を通して発電本体1に供給される(本実施例では、循環ポンプ7及び潤滑剤供給管6が、タンクから軸受に軸受潤滑剤を供給する系統ということになる。)。循環ポンプの下流側には、ラジエータ8が設置されていて、ラジエータファン9からの冷却風15によって熱交換され、軸受部で吸収した熱を放出する。潤滑剤排出管13A,13Bは、軸受部と直下に設置されたサブタンク11と繋がり、軸受潤滑剤をサブタンクに排出する(本実施例では、潤滑剤排出管13A,13Bが、軸受からタンクに軸受潤滑剤を排出する系統ということになる。)。軸受部とサブタンクは共に大気開放されているため、潤滑剤は軸受部とサブタンクのヘッド差だけで排出されるが、サブタンクが軸受直下に設置されているため、配管抵抗の影響はほとんど受けず、軸受部に潤滑剤を澱ますことなく、良好に排出させる。また、サブタンク11とメインタンク10は接続管12で連結されている。連結管の管径を適切に選定することで、つまり、両タンクのヘッド差で決まる流出速度と、循環ポンプ7の吐出流量に等しくなる管径の配管を設置することで、サブタンクに溜まった潤滑剤は、サブタンクをあふれることなく、メインタンクに流す。本実施例によれば、潤滑剤の貯留タンクには内圧を負圧に維持する排煙ファンを必要としないため、補機動力が低減でき、さらに、軸受下流側は、短管によって、潤滑剤はサブタンクに落とされるため、軸受部に不要な潤滑剤の溜まりが発生せず発電機内部への潤滑剤の漏れ等の不具合の発生を防止でき、良好な排水状態を得ることができるという効果がある。   FIG. 1 shows a generator body and a bearing lubricant circulation device. The generator body is composed of a generator 1, a generator rotor 5, a bearing 4 indicating the rotor, a compressor 2 attached to the generator rotor, and a turbine 3. In FIG. 1, the generator main body is schematically shown, and detailed structures of the generator, the compressor, and the turbine, and components such as a casing are omitted. The bearing lubricant is stored in the main tank 10 and is supplied to the power generation body 1 through the lubricant supply pipe 6 by the circulation pump 7 (in this embodiment, the circulation pump 7 and the lubricant supply pipe 6 are connected to the tank. This is a system for supplying bearing lubricant to the bearing from the bearing.) A radiator 8 is installed on the downstream side of the circulation pump, heat is exchanged by the cooling air 15 from the radiator fan 9, and the heat absorbed by the bearing portion is released. The lubricant discharge pipes 13A and 13B are connected to the bearing and the sub tank 11 installed immediately below, and discharge the bearing lubricant to the sub tank (in this embodiment, the lubricant discharge pipes 13A and 13B are bearing from the bearing to the tank. It is a system that discharges lubricant.) Since both the bearing and the sub tank are open to the atmosphere, the lubricant is discharged only by the head difference between the bearing and the sub tank, but since the sub tank is installed directly under the bearing, it is hardly affected by the piping resistance. Drain the lubricant well without adding lubricant to the bearing. The sub tank 11 and the main tank 10 are connected by a connecting pipe 12. By appropriately selecting the pipe diameter of the connecting pipe, that is, by installing a pipe having a pipe diameter equal to the discharge speed determined by the head difference between the two tanks and the discharge flow rate of the circulation pump 7, the lubrication accumulated in the sub tank The agent flows into the main tank without overflowing the sub tank. According to the present embodiment, the lubricant storage tank does not require a smoke exhaust fan that maintains the internal pressure at a negative pressure, so that the auxiliary machine power can be reduced. Since it is dropped into the sub-tank, unnecessary lubrication of the lubricant does not occur in the bearing part, and it is possible to prevent the occurrence of problems such as leakage of the lubricant into the generator and to obtain a good drainage state. is there.

図2は図1に示した発電機と軸受装置部を示したものである。発電機ロータ5は2個の軸受4で支えられている。また、発電機ステータ29は中心部が開放されたドーナツ状の形状を有しており、その中心部に発電機ロータ5を囲むように設置されている。軸受ブラケット20側に設置される軸受4はスラスト軸受とジャーナル軸受が一体化されたコンバインド軸受である。発電機ロータ5の突起部27はスラスト軸受の当たり面となるスラストカラーで、軸受ブラケット20には、軸受潤滑剤の供給孔21が設けられており、潤滑剤供給孔21を通して供給された潤滑剤は軸受4を潤滑した後、図2の軸受の左側から排出される潤滑剤は軸受ブラケット20の空洞部24に流出して潤滑剤排出孔22を通して潤滑剤排出管13からサブタンク11に排出される。サブタンク11には、大気に開放する空気孔38が設けられている。軸受4の右側から排出される潤滑剤は軸受ブラケット20の空洞部28に流出して潤滑剤排出孔23を通して軸受ブラケットの空洞部24に流出し、潤滑剤排出孔22を通して潤滑剤排出管13からサブタンク11に排出される。軸受ブラケットには、潤滑剤が発電機ステータ側に漏れこまないようラビリンスシール25が、また、発電機外部に漏れ出さないようラビリンスシール26が設置されている。同様に、軸受ブラケット30側に設置される軸受4はジャーナル軸受である。軸受ブラケット30には、軸受潤滑剤の潤滑剤供給孔31が設けられており、潤滑剤供給孔31を通して供給された潤滑剤は軸受4を潤滑した後、図2の軸受の左側から排出される潤滑剤は軸受ブラケット30の空洞部34に流出して潤滑剤排出孔32を通して潤滑剤排出管13からサブタンク11に排出される。また、軸受4の右側から排出される潤滑剤は軸受ブラケット30の空洞部36に流出して潤滑剤排出孔33を通して軸受ブラケットの空洞部34に流出し、潤滑剤排出孔32を通して潤滑剤排出管13からサブタンク11に排出される。軸受ブラケットには、潤滑剤が発電機ステータ側に漏れこまないようラビリンスシール35が設置されている。本実施例によれば、潤滑剤排出管径は、潤滑剤供給孔と同等以上に大きく取れ、しかも、大気開放されたサブタンクとは、直線的に短距離で繋がれており、潤滑剤の排出に伴う管路抵抗は少なく、潤滑剤の排出が良好に実施できるという効果がある。   FIG. 2 shows the generator and the bearing unit shown in FIG. The generator rotor 5 is supported by two bearings 4. The generator stator 29 has a donut shape with an open center, and is installed so as to surround the generator rotor 5 at the center. The bearing 4 installed on the bearing bracket 20 side is a combined bearing in which a thrust bearing and a journal bearing are integrated. The protrusion 27 of the generator rotor 5 is a thrust collar that serves as a contact surface of the thrust bearing. The bearing bracket 20 is provided with a bearing lubricant supply hole 21, and the lubricant supplied through the lubricant supply hole 21. After lubricating the bearing 4, the lubricant discharged from the left side of the bearing in FIG. 2 flows into the cavity 24 of the bearing bracket 20 and is discharged from the lubricant discharge pipe 13 to the sub tank 11 through the lubricant discharge hole 22. . The sub tank 11 is provided with an air hole 38 that is open to the atmosphere. The lubricant discharged from the right side of the bearing 4 flows into the cavity 28 of the bearing bracket 20, flows out into the cavity 24 of the bearing bracket through the lubricant discharge hole 23, and from the lubricant discharge pipe 13 through the lubricant discharge hole 22. It is discharged to the sub tank 11. The bearing bracket is provided with a labyrinth seal 25 so that the lubricant does not leak into the generator stator side, and a labyrinth seal 26 so as not to leak out of the generator. Similarly, the bearing 4 installed on the bearing bracket 30 side is a journal bearing. The bearing bracket 30 is provided with a lubricant supply hole 31 for a bearing lubricant, and the lubricant supplied through the lubricant supply hole 31 lubricates the bearing 4 and is then discharged from the left side of the bearing in FIG. The lubricant flows into the cavity 34 of the bearing bracket 30 and is discharged from the lubricant discharge pipe 13 to the sub tank 11 through the lubricant discharge hole 32. Further, the lubricant discharged from the right side of the bearing 4 flows into the cavity portion 36 of the bearing bracket 30, flows out into the cavity portion 34 of the bearing bracket through the lubricant discharge hole 33, and flows through the lubricant discharge hole 32 to the lubricant discharge pipe. 13 is discharged to the sub tank 11. A labyrinth seal 35 is installed on the bearing bracket so that the lubricant does not leak to the generator stator side. According to the present embodiment, the lubricant discharge pipe diameter can be made larger than or equal to the lubricant supply hole, and is connected to the sub-tank opened to the atmosphere at a short distance, so that the lubricant is discharged. As a result, the pipe resistance is small and the lubricant can be discharged well.

図3の実施例では、100kW〜200kW容量の再生サイクルガスタービン発電設備のパッケージに潤滑剤循環装置を設置した状態を示す。発電機1,圧縮機2,タービン3及び燃焼器40から成る発電機本体は、パッケージフレーム46の仕切り床板47の上側に設置されている。また本体は、上流側が、圧縮機の吸気側に大気と連通する吸気ダクト41と、下流側が、排気ダクト42,再生熱交換器43,排気サイレンサー44、及び排出ダクト45に接続されている。仕切り床板47の下側には、発電機ロータの回転数を制御し、発電機の出力制御を行う電力変換器48が設置されている。タービン本体に取り込まれる空気は、吸気ダクト41から入り(矢印50)、排出ダクト45から大気に放出される(矢印51)。一方、潤滑剤の冷却に使用される空気は、仕切り床板47の下段に設置されたラジエータファン9によって、大気から矢印52でパッケージ内に取り込まれ、電力変換器48を冷却して矢印53で示される部位を通ってパッケージ外(矢印54)で大気に排出される。図3で、潤滑剤排出用のサブタンク11を仕切り床板47上の発電機1の直下に配置して、直線状の潤滑剤排出管13A,13Bと接続している。また、メインタンク10を仕切り床板47の下段に設置して、サブタンク11とは接続管12で連結されている。サブタンク11が大気開放されているため、発電機内の軸受部とサブタンク11間は両者のヘッド差によって潤滑剤が排出されるが、排出管が直線状であり、かつ距離が短いため、管路抵抗は少なく、潤滑剤の排出は良好に行われる。また、サブタンク11とメインタンク10間も同様に両者のヘッド差による重力作用のみで、潤滑剤はメインタンクに戻される。ヘッド差で決まる流速から、接続管12の断面積の積が、潤滑剤供給体積流量と同等以上になるように接続管の管径を選ぶことにより、サブタンクとメインタンク間の潤滑剤の排出を良好に行うことができる。本実施例によれば、潤滑剤の排出側に排煙ファン等の補機を設置しなくても潤滑剤の排出は良好に行え、補機動力が低減できる分、発電効率が向上するという効果がある。   The embodiment of FIG. 3 shows a state where a lubricant circulation device is installed in a package of a regeneration cycle gas turbine power generation facility having a capacity of 100 kW to 200 kW. A generator main body including the generator 1, the compressor 2, the turbine 3 and the combustor 40 is installed on the upper side of the partition floor plate 47 of the package frame 46. The main body has an upstream side connected to an intake duct 41 communicating with the atmosphere on the intake side of the compressor, and a downstream side connected to an exhaust duct 42, a regenerative heat exchanger 43, an exhaust silencer 44, and an exhaust duct 45. A power converter 48 that controls the number of revolutions of the generator rotor and controls the output of the generator is installed below the partition floor plate 47. The air taken into the turbine body enters from the intake duct 41 (arrow 50) and is discharged from the exhaust duct 45 to the atmosphere (arrow 51). On the other hand, the air used for cooling the lubricant is taken into the package from the atmosphere by an arrow 52 by the radiator fan 9 installed at the lower stage of the partition floor plate 47, and the power converter 48 is cooled and indicated by an arrow 53. Is discharged to the atmosphere outside the package (arrow 54). In FIG. 3, the sub-tank 11 for discharging the lubricant is disposed immediately below the generator 1 on the partition floor plate 47 and connected to the linear lubricant discharge pipes 13 </ b> A and 13 </ b> B. Further, the main tank 10 is installed at the lower stage of the partition floor plate 47 and is connected to the sub tank 11 by the connecting pipe 12. Since the sub-tank 11 is open to the atmosphere, the lubricant is discharged between the bearing portion in the generator and the sub-tank 11 due to the head difference between the two, but since the discharge pipe is straight and the distance is short, the pipe resistance The lubricant is discharged well. Similarly, the lubricant is returned to the main tank between the sub tank 11 and the main tank 10 only by the gravitational action due to the head difference between the two. By selecting the pipe diameter of the connecting pipe so that the product of the cross-sectional area of the connecting pipe 12 is equal to or greater than the lubricant supply volume flow rate from the flow rate determined by the head difference, the lubricant is discharged between the sub tank and the main tank. It can be done well. According to this embodiment, the lubricant can be discharged satisfactorily without installing an auxiliary machine such as a smoke exhaust fan on the lubricant discharge side, and the power generation efficiency can be improved by reducing the auxiliary power. There is.

図4は本発明の他の実施例を示す図である。図4の実施例では、仕切り床板47上に設置されるサブタンクの代わりに、断面積の大きな配管55を設置して、この配管55と潤滑剤排出管13A,13B、及び接続管12を繋いだものである。配管55には空気孔38が設けられていて配管55内を大気圧状態に保っている。配管55は断面積が十分大きいため、容積も図3の実施例で示したサブタンクと同様に十分あり、しかも、配管内は大気圧状態のため、発電機軸受部からの潤滑剤の排出は図3に示した実施例と同様な効果をもたらす。   FIG. 4 is a diagram showing another embodiment of the present invention. In the embodiment of FIG. 4, instead of the sub tank installed on the partition floor plate 47, a pipe 55 having a large cross-sectional area is installed, and the pipe 55 is connected to the lubricant discharge pipes 13 </ b> A and 13 </ b> B and the connection pipe 12. Is. The piping 55 is provided with an air hole 38 to keep the inside of the piping 55 in an atmospheric pressure state. Since the cross-sectional area of the pipe 55 is sufficiently large, the volume is sufficient in the same manner as the sub tank shown in the embodiment of FIG. 3, and since the inside of the pipe is in the atmospheric pressure state, the lubricant is discharged from the generator bearing portion. The same effect as the embodiment shown in FIG.

なお、本実施例では、潤滑剤として油を想定した場合で記載したが、潤滑剤は液体あればよく、例えば、潤滑剤として水を用いた場合(例えば、特開2005−54779号公報に開示されたガスタービン発電設備に適用した場合)にも同様な効果が得られる。   In this embodiment, the case where oil is assumed as the lubricant is described. However, the lubricant may be liquid, for example, when water is used as the lubricant (for example, disclosed in JP-A-2005-54779). The same effect can be obtained in the case of application to a gas turbine power generation facility.

本発明によるガスタービン発電設備の第1の実施の形態を示す図。The figure which shows 1st Embodiment of the gas turbine power generation equipment by this invention. 本発明によるガスタービン発電設備の第1の実施の形態の発電機部分を示す断面図。Sectional drawing which shows the generator part of 1st Embodiment of the gas turbine power generation equipment by this invention. 本発明によるガスタービン発電設備の第1の実施の形態のパッケージ内設置状態を示す図。The figure which shows the installation state in the package of 1st Embodiment of the gas turbine power generation equipment by this invention. 本発明によるガスタービン発電設備の第2の実施の形態を示す図。The figure which shows 2nd Embodiment of the gas turbine power generation equipment by this invention.

符号の説明Explanation of symbols

1 発電機
2 圧縮機
3 タービン
4A コンバインド型軸受
4B ジャーナル軸受
5 発電機ロータ
6 潤滑剤供給管
7 循環ポンプ
8 ラジエータ
9 ラジエータファン
10 メインタンク
11 サブタンク
12 接続管
13A,13B 潤滑剤排出管
14 潤滑剤
15 冷却風(ラジエータファンからの風)
20,30 軸受ブラケット
21,31 潤滑剤供給孔
22,23,32,33 潤滑剤排出孔
24,28,34,36 空洞部
25,26,35 ラビリンスシール
27 突起部(スラストカラー)
37 軸受ブラケット軸端蓋
38 空気孔
40 燃焼器
41 吸気ダクト
42 排気ダクト
43 再生熱交換器
44 排気サイレンサー
45 排出ダクト
46 パッケージフレーム
47 仕切り床板
48 電力変換器
50,51 タービン内に取り込まれる風の流れを示す矢印
52,53,54 パッケージ内に取り込まれる風の流れを示す矢印
55 配管
DESCRIPTION OF SYMBOLS 1 Generator 2 Compressor 3 Turbine 4A Combined type bearing 4B Journal bearing 5 Generator rotor 6 Lubricant supply pipe 7 Circulating pump 8 Radiator 9 Radiator fan 10 Main tank 11 Sub tank 12 Connection pipe 13A, 13B Lubricant discharge pipe 14 Lubricant 15 Cooling air (wind from radiator fan)
20, 30 Bearing bracket 21, 31 Lubricant supply hole 22, 23, 32, 33 Lubricant discharge hole 24, 28, 34, 36 Cavity 25, 26, 35 Labyrinth seal 27 Protrusion (thrust collar)
37 Bearing bracket shaft end cover 38 Air hole 40 Combustor 41 Intake duct 42 Exhaust duct 43 Regenerative heat exchanger 44 Exhaust silencer 45 Exhaust duct 46 Package frame 47 Partition floor plate 48 Power converter 50, 51 Flow of wind taken into turbine Arrows 52, 53, 54 Arrow 55 indicating the flow of wind taken into the package

Claims (7)

発電機の回転子を支持する軸受の潤滑剤循環装置であって、
軸受潤滑剤を収容するタンクと、
前記タンクから前記軸受に軸受潤滑剤を供給する系統と、
前記軸受から前記タンクに軸受潤滑剤を排出する系統とから潤滑剤循環経路を形成し、
前記タンクを、大気圧に開放された2つのタンクであって、前記軸受潤滑剤を排出する系統に接続された潤滑剤排出タンクと、該潤滑剤排出タンクの下方に設置され、前記軸受潤滑剤を供給する系統に接続された潤滑剤供給タンクとから構成すると共に、前記潤滑剤排出タンクと前記潤滑剤供給タンクとを接続する配管を設けたことを特徴とするガスタービン発電設備の軸受潤滑剤循環装置。
A lubricant circulation device for a bearing that supports a rotor of a generator,
A tank containing the bearing lubricant;
A system for supplying a bearing lubricant from the tank to the bearing;
Forming a lubricant circulation path from a system for discharging the bearing lubricant from the bearing to the tank;
The tanks are two tanks opened to atmospheric pressure, and are connected to a system for discharging the bearing lubricant, and are installed below the lubricant discharge tank, and the bearing lubricant And a lubricant supply tank connected to a system for supplying gas, and a pipe for connecting the lubricant discharge tank and the lubricant supply tank is provided. Circulation device.
発電機の回転子を支持する軸受の潤滑剤循環装置において、
軸受潤滑剤を収容するタンクを、
前記発電機のケーシング外の直下に配置され大気圧に開放された潤滑剤排出タンクと、
前記潤滑剤排出タンクより低位置に設置され、該潤滑剤排出タンクから軸受潤滑剤を受け入れる潤滑剤供給タンクとから構成し、
前記軸受からの潤滑剤排出管を前記潤滑剤排出タンクと接続したことを特徴とするガスタービン発電設備の軸受潤滑剤循環装置。
In the lubricant circulation device of the bearing that supports the rotor of the generator,
A tank containing the bearing lubricant,
A lubricant discharge tank that is disposed directly under the generator casing and opened to atmospheric pressure;
A lubricant supply tank that is installed at a lower position than the lubricant discharge tank and receives a bearing lubricant from the lubricant discharge tank;
A bearing lubricant circulation device for a gas turbine power generation facility, wherein a lubricant discharge pipe from the bearing is connected to the lubricant discharge tank.
請求項1において、
前記軸受と前記潤滑剤排出タンクを直線状の潤滑剤排出配管で接続することを特徴とするガスタービン発電設備の軸受潤滑剤循環装置。
In claim 1,
A bearing lubricant circulation device for a gas turbine power generation facility, wherein the bearing and the lubricant discharge tank are connected by a linear lubricant discharge pipe.
請求項2において、
前記潤滑剤排出管を直線状の配管としたことを特徴とするガスタービン発電設備の軸受潤滑剤循環装置。
In claim 2,
A bearing lubricant circulation device for a gas turbine power generation facility, wherein the lubricant discharge pipe is a straight pipe.
請求項1〜4の何れかにおいて、
ガスタービン発電設備はパッケージ内に配置され、
前記パッケージは仕切り床板によって二段に構成されており、
前記発電機及び前記潤滑剤排出タンクは、前記仕切り床板の上側に設置され、かつ、前記潤滑剤排出タンクは、前記発電機直下の前記仕切り床板上に設置され、
前記潤滑剤供給タンクは、前記仕切り床板の下側に設置されていることを特徴とするガスタービン発電設備の軸受潤滑剤循環装置。
In any one of Claims 1-4,
The gas turbine power plant is located in the package,
The package is configured in two stages by a partition floor board,
The generator and the lubricant discharge tank are installed on the upper side of the partition floor plate, and the lubricant discharge tank is installed on the partition floor plate directly under the generator,
The said lubricant supply tank is installed under the said partition floor board, The bearing lubricant circulation apparatus of the gas turbine power generation equipment characterized by the above-mentioned.
請求項3〜5の何れかにおいて、
前記潤滑剤排出タンクにかえて、前記潤滑剤排出管よりも断面積が十分大きく大気圧に開放された配管を用いたことを特徴とするガスタービン発電設備の軸受潤滑剤循環装置。
In any one of Claims 3-5,
A bearing lubricant circulation device for a gas turbine power generation facility, wherein a pipe having a sufficiently larger cross-sectional area than the lubricant discharge pipe and opened to an atmospheric pressure is used instead of the lubricant discharge tank.
圧縮機とタービンと発電機を同軸のロータで支持するようにしたガスタービン設備であって、
前記ロータを発電機の両側で支持する軸受と、
前記軸受に潤滑剤を供給する潤滑剤供給配管と、
前記軸受から排出された潤滑剤を受け入れるタンクと、
前記潤滑剤供給配管の経路に設けられ前記タンク内の潤滑剤を送液する循環ポンプとを有し、
前記タンクは、前記軸受から排出された潤滑剤を受け入れる大気圧に開放された潤滑剤排出タンクと、前記潤滑剤排出タンクよりも下方に設置され、前記潤滑剤排出タンクからの潤滑剤を受け入れる潤滑剤供給タンクとを有するガスタービン設備。
A gas turbine facility in which a compressor, a turbine, and a generator are supported by a coaxial rotor,
Bearings for supporting the rotor on both sides of the generator;
A lubricant supply pipe for supplying a lubricant to the bearing;
A tank for receiving the lubricant discharged from the bearing;
A circulation pump that is provided in a route of the lubricant supply pipe and feeds the lubricant in the tank;
The tank is provided with a lubricant discharge tank that is open to atmospheric pressure that receives the lubricant discharged from the bearing, and a lubricant that is installed below the lubricant discharge tank and receives the lubricant from the lubricant discharge tank. A gas turbine facility having an agent supply tank.
JP2008237305A 2008-09-17 2008-09-17 Bearing lubricant circulation system for gas turbine power generation equipment Expired - Fee Related JP5055233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237305A JP5055233B2 (en) 2008-09-17 2008-09-17 Bearing lubricant circulation system for gas turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008237305A JP5055233B2 (en) 2008-09-17 2008-09-17 Bearing lubricant circulation system for gas turbine power generation equipment

Publications (2)

Publication Number Publication Date
JP2010071120A true JP2010071120A (en) 2010-04-02
JP5055233B2 JP5055233B2 (en) 2012-10-24

Family

ID=42203149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237305A Expired - Fee Related JP5055233B2 (en) 2008-09-17 2008-09-17 Bearing lubricant circulation system for gas turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP5055233B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275507A (en) * 2015-10-20 2016-01-27 西安航空动力股份有限公司 Leakproof organic working medium turbine generator set
JP2020131764A (en) * 2019-02-13 2020-08-31 三菱重工マリンマシナリ株式会社 Oil discharge mechanism and vessel provided with the same
US11629636B2 (en) 2021-08-10 2023-04-18 Honda Motor Co., Ltd. Combined power system
US11920520B2 (en) 2021-08-10 2024-03-05 Honda Motor Co., Ltd. Combined power system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762904A (en) * 1980-10-03 1982-04-16 Hitachi Ltd Shaft sealing device for low boiling point medium turbine
JPS5858195U (en) * 1981-10-15 1983-04-20 株式会社東芝 Lubricating oil system protection device for rotating machinery
JPS58127102U (en) * 1982-02-24 1983-08-29 株式会社日立製作所 Oil leak treatment equipment
JPS59194198A (en) * 1983-04-20 1984-11-02 Mitsui Eng & Shipbuild Co Ltd Device for draining lubricating oil
JPS59201903A (en) * 1983-04-28 1984-11-15 Hitachi Ltd Automatic starter of oil tank ventilator
JPS6334305U (en) * 1986-08-20 1988-03-05
JPH01182509A (en) * 1988-01-12 1989-07-20 Toshiba Corp Lubricating device for turbine bearing
JPH0255807A (en) * 1988-08-18 1990-02-26 Toshiba Corp Lubricating oil supply device for combined cycle generating plant
JPH09324606A (en) * 1996-06-04 1997-12-16 Fuji Electric Co Ltd Oil purifier for lubricating oil system
JPH10252499A (en) * 1997-03-14 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd Lubrication structure of gas turbine
JP2002221090A (en) * 2001-11-22 2002-08-09 Sanyo Chem Ind Ltd Drier system utilizing gas turbine and method of use
JP2003222294A (en) * 2002-01-31 2003-08-08 Toshiba Corp Bearing oil circulating system for rotating machine and repairing method therefor
JP2006283675A (en) * 2005-03-31 2006-10-19 Ebara Corp Power generating device and lubricating oil recovery method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762904A (en) * 1980-10-03 1982-04-16 Hitachi Ltd Shaft sealing device for low boiling point medium turbine
JPS5858195U (en) * 1981-10-15 1983-04-20 株式会社東芝 Lubricating oil system protection device for rotating machinery
JPS58127102U (en) * 1982-02-24 1983-08-29 株式会社日立製作所 Oil leak treatment equipment
JPS59194198A (en) * 1983-04-20 1984-11-02 Mitsui Eng & Shipbuild Co Ltd Device for draining lubricating oil
JPS59201903A (en) * 1983-04-28 1984-11-15 Hitachi Ltd Automatic starter of oil tank ventilator
JPS6334305U (en) * 1986-08-20 1988-03-05
JPH01182509A (en) * 1988-01-12 1989-07-20 Toshiba Corp Lubricating device for turbine bearing
JPH0255807A (en) * 1988-08-18 1990-02-26 Toshiba Corp Lubricating oil supply device for combined cycle generating plant
JPH09324606A (en) * 1996-06-04 1997-12-16 Fuji Electric Co Ltd Oil purifier for lubricating oil system
JPH10252499A (en) * 1997-03-14 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd Lubrication structure of gas turbine
JP2002221090A (en) * 2001-11-22 2002-08-09 Sanyo Chem Ind Ltd Drier system utilizing gas turbine and method of use
JP2003222294A (en) * 2002-01-31 2003-08-08 Toshiba Corp Bearing oil circulating system for rotating machine and repairing method therefor
JP2006283675A (en) * 2005-03-31 2006-10-19 Ebara Corp Power generating device and lubricating oil recovery method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275507A (en) * 2015-10-20 2016-01-27 西安航空动力股份有限公司 Leakproof organic working medium turbine generator set
JP2020131764A (en) * 2019-02-13 2020-08-31 三菱重工マリンマシナリ株式会社 Oil discharge mechanism and vessel provided with the same
US11629636B2 (en) 2021-08-10 2023-04-18 Honda Motor Co., Ltd. Combined power system
US11920520B2 (en) 2021-08-10 2024-03-05 Honda Motor Co., Ltd. Combined power system

Also Published As

Publication number Publication date
JP5055233B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4847478B2 (en) Gas turbine power generation equipment bearing device and gas turbine power generation equipment
JP6491738B2 (en) Oil-free compressor
JP6216337B2 (en) Gas turbine with primary and secondary lubricant coolers
RU2576601C2 (en) Oil supply system for fixed turbine machine
JP5055233B2 (en) Bearing lubricant circulation system for gas turbine power generation equipment
JP2017082789A (en) Gas turbine engine sump heat exchanger
JP2011196183A (en) Wind turbine generator
JP4923618B2 (en) Heat pump system, lubricating water temperature adjustment method of heat pump system, operation method of heat pump system
JP2008057452A (en) Heat pump system and shaft seal method for heat pump system
WO2013021670A1 (en) Renewable energy type electric power generation device
US7225626B2 (en) Thermal management of a gas turbine bearing compartment utilizing separate lubrication and cooling circuits
JP2011038605A (en) Bearing device and rotary machine
JP2006242008A (en) Turbocharger
JP4995301B2 (en) Vertical shaft pump equipment
JP4440722B2 (en) Gas turbine power generation facility and operation method thereof
RU2269665C2 (en) Draining and cooling system for supporting members of gas turbine
JP2015028323A (en) Steam turbine system and steam turbine power generation plant
US7753646B1 (en) Systems and methods for cooling bearings
JP2007092640A (en) Diesel electric power generation facility and its operation method
JP5297568B1 (en) Renewable energy generator
RU174816U1 (en) ELECTRIC MACHINE
US11982285B2 (en) Compressor
CN216929805U (en) Cooling system for wind driven generator and wind driven generator set
JP4167612B2 (en) Bearing cooling device and vertical shaft water turbine
JP2009074422A (en) Oil console installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees