JP2010070047A - Collision forecasting device - Google Patents

Collision forecasting device Download PDF

Info

Publication number
JP2010070047A
JP2010070047A JP2008239615A JP2008239615A JP2010070047A JP 2010070047 A JP2010070047 A JP 2010070047A JP 2008239615 A JP2008239615 A JP 2008239615A JP 2008239615 A JP2008239615 A JP 2008239615A JP 2010070047 A JP2010070047 A JP 2010070047A
Authority
JP
Japan
Prior art keywords
vehicle
collision
predicted
collision prediction
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008239615A
Other languages
Japanese (ja)
Inventor
Jun Tsunekawa
潤 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008239615A priority Critical patent/JP2010070047A/en
Publication of JP2010070047A publication Critical patent/JP2010070047A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collision forecasting device for accurately forecasting a risk of collision between an object existing in front of one's own vehicle and the own vehicle. <P>SOLUTION: The collision forecasting device includes an object detection means for detecting a position of the object in front of the vehicle, an observation point setting means for setting an observation point for observing the object in an inner part of the vehicle or on an outer circumference surface of the vehicle and at more rear side than the front end of the vehicle, a detection angle calculation means for calculating a detection angle indicating a detection direction of the object viewing from the observation point, a variation amount calculation means for calculating the variation amount of the detection angle per unit time, and a collision determination means for forecasting the risk of collision between the vehicle and the object based on the variation amount value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、衝突予測装置に関し、より特定的には車両に接近する物体が車両に衝突する危険性を予測する衝突予測装置に関する。   The present invention relates to a collision prediction apparatus, and more particularly to a collision prediction apparatus that predicts the risk of an object approaching a vehicle colliding with the vehicle.

従来、自車と車両周囲の物体との衝突の危険性を予測し、衝突の回避や乗員保護の支援を目的とした車両制御を当該予測結果に基づいて実行する装置(以下、衝突防止装置と呼称する)が開発されている。このような衝突防止装置を備えた車両において、当該装置で正確に衝突の危険性を予測できない場合、不要な車両制御が実行されて、当該車両の運転者が不快に感じることがある。   Conventionally, an apparatus (hereinafter referred to as a collision prevention apparatus) that predicts the risk of a collision between the host vehicle and an object around the vehicle and executes vehicle control for the purpose of avoiding a collision or assisting passenger protection based on the prediction result. Have been developed). In a vehicle equipped with such a collision prevention device, if the risk of collision cannot be accurately predicted by the device, unnecessary vehicle control may be executed, and the driver of the vehicle may feel uncomfortable.

このような課題を解決するビークル衝突警告システムが特許文献1に開示されている。特許文献1に開示されるビークル衝突警告システムは、レーダーの受信機の位置を観測点として、検出された物体の角位置の変化率を算出する。検出物が自車に接触する場合、当該変化率は大きくなる。したがって、上記ビークル衝突警告システムは上記変化率の値が閾値を超えるか否かに応じて、当該物体と自車とが衝突するか否かを予測することができる。
特開2000−504828号公報
A vehicle collision warning system that solves such a problem is disclosed in Patent Document 1. The vehicle collision warning system disclosed in Patent Document 1 calculates the rate of change in the detected angular position of an object using the position of a radar receiver as an observation point. When the detected object comes into contact with the own vehicle, the rate of change increases. Therefore, the vehicle collision warning system can predict whether or not the object and the vehicle collide according to whether or not the value of the change rate exceeds a threshold value.
JP 2000-504828 A

上記特許文献1に開示されるビークル衝突警告システムにおいて、仮に、検出物が存在する角位置がレーダーの受信機を観測点として算出されているとする。ここで、レーダーの受信機が車両の前端に取り付けられている場合、上記の観測点は車両の前端に位置する。   In the vehicle collision warning system disclosed in Patent Document 1, it is assumed that the angular position where the detected object is present is calculated using the radar receiver as an observation point. Here, when the radar receiver is attached to the front end of the vehicle, the observation point is located at the front end of the vehicle.

上記のように車両前端に角位置の観測点が設定され、検出物が自車に衝突またはすれ違う場合、検出物の角位置の変化率が、時間とともに変化する様子を図16に示す。図16は、観測点が車両前端に設定された場合の、車両と検出物とが衝突するまでの推定時間、および角位置の変化率の関係を示すグラフである。図16に示すグラフにおいて、項目pは、車両と検出物とがすれ違う場合における当該検出物の角位置の変化率を示す。また、項目fLは、検出物が自車の右斜め前方から接近し、自車の前面左側に衝突する場合における当該検出物の角位置の変化率を示す。また、項目fRは、検出物が自車の右斜め前方から接近し、自車の前面右側に衝突する場合における角位置の変化率を示す。また、項目sFは、検出物が自車の右斜め前方から接近し、自車の右側面前方に衝突する場合における角位置の変化率を示す。また、項目sBは、検出物が自車の右斜め前方から接近し、自車の右側面前方に衝突する場合における角位置の変化率を示す。   FIG. 16 shows how the change rate of the angular position of the detected object changes with time when the observation point of the angular position is set at the front end of the vehicle as described above and the detected object collides with or passes by the own vehicle. FIG. 16 is a graph showing the relationship between the estimated time until the vehicle collides with the detected object and the change rate of the angular position when the observation point is set at the front end of the vehicle. In the graph shown in FIG. 16, the item p indicates the rate of change in the angular position of the detected object when the vehicle and the detected object pass each other. The item fL indicates the rate of change of the angular position of the detected object when the detected object approaches from the right front of the own vehicle and collides with the front left side of the own vehicle. The item fR indicates the rate of change of the angular position when the detected object approaches from the right front of the host vehicle and collides with the front right side of the host vehicle. The item sF indicates the rate of change of the angular position when the detected object approaches from the right front side of the own vehicle and collides with the front side of the right side of the own vehicle. The item sB indicates the rate of change of the angular position when the detected object approaches from the right front side of the host vehicle and collides with the front side of the right side of the host vehicle.

図16に示すように、検出物が自車のどの位置に衝突するかによって角位置の変化率の推移の様態は異なる。そして、角位置の変化率は、検出物が自車とすれ違う場合も、検出物と自車とが衝突する場合も、同様の様態で推移する場合がある。具体的には、図16に示すように、項目p、fR、sF、およびsBは何れも衝突するまでの時間が小さくなるほど指数的に大きな値となるよう推移する。ここで、特許文献1に示されるように、角位置の変化率が定められた閾値を超えた場合に自車および検出物が衝突する危険性がないと判定するものとして、自車と検出物との衝突をするためには、項目pより小さな値で閾値を設定する必要がある。しかしながら、項目sBは、実際には自車と衝突するにも拘わらず、項目pより常に大きな値で推移し続けるため、自車と検出物とが衝突しないと判定される。すなわち、従来技術では、車両に検出物が衝突するか否かを正確に予測できない場合があった。   As shown in FIG. 16, the transition state of the change rate of the angular position differs depending on which position of the own vehicle the detected object collides with. The change rate of the angular position may change in the same manner regardless of whether the detected object passes the own vehicle or when the detected object collides with the own vehicle. Specifically, as shown in FIG. 16, the items p, fR, sF, and sB all change exponentially as the time until the collision decreases. Here, as shown in Patent Document 1, when the change rate of the angular position exceeds a predetermined threshold, it is determined that there is no risk of collision between the own vehicle and the detected object. In order to collide with the threshold value, it is necessary to set a threshold value smaller than the item p. However, since the item sB always keeps a larger value than the item p in spite of actually colliding with the own vehicle, it is determined that the own vehicle and the detected object do not collide. That is, in the prior art, it may not be possible to accurately predict whether or not the detected object collides with the vehicle.

本発明は、上記に鑑みてなされたものであり、自車前方に存在する物体と自車とが衝突する危険性を精度良く予測可能な衝突予測装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a collision prediction apparatus capable of accurately predicting the risk of collision between an object existing ahead of the host vehicle and the host vehicle.

本発明は、上記課題を解決すべく以下の構成を採用した。すなわち、第1の発明は、車両前方の物体の位置を検出する物体検出手段と、車両内部または当該車両の外周面上で、且つ、当該車両の前端より後方に、物体を観測するための観測点を定める観測点設定手段と、観測点から見た物体の検出方向を示す検出角度を算出する検出角度算出手段と、検出角度の単位時間当たりの変化量を算出する変化量算出手段と、車両と物体とが衝突する危険性を変化量の値に基づいて予測する衝突判定手段とを備える、衝突予測装置である。   The present invention employs the following configuration in order to solve the above problems. That is, the first invention is an object detection means for detecting the position of an object in front of the vehicle, and an observation for observing the object in the vehicle or on the outer peripheral surface of the vehicle and behind the front end of the vehicle. Observation point setting means for determining a point, detection angle calculation means for calculating a detection angle indicating the detection direction of the object viewed from the observation point, change amount calculation means for calculating a change amount of the detection angle per unit time, vehicle And a collision determination unit that predicts the risk of collision between the object and the object based on the value of the change amount.

第2の発明は、第1の発明において、車両の外周面のうち、物体が衝突する可能性のある外周面を衝突予想部位として推定する衝突部位推定手段と、衝突部位推定手段に推定された衝突予想部位に応じて、車両と物体とが衝突する危険性の予測に用いる閾値を設定する閾値設定手段とを、さらに備え、衝突判定手段は、変化量が閾値を満たしているか否かに応じて、車両と物体との衝突を予測する。   According to a second aspect of the present invention, in the first aspect of the present invention, a collision part estimation unit that estimates an outer peripheral surface of an outer periphery of a vehicle that may collide with an object as a predicted collision part and a collision part estimation unit are estimated. Threshold setting means for setting a threshold used for predicting the risk of collision between the vehicle and the object according to the predicted collision portion is further provided, and the collision determination means determines whether or not the change amount satisfies the threshold. Thus, the collision between the vehicle and the object is predicted.

第3の発明は、第2の発明において、車両の進行経路を算出する自車進行経路算出手段と、車両に対して相対的に移動する物体の進行経路を算出する検出物進行経路算出手段とを、さらに備え、衝突部位推定手段は、車両の進行経路および物体の進行経路に基づいて衝突予想部位を推定する。   According to a third invention, in the second invention, a host vehicle travel route calculation unit that calculates a travel route of the vehicle, and a detected object travel route calculation unit that calculates a travel route of an object that moves relative to the vehicle, And the collision site estimation means estimates the predicted collision site based on the traveling path of the vehicle and the traveling path of the object.

第4の発明は、第3の発明において、車両の進行経路と物体の進行経路とが互いに平行である場合、車両の前面を衝突予想部位とする。   In a fourth aspect based on the third aspect, when the traveling path of the vehicle and the traveling path of the object are parallel to each other, the front surface of the vehicle is set as a predicted collision portion.

第5の発明は、第2の発明において、車両の進行経路と車両に対して相対的に移動する物体の進行経路との交点を衝突予想地点として推定する衝突地点推定手段を、さらに備え、衝突部位推定手段は、車両または物体の何れが先に衝突予想地点へ到達するかを判定し、当該判定結果に応じて衝突予想部位を推定する。   According to a fifth invention, in the second invention, the vehicle further comprises collision point estimation means for estimating an intersection point between a traveling path of the vehicle and a traveling path of an object moving relative to the vehicle as a predicted collision point. The part estimation means determines which of the vehicle or the object first reaches the predicted collision point, and estimates the predicted collision part according to the determination result.

第6の発明は、第5の発明において、物体が車両より先に衝突予想地点へ到達すると判定した場合、車両の前面を衝突予想部位とし、車両が物体より先に衝突予想地点へ到達すると判定した場合、車両の側面を衝突予想部位とする。   In a sixth aspect based on the fifth aspect, when it is determined that the object reaches the predicted collision point before the vehicle, it is determined that the front surface of the vehicle is the predicted collision site and the vehicle reaches the predicted collision point before the object. In this case, the side of the vehicle is set as the predicted collision site.

第7の発明は、第2の発明において、車両と物体とが衝突する場合に当該衝突までに要する衝突予想時間を算出する衝突時間算出手段を、さらに備え、閾値設定手段は、衝突部位推定手段に推定された衝突予想部位および衝突時間算出手段により算出された衝突予想時間に応じて、閾値を設定する。   According to a seventh aspect, in the second aspect, when the vehicle and the object collide, the seventh aspect further includes a collision time calculation unit that calculates an expected collision time required until the collision, and the threshold setting unit includes the collision part estimation unit. The threshold is set in accordance with the estimated collision portion estimated in (1) and the estimated collision time calculated by the collision time calculation means.

第8の発明は、第7の発明において、閾値設定手段は、車両の側面が衝突予想部位である場合、衝突予想時間が短くなるほど閾値を段階的に大きな値に設定し、衝突判定手段は、変化量が閾値より大きい場合に物体と車両とが衝突すると予測し、変化量が閾値以下である場合に物体と車両とが衝突しないと予測する。   In an eighth aspect based on the seventh aspect, the threshold value setting means sets the threshold value to a stepwise larger value as the predicted collision time becomes shorter when the side surface of the vehicle is a predicted collision part. When the amount of change is larger than the threshold, the object and the vehicle are predicted to collide, and when the amount of change is equal to or less than the threshold, the object and the vehicle are predicted not to collide.

第9の発明は、第1の発明において、観測点設定手段は、観測点を車両の後端中央に設定する。   In a ninth aspect based on the first aspect, the observation point setting means sets the observation point at the center of the rear end of the vehicle.

第10の発明は、第1の発明において、観測点設定手段は、観測点を車両の後端左隅に設定する。   In a tenth aspect based on the first aspect, the observation point setting means sets the observation point at the rear left corner of the vehicle.

第11の発明は、第1の発明において、観測点設定手段は、観測点を車両の後端右隅に位置するよう設定する。   In an eleventh aspect based on the first aspect, the observation point setting means sets the observation point so as to be positioned at the right corner of the rear end of the vehicle.

第1の発明によれば、車両に対向して接近する物体との衝突を予測する際、車両と物体とが衝突する場合の検出角度の単位時間当たりの変化量(以下、検出角度変化量と呼称する)の値は、当該物体が車両のどの部位に衝突する場合であっても、車両と物体とが衝突しない場合の検出角度変化量の値に比べて大きな値となる。したがって、車両と物体とが衝突する危険性を、観測変化量に基づいて正確に判定することができる。   According to the first invention, when predicting a collision with an object approaching the vehicle, the amount of change per unit time of the detected angle when the vehicle and the object collide (hereinafter referred to as the detected angle change amount). The value of (referred to as “calling”) is a value larger than the value of the detected angle change amount when the vehicle does not collide with the object, regardless of where the object collides. Therefore, the risk of collision between the vehicle and the object can be accurately determined based on the observed change amount.

第2の発明によれば、物体が車両のどの部位へ衝突するかに応じて、衝突の危険性を判定するための閾値を変更することができる。したがって、車両と物体とが衝突する危険性を、適切に設定された閾値に基づいて正確に判定することができる。   According to the second invention, the threshold for determining the risk of collision can be changed according to which part of the vehicle the object collides with. Therefore, the risk of collision between the vehicle and the object can be accurately determined based on the appropriately set threshold value.

第3の発明によれば、簡単な処理で物体が衝突する可能性のある車両の部位を推定することができる。   According to the third aspect, it is possible to estimate a part of a vehicle where an object may collide with a simple process.

第4の発明によれば、簡単な処理で物体が車両の正面に衝突する可能性があることを推定することができる。   According to the fourth invention, it is possible to estimate that an object may collide with the front of the vehicle by a simple process.

第5の発明によれば、簡単な処理で物体が衝突する可能性のある車両の部位を推定することができる。   According to the fifth aspect of the present invention, it is possible to estimate a vehicle part where an object may collide with a simple process.

第6の発明によれば、簡単な処理で物体が衝突する可能性のある車両の部位が、車両の前面であるか、または車両の側面であるか、推定することができる。   According to the sixth aspect of the present invention, it is possible to estimate whether the part of the vehicle where the object may collide with the simple process is the front surface of the vehicle or the side surface of the vehicle.

第7の発明によれば、刻々と変化する物体および車両の状況に応じて、最適な閾値を設定することができる。   According to the seventh aspect, it is possible to set an optimum threshold value according to the object and the situation of the vehicle that change every moment.

第8の発明によれば、例えば、物体が車両の側面後方に衝突する場合など、検出角度の単位時間当たりの変化量が増加傾向となり易い軌道で物体が車両に接近する場合であっても、適切な閾値が設定されるため、当該物体と車両との衝突が正確に予測できる。   According to the eighth invention, for example, when the object collides with the rear side of the vehicle, such as when the object approaches the vehicle on a trajectory where the amount of change in the detected angle per unit time tends to increase. Since an appropriate threshold is set, a collision between the object and the vehicle can be accurately predicted.

第9の発明によれば、車両の前方から接近する物体との衝突の危険性を、より正確に判定することができる。   According to the ninth aspect, the risk of collision with an object approaching from the front of the vehicle can be determined more accurately.

第10の発明によれば、例えば、車両の右前方から接近する物体との衝突の危険性を、より正確に判定することができる。具体的には、観測点が車両の後端右隅に設定されている場合、観測点が車両の他の位置に設定されている場合に比べて、車両の右側から接近する物体および当該車両が衝突する場合の観測角変化量の値と、当該物体および当該車両が衝突しない場合の観測角変化量の値との差がより大きくなる。そのため、車両の右側から接近する物体との衝突の危険性を、観測角変化量の値に基づいて、より正確に判定することができる。   According to the tenth aspect, for example, the risk of a collision with an object approaching from the right front of the vehicle can be determined more accurately. Specifically, when the observation point is set at the right corner of the rear end of the vehicle, the object approaching from the right side of the vehicle and the vehicle are closer than when the observation point is set at another position of the vehicle. The difference between the value of the observation angle change amount when the vehicle collides and the value of the observation angle change amount when the object and the vehicle do not collide become larger. Therefore, the risk of collision with an object approaching from the right side of the vehicle can be more accurately determined based on the value of the observation angle change amount.

第11の発明によれば、例えば、車両の左前方から接近する物体との衝突の危険性を、より正確に判定することができる。具体的には、観測点が車両の後端左隅に設定されている場合、観測点が車両の他の位置に設定されている場合に比べて、車両のひだ側から接近する物体および当該車両が衝突する場合の観測角変化量の値と、当該物体および当該車両が衝突しない場合の観測角変化量の値との差がより大きくなる。そのため、車両の左側から接近する物体との衝突の危険性を、観測角変化量の値に基づいて、より正確に判定することができる。   According to the eleventh aspect, for example, the risk of collision with an object approaching from the left front of the vehicle can be determined more accurately. Specifically, when the observation point is set at the rear left corner of the vehicle, the object approaching from the pleat side of the vehicle and the vehicle are less than when the observation point is set at another position of the vehicle. The difference between the value of the observation angle change amount when the vehicle collides and the value of the observation angle change amount when the object and the vehicle do not collide become larger. Therefore, it is possible to more accurately determine the risk of collision with an object approaching from the left side of the vehicle based on the value of the observation angle change amount.

(第1の実施形態)
以下、本発明の第1の実施形態に係る衝突予測装置について、図1から図15を参照して説明する。なお、以下に説明する実施形態では、衝突予測装置13が車両1に搭載される例について説明する。
(First embodiment)
Hereinafter, a collision prediction apparatus according to a first embodiment of the present invention will be described with reference to FIGS. In the embodiment described below, an example in which the collision prediction device 13 is mounted on the vehicle 1 will be described.

先ず、図1を参照して、衝突予測装置の機能構成について説明する。図1は、衝突予測装置の機能構成を示すブロック図である。図1に示すように、衝突予測装置13は車両1に搭載される。車両1は、衝突予測装置13の他に、レーダー装置10、車速計11、自車位置検出装置12、および警報装置14を備える。衝突予測装置13は、レーダー装置10、車速計11、自車位置検出装置12、および警報装置14と各々電気的に接続されている。なお、レーダー装置10、車速計11、自車位置検出装置12、衝突予測装置13、および警報装置14は何れも車両1のIG電源がオン状態である場合に動作するものとする。   First, the functional configuration of the collision prediction apparatus will be described with reference to FIG. FIG. 1 is a block diagram illustrating a functional configuration of the collision prediction apparatus. As shown in FIG. 1, the collision prediction device 13 is mounted on the vehicle 1. The vehicle 1 includes a radar device 10, a vehicle speedometer 11, a vehicle position detection device 12, and an alarm device 14 in addition to the collision prediction device 13. The collision prediction device 13 is electrically connected to the radar device 10, the vehicle speedometer 11, the vehicle position detection device 12, and the alarm device 14. Note that the radar device 10, the vehicle speedometer 11, the vehicle position detection device 12, the collision prediction device 13, and the warning device 14 all operate when the IG power supply of the vehicle 1 is on.

レーダー装置10は、典型的には、電磁波を放射し、車両の周囲に存在する物体からの反射波を受信して、当該物体の位置を検出するレーダー装置である。レーダー装置10は、車両1のフロントグリル内部などに配置され、車両1の前方に存在する物体を検出する。レーダー装置10は、車両1から検出物までの距離Lr、レーダー装置10から見た検出物の水平方向の方位、および検出物と車両1との相対速度Vrを測定する。レーダー装置10は、車両1から検出物までの距離、レーダー装置10から見た検出物の検出方向、および検出物の車両1との相対速度Vrを示すデータを衝突予測装置13に対して出力する。   The radar device 10 is typically a radar device that radiates electromagnetic waves, receives a reflected wave from an object existing around the vehicle, and detects the position of the object. The radar device 10 is disposed inside the front grill of the vehicle 1 and detects an object existing in front of the vehicle 1. The radar device 10 measures the distance Lr from the vehicle 1 to the detected object, the horizontal direction of the detected object viewed from the radar device 10, and the relative velocity Vr between the detected object and the vehicle 1. The radar apparatus 10 outputs data indicating the distance from the vehicle 1 to the detected object, the detection direction of the detected object viewed from the radar apparatus 10, and the relative speed Vr of the detected object with the vehicle 1 to the collision prediction apparatus 13. .

車速計11は、一般的に車両に搭載されている車両の走行速度を計測する装置である。車速計11は、車両1の走行速度(以下、自車速度Vsと呼称する)を計測し、当該計測値を衝突予測装置13に対して出力する。   The vehicle speedometer 11 is a device that measures the traveling speed of a vehicle generally mounted on the vehicle. The vehicle speedometer 11 measures the traveling speed of the vehicle 1 (hereinafter referred to as the host vehicle speed Vs) and outputs the measured value to the collision prediction device 13.

自車位置検出装置12は、典型的には、一般的に知られているカーナビゲーションシステムなどのGPS(Global Positioning System)を備える装置である。自車位置検出装置12は、予め地図情報を記憶し、衛星等から送信される信号に基づいて、当該地図上における車両1の絶対的な位置座標(以下、自車位置Psと呼称する)を測定する。厳密には、自車位置Psは、車両1において自車位置検出装置12が搭載されている位置を示す点である。また、自車位置検出装置12は、自車位置Psの変化方向等に基づいて車両1の進行方向Dを算出する。自車位置検出装置12は、測定した自車位置Ps、進行方向D、および自車位置Psの周囲の地図情報(以下、周囲地図と呼称する)を示すデータを衝突予測装置13に対して出力する。   The own vehicle position detection device 12 is typically a device having a GPS (Global Positioning System) such as a generally known car navigation system. The own vehicle position detection device 12 stores map information in advance, and based on a signal transmitted from a satellite or the like, absolute position coordinates of the vehicle 1 on the map (hereinafter referred to as own vehicle position Ps). taking measurement. Strictly speaking, the own vehicle position Ps is a point indicating the position where the own vehicle position detection device 12 is mounted in the vehicle 1. The own vehicle position detection device 12 calculates the traveling direction D of the vehicle 1 based on the change direction of the own vehicle position Ps and the like. The vehicle position detection device 12 outputs data indicating the measured vehicle position Ps, the traveling direction D, and map information around the vehicle position Ps (hereinafter referred to as a surrounding map) to the collision prediction device 13. To do.

衝突予測装置13は、典型的にはマイクロコンピュータなどの情報処理装置、メモリなどの記憶装置、およびインターフェース回路などを備える処理装置である。詳細な処理の説明は後述するが、衝突予測装置13は、車両1と前方の物体との衝突をレーダー装置10から出力される上記データに基づいて予測する。ここで、衝突予測装置13は、物体の位置の変化を車両1の後端を基準点として観測し、当該観測結果に基づいて車両1と前方の物体との衝突の危険性を予測する。そして、衝突予測装置13は、車両と周囲の物体とが衝突する危険性が高いと予測した場合、警報装置14に対して、警報を発報させる指示信号を出力する。上記のように観測の基準点を車両1の後端に定めることにより、従来に比べ精度良く車両1と物体との衝突の危険性を予測することができる。   The collision prediction device 13 is typically a processing device including an information processing device such as a microcomputer, a storage device such as a memory, and an interface circuit. Although detailed description of the process will be described later, the collision prediction device 13 predicts a collision between the vehicle 1 and an object ahead based on the data output from the radar device 10. Here, the collision prediction device 13 observes a change in the position of the object with the rear end of the vehicle 1 as a reference point, and predicts the danger of a collision between the vehicle 1 and the object ahead based on the observation result. When the collision prediction device 13 predicts that there is a high risk of collision between the vehicle and a surrounding object, the collision prediction device 13 outputs an instruction signal for issuing an alarm to the alarm device 14. By determining the observation reference point at the rear end of the vehicle 1 as described above, it is possible to predict the risk of collision between the vehicle 1 and the object with higher accuracy than in the past.

警報装置14は、典型的にはブザーなどの音声出力装置である。警報装置14は、衝突予測装置13の指示に応じて、車両1と周囲の物体とが衝突する危険性が高い場合に警告音を発する。   The alarm device 14 is typically an audio output device such as a buzzer. In response to an instruction from the collision prediction device 13, the warning device 14 emits a warning sound when there is a high risk of collision between the vehicle 1 and a surrounding object.

次に、図2を参照して衝突予測装置13が実行する処理の詳細について説明する。図2は、衝突予測装置13が実行する処理を示すフローチャートの一例である。衝突予測装置13は、車両のIG電源がオンになった場合に図2に示す処理を開始する。   Next, details of the process executed by the collision prediction apparatus 13 will be described with reference to FIG. FIG. 2 is an example of a flowchart illustrating processing executed by the collision prediction device 13. The collision prediction apparatus 13 starts the process shown in FIG. 2 when the IG power supply of the vehicle is turned on.

ステップS1において、衝突予測装置13は、IG電源がオン状態であるか否かを判定する。衝突予測装置13は、IG電源がオン状態である場合、処理をステップS2へ進める。一方、衝突予測装置13は、IG電源がオン以外の状態である場合、処理を終了する。   In step S1, the collision prediction apparatus 13 determines whether or not the IG power supply is in an on state. When the IG power supply is on, the collision prediction device 13 advances the process to step S2. On the other hand, the collision prediction device 13 ends the process when the IG power supply is in a state other than on.

上記ステップS1の処理により、衝突予測装置13は、車両1のIG電源がオン状態である間、ステップS1から以下に説明するステップS14までの処理を繰り返しループして実行する。   By the process of step S1, the collision prediction apparatus 13 repeatedly loops and executes the processes from step S1 to step S14 described below while the IG power supply of the vehicle 1 is on.

ステップS2において、衝突予測装置13は、自車位置Psおよび進行方向Dを検出する。具体的には、衝突予測装置13は、自車位置検出装置12から出力される自車位置Ps、進行方向D、および周囲地図を示すデータを取得し、記憶装置に記憶する。ステップS2の処理を完了すると、衝突予測装置13は、処理をステップS3へ進める。   In step S2, the collision prediction device 13 detects the host vehicle position Ps and the traveling direction D. Specifically, the collision prediction device 13 acquires data indicating the vehicle position Ps, the traveling direction D, and the surrounding map output from the vehicle position detection device 12, and stores the data in the storage device. When the process of step S2 is completed, the collision prediction apparatus 13 advances the process to step S3.

上記ステップS2の処理がループ処理で繰り返し実行されることにより、衝突予測装置13の記憶装置には各時刻における自車位置Psおよび進行方向Dの値が記憶される。   By repeatedly executing the process of step S2 in a loop process, the storage device of the collision prediction device 13 stores the values of the vehicle position Ps and the traveling direction D at each time.

ステップS3において衝突予測装置13は、検出物のうち1つを選択する。以下では、本ステップS3において選択された検出物を選択検出物と呼称する。ステップS3の処理を完了すると、衝突予測装置13は、処理をステップS4へ進める。   In step S3, the collision prediction device 13 selects one of the detected objects. Hereinafter, the detection object selected in step S3 is referred to as a selection detection object. When the process of step S3 is completed, the collision prediction apparatus 13 advances the process to step S4.

上記ステップS3の処理により、衝突予測装置13は、レーダー装置10により検出された検出物各々について以下に説明するステップS4からステップS9までの処理を実行する。   By the process of step S3, the collision prediction apparatus 13 executes the processes from step S4 to step S9 described below for each detected object detected by the radar apparatus 10.

ステップS4において、衝突予測装置13は、検出物位置Ptをマッピングする。検出物位置Ptとは、レーダー装置10により検出された検出物の周囲地図上における絶対的な位置座標である。具体的には、先ず、衝突予測装置13は、レーダー装置10により出力されるから検出物までの距離、および検出方向を取得する。次に、衝突予測装置13は、周囲地図上における選択検出物の絶対的な位置を算出する。より具体的には、衝突予測装置13は、周囲地図上の絶対的な座標で示される自車位置Psおよび進行方向Dを基準とし、自車位置Psから選択検出物を検出したレーダー装置10までの距離、当該レーダー装置10から見た選択検出物の検出方向、および検出距離に基づいて、周囲地図上における検出物位置Ptを算出し、記憶装置に記憶する。なお、自車位置Psから選択検出物を検出したレーダー装置10までの距離は既知であり、衝突予測装置13は予め当該距離を記憶しているものとする。また、自車位置Psを基準として相対的な位置関係が既知である点の絶対座標を算出する方法は、従来既知の任意の手法を用いて良い。ステップS4の処理を完了すると、衝突予測装置13は、処理をステップS5へ進める。   In step S4, the collision prediction device 13 maps the detected object position Pt. The detected object position Pt is an absolute position coordinate on the surrounding map of the detected object detected by the radar device 10. Specifically, first, the collision prediction device 13 obtains the distance to the detected object and the detection direction since it is output by the radar device 10. Next, the collision prediction device 13 calculates the absolute position of the selected detection object on the surrounding map. More specifically, the collision prediction device 13 uses the vehicle position Ps and the traveling direction D indicated by the absolute coordinates on the surrounding map as a reference, and detects the selected detection object from the vehicle position Ps. The detected object position Pt on the surrounding map is calculated based on the detected distance, the detection direction of the selected detected object viewed from the radar device 10, and the detected distance, and stored in the storage device. It is assumed that the distance from the vehicle position Ps to the radar device 10 that has detected the selection detection object is known, and the collision prediction device 13 stores the distance in advance. In addition, as a method of calculating the absolute coordinates of a point whose relative positional relationship is known with reference to the own vehicle position Ps, any conventionally known method may be used. When the process of step S4 is completed, the collision prediction apparatus 13 advances the process to step S5.

上記ステップS4の処理がループ処理で繰り返し実行されることにより、衝突予測装置13の記憶装置には各時刻における検出物位置Ptの値が記憶される。   By repeatedly executing the process of step S4 in a loop process, the value of the detected object position Pt at each time is stored in the storage device of the collision prediction device 13.

ステップS5において、衝突予測装置13は、検出角度θを算出し、記憶する。以下、図3を参照し、検出角度θの定義について説明する。なお、図3は、周囲地図座標系において車両1の位置、選択検出物である車両2の位置、および車両2の検出角度を示す平面図である。図3に示す通り、本実施形態では、選択検出物として車両2が選択されている場合を例に衝突予測装置13の処理を説明する。   In step S5, the collision prediction device 13 calculates and stores the detection angle θ. Hereinafter, the definition of the detection angle θ will be described with reference to FIG. FIG. 3 is a plan view showing the position of the vehicle 1, the position of the vehicle 2 that is the selection detection object, and the detection angle of the vehicle 2 in the surrounding map coordinate system. As shown in FIG. 3, in the present embodiment, the process of the collision prediction device 13 will be described by taking as an example the case where the vehicle 2 is selected as the selection detection object.

先ず、衝突予測装置13は、周囲地図上での観測点Poの絶対座標を自車位置Psに基づいて算出する。観測点Poは、検出角度θを決定するための点であり、車両1の後端中央に設定される。そして、衝突予測装置13は、予め自車位置検出装置12の搭載位置と車両1の後端との相対位置関係を予め記憶装置に記憶している。したがって、衝突予測装置13は、周囲地図上における観測点Poの絶対的な座標を、自車位置Psの絶対的な座標および当該相対位置関係に基づいて算出することができる。   First, the collision prediction device 13 calculates the absolute coordinates of the observation point Po on the surrounding map based on the own vehicle position Ps. The observation point Po is a point for determining the detection angle θ and is set at the center of the rear end of the vehicle 1. The collision prediction device 13 stores in advance a relative positional relationship between the mounting position of the vehicle position detection device 12 and the rear end of the vehicle 1 in a storage device. Therefore, the collision prediction device 13 can calculate the absolute coordinates of the observation point Po on the surrounding map based on the absolute coordinates of the vehicle position Ps and the relative positional relationship.

次に、衝突予測装置13は、周囲地図上で検出物位置Ptおよび観測点Poを結ぶ直線(以下、検出軸線と呼称する)と、観測点Poを通り車両1を前後方向へ貫通する直線(以下、車軸線と呼称する)とが成す角度を検出角度θとして算出する。なお、説明のため、検出角度θの値は、検出軸線が車軸線と一致しているときにθ=0となるものとし、検出軸線が観測点Poを中心として車軸線より車両1の進行方向を向いて右へ回転するほど大きな値となるものとする。衝突予測装置13は、算出した検出角度θの値を記憶装置に記憶する。ステップS5の処理を完了すると、衝突予測装置13は、処理をステップS6へ進める。   Next, the collision prediction device 13 has a straight line connecting the detected object position Pt and the observation point Po on the surrounding map (hereinafter referred to as a detection axis) and a straight line passing through the vehicle 1 in the front-rear direction through the observation point Po ( Hereinafter, the angle formed by the axle line is calculated as the detected angle θ. For the sake of explanation, the value of the detection angle θ is assumed to be θ = 0 when the detection axis coincides with the axle, and the traveling direction of the vehicle 1 from the axle is centered on the observation point Po. It is assumed that the value increases as it turns to the right. The collision prediction device 13 stores the calculated value of the detected angle θ in the storage device. When the process of step S5 is completed, the collision prediction apparatus 13 advances the process to step S6.

上記ステップS5の処理が繰り返し実行されることにより、衝突予測装置13の記憶装置には各時刻における検出角度θの値が記憶される。なお、衝突予測装置13は、新しく検出角度θの値を算出する毎に、当該時点で記憶されている検出角度θの最も古いデータを上書きし、検出角度θの値を示すデータを定められた個数だけ常に記憶するものとする。   By repeatedly executing the process of step S5, the value of the detected angle θ at each time is stored in the storage device of the collision prediction device 13. Each time the collision prediction device 13 newly calculates the value of the detection angle θ, the data indicating the value of the detection angle θ is determined by overwriting the oldest data of the detection angle θ stored at that time. It is assumed that only the number is always stored.

ステップS6において、衝突予測装置13は、検出角度変化量θvを算出する。検出角度変化量θvとは、検出角度θの単位時間当たりの変化量を示す数値である。具体的には、先ず、衝突予測装置13は、記憶装置に最も新しく記憶された検出角度の値θ1、および2番目に新しく記憶された検出角度の値θ2を、記憶装置から読み出す。衝突予測装置13は、検出角度変化量θvを、検出角度θ1および検出角度θ2の値に基づいて下記の式(1)により算出する。なお、式(1)におけるΔtは、検出角度θ2が記憶されてから検出角度θ2が記憶されるまでに要する時間を示す。なお、Δtの値は、ステップS6の処理がループして再度実行されるまでに要する処理時間を実験的に求め、当該時間をΔtの値として衝突予測装置13に予め記憶させていても良いし、衝突予測装置13にタイマー機能を備え、当該機能により測定させても構わない。
θv=(θ2−θ1)/Δt …(1)
衝突予測装置13は、ステップS6の処理を完了すると、処理をステップS7へ進める。
In step S6, the collision prediction apparatus 13 calculates the detected angle change amount θv. The detected angle change amount θv is a numerical value indicating the change amount per unit time of the detected angle θ. Specifically, first, the collision prediction device 13 reads the detection angle value θ1 that is most recently stored in the storage device and the detection angle value θ2 that is newly stored secondly from the storage device. The collision prediction device 13 calculates the detected angle change amount θv by the following equation (1) based on the values of the detected angle θ1 and the detected angle θ2. Note that Δt in Equation (1) indicates the time required from when the detected angle θ2 is stored until the detected angle θ2 is stored. As the value of Δt, the processing time required until the process of step S6 is looped and executed again may be obtained experimentally, and the time may be stored in advance in the collision prediction device 13 as the value of Δt. The collision prediction device 13 may be provided with a timer function, and measurement may be performed using the function.
θv = (θ2−θ1) / Δt (1)
When the collision prediction apparatus 13 completes the process of step S6, the collision prediction apparatus 13 proceeds with the process to step S7.

ステップS7において、衝突予測装置13は、閾値設定処理のサブルーチン処理を実行する。閾値設定処理は検出角度変化量の閾値θvthを設定する処理である。詳細は後述ステップS8の処理で説明するが、衝突予測装置13は、検出角度変化量θvの値が閾値θvthを超えるか否かに応じて選択検出物と車両とが衝突するか否かを予測する。以下、図4を参照して閾値設定処理について説明する。図4は閾値設定処理を示すフローチャートの一例である。   In step S7, the collision prediction device 13 executes a subroutine process of a threshold setting process. The threshold value setting process is a process for setting a threshold value θvth of the detected angle change amount. Although details will be described in the process of step S8 described later, the collision prediction device 13 predicts whether or not the selected detection object and the vehicle collide according to whether or not the value of the detected angle change amount θv exceeds the threshold value θvth. To do. Hereinafter, the threshold setting process will be described with reference to FIG. FIG. 4 is an example of a flowchart showing threshold setting processing.

ステップS70において、衝突予測装置13は、衝突予想時間TTCを算出する。衝突予想時間TTCは、車両1と選択検出物とが衝突するまでに要すると推定される時間である。衝突予測装置13は、先ず、レーダー装置10から、車両1から検出物までの距離Lr、および検出物と車両1との相対速度Vrを取得する。そして、衝突予測装置13は、下記の式(2)に基づいて衝突予想時間TTCの値を算出する。
TTC=Lr/Vr …(2)
ステップS70の処理を完了すると、衝突予測装置13は、処理をステップS71へ進める。
In step S70, the collision prediction device 13 calculates a collision prediction time TTC. The predicted collision time TTC is a time estimated to be required until the vehicle 1 and the selected detection object collide. The collision prediction device 13 first obtains the distance Lr from the vehicle 1 to the detected object and the relative speed Vr between the detected object and the vehicle 1 from the radar device 10. Then, the collision prediction device 13 calculates the value of the predicted collision time TTC based on the following equation (2).
TTC = Lr / Vr (2)
When the process of step S70 is completed, the collision prediction apparatus 13 advances the process to step S71.

ステップS71において、衝突予測装置13は、進行角度αを算出する。進行角度αは、車両1の進行経路を示す直線と、選択検出物の進行経路を示す直線とが成す角度である。以下、車両1の進行経路を示す直線を自車進行経路線と呼称し、選択検出物の進行経路を示す直線を検出物進行経路線と呼称する。   In step S71, the collision prediction device 13 calculates the advance angle α. The travel angle α is an angle formed by a straight line indicating the travel path of the vehicle 1 and a straight line indicating the travel path of the selected detection object. Hereinafter, a straight line indicating the travel path of the vehicle 1 is referred to as a host vehicle travel path line, and a straight line indicating the travel path of the selected detected object is referred to as a detected object travel path line.

具体的には、先ず、衝突予測装置13は、自車進行経路線を算出する。衝突予測装置13は、例えば、周辺地図の座標系において、上述ステップS2の処理で予め記憶した最新の自車位置Psおよび当該最新の自車位置Psの直前に記憶した自車位置Psを結ぶ直線を表す直線式を自車進行経路線として算出する。次に、衝突予測装置13は、検出物進行経路線を算出する。衝突予測装置13は、例えば、周辺地図の座標系において、上述ステップS4の処理で予め記憶した最新の検出物位置Ptおよび当該最新の検出物位置Ptの直前に記憶した検出物位置Ptを結ぶ直線を表す直線式を検出物進行経路線として算出する。なお、上記の自車進行経路線および検出物進行経路線の算出方法は一例であり、車両1の進行経路を算出する方法は、従来既知の任意の手法を用いて良い。衝突予測装置13は、算出した自車進行経路線、および検出物進行経路線が成す角度を進行角度αとして、当該各線を表す直線式に基づいて算出する。   Specifically, first, the collision prediction device 13 calculates the own vehicle travel route line. For example, in the coordinate system of the surrounding map, the collision prediction device 13 is a straight line connecting the latest vehicle position Ps stored in advance in the process of step S2 and the vehicle position Ps stored immediately before the latest vehicle position Ps. Is calculated as the own vehicle travel route line. Next, the collision prediction device 13 calculates a detected object travel route line. For example, in the coordinate system of the surrounding map, the collision prediction device 13 connects the latest detected object position Pt stored in advance in the process of step S4 and the detected object position Pt stored immediately before the latest detected object position Pt. Is calculated as a detection object travel path line. In addition, the calculation method of said own vehicle advancing route line and detected object advancing route line is an example, and the method of calculating the advancing route of the vehicle 1 may use the conventionally well-known arbitrary methods. The collision prediction device 13 calculates the angle formed by the calculated own vehicle travel route line and the detected object travel route line as a travel angle α based on a linear expression representing each line.

上記処理により算出される自車進行経路線Bsおよび検出物進行経路線Btを図5に示す。なお、図5は、周囲地図座標系において車両1、車両2、自車進行経路線Bs、および検出物進行経路線Btを示す平面図である。図5に示すように自車進行経路線Bs、および検出物進行経路線Btが平行でない場合、当該各進行経路線は交差する。自車進行経路線Bsと検出物進行経路線Btとの交点を衝突予想地点Pcと呼称する。進行角度αの値は、自車進行経路線Bsおよび検出物進行経路線Btが平行であるときにα=0となり、検出物進行経路線Btが衝突予想地点Pcを中心として自車進行経路線Bsより車両1の進行方向を向いて右へ回転するほど大きな値となる。なお、検出物が静止物である場合には進行角度αの値は0として算出される。ステップS71の処理を完了すると、衝突予測装置13は処理をステップS72へ進める。   FIG. 5 shows the own vehicle travel route line Bs and the detected object travel route line Bt calculated by the above processing. FIG. 5 is a plan view showing the vehicle 1, the vehicle 2, the own vehicle travel route line Bs, and the detected object travel route line Bt in the surrounding map coordinate system. As shown in FIG. 5, when the own vehicle travel route line Bs and the detected object travel route line Bt are not parallel, the travel route lines intersect each other. The intersection of the own vehicle travel route line Bs and the detected object travel route line Bt is referred to as a predicted collision point Pc. The value of the traveling angle α is α = 0 when the own vehicle traveling route line Bs and the detected object traveling route line Bt are parallel, and the detected object traveling route line Bt is centered on the predicted collision point Pc. The value increases as the vehicle turns to the right from Bs in the traveling direction of the vehicle 1. When the detected object is a stationary object, the value of the advance angle α is calculated as 0. When the process of step S71 is completed, the collision prediction apparatus 13 advances the process to step S72.

ステップS72において、衝突予測装置13は、自車進行経路線Bsと検出物進行経路線Btとが平行であるか否かを判定する。具体的には、衝突予測装置13は、ステップS71において算出した進行角度α=0であるか否かを判定する。衝突予測装置13は、進行角度α=0である場合、自車進行経路線Bsと検出物進行経路線Btとが平行であると判定し、処理をステップS77へ進める。一方、衝突予測装置13は、進行角度α=0でない場合、自車進行経路線Bsと検出物進行経路線Btとが平行でないと判定し、衝突予測装置13は、処理をステップS73へ進める。   In step S72, the collision prediction device 13 determines whether or not the own vehicle travel route line Bs and the detected object travel route line Bt are parallel. Specifically, the collision prediction device 13 determines whether or not the travel angle α = 0 calculated in step S71. When the advance angle α = 0, the collision prediction device 13 determines that the host vehicle travel route line Bs and the detected object travel route line Bt are parallel, and the process proceeds to step S77. On the other hand, when the traveling angle α is not 0, the collision prediction device 13 determines that the own vehicle traveling route line Bs and the detected object traveling route line Bt are not parallel, and the collision predicting device 13 advances the process to step S73.

上記ステップS72の処理によれば、自車進行経路線Bsと検出物進行経路線Btとが平行であると判定された場合、車両1と選択検出物とが接近して衝突するならば、選択検出物が車両1の前面に衝突する可能性があると推定することができる。また、上記ステップS72の処理によれば、車両1へ相対的に接近する検出物について、当該検出物が移動または静止しているかに拘わらず、選択検出物が車両1の前面に衝突する可能性があるか推定することができる。   According to the process of step S72, if it is determined that the host vehicle travel route line Bs and the detected object travel route line Bt are parallel, the vehicle 1 and the selected detected object are selected to collide with each other. It can be estimated that the detected object may collide with the front surface of the vehicle 1. In addition, according to the processing in step S72, the detection object that is relatively close to the vehicle 1 may collide with the front surface of the vehicle 1 regardless of whether the detection object is moving or stationary. You can estimate if there is.

ステップS73において、衝突予測装置13は、衝突予想地点Pcを算出する。具体的には、衝突予測装置13は、周囲地図座標系において、ステップS71で算出した自車進行経路線Bsと、検出物進行経路線Btとの交点の座標を衝突予想地点Pcの座標として算出する。ステップS73の処理を完了すると、衝突予測装置13は、処理をステップS74へ進める。   In step S73, the collision prediction device 13 calculates a predicted collision point Pc. Specifically, the collision prediction device 13 calculates, as the coordinates of the predicted collision point Pc, the coordinates of the intersection of the own vehicle travel route line Bs calculated in step S71 and the detected object travel route line Bt in the surrounding map coordinate system. To do. When the process of step S73 is completed, the collision prediction apparatus 13 advances the process to step S74.

ステップS74において、衝突予測装置13は、自車衝突点到達時間TAsを算出する。自車衝突点到達時間TAsとは、車両1が衝突予想地点Pcへ到達するまでに要する時間である。具体的には、先ず、衝突予測装置13は、車速計11より出力される自車速度Vsを取得する。次に、周囲地図座標系において衝突予想地点Pcから自車位置Psまでの距離Ls(図5参照)を算出する。そして、衝突予測装置13は、下式(3)に基づいて自車衝突点到達時間TAsを算出する。
TAs=Ls/Vs …(3)
ステップS74の処理を完了すると、衝突予測装置13は、処理をステップS75へ進める。
In step S74, the collision prediction device 13 calculates the own vehicle collision point arrival time TAs. The own vehicle collision point arrival time TAs is the time required for the vehicle 1 to reach the predicted collision point Pc. Specifically, first, the collision prediction device 13 acquires the host vehicle speed Vs output from the vehicle speedometer 11. Next, a distance Ls (see FIG. 5) from the predicted collision point Pc to the host vehicle position Ps is calculated in the surrounding map coordinate system. Then, the collision prediction device 13 calculates the own vehicle collision point arrival time TAs based on the following equation (3).
TAs = Ls / Vs (3)
When the process of step S74 is completed, the collision prediction apparatus 13 advances the process to step S75.

ステップS75において、衝突予測装置13は、検出物衝突点到達時間TAtを算出する。検出物衝突点到達時間TAtとは、選択検出物が衝突予想地点Pcへ到達するまでに要する時間である。具体的には、先ず、衝突予測装置13は、検出物速度Vtを算出する。例えば、衝突予測装置13は、ステップS4の処理により記憶された時系列の検出物位置Ptの値を微分して検出物速度Vtを算出する。次に、周囲地図座標系において衝突予想地点Pcから検出物位置Ptまでの距離Lt(図5参照)を算出する。そして、衝突予測装置13は、下式(4)に基づいて検出物衝突点到達時間TAtを算出する。
TAt=Lt/Vt …(4)
ステップS75の処理を完了すると、衝突予測装置13は、処理をステップS76へ進める。
In step S75, the collision prediction apparatus 13 calculates the detected object collision point arrival time TAt. The detected object collision point arrival time TAt is the time required for the selected detected object to arrive at the predicted collision point Pc. Specifically, first, the collision prediction device 13 calculates the detected object speed Vt. For example, the collision prediction device 13 calculates the detected object speed Vt by differentiating the time-series detected object position Pt stored in the process of step S4. Next, a distance Lt (see FIG. 5) from the predicted collision point Pc to the detected object position Pt in the surrounding map coordinate system is calculated. Then, the collision prediction device 13 calculates the detected object collision point arrival time TAt based on the following equation (4).
TAt = Lt / Vt (4)
When the process of step S75 is completed, the collision prediction apparatus 13 advances the process to step S76.

ステップS76において、衝突予測装置13は、検出物より車両1が衝突予想地点Pcに先着するか否かを判定する。具体的には、衝突予測装置13は、下式(5)で算出される自車衝突点到達時間TAsと検出物衝突点到達時間TAtとの差ΔTAの値が0より小さいか否かを判定する。
ΔTA=TAs−TAt …(5)
衝突予測装置13は、ΔTAの値が0より小さいと判定した場合、処理をステップS77へ進める。衝突予測装置13は、ΔTAの値が0以上であると判定した場合、処理をステップS78へ進める。
In step S76, the collision prediction device 13 determines whether or not the vehicle 1 arrives at the predicted collision point Pc from the detected object. Specifically, the collision prediction device 13 determines whether or not the value of the difference ΔTA between the own vehicle collision point arrival time TAs calculated by the following equation (5) and the detected object collision point arrival time TAt is smaller than zero. To do.
ΔTA = TAs−TAt (5)
If the collision prediction apparatus 13 determines that the value of ΔTA is smaller than 0, the collision prediction apparatus 13 proceeds with the process to step S77. If the collision prediction apparatus 13 determines that the value of ΔTA is equal to or greater than 0, the collision prediction apparatus 13 proceeds with the process to step S78.

上記ステップS73からステップS76の処理によれば、車両1と選択検出物の何れが先に衝突予想地点Pcへ到達するか判定することができる。ここで、車両1が先に衝突予想地点Pcに到達する場合、検出物位置Ptが衝突予想地点Pcに到達した時点で、自車位置Psは衝突予想地点Pcを通過していると考えられるため、選択検出物が車両1と衝突するならば、選択検出物は車両1の側面に衝突すると推定される。一方、選択検出物が先に衝突予想地点Pcに到達する場合、自車位置Psが衝突予想地点Pcに到達した時点で、検出物位置Ptは衝突予想地点Pcを通過していると考えられるため、車両1が選択検出物に衝突するならば、車両1は前面で選択検出物と衝突すると推定される。   According to the processing from step S73 to step S76, it can be determined which of the vehicle 1 and the selected detection object first reaches the predicted collision point Pc. Here, when the vehicle 1 reaches the predicted collision point Pc first, it is considered that the own vehicle position Ps has passed the predicted collision point Pc when the detected object position Pt reaches the predicted collision point Pc. If the selected detection object collides with the vehicle 1, it is estimated that the selection detection object collides with the side surface of the vehicle 1. On the other hand, when the selected detected object first arrives at the predicted collision point Pc, it is considered that the detected object position Pt has passed the predicted collision point Pc when the vehicle position Ps reaches the predicted collision point Pc. If the vehicle 1 collides with the selection detection object, it is estimated that the vehicle 1 collides with the selection detection object in the front.

ステップS77において、衝突予測装置13は、前面衝突閾値テーブルを読み出す。前面衝突閾値テーブルとは、選択検出物が車両1の前面に衝突する可能性があると推定された場合に、衝突予測装置13が参照する閾値テーブルである。閾値テーブルとは、検出角度変化量の閾値θvthと衝突予想時間TTCとの関係を示すデータテーブルである。   In step S77, the collision prediction device 13 reads the front collision threshold table. The front collision threshold table is a threshold table that is referred to by the collision prediction device 13 when it is estimated that the selected detection object may collide with the front surface of the vehicle 1. The threshold table is a data table showing the relationship between the detected angle change amount threshold θvth and the expected collision time TTC.

図6は、前面衝突閾値テーブルの一例を示した図である。図6に示すように閾値テーブルは、列毎に衝突予想時間TTCおよび検出角度変化量の閾値θvthの値が各々並べられたデータテーブルである。閾値テーブルにおいて、衝突予想時間TTCの値は1列目に示され、各衝突予想時間TTCの値と対応する検出角度変化量の閾値θvthの値が2列目に示される。なお、図6に示すように前面衝突閾値テーブルにおいて、閾値θvthの値は、対応する衝突予想時間TTCの値に拘わらず0.01に設定されている。詳細は後述ステップS79において説明するが、衝突予測装置13は、閾値テーブルを参照し、衝突予想時間TTCの値に対応する検出角度変化量の閾値θvthの値を特定する。衝突予測装置13は、予め複数の閾値テーブルを記憶し、選択検出物が車両1のどの面へ衝突するかに応じて読み出す閾値テーブルを切り替える。本実施形態においては、衝突予測装置13が、前面衝突閾値テーブルと側面衝突閾値テーブルの2種の閾値テーブルを予め記憶している。そして、本ステップS77では、衝突予測装置13は、記憶装置に予め記憶装置に記憶した前面衝突閾値テーブルを読み出す。ステップS77の処理を完了すると、衝突予測装置13は、処理をステップS79へ進める。   FIG. 6 is a diagram illustrating an example of a front collision threshold table. As shown in FIG. 6, the threshold value table is a data table in which the predicted collision time TTC and the detected angle change amount threshold value θvth are arranged for each column. In the threshold table, the value of the predicted collision time TTC is shown in the first column, and the value of the detected angle change threshold θvth corresponding to each predicted collision time TTC is shown in the second column. As shown in FIG. 6, in the front collision threshold table, the value of the threshold θvth is set to 0.01 regardless of the value of the corresponding expected collision time TTC. Although details will be described later in step S79, the collision prediction device 13 refers to the threshold value table and identifies the value of the detected angle change amount threshold value θvth corresponding to the value of the predicted collision time TTC. The collision prediction device 13 stores a plurality of threshold tables in advance, and switches the threshold table to be read according to which surface of the vehicle 1 the selected detection object collides with. In the present embodiment, the collision prediction apparatus 13 stores in advance two types of threshold tables, a front collision threshold table and a side collision threshold table. In step S77, the collision prediction device 13 reads the front collision threshold table stored in the storage device in advance in the storage device. When the process of step S77 is completed, the collision prediction apparatus 13 advances the process to step S79.

一方、ステップS78において、衝突予測装置13は、側面衝突閾値テーブルを読み出す。側面衝突閾値テーブルは、選択検出物が車両1の前面に衝突する可能性があると推定された場合に、衝突予測装置13が参照する閾値テーブルである。図7は、側面衝突閾値テーブルの一例を示した図である。図6および図7に示すように、前面衝突閾値テーブルと、側面衝突閾値テーブルとでは、各々、衝突予想時間TTCに対応する検出角度変化量の閾値θvthの値が異なる。図7に示すように、側面衝突閾値テーブルでは、衝突予想時間TTCの値が小さくなるほど、対応する閾値θvthの値が段階的に大きくなる。具体的には、側面衝突閾値テーブルでは、衝突予想時間TTCの値が1.03以上である場合、対応する閾値θvthの値は0.01に設定され、衝突予想時間TTCの値が0.58以上、且つ1.02以下である場合、対応する閾値θvthの値は0.02に設定され、衝突予想時間TTCの値が0.57未満である場合、対応する閾値θvthの値は0.0381に設定される。ステップS78の処理を完了すると、衝突予測装置13は、処理をステップS79へ進める。   On the other hand, in step S78, the collision prediction apparatus 13 reads the side collision threshold table. The side collision threshold table is a threshold table that the collision prediction device 13 refers to when it is estimated that the selected detection object may collide with the front surface of the vehicle 1. FIG. 7 is a diagram illustrating an example of a side collision threshold table. As shown in FIG. 6 and FIG. 7, the threshold value θvth of the detected angle change amount corresponding to the expected collision time TTC is different between the front collision threshold table and the side collision threshold table. As shown in FIG. 7, in the side collision threshold table, the corresponding threshold value θvth increases stepwise as the predicted collision time TTC value decreases. Specifically, in the side collision threshold table, when the value of the predicted collision time TTC is 1.03 or more, the corresponding threshold value θvth is set to 0.01, and the value of the predicted collision time TTC is 0.58. When the value is equal to or greater than 1.02 and equal to or less than 1.02, the corresponding threshold value θvth is set to 0.02. When the value of the predicted collision time TTC is less than 0.57, the corresponding threshold value θvth is 0.0381. Set to When the process of step S78 is completed, the collision prediction apparatus 13 advances the process to step S79.

ステップS79において、衝突予測装置13は、閾値テーブルおよび衝突予想時間TTCに基づいて検出角度変化量の閾値θvthを設定する。具体的には、衝突予測装置13は、ステップS77またはステップS78で読み出した何れかの閾値テーブル中の1列目で、ステップS70の処理で算出した衝突予想時間TTCの値を探索する。そして、当該衝突予想時間TTCが記された行と同じ行の2列目に記された値を、検出角度変化量の閾値θvthの値として設定する。衝突予測装置13は、ステップS79の処理を完了すると、閾値設定処理を完了して、処理を図2のステップS8の処理へ進める。   In step S79, the collision prediction device 13 sets a threshold value θvth of the detected angle change amount based on the threshold value table and the predicted collision time TTC. Specifically, the collision prediction device 13 searches for the value of the predicted collision time TTC calculated in the process of step S70 in the first column in any threshold table read in step S77 or step S78. Then, the value written in the second column of the same row as the row where the expected collision time TTC is written is set as the threshold value θvth of the detected angle change amount. When the collision prediction apparatus 13 completes the process of step S79, it completes the threshold setting process and advances the process to the process of step S8 in FIG.

ステップS8において、衝突予測装置13は、検出角度θvの値が閾値θvthより大きいか否かを判定する。衝突予測装置13は、検出角度θvの値が閾値θvthより大きいと判定した場合、処理をステップS9へ進める。一方、衝突予測装置13は、検出角度θvの値が閾値θvth以下であると判定した場合、処理をステップS10へ進める。   In step S8, the collision prediction apparatus 13 determines whether or not the value of the detection angle θv is larger than the threshold value θvth. If the collision prediction device 13 determines that the value of the detection angle θv is greater than the threshold value θvth, the process proceeds to step S9. On the other hand, when the collision prediction device 13 determines that the value of the detection angle θv is equal to or less than the threshold value θvth, the process proceeds to step S10.

ステップS9において、衝突予測装置13は、衝突フラグをオンにする。衝突フラグとは、当該フラグがオン状態である場合に選択検出物が車両1に衝突すると予測されたか否かを示すフラグである。衝突予測装置13は、レーダー装置10により検出された検出物毎に衝突フラグを設定し、当該フラグの状態を記憶装置に保持する。本ステップS9では、衝突予測装置13は、選択検出物の衝突フラグをオン状態に設定し、当該状態を記憶する。衝突予測装置13は、ステップS9の処理を完了すると、処理をステップS11へ進める。   In step S9, the collision prediction device 13 turns on the collision flag. The collision flag is a flag indicating whether or not the selected detection object is predicted to collide with the vehicle 1 when the flag is on. The collision prediction device 13 sets a collision flag for each detected object detected by the radar device 10, and holds the state of the flag in the storage device. In step S9, the collision prediction device 13 sets the collision flag of the selected detection object to the on state, and stores the state. When the collision prediction apparatus 13 completes the process of step S9, the collision prediction apparatus 13 advances the process to step S11.

ステップS10において、衝突予測装置13は、衝突フラグをオフにする。衝突予測装置13は、選択検出物の衝突フラグをオフ状態に設定し、当該状態を記憶する。衝突予測装置13は、ステップS10の処理を完了すると、処理をステップS11へ進める。   In step S10, the collision prediction device 13 turns off the collision flag. The collision prediction device 13 sets the collision flag of the selected detection object to the off state and stores the state. When the collision prediction apparatus 13 completes the process of step S10, the process proceeds to step S11.

ステップS11において、衝突予測装置13は、全ての検出物を選択したか否かを判定する。具体的には、衝突予測装置13は、レーダー装置10により検出された全ての検出物について上記ステップS3からステップS10の処理を実行したか否かを判定する。衝突予測装置13は、全ての検出物を選択していないと判定した場合、処理をステップS3へ戻し、未選択の検出物について上記ステップS3からステップS10の処理を実行する。一方、衝突予測装置13は、全ての検出物を選択したと判定した場合、処理をステップS12へ進める。   In step S11, the collision prediction apparatus 13 determines whether all the detected objects have been selected. Specifically, the collision prediction device 13 determines whether or not the processing from step S3 to step S10 has been executed for all detected objects detected by the radar device 10. If the collision prediction device 13 determines that all the detected objects have not been selected, the process returns to step S3, and the processes from step S3 to step S10 are performed on the unselected detected objects. On the other hand, if the collision prediction apparatus 13 determines that all detected objects have been selected, the process proceeds to step S12.

ステップS12において、衝突予測装置13は、何れかの検出物の衝突フラグがオンであるか否かを判定する。具体的には、衝突予測装置13は、記憶装置に記憶した各検出物の衝突フラグの状態を読み出し、何れかの検出物の衝突フラグがオンであるか否かを判定する。衝突予測装置13は、何れかの検出物の衝突フラグがオン状態である場合、処理をステップS13へ進めて警報を発報する処理を行う。一方、衝突予測装置13は、全ての検出物の衝突フラグがオフ状態である場合、処理をステップS14へ進めて警報を発報しない処理を行う。   In step S12, the collision prediction apparatus 13 determines whether the collision flag of any detected object is on. Specifically, the collision prediction device 13 reads the state of the collision flag of each detected object stored in the storage device, and determines whether or not the collision flag of any detected object is on. When the collision flag of any detected object is in the on state, the collision predicting apparatus 13 advances the process to step S13 and performs a process of issuing an alarm. On the other hand, when the collision flags of all the detected objects are in the off state, the collision prediction device 13 proceeds to the process at step S14 and performs a process that does not issue an alarm.

ステップS13において、衝突予測装置13は、警報を発報する。具体的には、衝突予測装置13は、警報装置14に対して警報を発報する指示信号(以下、警報信号と呼称する。)を継続的に出力する。警報装置14は、衝突予測装置13からの指示信号に応じて警報音を出力する。衝突予測装置13は、ステップS13の処理を完了すると処理をステップS1へ戻す。   In step S13, the collision prediction apparatus 13 issues an alarm. Specifically, the collision prediction device 13 continuously outputs an instruction signal (hereinafter referred to as a warning signal) for issuing a warning to the warning device 14. The alarm device 14 outputs an alarm sound according to the instruction signal from the collision prediction device 13. The collision prediction apparatus 13 returns the process to step S1 when the process of step S13 is completed.

一方、ステップS14において、衝突予測装置13は、警報を発報しない。具体的には、衝突予測装置13は、警報装置14に対して警報信号を出力しない状態にする。警報装置14に対して警報信号を継続出力していた場合には、衝突予測装置13は、当該警報信号の出力を停止し、当該停止状態を維持する。衝突予測装置13は、ステップS14の処理を完了すると処理をステップS1へ戻す。   On the other hand, in step S14, the collision prediction device 13 does not issue a warning. Specifically, the collision prediction device 13 sets a state in which an alarm signal is not output to the alarm device 14. When the warning signal is continuously output to the warning device 14, the collision prediction device 13 stops the output of the warning signal and maintains the stopped state. The collision prediction apparatus 13 returns the process to step S1 when the process of step S14 is completed.

上記ステップS12からステップS14の処理によれば、レーダー装置10により検出された検出物が1つでも車両1と衝突すると予測された場合には、警報音が発せられるため、運転者は、当該検出物との衝突を察知して、当該衝突を回避する操作を行うことが可能となる。   According to the processing from step S12 to step S14, when even one detected object detected by the radar device 10 is predicted to collide with the vehicle 1, an alarm sound is emitted, so that the driver detects the detection. It is possible to detect a collision with an object and perform an operation to avoid the collision.

以下、車両1に車両2が接近または衝突する場合において、上記に説明した衝突予測装置13の処理に基づいて算出される車両2の検出角度変化量θvの値が変化する様子について、図8から図14を参照して説明する。   FIG. 8 shows how the detected angle change amount θv of the vehicle 2 calculated based on the processing of the collision prediction device 13 described above changes when the vehicle 2 approaches or collides with the vehicle 1. This will be described with reference to FIG.

先ず、図8から図11を参照して、車両2が車両1とすれ違う場合、および車両2が車両1の前面に衝突する場合の、検出角度変化量θvの値の推移について説明する。なお、図8は、車両1と対向して進行する車両2が車両1の右側をすれ違う軌道W_pを示す平面図である。図9は、車両2が車両1の右斜め前方から接近し、車両1の前面左側に衝突する軌道W_fLを示す平面図である。図10は、車両2が車両1の右斜め前方から接近し、車両1の前面右側に衝突する軌道W_fRを示す平面図である。上記軌道W_p、W_fL、および軌道W_fRで示される各軌道における車両2の検出角度変化量θvの推移を図11に示す。図11は、軌道W_p、軌道W_fL、および軌道W_fRの各軌道で車両2が車両1に接近する場合の検出角度変化量θvと衝突予想時間TTCとの関係を示すグラフである。   First, with reference to FIGS. 8 to 11, the transition of the detected angle change amount θv when the vehicle 2 passes the vehicle 1 and when the vehicle 2 collides with the front surface of the vehicle 1 will be described. FIG. 8 is a plan view showing a track W_p where the vehicle 2 traveling opposite the vehicle 1 passes the right side of the vehicle 1. FIG. 9 is a plan view showing a track W_fL in which the vehicle 2 approaches from the diagonally right front of the vehicle 1 and collides with the front left side of the vehicle 1. FIG. 10 is a plan view showing a track W_fR in which the vehicle 2 approaches from the diagonally right front side of the vehicle 1 and collides with the front right side of the vehicle 1. FIG. 11 shows changes in the detected angle change amount θv of the vehicle 2 in each of the tracks indicated by the tracks W_p, W_fL, and the track W_fR. FIG. 11 is a graph showing the relationship between the detected angle change amount θv and the expected collision time TTC when the vehicle 2 approaches the vehicle 1 in each of the tracks W_p, W_fL, and W_fR.

上記衝突予測装置13のステップS72からステップS75の処理において説明したように、検出物の進行経路と車両1の進行経路とが平行である場合、および検出物が車両1の前面に衝突する場合、前面衝突閾値テーブルに基づいて閾値θvthの値を決定する。すなわち、車両2が上記の軌道W_p、軌道W_fL、または軌道W_fRの軌道で車両1に接近または衝突する場合、衝突予測装置13は、何れの場合についても前面衝突閾値テーブルに基づいて閾値θvthの値を決定する。図11に示すグラフには、衝突予測装置13が算出した閾値θvthの値をさらに示す。図11に示すように、前面衝突閾値テーブルに基づいて定められる閾値θvthの値は、衝突予想時間TTCの値に拘わらず0.1となる。   As described in the processing from step S72 to step S75 of the collision prediction apparatus 13, when the traveling path of the detected object and the traveling path of the vehicle 1 are parallel, and when the detected object collides with the front surface of the vehicle 1, The value of the threshold θvth is determined based on the front collision threshold table. That is, when the vehicle 2 approaches or collides with the vehicle 1 in the above-described trajectory W_p, trajectory W_fL, or trajectory W_fR, the collision prediction device 13 determines the value of the threshold θvth based on the front collision threshold table in any case. To decide. The graph shown in FIG. 11 further shows the value of the threshold θvth calculated by the collision prediction device 13. As shown in FIG. 11, the value of the threshold θvth determined based on the front collision threshold table is 0.1 regardless of the value of the predicted collision time TTC.

図11に示すグラフによれば、軌道W_pのように車両1および車両2が衝突せずにすれ違う場合、検出角度の変化量θvは、衝突予想時間TTCが小さくなるほど指数的に増加し、常に閾値θvthより大きな値となる。したがって、衝突予測装置13は、車両2が軌道W_pのように車両1と衝突せずにすれ違う場合、車両1と車両2とが衝突しないと予測し、車両2の衝突フラグをオフに設定することができる。一方で、車両2が軌道W_fL、または軌道W_fRのように車両1の前面に衝突する場合、何れの軌道であっても検出角度の変化量θvは、衝突予想時間TTCが小さくなるほど指数的に減少し、常に閾値θvthを下回る。したがって、衝突予測装置13は、軌道W_fL、または軌道W_fRのように車両1および車両2が衝突する場合、車両2の衝突フラグをオンに設定することができる。   According to the graph shown in FIG. 11, when the vehicle 1 and the vehicle 2 pass each other without colliding as in the track W_p, the change amount θv of the detected angle increases exponentially as the predicted collision time TTC decreases, and is always a threshold value. It becomes a value larger than θvth. Therefore, the collision prediction device 13 predicts that the vehicle 1 and the vehicle 2 do not collide when the vehicle 2 passes without colliding with the vehicle 1 like the track W_p, and sets the collision flag of the vehicle 2 to OFF. Can do. On the other hand, when the vehicle 2 collides with the front surface of the vehicle 1 like the track W_fL or the track W_fR, the change amount θv of the detected angle decreases exponentially as the predicted collision time TTC decreases in any track. And always below the threshold value θvth. Therefore, the collision prediction device 13 can set the collision flag of the vehicle 2 to ON when the vehicle 1 and the vehicle 2 collide like the track W_fL or the track W_fR.

次に、図12から図14を参照して、車両2が車両1の側面に衝突する場合の、検出角度変化量θvの値の推移について説明する。図12は、車両2が車両1の右斜め前方から接近し、車両1の右側面前方に衝突する軌道W_sFを示す平面図である。図13は、車両2が車両1の右斜め前方から接近し、車両1の右側面後方に衝突する軌道W_sBを示す平面図である。上記軌道W_sF、および軌道W_sBで示される各軌道における車両2の検出角度変化量θvの推移を図14に示す。図14は、軌道W_sF、および軌道W_sBにおける検出角度変化量θvと衝突予想時間TTCとの関係を示すグラフである。   Next, transition of the detected angle change amount θv when the vehicle 2 collides with the side surface of the vehicle 1 will be described with reference to FIGS. FIG. 12 is a plan view showing a track W_sF in which the vehicle 2 approaches from the diagonally right front side of the vehicle 1 and collides with the front side of the right side surface of the vehicle 1. FIG. 13 is a plan view showing a track W_sB in which the vehicle 2 approaches from the diagonally right front side of the vehicle 1 and collides with the rear side of the right side surface of the vehicle 1. FIG. 14 shows the transition of the detected angle change amount θv of the vehicle 2 in each track indicated by the track W_sF and the track W_sB. FIG. 14 is a graph showing the relationship between the detected angle change amount θv and the expected collision time TTC in the trajectory W_sF and the trajectory W_sB.

上記衝突予測装置13のステップS72からステップS75の処理において説明したように、検出物が車両1の側面に衝突する場合、側面衝突閾値テーブルに基づいて閾値θvthの値を決定する。すなわち、車両2が上記軌道W_sF、または軌道W_sBで車両1に衝突する場合、衝突予測装置13は、側面衝突閾値テーブルに基づいて閾値θvthの値を決定する。図14に示すグラフには、側面衝突閾値テーブルに基づいて定められる閾値θvthの値をさらに示す。図14に示すように、側面衝突閾値テーブルに基づいて定められる閾値θvthの値は、衝突予想時間TTCの値が小さくなるほど段階的に大きな値に変化する。   As described in the processing from step S72 to step S75 of the collision prediction device 13, when the detected object collides with the side surface of the vehicle 1, the value of the threshold value θvth is determined based on the side surface collision threshold value table. That is, when the vehicle 2 collides with the vehicle 1 on the track W_sF or the track W_sB, the collision prediction device 13 determines the value of the threshold θvth based on the side collision threshold table. The graph shown in FIG. 14 further shows the value of the threshold θvth determined based on the side collision threshold table. As shown in FIG. 14, the value of the threshold θvth determined based on the side collision threshold table changes in a stepwise manner as the value of the predicted collision time TTC decreases.

図14に示すグラフによれば、軌道W_sBのように車両2が車両1の側面に衝突する場合、衝突予想時間TTCの値が小さくなるほど検出角度変化量θvの値は大きくなり、当該変化量θvの値は0.1を超える場合がある。すなわち、前面衝突閾値テーブルに基づいて閾値θvthが設定されていたならば、車両2と車両1とが衝突するにも拘わらず、衝突予測装置13は、当該衝突をしないと予測してしまう。しかしながら、上記の通り、車両1の側面に車両2が衝突する場合、側面衝突閾値テーブルに基づいて閾値θvthが設定されるため、衝突予想時間TTCの値が小さくなるほど閾値θvthの値も大きくなる。そのため、車両2が軌道W_sBで車両1の側面に衝突する場合であっても、検出角度の変化量θvは常に閾値θvthを下回る。なお、図14に示すように、車両2が軌道W_sFで車両1の側面に衝突する場合も同様に、検出角度の変化量θvは常に閾値θvthを下回る。このように、衝突予測装置13は、車両2が軌道W_sF、または軌道W_sBのように車両1の側面に衝突する場合、車両2の衝突フラグをオンに設定することができる。   According to the graph shown in FIG. 14, when the vehicle 2 collides with the side surface of the vehicle 1 like the track W_sB, the value of the detected angle change amount θv increases as the predicted collision time TTC decreases, and the change amount θv. The value of may exceed 0.1. That is, if the threshold value θvth is set based on the front collision threshold table, the collision prediction device 13 predicts that the collision will not occur even though the vehicle 2 and the vehicle 1 collide. However, as described above, when the vehicle 2 collides with the side surface of the vehicle 1, the threshold value θvth is set based on the side surface collision threshold value table. Therefore, the value of the threshold value θvth increases as the predicted collision time TTC decreases. Therefore, even when the vehicle 2 collides with the side surface of the vehicle 1 on the track W_sB, the change amount θv of the detection angle is always below the threshold θvth. As shown in FIG. 14, similarly, when the vehicle 2 collides with the side surface of the vehicle 1 on the track W_sF, the change amount θv of the detected angle is always below the threshold value θvth. As described above, the collision prediction device 13 can set the collision flag of the vehicle 2 to ON when the vehicle 2 collides with the side surface of the vehicle 1 like the track W_sF or the track W_sB.

以上に説明した通り、本実施形態に係る衝突予測装置13によれば、観測点Poを車両の後端に設定しているため、車両と検出物とがすれ違う場合と、車両と検出物とが衝突する場合とで検出角度の変化量θvの推移の様態が異なるよう算出される。故に、衝突予測装置13によれば、車両と検出物とが衝突するか否かを、検出角度の変化量θvおよび閾値θvthに基づいて精度良く予測することができる。また、上記の通り、検出物が車両1のどの位置に衝突するかに応じて閾値テーブルが切り替えられるため、衝突予測装置13は、車両2が車両1の前面または側面の何れに衝突する場合であっても、検出物が車両1に衝突するか否かをより正確に判定することができる。   As described above, according to the collision prediction apparatus 13 according to the present embodiment, since the observation point Po is set at the rear end of the vehicle, the case where the vehicle and the detected object pass each other and the vehicle and the detected object are different. It is calculated that the transition state of the change amount θv of the detection angle differs depending on the collision. Therefore, according to the collision prediction device 13, it is possible to accurately predict whether or not the vehicle and the detected object collide based on the change amount θv and the threshold value θvth of the detection angle. Further, as described above, since the threshold table is switched according to which position of the vehicle 1 the detected object collides with, the collision prediction device 13 is used when the vehicle 2 collides with either the front surface or the side surface of the vehicle 1. Even if it exists, it can be determined more accurately whether the detected object collides with the vehicle 1 or not.

なお、上記実施形態では、衝突予測装置13が観測点Poの位置を車両の後端中央とする例について説明したが、観測点Poの位置は車両の後端中央に限らず、車両前端より車両後方側に設定されていれば良い。   In the above embodiment, the collision prediction device 13 has described an example in which the position of the observation point Po is the center of the rear end of the vehicle. However, the position of the observation point Po is not limited to the center of the rear end of the vehicle. It only has to be set on the rear side.

例えば、衝突予測装置13は、観測点Poの位置を図15に示すように車両の後端左隅に設定しても構わない。図15は、観測点Poが後端左隅に設定されている車両1を示す平面図である。観測点Poの位置を車両の後端左隅に設定すると、観測点Poの位置が車両後端中央である場合に比べて、車両1の右側から接近してくる検出物および車両1がすれ違う場合(上述軌道W_p)の検出角度の変化量θvと、車両1の右側から接近してくる検出物および車両が衝突する場合(上述軌道W_fL、W_fR、およびW_sF)の検出角度の変化量θvとの差がより大きくなる。したがって、衝突予測装置13は、観測点Poの位置を車両の後端左隅に設定した場合、車両1の右側に検出物が頻出する環境下、例えば、左側通行の道路上などにおいて、より精度良く車両と検出物との衝突を予測することができる。   For example, the collision prediction device 13 may set the position of the observation point Po at the left corner of the rear end of the vehicle as shown in FIG. FIG. 15 is a plan view showing the vehicle 1 in which the observation point Po is set at the rear left corner. When the position of the observation point Po is set to the left corner of the rear end of the vehicle, the detected object approaching from the right side of the vehicle 1 and the vehicle 1 pass each other compared to the case where the position of the observation point Po is the center of the rear end of the vehicle ( The difference between the change amount θv of the detection angle of the track W_p and the change amount θv of the detection angle when the detection object approaching from the right side of the vehicle 1 collides with the vehicle (the track W_fL, W_fR, and W_sF). Becomes larger. Therefore, when the position of the observation point Po is set at the rear left corner of the vehicle, the collision prediction apparatus 13 is more accurate in an environment where detected objects frequently appear on the right side of the vehicle 1, for example, on a left-handed road. A collision between the vehicle and the detected object can be predicted.

また、衝突予測装置13は、観測点Poの位置を車両の後端右隅に設定しても構わない。観測点Poの位置を車両の後端右隅に設定すると、観測点Poの位置が車両後端中央である場合に比べて、車両1の左側から接近してくる検出物および車両1がすれ違う場合(上述軌道W_p)の検出角度の変化量θvと、車両1の右側から接近してくる検出物および車両が衝突する場合(上述軌道W_fL、W_fR、およびW_sF)の検出角度の変化量θvとの差がより大きくなる。したがって、衝突予測装置13は、観測点Poの位置を車両後端右隅に設定した場合、車両1の左側に検出物が頻出する環境下、例えば、右側通行の道路上などでは、上記観測点Poの位置を車両後端左隅に設定した場合と同様に、より精度良く車両と検出物との衝突を予測することができる。   Further, the collision prediction device 13 may set the position of the observation point Po at the right end corner of the vehicle. When the position of the observation point Po is set to the right corner of the rear end of the vehicle, the detected object approaching from the left side of the vehicle 1 and the vehicle 1 pass each other compared to the case where the position of the observation point Po is the center of the rear end of the vehicle. The change amount θv of the detection angle of the (trajectory W_p) and the change amount θv of the detection angle when the detection object and the vehicle approaching from the right side of the vehicle 1 collide (the trajectories W_fL, W_fR, and W_sF). The difference is greater. Therefore, when the position of the observation point Po is set at the right corner of the rear end of the vehicle, the collision prediction apparatus 13 is configured to use the observation point in an environment where detected objects frequently appear on the left side of the vehicle 1, for example, on a right-hand traffic road. Similar to the case where the position of Po is set to the left corner of the rear end of the vehicle, the collision between the vehicle and the detected object can be predicted with higher accuracy.

上記の通り、観測点Poの位置は、車両の走行環境等に応じて車両1の後端などの適当な位置に設定されることが好ましいが、少なくとも観測点Poの位置が車両前端より車両後方側に設定されていれば、検出角度変化量θvの値が、観測点Poの位置が車両前端に設定されている場合に比べて小さな値となるため、従来に比べより精度良く車両と検出物との衝突を予測することができる。   As described above, the position of the observation point Po is preferably set to an appropriate position such as the rear end of the vehicle 1 in accordance with the traveling environment of the vehicle, but at least the position of the observation point Po is behind the vehicle from the front end of the vehicle. If it is set to the side, the value of the detected angle change amount θv is smaller than that when the position of the observation point Po is set at the front end of the vehicle. Can be predicted.

また、上記の実施形態では、衝突予測装置13が検出物が車両1のどの面に衝突するかに応じて閾値テーブルを切り替える例について説明したが、閾値テーブルを切り替えなくても検出物と車両1とが衝突するか否かを正確に判別可能な閾値θvthを設定可能な閾値テーブルを用意できる場合は、閾値テーブルを切り替える処理を省略しても構わない。すなわち、衝突予測装置13は、常に1つの閾値テーブルに基づいて閾値θvthを設定しても構わない。   In the above embodiment, the example in which the collision prediction device 13 switches the threshold table according to which surface of the vehicle 1 the detected object collides with has been described. However, the detected object and the vehicle 1 can be switched without switching the threshold table. Can be prepared, a threshold value table that can set a threshold value θvth that can be accurately discriminated whether or not to collide with each other can be prepared. That is, the collision prediction apparatus 13 may always set the threshold value θvth based on one threshold value table.

例えば、ステップS72からステップS73の処理を省略して、閾値θvthを、検出物が車両1のどの面に衝突するかに拘わらず常に側面衝突閾値テーブルに基づいて設定しても構わない。図14に、軌道W_pで車両2が車両1と衝突せずにすれ違う場合の検出角度変化量θvの値も合わせて示す。図14に示すように、仮に、軌道W_pのように車両1および車両2が衝突せずにすれ違う場合に閾値θvthの値が側面衝突閾値テーブルに基づいて決定されても、車両2の検出角度の変化量θvは、常に閾値θvthより大きな値となる。また、仮に、軌道W_fLおよび軌道W_fRのように車両2が車両1の前面に衝突する場合に閾値θvthの値が側面衝突閾値テーブルに基づいて決定されても、車両2の検出角度の変化量θvは、常に閾値θvthを下回る。このように、常に側面衝突閾値テーブルに基づいて閾値θvthを設定すれば、閾値テーブルを切り替えなくても検出物と車両1とが衝突するか否かを正確に判別可能な閾値θvthを設定することができる。   For example, the processing from step S72 to step S73 may be omitted, and the threshold value θvth may always be set based on the side collision threshold table regardless of which surface of the vehicle 1 the detected object collides with. FIG. 14 also shows the value of the detected angle change amount θv when the vehicle 2 passes by the track W_p without colliding with the vehicle 1. As shown in FIG. 14, even if the vehicle 1 and the vehicle 2 pass each other without colliding like the track W_p, even if the value of the threshold θvth is determined based on the side collision threshold table, the detection angle of the vehicle 2 The change amount θv is always larger than the threshold value θvth. Even if the value of the threshold θvth is determined based on the side collision threshold table when the vehicle 2 collides with the front surface of the vehicle 1 as in the track W_fL and the track W_fR, the change amount θv of the detection angle of the vehicle 2 is determined. Is always below the threshold value θvth. In this way, if the threshold value θvth is always set based on the side collision threshold table, the threshold value θvth that can accurately determine whether the detected object and the vehicle 1 collide without switching the threshold table is set. Can do.

また、上記実施形態では、前面衝突閾値テーブルにおいて衝突予想時間TTCの値に拘わらず閾値θvthの値が一定値となるよう設定され、側面衝突閾値テーブルにおいて閾値θvthの値が衝突予想時間TTCの値が短くなるほど段階的に大きな値に変化するよう設定される例について説明したが、各閾値テーブルにおける閾値θvthの設定は上記に限らず、各衝突予想時間TTCの値に応じた最適な閾値θvthの値を実験的に求めて設定して構わない。   In the above embodiment, the value of the threshold θvth is set to be a constant value regardless of the value of the predicted collision time TTC in the front collision threshold table, and the value of the threshold θvth is the value of the predicted collision time TTC in the side collision threshold table. However, the setting of the threshold value θvth in each threshold value table is not limited to the above, and the optimal threshold value θvth corresponding to the value of each predicted collision time TTC has been described. The value may be obtained experimentally and set.

また、上記実施形態では、衝突予測装置13が自車位置検出装置12より得られる周囲地図情報に基づいて車両1および検出物の位置をマッピング処理する例について説明したが、衝突予測装置13は、周囲地図のような現実に即した地図情報を用いることなく、仮想的な地図(以下、仮想地図と呼称する。)を作成し、当該地図上に車両1および検出物の位置をマッピング処理しても構わない。すなわち、車両1は、必ずしも自車位置検出装置12を備える必要はない。このような仮想地図上でマッピング処理を行う場合、衝突予測装置13は、ステップS4において、車両1の走行速度等の移動情報、自車位置から選択検出物を検出したレーダー装置10までの距離、当該レーダー装置10から見た選択検出物の検出方向、および検出距離に基づいて、当該仮想地図上における選択検出物の絶対的な位置情報を算出する。   Moreover, although the collision prediction apparatus 13 explained the example which maps the position of the vehicle 1 and a detected object based on the surrounding map information obtained from the own vehicle position detection apparatus 12 in the said embodiment, the collision prediction apparatus 13 is the following. A virtual map (hereinafter referred to as a virtual map) is created without using actual map information such as a surrounding map, and the positions of the vehicle 1 and the detected object are mapped on the map. It doesn't matter. That is, the vehicle 1 does not necessarily need to include the own vehicle position detection device 12. When performing the mapping process on such a virtual map, the collision prediction device 13 in step S4, the movement information such as the traveling speed of the vehicle 1, the distance from the vehicle position to the radar device 10 that has detected the selected detection object, Based on the detection direction and the detection distance of the selected detection object viewed from the radar device 10, absolute position information of the selection detection object on the virtual map is calculated.

また、上記実施形態では、衝突予測装置13が自車位置Psの変位に基づいて自車進行経路線Bsを算出する例について説明したが、衝突予測装置13は、検出物位置Ptだけでなく、周囲地図情報に含まれる道路情報を考慮して検出物進行経路線を算出しても構わない。例えば、車両1がカーブした道路を走行している場合、衝突予測装置13は、車両1がカーブに沿った経路を進行すると推定し、当該道路のカーブに沿った自車進行経路線Bsを算出しても良い。このように道路形状を考慮した自車進行経路線Bsを算出することによって、衝突予想地点Pcをより正確に推定し、車両1と検出物との衝突をより正確に推定することができる。   Moreover, although the collision prediction apparatus 13 calculated | required the own vehicle advancing route line Bs based on the displacement of the own vehicle position Ps in the said embodiment, the collision prediction apparatus 13 not only detected object position Pt, The detected object travel route line may be calculated in consideration of road information included in the surrounding map information. For example, when the vehicle 1 is traveling on a curved road, the collision prediction device 13 estimates that the vehicle 1 travels along a route along the curve, and calculates the own vehicle travel route line Bs along the curve of the road. You may do it. By calculating the own vehicle travel route line Bs in consideration of the road shape in this way, the predicted collision point Pc can be estimated more accurately, and the collision between the vehicle 1 and the detected object can be estimated more accurately.

また、上記実施形態では、衝突予測装置13が、検出物が衝突する可能性のある車両の部位が車両の前面または側面の何れであるか推定する例について説明したが、衝突予測装置13は、前面および側面に限らず、検出物が車両のどの部位に衝突するかをより詳細に判別しても構わない。例えば、衝突予測装置13は、検出物が車両1の前面に衝突すると推定した場合、検出物が車両前面の左側または右側のどちらに衝突するかをさらに推定しても構わない。また、このように検出物が衝突する可能性のある車両1の部位として2つ以上の部位を候補として推定判別する場合、衝突予測装置13は、当該候補とされる各部位に対応する閾値テーブルを複数記憶し、当該閾値テーブルを切り替える処理を行って良い。   Moreover, although the collision prediction apparatus 13 demonstrated the example which estimates whether the site | part of the vehicle which a detection object may collide with is the front or side of a vehicle in the said embodiment, the collision prediction apparatus 13 You may determine in more detail not only a front surface and a side surface, but the site | part to which a detected object collides. For example, when it is estimated that the detected object collides with the front surface of the vehicle 1, the collision prediction device 13 may further estimate whether the detected object collides with the left side or the right side of the front surface of the vehicle. In addition, in the case where two or more parts are estimated and determined as parts of the vehicle 1 with which the detected object may collide as described above, the collision prediction device 13 uses a threshold value table corresponding to each part that is a candidate. May be stored, and the threshold value table may be switched.

また、上記実施形態では、衝突予測装置13が、検出物が衝突する可能性のある車両の部位を自車進行経路線、および検出物進行経路線等に基づいて、推定する例について説明したが、衝突予測装置13は、検出物が衝突する可能性のある車両の部位を従来周知の他の手法に基づいて推定しても構わない。   In the above-described embodiment, the collision prediction device 13 has described an example in which a part of a vehicle where a detected object may collide is estimated based on the own vehicle traveling route line, the detected object traveling route line, and the like. The collision prediction device 13 may estimate the part of the vehicle where the detected object may collide based on another conventionally known method.

また、上記実施形態では、車両の周囲に存在する物体を検出する手段としてレーダー装置10を用いる例を示したが、車両の周囲に存在する物体を検出可能なものであれば他の装置をレーダー装置10の代わりに用いても構わない。例えば、車両周囲の画像に基づいて自車と車両周囲の物体の位置を検出可能な画像処理装置などを用いても構わない。   In the above-described embodiment, an example in which the radar device 10 is used as a means for detecting an object existing around the vehicle has been described. However, any other device can be used as long as it can detect an object present around the vehicle. It may be used instead of the device 10. For example, you may use the image processing apparatus etc. which can detect the position of the own vehicle and the object around a vehicle based on the image around a vehicle.

また、上記実施形態では、衝突予測装置13が移動体である車両2と車両1との衝突を予測する例について説明したが、衝突予測装置13は、車両2のような移動体に限らず、静止物と車両1との衝突を上記に説明した処理に基づいて精度良く予測することが可能である。   Moreover, in the said embodiment, although the collision prediction apparatus 13 demonstrated the example which estimates the collision with the vehicle 2 which is a moving body, and the vehicle 1, the collision prediction apparatus 13 is not restricted to a moving body like the vehicle 2, It is possible to accurately predict a collision between a stationary object and the vehicle 1 based on the processing described above.

また、上記実施形態では、車両1が検出物と衝突すると予測された場合、警報装置14により警報を発報する例を示したが、当該予測の結果は警報装置の動作に限らず、他の機器の動作を制御するために用いられて構わない。例えば、車両1に搭載されたシートベルト装置などの安全装置や、ブレーキ装置などの制動装置を自動的に制御しても構わない。   Moreover, in the said embodiment, when it was estimated that the vehicle 1 collides with a detected object, the example which alert | reports an alarm by the alarm device 14 was shown, However, The result of the said prediction is not restricted to operation | movement of an alarm device, Other It may be used to control the operation of the device. For example, a safety device such as a seat belt device mounted on the vehicle 1 or a braking device such as a brake device may be automatically controlled.

本発明に係る衝突予測装置は、自車前方に存在する物体と自車とが衝突する危険性を精度良く予測可能な衝突予測装置などとして有用である。   The collision prediction apparatus according to the present invention is useful as a collision prediction apparatus that can accurately predict the risk of collision between an object existing ahead of the host vehicle and the host vehicle.

衝突予測装置の機能構成を示すブロック図Block diagram showing the functional configuration of the collision prediction device 衝突予測装置13が実行する処理を示すフローチャートの一例An example of a flowchart showing processing executed by the collision prediction device 13 周囲地図座標系において車両1の位置、検出物である車両2の位置、および車両2の検出角度を示す平面図The top view which shows the position of the vehicle 1, the position of the vehicle 2 which is a detected object, and the detection angle of the vehicle 2 in a surrounding map coordinate system 閾値設定処理を示すフローチャートの一例An example of a flowchart showing threshold setting processing 周囲地図座標系において車両1、車両2、自車進行経路線Bs、および検出物進行経路線Btを示す平面図The top view which shows the vehicle 1, the vehicle 2, the own vehicle travel route line Bs, and the detected object travel route line Bt in the surrounding map coordinate system 前面衝突閾値テーブルの一例を示した図The figure which showed an example of the front collision threshold value table 側面衝突閾値テーブルの一例を示した図The figure which showed an example of the side collision threshold value table 車両1と対向して進行する車両2が車両1の右側をすれ違う軌道W_pを示す平面図The top view which shows track | orbit W_p where the vehicle 2 which advances facing the vehicle 1 passes the right side of the vehicle 1 車両2が車両1の右斜め前方から接近し、車両1の前面左側に衝突する軌道W_fLを示す平面図The top view which shows track | orbit W_fL which the vehicle 2 approaches from the diagonally right front of the vehicle 1, and collides with the front left side of the vehicle 1 車両2が車両1の右斜め前方から接近し、車両1の前面右側に衝突する軌道W_fRを示す平面図The top view which shows track | orbit W_fR which the vehicle 2 approaches from the diagonal right front of the vehicle 1, and collides with the front right side of the vehicle 1 軌道W_p、軌道W_fL、および軌道W_fRにおける検出角度変化量θvと衝突予想時間TTCとの関係を示すグラフThe graph which shows the relationship between detection angle variation | change_quantity (theta) v in the track | orbit W_p, the track | orbit W_fL, and the track | orbit W_fR, and the collision estimated time TTC. 車両2が車両1の右斜め前方から接近し、車両1の右側面前方に衝突する軌道W_sFを示す平面図The top view which shows track | orbit W_sF which the vehicle 2 approaches from the diagonally right front of the vehicle 1, and collides with the right side front surface of the vehicle 1 車両2が車両1の右斜め前方から接近し、車両1の右側面後方に衝突する軌道W_sBを示す平面図The top view which shows track | orbit W_sB which the vehicle 2 approaches from the diagonal right front of the vehicle 1, and collides with the right side rear surface of the vehicle 1 軌道W_sF、および軌道W_sBにおける検出角度変化量θvと衝突予想時間TTCとの関係を示すグラフThe graph which shows the relationship between detection angle variation | change_quantity (theta) v in track | orbit W_sF and track | orbit W_sB, and the collision estimated time TTC. 観測点Poが後端左隅に設定されている車両1を示す平面図The top view which shows the vehicle 1 by which the observation point Po is set to the rear end left corner 観測点が車両前端に設定された場合の、車両と検出物とが衝突するまでの推定時間、および角位置の変化率の関係を示すグラフA graph showing the relationship between the estimated time until the vehicle collides with the detected object and the change rate of the angular position when the observation point is set at the front end of the vehicle

符号の説明Explanation of symbols

1、2 車両
10 レーダー装置
11 車速計
12 自車位置検出装置
13 衝突予測装置
14 警報装置
DESCRIPTION OF SYMBOLS 1, 2 Vehicle 10 Radar apparatus 11 Speedometer 12 Own vehicle position detection apparatus 13 Collision prediction apparatus 14 Alarm apparatus

Claims (11)

車両前方の物体の位置を検出する物体検出手段と、
前記車両内部または当該車両の外周面上で、且つ、当該車両の前端より後方に、前記物体を観測するための観測点を定める観測点設定手段と、
前記観測点から見た前記物体の検出方向を示す検出角度を算出する検出角度算出手段と、
前記検出角度の単位時間当たりの変化量を算出する変化量算出手段と、
前記車両と前記物体とが衝突する危険性を前記変化量の値に基づいて予測する衝突判定手段とを備える、衝突予測装置。
Object detection means for detecting the position of an object in front of the vehicle;
Observation point setting means for determining an observation point for observing the object in the vehicle or on the outer peripheral surface of the vehicle and behind the front end of the vehicle;
Detection angle calculation means for calculating a detection angle indicating a detection direction of the object viewed from the observation point;
A change amount calculating means for calculating a change amount per unit time of the detection angle;
A collision prediction device comprising: a collision determination unit that predicts a risk of collision between the vehicle and the object based on the value of the change amount.
前記車両の外周面のうち、前記物体が衝突する可能性のある外周面を衝突予想部位として推定する衝突部位推定手段と、
前記衝突部位推定手段に推定された前記衝突予想部位に応じて、前記車両と前記物体とが衝突する危険性の予測に用いる閾値を設定する閾値設定手段とを、さらに備え、
前記衝突判定手段は、前記変化量が前記閾値を満たしているか否かに応じて、前記車両と前記物体との衝突を予測する、請求項1に記載の衝突予測装置。
Collision part estimation means for estimating an outer peripheral surface of the vehicle, which is likely to collide with the object, as a predicted collision part;
Threshold setting means for setting a threshold used for predicting the risk of collision between the vehicle and the object according to the predicted collision site estimated by the collision site estimation means,
The collision prediction device according to claim 1, wherein the collision determination unit predicts a collision between the vehicle and the object according to whether or not the change amount satisfies the threshold value.
前記車両の進行経路を算出する自車進行経路算出手段と、
前記車両に対して相対的に移動する前記物体の進行経路を算出する検出物進行経路算出手段とを、さらに備え、
前記衝突部位推定手段は、前記車両の進行経路および前記物体の進行経路に基づいて前記衝突予想部位を推定する、請求項2に記載の衝突予測装置。
Own vehicle travel route calculating means for calculating the travel route of the vehicle;
A detected object travel path calculating means for calculating a travel path of the object that moves relative to the vehicle;
The collision prediction apparatus according to claim 2, wherein the collision site estimation unit estimates the predicted collision site based on a travel path of the vehicle and a travel path of the object.
前記衝突部位推定手段は、前記車両の進行経路と前記物体の進行経路とが互いに平行である場合、前記車両の前面を前記衝突予想部位とする、請求項3に記載の衝突予測装置。   The collision prediction apparatus according to claim 3, wherein the collision site estimation unit sets the front surface of the vehicle as the predicted collision site when the traveling path of the vehicle and the traveling path of the object are parallel to each other. 前記車両の進行経路と前記車両に対して相対的に移動する前記物体の進行経路との交点を衝突予想地点として推定する衝突地点推定手段を、さらに備え、
前記衝突部位推定手段は、前記車両または前記物体の何れが先に前記衝突予想地点へ到達するかを判定し、当該判定結果に応じて前記衝突予想部位を推定する、請求項3に記載の衝突予測装置。
A collision point estimation means for estimating an intersection between the traveling path of the vehicle and the traveling path of the object moving relative to the vehicle as a predicted collision point;
The collision according to claim 3, wherein the collision site estimation unit determines which of the vehicle or the object first reaches the predicted collision point and estimates the predicted collision site according to the determination result. Prediction device.
前記衝突部位推定手段は、前記物体が前記車両より先に前記衝突予想地点へ到達すると判定した場合、前記車両の前面を前記衝突予想部位とし、前記車両が前記物体より先に前記衝突予想地点へ到達すると判定した場合、前記車両の側面を前記衝突予想部位とする、請求項5に記載の衝突予測装置。   When the collision part estimation unit determines that the object reaches the predicted collision point before the vehicle, the front surface of the vehicle is set as the predicted collision part, and the vehicle moves to the predicted collision point before the object. The collision prediction device according to claim 5, wherein, when it is determined that the vehicle reaches the vehicle, the side surface of the vehicle is set as the collision predicted portion. 前記車両と前記物体とが衝突する場合に当該衝突までに要する衝突予想時間を算出する衝突時間算出手段を、さらに備え、
前記閾値設定手段は、前記衝突部位推定手段に推定された前記衝突予想部位および前記衝突時間算出手段により算出された前記衝突予想時間に応じて、前記閾値を設定する、請求項2に記載の衝突予測装置。
A collision time calculating means for calculating an estimated collision time required for the collision when the vehicle and the object collide,
The collision according to claim 2, wherein the threshold setting unit sets the threshold according to the predicted collision portion estimated by the collision portion estimation unit and the predicted collision time calculated by the collision time calculation unit. Prediction device.
前記閾値設定手段は、前記車両の側面が前記衝突予想部位である場合、前記衝突予想時間が短くなるほど前記閾値を段階的に大きな値に設定し、
前記衝突判定手段は、前記変化量が前記閾値より大きい場合に前記物体と前記車両とが衝突すると予測し、前記変化量が前記閾値以下である場合に前記物体と前記車両とが衝突しないと予測する、請求項7に記載の衝突予測装置。
When the side surface of the vehicle is the predicted collision part, the threshold setting unit sets the threshold to a larger value stepwise as the predicted collision time becomes shorter.
The collision determination unit predicts that the object and the vehicle collide when the change amount is larger than the threshold value, and predicts that the object and the vehicle do not collide when the change amount is equal to or less than the threshold value. The collision prediction apparatus according to claim 7.
前記観測点設定手段は、前記観測点を車両の後端中央に設定する、請求項1に記載の衝突予測装置。   The collision prediction apparatus according to claim 1, wherein the observation point setting unit sets the observation point at a center of a rear end of the vehicle. 前記観測点設定手段は、前記観測点を車両の後端左隅に設定する、請求項1に記載の衝突予測装置。   The collision prediction apparatus according to claim 1, wherein the observation point setting unit sets the observation point at a left corner of a rear end of the vehicle. 前記観測点設定手段は、前記観測点を車両の後端右隅に設定する、請求項1に記載の衝突予測装置。   The collision prediction apparatus according to claim 1, wherein the observation point setting unit sets the observation point at a right corner of a rear end of the vehicle.
JP2008239615A 2008-09-18 2008-09-18 Collision forecasting device Pending JP2010070047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239615A JP2010070047A (en) 2008-09-18 2008-09-18 Collision forecasting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239615A JP2010070047A (en) 2008-09-18 2008-09-18 Collision forecasting device

Publications (1)

Publication Number Publication Date
JP2010070047A true JP2010070047A (en) 2010-04-02

Family

ID=42202232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239615A Pending JP2010070047A (en) 2008-09-18 2008-09-18 Collision forecasting device

Country Status (1)

Country Link
JP (1) JP2010070047A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103863321A (en) * 2012-12-11 2014-06-18 株式会社电装 Apparatus for judging probability of collision between vehicle and object surrounding the vehicle
US9030349B2 (en) 2011-05-25 2015-05-12 Denso Corporation Moving object detection system
WO2016052586A1 (en) * 2014-09-30 2016-04-07 株式会社デンソー Driving assistance device
US9827985B2 (en) 2014-11-21 2017-11-28 Hyundai Motor Company System and method for autonomous navigation of vehicle
CN108569286A (en) * 2017-03-13 2018-09-25 丰田自动车株式会社 Collision elimination control device
JP2018152020A (en) * 2017-03-15 2018-09-27 株式会社東芝 Spatial information calculation device for mobile object and collision prevention system
JP2018154285A (en) * 2017-03-21 2018-10-04 トヨタ自動車株式会社 Pre-collision control execution apparatus
JPWO2018198182A1 (en) * 2017-04-25 2019-06-27 博隆 北川 Automatic Driving Calculation Algorithm of a Car Using Gravitational Field Theory
KR102162646B1 (en) * 2019-03-11 2020-10-07 주식회사 에스더블유엠 Mothod for cotrolling autonomous vehicles
WO2021070882A1 (en) * 2019-10-11 2021-04-15 株式会社デンソー Control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030349B2 (en) 2011-05-25 2015-05-12 Denso Corporation Moving object detection system
CN103863321A (en) * 2012-12-11 2014-06-18 株式会社电装 Apparatus for judging probability of collision between vehicle and object surrounding the vehicle
JP2014115887A (en) * 2012-12-11 2014-06-26 Denso Corp Collision determination device for vehicle
WO2016052586A1 (en) * 2014-09-30 2016-04-07 株式会社デンソー Driving assistance device
JP2016068754A (en) * 2014-09-30 2016-05-09 株式会社デンソー Driving support device
US9827985B2 (en) 2014-11-21 2017-11-28 Hyundai Motor Company System and method for autonomous navigation of vehicle
CN108569286A (en) * 2017-03-13 2018-09-25 丰田自动车株式会社 Collision elimination control device
JP2018151816A (en) * 2017-03-13 2018-09-27 トヨタ自動車株式会社 Collision avoidance control device
JP2018152020A (en) * 2017-03-15 2018-09-27 株式会社東芝 Spatial information calculation device for mobile object and collision prevention system
US10559206B2 (en) 2017-03-15 2020-02-11 Kabushiki Kaisha Toshiba Mobile body spatial information calculation apparatus and collision avoidance system
JP2018154285A (en) * 2017-03-21 2018-10-04 トヨタ自動車株式会社 Pre-collision control execution apparatus
JPWO2018198182A1 (en) * 2017-04-25 2019-06-27 博隆 北川 Automatic Driving Calculation Algorithm of a Car Using Gravitational Field Theory
KR102162646B1 (en) * 2019-03-11 2020-10-07 주식회사 에스더블유엠 Mothod for cotrolling autonomous vehicles
WO2021070882A1 (en) * 2019-10-11 2021-04-15 株式会社デンソー Control device

Similar Documents

Publication Publication Date Title
JP2010070047A (en) Collision forecasting device
CN105799700B (en) Avoid collision control system and control method
US20150353078A1 (en) Driving assistance apparatus
US9463796B2 (en) Driving assistance apparatus
JP5126556B2 (en) Radar system
JP6318864B2 (en) Driving assistance device
JP5278776B2 (en) Object detection apparatus and object detection method
CN106428004A (en) Adaptive cruise control system in vehicle and method thereof
WO2013030906A1 (en) Driving support apparatus and driving support method
JP2018106334A (en) Warning device for vehicle
JP2018180908A (en) Attention-attracting device
JP2016224785A (en) Periphery monitoring device and drive support device
JP2007304034A (en) On-board device for discriminating road shape
JP2000348299A (en) Mobile body communication equipment
KR20190074025A (en) Apparatus and method for deciding maneuver of peripheral vehicle
JP2008195293A (en) Collision-predicting device
CN111833648A (en) Vehicle collision early warning method and device
JP2007004711A (en) Course estimating device for vehicle
JP6095197B2 (en) Vehicle object detection device
JP5055169B2 (en) Vehicle safety device
JP2007072860A (en) Proximity detection system, in-vehicle device, and portable terminal device
JP2012234373A (en) Driving support device
JP2018097715A (en) Driving assistance device
JP2020126351A (en) Warning device
CN107862903B (en) Object collision prediction method and device