JP2010069947A - Air-conditioning system for vehicle - Google Patents

Air-conditioning system for vehicle Download PDF

Info

Publication number
JP2010069947A
JP2010069947A JP2008236897A JP2008236897A JP2010069947A JP 2010069947 A JP2010069947 A JP 2010069947A JP 2008236897 A JP2008236897 A JP 2008236897A JP 2008236897 A JP2008236897 A JP 2008236897A JP 2010069947 A JP2010069947 A JP 2010069947A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
air
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008236897A
Other languages
Japanese (ja)
Other versions
JP5346528B2 (en
Inventor
Takashi Fujita
隆司 藤田
Hiroki Yoshioka
宏起 吉岡
Kazuo Nakadokoro
和生 中所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008236897A priority Critical patent/JP5346528B2/en
Publication of JP2010069947A publication Critical patent/JP2010069947A/en
Application granted granted Critical
Publication of JP5346528B2 publication Critical patent/JP5346528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/039Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from air leaving the interior of the vehicle, i.e. heat recovery

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioning system for a vehicle capable of performing cooling operation and heating operation, excellent in the maximum heating ability and capable preventing various inconvenience caused by the fact that a flowing-in direction of a coolant to a heat exchanger becomes reverse. <P>SOLUTION: The operation by a cooling circulation route is performed, in which the coolant of high temperature and high pressure from an electric compressor 1 flows in an outdoor capacitor 2 and is pressure-reduced by a first expansion valve 4, thereafter it flows in an indoor heat exchanger 5, and thereafter it passes through a second bypass passage 8 and is returned to the electric compressor 1. The operation by a heating circulation route is performed, in which the coolant of high temperature and high pressure from the electric compressor 1 passes through a first bypass passage 3, flows in the indoor heat exchanger 5 without being pressure-reduced by the first expansion valve 4, thereafter it is pressure-reduced by a second expansion valve 6, and it flows in a heat recovery heat exchanger 7 and is returned to the electric compressor 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷房運転と暖房運転を行うことができ、特に、極寒冷地に適した車両用空気調和システムに関する。   The present invention relates to an air conditioning system for a vehicle that can perform a cooling operation and a heating operation, and is particularly suitable for an extremely cold region.

この種の従来の車両用空気調和システムとしては、特許文献1に開示されたものがある。   A conventional vehicle air conditioning system of this type is disclosed in Patent Document 1.

この車両用空気調和システムは、ヒートポンプ式冷凍サイクルと暖房サイクルとを備えている。ヒートポンプ式冷凍サイクル100は、図5に示すように、冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサ101と、高温高圧の冷媒と外気との間で熱交換する室外コンデンサ102と、高圧の冷媒を一時的に溜めて液冷媒のみを流出させるレシーバ103と、高圧の冷媒を減圧できる第1減圧手段104と、第1減圧手段104により流出された冷媒と室内に導く送風との間で熱交換させる第1室内熱交換器105と、冷媒を減圧できる第2減圧手段106と、第2減圧手段106より流出された冷媒と室内からの送風との間で熱交換させる第2室内熱交換器107と、コンプレッサ101からの高温高圧の冷媒を室外コンデンサ102と第1室内熱交換器105に選択的に流すことができる四方弁108と、四方弁108によりコンプレッサ101の高温高圧の冷媒を第1室内熱交換器105に流したときに第1室内熱交換器105から流出された冷媒をレシーバ103に導く分岐通路109とを有する。   This vehicle air conditioning system includes a heat pump refrigeration cycle and a heating cycle. As shown in FIG. 5, the heat pump refrigeration cycle 100 includes a compressor 101 that compresses a refrigerant and uses the refrigerant as a high-temperature and high-pressure refrigerant, an outdoor capacitor 102 that exchanges heat between the high-temperature and high-pressure refrigerant and the outside air, Between the receiver 103 that temporarily stores the refrigerant and flows out only the liquid refrigerant, the first decompression means 104 that can depressurize the high-pressure refrigerant, and the air that flows out by the first decompression means 104 and the air blown into the room The first indoor heat exchanger 105 that exchanges heat, the second decompression means 106 that can decompress the refrigerant, and the second indoor heat exchange that exchanges heat between the refrigerant that has flowed out of the second decompression means 106 and the air blown from the room. A four-way valve 108 that can selectively flow high-temperature and high-pressure refrigerant from the compressor 101 to the outdoor condenser 102 and the first indoor heat exchanger 105. And a branch passage 109 for guiding the refrigerant flowing out of the first indoor heat exchanger 105 when the flow of high-temperature high-pressure refrigerant of the compressor 101 to the first indoor heat exchanger 105 to the receiver 103.

第1室内熱交換器105は、フロント側空調ケース110内に配置されている。フロント側空調ケース110には内気や外気が吸引され、フロント側空調ケース110内を通った送風は車室内に吹き出される。第2室内熱交換器107は、リア側空調ケース112内を配置されている。リア側空調ケース112には内気が吸引され、リア側空調ケース112内を通った送風は車室内と車室外に選択的に排出できるよう構成されている。   The first indoor heat exchanger 105 is disposed in the front side air conditioning case 110. Inside air and outside air are sucked into the front-side air conditioning case 110, and the air blown through the front-side air conditioning case 110 is blown into the vehicle interior. The second indoor heat exchanger 107 is disposed in the rear side air conditioning case 112. Inside air is sucked into the rear-side air conditioning case 112, and the air blown through the rear-side air conditioning case 112 is configured to be selectively discharged into the vehicle interior and the vehicle interior.

そして、コンプレッサ101からの高温高圧の冷媒が室外コンデンサ102を流れ、レシーバ103を介して第1減圧手段104と第2減圧手段106の少なくともいずれか一方に導かれ、第1減圧手段104や第2減圧手段106で減圧された後に第1室内熱交換器105や第2室内熱交換器107を流れてコンプレッサ101に戻る冷房用循環経路による運転と、コンプレッサ101からの高温高圧の冷媒が第1室内熱交換器105を流れ、レシーバ103を介して第2減圧手段106に導かれ、第2減圧手段106で減圧され後に第2室内熱交換器107を流れてコンプレッサ101に戻る暖房用循環経路による運転とを行うことができる。   Then, the high-temperature and high-pressure refrigerant from the compressor 101 flows through the outdoor condenser 102 and is guided to at least one of the first decompression unit 104 and the second decompression unit 106 via the receiver 103, and the first decompression unit 104 and the second decompression unit 106. After the pressure is reduced by the pressure reducing means 106, the operation is performed by the cooling circulation path that flows through the first indoor heat exchanger 105 or the second indoor heat exchanger 107 and returns to the compressor 101, and the high-temperature and high-pressure refrigerant from the compressor 101 is Operation through a heating circulation path that flows through the heat exchanger 105, is guided to the second decompression unit 106 via the receiver 103, is decompressed by the second decompression unit 106, and then flows through the second indoor heat exchanger 107 and returns to the compressor 101. And can be done.

暖房サイクル(図示せず)は、自動車エンジンの冷却水が循環される循環経路と、この循環経路に介在されたヒータコアを有する。ヒータコアは、フロント側空調ケース110内で、且つ、第1室内熱交換器105の送風下流に配置されている。   The heating cycle (not shown) has a circulation path through which the cooling water of the automobile engine is circulated and a heater core interposed in the circulation path. The heater core is disposed in the front air conditioning case 110 and downstream of the first indoor heat exchanger 105.

上記構成において、冷房時や除湿暖房時には、ヒートポンプ式冷凍サイクル100が冷房用循環経路による運転を行い、第1室内熱交換器105や第2室内熱交換器107はエバポレータとして機能する。これにより、フロント側空調ケース110内を通過する送風が第1室内熱交換器105で冷却され、その冷風がヒータコア(図示せず)でリヒートされて所望温度の空調風が車室内のフロント側に吹き出される。第2室内熱交換器107にも冷媒が流される場合には、冷風が車室内のリア側に吹き出される。   In the above configuration, at the time of cooling or dehumidifying heating, the heat pump refrigeration cycle 100 is operated by a cooling circulation path, and the first indoor heat exchanger 105 and the second indoor heat exchanger 107 function as an evaporator. As a result, the air passing through the front side air conditioning case 110 is cooled by the first indoor heat exchanger 105, the cold air is reheated by the heater core (not shown), and the conditioned air at a desired temperature is sent to the front side of the vehicle interior. Blown out. When the refrigerant is also flown into the second indoor heat exchanger 107, cold air is blown out to the rear side in the vehicle interior.

最大暖房時には、ヒートポンプ式冷凍サイクル100が暖房用循環経路による運転を行い、第1室内熱交換器105はコンデンサとして、第2室内熱交換器107はエバポレータとしてそれぞれ機能する。これにより、フロント側空調ケース110内を通過する送風が第1室内熱交換器105で加熱され、その温風がヒータコア(図示せず)で更に加熱されて高温の空調風が車室内に吹き出される。リア側空調ケース112内を通過する送風は、第2室内熱交換器107で冷却されて車室外に排出される。   At the time of maximum heating, the heat pump refrigeration cycle 100 operates by a heating circulation path, and the first indoor heat exchanger 105 functions as a condenser and the second indoor heat exchanger 107 functions as an evaporator. As a result, the air passing through the front air conditioning case 110 is heated by the first indoor heat exchanger 105, the warm air is further heated by the heater core (not shown), and the high-temperature air is blown into the vehicle interior. The The air that passes through the rear air conditioning case 112 is cooled by the second indoor heat exchanger 107 and discharged outside the vehicle compartment.

前記従来例では、最大暖房時にあってはヒートポンプ式冷凍サイクル100と暖房サイクル(図示せず)の双方を熱源として送風を加熱することができるため、暖房能力に優れている。又、最大暖房時にあっては第2室内熱交換器107が外気よりも高温である内気の熱より吸熱するため、換気熱の回収を行うことができると共に、第2室内熱交換器107の凍結を防止できる。以上より、極寒冷地に適した車両用空気調和システムである。
特公平5−9287号公報
In the conventional example, air blowing can be heated using both the heat pump refrigeration cycle 100 and the heating cycle (not shown) as heat sources at the time of maximum heating. Further, at the time of maximum heating, the second indoor heat exchanger 107 absorbs heat from the inside air, which is higher than the outside air, so that the ventilation heat can be recovered and the second indoor heat exchanger 107 can be frozen. Can be prevented. As described above, the vehicle air conditioning system is suitable for extremely cold regions.
Japanese Patent Publication No. 5-9287

しかしながら、従来の車両用空気調和システムでは、ヒートポンプ式冷凍サイクル100の第1室内熱交換器105への冷媒の流入方向が冷房用循環経路と暖房用循環経路で逆である。そのため、次のような問題がある。   However, in the conventional vehicle air-conditioning system, the inflow direction of the refrigerant into the first indoor heat exchanger 105 of the heat pump refrigeration cycle 100 is opposite between the cooling circulation path and the heating circulation path. Therefore, there are the following problems.

先ず、通常熱交換器は、送風と冷媒の向きが効率の良い対向流となるよう設定される。従って、冷房用循環経路による運転で対向流とされると、暖房用循環経路による運転では並行流となるため、熱交換効率が低下するという問題がある。次に、ヒートポンプ式冷凍サイクル100の配管は、通常では低圧側と高圧側で耐圧の異なる構造のものが使用されるが、前記従来例では高圧用の配管を多く使用する必要がある。従って、同一外径の配管を用いる場合、高圧用の配管は低圧用の配管に比べて配管内径が小さくなることから冷媒の流速が下がり、オイル循環に支障を来すおそれがあるという問題がある。   First, the normal heat exchanger is set so that the direction of air blowing and refrigerant is an efficient counter flow. Therefore, when the counter flow is performed in the operation using the cooling circulation path, the heat exchange efficiency is lowered because the parallel flow is performed in the operation using the heating circulation path. Next, pipes of the heat pump refrigeration cycle 100 are usually used with structures having different pressure resistances on the low-pressure side and the high-pressure side. However, in the conventional example, it is necessary to use many high-pressure pipes. Therefore, when pipes having the same outer diameter are used, there is a problem that the high-pressure pipe has a smaller pipe inner diameter than the low-pressure pipe, so that the flow rate of the refrigerant is lowered and the oil circulation may be hindered. .

そこで、本発明は、冷房運転と暖房運転が可能で、且つ、最大暖房能力に優れ、しかも、熱交換器への冷媒の流入方向が逆になることに起因する種々の不具合を防止できる車両用空気調和システムを提供することを目的とする。   Therefore, the present invention is for a vehicle that can perform a cooling operation and a heating operation, has excellent maximum heating capacity, and can prevent various problems caused by the reverse direction of the refrigerant flowing into the heat exchanger. An object is to provide an air conditioning system.

上記目的を達成する請求項1の発明は、冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサと、高温高圧の冷媒と外気との間で熱交換する室外コンデンサと、室外コンデンサをバイパスする第1バイパス通路と、コンプレッサからの高温高圧の冷媒を室外コンデンサと第1バイパス通路のいずれかに流すように冷媒流路を切り換える第1流路切換手段と、室外コンデンサ又は第1バイパス通路を通った高圧の冷媒を減圧したり、減圧することなく流すことができる第1減圧手段と、第1減圧手段により流出された冷媒と室内に導く送風との間で熱交換させる室内熱交換器と、室内熱交換器を通った冷媒を減圧する第2減圧手段と、第2減圧手段より流出された冷媒と室内から室外に排出する送風との間で熱交換させる熱回収用熱交換器と、熱回収用熱交換器をバイパスする第2バイパス通路とを有するヒートポンプ式冷凍サイクルを備えると共に、室内熱交換器の送風下流に設けられ、車室内に導く送風を加熱する暖房手段を備え、コンプレッサからの高温高圧の冷媒が室外コンデンサを流れ、第1減圧手段で減圧された後に室内熱交換器を流れ、その後に第2バイパス通路を通ってコンプレッサに戻る冷房用循環経路による運転と、コンプレッサからの高温高圧の冷媒が第1バイパス通路を通り、第1減圧手段で減圧することなく室内熱交換器を流れ、第2減圧手段で減圧された後に熱回収用熱交換器を流れてコンプレッサに戻る暖房用循環経路による運転とを行うことができることを特徴とする。   The invention according to claim 1 that achieves the above object bypasses the compressor that compresses the refrigerant and uses the refrigerant as a high-temperature and high-pressure refrigerant, the outdoor condenser that exchanges heat between the high-temperature and high-pressure refrigerant and the outside air, and the outdoor condenser. The first bypass passage, the first passage switching means for switching the refrigerant passage so that the high-temperature and high-pressure refrigerant from the compressor flows to either the outdoor condenser or the first bypass passage, and the outdoor condenser or the first bypass passage. A first pressure reducing means capable of reducing or reducing the flow of the high-pressure refrigerant, and an indoor heat exchanger for exchanging heat between the refrigerant discharged by the first pressure reducing means and the air blown into the room, A heat recovery heat exchanger for exchanging heat between the second pressure reducing means for reducing the pressure of the refrigerant that has passed through the indoor heat exchanger, and the refrigerant discharged from the second pressure reducing means and the air blown out from the room to the outside. A heat pump refrigeration cycle having a second bypass passage that bypasses the heat exchanger for heat recovery, and a heating unit that is provided downstream of the air in the indoor heat exchanger and that heats the air that is introduced into the vehicle interior. The high-temperature and high-pressure refrigerant from the refrigerant flows through the outdoor condenser, flows through the indoor heat exchanger after being depressurized by the first depressurizing means, and then returns to the compressor through the second bypass passage. The high-temperature and high-pressure refrigerant passes through the first bypass passage, flows through the indoor heat exchanger without being depressurized by the first depressurizing means, and after being depressurized by the second depressurizing means, flows through the heat recovery heat exchanger and returns to the compressor. It is characterized in that it can be operated with a heating circulation path.

請求項2の発明は、請求項1記載の車両用空気調和システムであって、ヒートポンプ式冷凍サイクルには、室外コンデンサの冷媒出口側とコンプレッサの冷媒入口側との間を接続する冷媒回収通路と、冷媒回収通路を開閉する開閉弁手段とが設けられていることを特徴とする。   Invention of Claim 2 is the air conditioning system for vehicles of Claim 1, Comprising: The refrigerant | coolant collection | recovery channel | path which connects between the refrigerant | coolant outlet side of an outdoor capacitor | condenser, and the refrigerant | coolant inlet side of a compressor in a heat pump refrigeration cycle, The on-off valve means for opening and closing the refrigerant recovery passage is provided.

請求項3の発明は、請求項1又は請求項2記載の車両用空気調和システムであって、暖房手段は、電気式温水ヒータを熱源とするヒータコアであることを特徴とする。   A third aspect of the invention is the vehicle air conditioning system according to the first or second aspect, wherein the heating means is a heater core using an electric hot water heater as a heat source.

請求項4の発明は、請求項3記載の車両用空気調和システムであって、電気式温水ヒータは、PTC素子ヒータであることを特徴とする。   A fourth aspect of the present invention is the vehicle air conditioning system according to the third aspect, wherein the electric hot water heater is a PTC element heater.

請求項1の発明によれば、冷房時、除湿暖房時等の温度調整時には、ヒートポンプ式冷凍サイクルが冷房用循環経路による運転を行い、室内熱交換器はエバポレータとして機能する。これにより、車室内に導かれる送風が室内熱交換器で冷却され、その冷風が例えば暖房手段でリヒートされて所望温度の空調風が車室内に吹き出される。最大暖房時には、ヒートポンプ式冷凍サイクルが暖房用循環経路による運転を行い、室内熱交換器はコンデンサとして、熱回収用熱交換器はエバポレータとしてそれぞれ機能する。これにより、車室内からの送風が室内熱交換器で加熱され、その温風が暖房手段で更に加熱されて高温の空調風が車室内に吹き出される。熱回収用熱交換器を通過する送風は、熱回収用熱交換器で冷却され、冷風が車室外に排出される。このように、冷房運転と暖房運転が可能であり、最大暖房時にあってはヒートポンプ式冷凍サイクルと暖房手段の双方を熱源として送風を加熱することができるため、暖房能力に優れている。又、最大暖房時にあっては熱回収用熱交換器が外気よりも高温である内気の熱より吸熱するため、換気熱の回収を行うことができると共に、熱回収用熱交換器の凍結を防止できる。   According to the first aspect of the present invention, at the time of temperature adjustment such as cooling and dehumidifying heating, the heat pump refrigeration cycle is operated by the cooling circulation path, and the indoor heat exchanger functions as an evaporator. As a result, the air blown into the vehicle interior is cooled by the indoor heat exchanger, the cold air is reheated by, for example, heating means, and the conditioned air at a desired temperature is blown into the vehicle interior. During maximum heating, the heat pump refrigeration cycle operates through a heating circulation path, and the indoor heat exchanger functions as a condenser and the heat recovery heat exchanger functions as an evaporator. As a result, the air blown from the passenger compartment is heated by the indoor heat exchanger, the warm air is further heated by the heating means, and high-temperature conditioned air is blown into the passenger compartment. The air that passes through the heat recovery heat exchanger is cooled by the heat recovery heat exchanger, and the cold air is discharged out of the passenger compartment. Thus, the cooling operation and the heating operation are possible, and at the time of maximum heating, since the air can be heated using both the heat pump refrigeration cycle and the heating means as heat sources, the heating capacity is excellent. Also, during maximum heating, the heat recovery heat exchanger absorbs heat from the inside air, which is higher than the outside air, so that ventilation heat can be recovered and the heat recovery heat exchanger is prevented from freezing. it can.

その上、ヒートポンプ式冷凍サイクルの室内熱交換器への冷媒の流入方向が冷房用循環経路と暖房用循環経路で同じであるため、室内熱交換器への冷媒の流入方向が逆になることに起因する種々の不具合がない。つまり、室内熱交換器は、冷房用循環経路による運転と暖房用循環経路による運転とで共に送風と冷媒の向きが効率の良い対向流となるよう設定でき、熱交換効率が低下することがない。ヒートポンプ式冷凍サイクルの配管について、前記従来例より高圧用の配管部位を少なくでき、オイル循環に支障を来すおそれがない。   In addition, since the inflow direction of the refrigerant into the indoor heat exchanger of the heat pump refrigeration cycle is the same in the cooling circulation path and the heating circulation path, the inflow direction of the refrigerant into the indoor heat exchanger is reversed. There are no various problems caused by it. That is, the indoor heat exchanger can be set so that the direction of the air flow and the refrigerant is an efficient counter flow in both the operation by the cooling circulation path and the operation by the heating circulation path, and the heat exchange efficiency does not decrease. . With respect to the piping of the heat pump refrigeration cycle, the number of piping portions for high pressure can be reduced as compared with the conventional example, and there is no possibility of disturbing oil circulation.

請求項2の発明によれば、請求項1の発明の効果に加え、暖房用循環経路による運転の際に開閉弁手段を開位置とすると、冷媒回収通路は室外コンデンサの冷媒出口側よりコンプレッサの冷媒入口側の方が低圧となることから、室外コンデンサ内で液化等した冷媒が冷媒回収通路を通ってコンプレッサに戻るため、いわゆる冷媒の寝込みを防止でき、適正な冷媒循環量を確保できる。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, when the on-off valve means is in the open position during the operation by the heating circulation path, the refrigerant recovery passage is connected to the compressor from the refrigerant outlet side of the outdoor condenser. Since the refrigerant inlet side has a lower pressure, the refrigerant liquefied in the outdoor condenser returns to the compressor through the refrigerant recovery passage, so that so-called stagnation of the refrigerant can be prevented and an appropriate refrigerant circulation amount can be secured.

請求項3の発明によれば、請求項1又は請求項2の発明の効果に加え、エンジン廃熱による温水を利用できない電気自動車の暖房に適した車両用空気調和システムを提供できる。エンジン廃熱を利用せず、しかも、上述したように優れた最大暖房性能を発揮することから電気自動車用の極寒冷地に好適な車両用空気調和システムを提供できる。   According to the invention of claim 3, in addition to the effect of the invention of claim 1 or claim 2, it is possible to provide a vehicle air conditioning system suitable for heating an electric vehicle that cannot use hot water due to engine waste heat. Since the engine exhaust heat is not used and the excellent maximum heating performance is exhibited as described above, it is possible to provide a vehicle air conditioning system suitable for a very cold region for an electric vehicle.

請求項4の発明によれば、請求項3の発明の効果に加え、PTC素子ヒータは自動的に温度管理を行うため、ヒータコアの温度制御が容易である。   According to the invention of claim 4, in addition to the effect of the invention of claim 3, the temperature control of the heater core is easy because the PTC element heater automatically performs temperature management.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図4には本発明の一実施形態を示し、図1は車両用空気調和システムの構成図、図2は冷房時や除湿暖房時の運転状態を示す図、図3は最大暖房時の運転状態を示す図、図4はヒートポンプ式冷凍サイクルの冷房用循環経路による運転と暖房用循環経路による運転における各熱交換器の機能と電磁弁の切換状態を示す図である。   1 to 4 show an embodiment of the present invention, FIG. 1 is a configuration diagram of an air conditioning system for a vehicle, FIG. 2 is a diagram showing an operating state during cooling and dehumidifying heating, and FIG. 3 is during maximum heating. FIG. 4 is a diagram showing the function of each heat exchanger and the switching state of the solenoid valve in the operation by the cooling circulation path and the operation by the heating circulation path of the heat pump refrigeration cycle.

図1に示すように、車両用空気調和システムは、電気自動車の極寒冷地対応のものに搭載され、ヒートポンプ式冷凍サイクルAと暖房サイクルBとを備えている。   As shown in FIG. 1, the vehicle air conditioning system is mounted on an electric vehicle that is compatible with an extremely cold region, and includes a heat pump refrigeration cycle A and a heating cycle B.

ヒートポンプ式冷凍サイクルAは、コンプレッサである電動コンプレッサ1と、室外コンデンサ2と、室外コンデンサ2をバイパスする第1バイパス通路3と、室外コンデンサ2に冷媒を導く通路と第1バイパス通路3のいずれかを選択する第1流路切換手段である第1電磁弁11及び第2電磁弁12と、リキッドタンク2aと、第1減圧手段である第1膨張弁4と、室内熱交換器5と、第2減圧手段である第2膨張弁6と、熱回収用熱交換器7と、熱回収用熱交換器7をバイパスする第2バイパス通路8と、熱回収用熱交換器7に冷媒を導く通路と第2バイパス通路8のいずれかを選択する第2流路切換手段である第3電磁弁13及び第4電磁弁14とを備えている。   The heat pump refrigeration cycle A includes any one of an electric compressor 1 that is a compressor, an outdoor condenser 2, a first bypass passage 3 that bypasses the outdoor condenser 2, a passage that guides refrigerant to the outdoor condenser 2, and the first bypass passage 3. The first electromagnetic valve 11 and the second electromagnetic valve 12 which are first flow path switching means for selecting the liquid tank 2a, the first expansion valve 4 which is the first pressure reducing means, the indoor heat exchanger 5, and the first A second expansion valve 6 that is a pressure reducing means, a heat recovery heat exchanger 7, a second bypass passage 8 that bypasses the heat recovery heat exchanger 7, and a passage that guides the refrigerant to the heat recovery heat exchanger 7. And a third solenoid valve 13 and a fourth solenoid valve 14 which are second flow path switching means for selecting one of the second bypass passages 8.

電動コンプレッサ1は、冷媒を圧縮する圧縮機構部とこの圧縮機構部を駆動する電動モータと電動モータを駆動制御するモータ制御部とを内蔵する。そして、吸引した冷媒を圧縮機構部で圧縮し、高温高圧の冷媒として吐出する。冷媒は、HFC−134aやHFO−1234yfが使用されている。   The electric compressor 1 includes a compression mechanism unit that compresses the refrigerant, an electric motor that drives the compression mechanism unit, and a motor control unit that drives and controls the electric motor. The sucked refrigerant is compressed by the compression mechanism and discharged as a high-temperature and high-pressure refrigerant. As the refrigerant, HFC-134a or HFO-1234yf is used.

室外コンデンサ2は、エンジンルーム内に配置され、高温高圧の冷媒と外気との間で熱交換させる。尚、室外コンデンサ2には、車両発熱体40の放熱を行うラジエータ41が並設されている。室外コンデンサ2とラジエータ41は、共に外部送風機42によって外気が供給される。   The outdoor capacitor | condenser 2 is arrange | positioned in an engine room, and heat-exchanges between a high temperature / high pressure refrigerant | coolant and external air. The outdoor capacitor 2 is provided with a radiator 41 that dissipates heat from the vehicle heating element 40. Both the outdoor condenser 2 and the radiator 41 are supplied with external air by an external blower 42.

リキッドタンク2aは、室外コンデンサ2からの高圧の冷媒を一時的に溜めて液冷媒のみを第1膨張弁4に送出する。   The liquid tank 2 a temporarily stores high-pressure refrigerant from the outdoor condenser 2 and sends only liquid refrigerant to the first expansion valve 4.

第1膨張弁4は、室外コンデンサ2又は第1バイパス通路3を通った高圧の冷媒を減圧したり、減圧することなく流すことができる。   The first expansion valve 4 can flow the high-pressure refrigerant that has passed through the outdoor condenser 2 or the first bypass passage 3 without reducing or reducing the pressure.

室内熱交換器5は、空調ダクト20内に配置され、車室内に導く送風と冷媒との間で熱交換させる。空調ダクト20内には送風機21が設けられ、送風機21によって空調ダクト20内には内気や外気が吸引される。空調ダクト20内で、且つ、室内熱交換器5の下流には、ミックスドア22と共に下記するヒータコア31が配置されている。ミックスドア22は、ヒータコア31に送る送風割合とヒータコア31をバイパスさせる送風割合を調整する。空調ダクト20の最下流は、車室内に各グリル(図示せず)に開口されている。   The indoor heat exchanger 5 is disposed in the air conditioning duct 20 and performs heat exchange between the air blown into the vehicle interior and the refrigerant. A blower 21 is provided in the air conditioning duct 20, and inside air and outside air are sucked into the air conditioning duct 20 by the blower 21. In the air conditioning duct 20 and downstream of the indoor heat exchanger 5, a heater core 31 described below is disposed together with the mix door 22. The mix door 22 adjusts the blowing rate sent to the heater core 31 and the blowing rate that bypasses the heater core 31. The most downstream of the air conditioning duct 20 is opened to each grill (not shown) in the vehicle interior.

第2膨張弁6は、室内熱交換器5より流出された高圧の冷媒を減圧する。   The second expansion valve 6 depressurizes the high-pressure refrigerant that has flowed out of the indoor heat exchanger 5.

熱回収用熱交換器7は、換気ダクト25内に配置され、車室内からの送風と冷媒との間で熱交換させる。換気ダクト25の空気導入口(図示せず)は車室内に開口し、換気ダクト25の空気排出口(図示せず)は車室外に開口している。換気ダクト25内には送風機26が設けられ、送風機26によって換気ダクト25内に車室内からの送風が吸引され、熱回収用熱交換器7を通って車室内に排気される。   The heat recovery heat exchanger 7 is disposed in the ventilation duct 25 and exchanges heat between the air blown from the passenger compartment and the refrigerant. An air inlet (not shown) of the ventilation duct 25 opens into the passenger compartment, and an air outlet (not shown) of the ventilation duct 25 opens out of the passenger compartment. A blower 26 is provided in the ventilation duct 25, and air blown from the vehicle interior is sucked into the ventilation duct 25 by the blower 26 and exhausted into the vehicle interior through the heat recovery heat exchanger 7.

第1電磁弁11は、電動コンプレッサ1から室外コンデンサ2への通路で、且つ、第1バイパス通路3の分岐点下流に設けられ、室外コンデンサ2への通路を開閉できる。第2電磁弁12は、第1バイパス通路3に設けられ、第1バイパス通路3を開閉できる。このような構成によって、第1電磁弁11と第2電磁弁12は、互いの開閉位置を逆位置とすることによって電動コンプレッサ1からの冷媒を室外コンデンサ2側に流したり、第1バイパス通路3に流したりできる。   The first electromagnetic valve 11 is provided in the passage from the electric compressor 1 to the outdoor capacitor 2 and downstream of the branch point of the first bypass passage 3, and can open and close the passage to the outdoor capacitor 2. The second electromagnetic valve 12 is provided in the first bypass passage 3 and can open and close the first bypass passage 3. With such a configuration, the first solenoid valve 11 and the second solenoid valve 12 allow the refrigerant from the electric compressor 1 to flow to the outdoor condenser 2 side by setting the opening / closing positions of the first solenoid valve 11 and the second solenoid valve 12 to be opposite positions. Or can be shed.

第3電磁弁13は、第2バイパス通路8に設けられ、第2バイパス通路8を開閉できる。第4電磁弁14は、室内熱交換器5から第2膨張弁6及び熱回収用熱交換器7への通路で、且つ、第2バイパス通路8の分岐点下流に設けられ、熱回収用熱交換器7への通路を開閉できる。このような構成によって、第3電磁弁13と第4電磁弁14は、互いの開閉位置を逆位置とすることによって室内熱交換器5からの冷媒を熱回収用熱交換器7側に流したり、第2バイパス通路8に流したりできる。   The third electromagnetic valve 13 is provided in the second bypass passage 8 and can open and close the second bypass passage 8. The fourth electromagnetic valve 14 is a passage from the indoor heat exchanger 5 to the second expansion valve 6 and the heat recovery heat exchanger 7 and is provided downstream of the branch point of the second bypass passage 8. The path to the exchanger 7 can be opened and closed. With such a configuration, the third solenoid valve 13 and the fourth solenoid valve 14 cause the refrigerant from the indoor heat exchanger 5 to flow to the heat recovery heat exchanger 7 side by setting the open / close positions of the third solenoid valve 13 and the fourth solenoid valve 14 to be opposite positions. , Can flow through the second bypass passage 8.

ヒートポンプ式冷凍サイクルAは、第1電磁弁〜第4電磁弁11,12,13,14の切換操作(図4参照)によって、図2に示す冷房用循環経路による運転と図3に示す暖房用循環経路による運転を選択的に行うことができる。図2に示す冷房用循環経路による運転は、電動コンプレッサ1からの高温高圧の冷媒が室外コンデンサ2を流れ、第1膨張弁4で減圧した後に室内熱交換器5を流れ、その後に第2バイパス通路8を通って電動コンプレッサ1に戻るものである。第1逆止弁16は、室内熱交換器5より電動コンプレッサ1に戻る冷媒が熱回収用熱交換器7側に逆流しないために設けられている。   The heat pump refrigeration cycle A is operated by the cooling circulation path shown in FIG. 2 and the heating shown in FIG. 3 by switching operation (see FIG. 4) of the first solenoid valve to the fourth solenoid valves 11, 12, 13, and 14. The operation by the circulation path can be selectively performed. In the operation by the cooling circulation path shown in FIG. 2, the high-temperature and high-pressure refrigerant from the electric compressor 1 flows through the outdoor condenser 2 and is depressurized by the first expansion valve 4 and then flows through the indoor heat exchanger 5 and then the second bypass. It returns to the electric compressor 1 through the passage 8. The first check valve 16 is provided so that the refrigerant returning from the indoor heat exchanger 5 to the electric compressor 1 does not flow back to the heat recovery heat exchanger 7 side.

図3に示す暖房用循環経路による運転は、電動コンプレッサ1からの高温高圧の冷媒が第1バイパス通路3を通り、第1膨張弁4で減圧されないまま室内熱交換器5を流れ、第2膨張弁6で減圧された後に熱回収用熱交換器7を流れて電動コンプレッサ1に戻るものである。第2逆止弁17は、電動コンプレッサ1から第1バイパス通路3を通って第1膨張弁4及び室内熱交換器5に流れる冷媒が室外コンデンサ2側に逆流しないために設けられている。   In the operation by the heating circulation path shown in FIG. 3, the high-temperature and high-pressure refrigerant from the electric compressor 1 passes through the first bypass passage 3 and flows through the indoor heat exchanger 5 without being depressurized by the first expansion valve 4. After being depressurized by the valve 6, it flows through the heat recovery heat exchanger 7 and returns to the electric compressor 1. The second check valve 17 is provided so that the refrigerant flowing from the electric compressor 1 through the first bypass passage 3 to the first expansion valve 4 and the indoor heat exchanger 5 does not flow back to the outdoor condenser 2 side.

又、ヒートポンプ式冷凍サイクルAには、室外コンデンサ2の冷媒出口側と電動コンプレッサ1の冷媒入口側との間を接続する冷媒回収通路18と、冷媒回収通路18を開閉する開閉弁手段である第5電磁弁15とが設けられている。   The heat pump refrigeration cycle A includes a refrigerant recovery passage 18 that connects the refrigerant outlet side of the outdoor condenser 2 and the refrigerant inlet side of the electric compressor 1, and open / close valve means that opens and closes the refrigerant recovery passage 18. 5 solenoid valves 15 are provided.

暖房サイクルBは、電気式温水ヒータであるPTC素子ヒータ30と、ヒータコア31と、これらの間で水を循環させる循環経路32と、この循環経路32に介在され、水を循環させる水ポンプ33とから構成されている。   The heating cycle B includes a PTC element heater 30 that is an electric hot water heater, a heater core 31, a circulation path 32 that circulates water therebetween, and a water pump 33 that is interposed in the circulation path 32 and circulates water. It is composed of

PTC素子ヒータ30は、PTC素子(Positive Temperature Coefficient)の発熱体による自己温度制御型のヒータであり、自動的に自ら温度管理を行うため、外部からの制御が不要である。   The PTC element heater 30 is a self-temperature control type heater using a heating element of a PTC element (Positive Temperature Coefficient), and automatically performs temperature management by itself, so that no external control is required.

ヒータコア31は、上述したように、空調ダクト20内で、且つ、室内熱交換器5の送風下流に配置されている。   As described above, the heater core 31 is disposed in the air conditioning duct 20 and downstream of the indoor heat exchanger 5.

次に、車両用空気調和システムの運転動作を説明する。冷房時、除湿暖房時等の温度調整時には、ヒートポンプ式冷凍サイクルAは冷房用循環経路による運転が行われ、暖房サイクルBは稼動される。   Next, the operation of the vehicle air conditioning system will be described. At the time of temperature adjustment such as cooling and dehumidifying heating, the heat pump refrigeration cycle A is operated by a cooling circulation path, and the heating cycle B is operated.

図2に示すように、電動コンプレッサ1からの高温高圧の冷媒は、室外コンデンサ2で外気に放熱し、第1膨張弁4で減圧された冷媒は、室内熱交換器5で送風より吸熱するため、室内熱交換器5はエバポレータとして機能する。これにより、車室内に導かれる送風が室内熱交換器5で冷却され、その冷風が例えばヒータコア31で一部リヒートされて所望温度の空調風が車室内に吹き出される。ヒートポンプ式冷凍サイクルAと暖房サイクルBは、冷房時や除湿暖房時の負荷程度に応じてその稼動能力が調整され、又、除湿暖房時の低負荷状態では、ヒートポンプ式冷凍サイクルAと暖房サイクルBを効率良く切り替え運転してCOPが向上させる運転を行っても良い。   As shown in FIG. 2, the high-temperature and high-pressure refrigerant from the electric compressor 1 radiates heat to the outside air by the outdoor condenser 2, and the refrigerant decompressed by the first expansion valve 4 absorbs heat from the blown air by the indoor heat exchanger 5. The indoor heat exchanger 5 functions as an evaporator. As a result, the air blown into the vehicle interior is cooled by the indoor heat exchanger 5, the cold air is partially reheated by the heater core 31, for example, and the conditioned air at a desired temperature is blown into the vehicle interior. The operation capacity of the heat pump refrigeration cycle A and the heating cycle B is adjusted according to the load level at the time of cooling or dehumidifying heating, and in the low load state at the time of dehumidifying heating, the heat pump refrigeration cycle A and the heating cycle B It is also possible to perform an operation that improves the COP by switching the operation efficiently.

尚、最大冷房時には、ヒータコア31を稼動することなく室内熱交換器5で冷却された冷風をリヒートすることなく車室内に吹き出す。   During maximum cooling, the cool air cooled by the indoor heat exchanger 5 is blown out into the vehicle compartment without reheating without operating the heater core 31.

最大暖房時には、ヒートポンプ式冷凍サイクルAは暖房用循環経路による運転が行われ、暖房サイクルBは稼動される。図3に示すように、電動コンプレッサ1からの高温高圧の冷媒は、室内熱交換器5で放熱し、熱回収用熱交換器7で吸熱するため、室内熱交換器5はコンデンサとして、熱回収用熱交換器7はエバポレータとしてそれぞれ機能する。これにより、車室内からの送風が室内熱交換器5で加熱され、その温風がヒータコア31で更に加熱されて高温の空調風が車室内に吹き出される。熱回収用熱交換器7を通過する送風は、熱回収用熱交換器7で冷却されて車室外に排出される。   During maximum heating, the heat pump refrigeration cycle A is operated by a heating circulation path, and the heating cycle B is operated. As shown in FIG. 3, since the high-temperature and high-pressure refrigerant from the electric compressor 1 dissipates heat in the indoor heat exchanger 5 and absorbs heat in the heat recovery heat exchanger 7, the indoor heat exchanger 5 serves as a condenser to recover heat. Each heat exchanger 7 functions as an evaporator. As a result, the air blown from the passenger compartment is heated by the indoor heat exchanger 5, the warm air is further heated by the heater core 31, and high-temperature conditioned air is blown into the passenger compartment. The air blown through the heat recovery heat exchanger 7 is cooled by the heat recovery heat exchanger 7 and discharged outside the passenger compartment.

以上、車両用空気調和システムは、冷房運転と暖房運転が可能であり、最大暖房時にあってはヒートポンプ式冷凍サイクルAと暖房サイクルBの双方を熱源として送風を加熱することができるため、暖房能力に優れている。又、最大暖房時にあっては熱回収用熱交換器7が外気よりも高温である内気の熱より吸熱するため、換気熱の回収を行うことができると共に、熱回収用熱交換器7の凍結を防止できる。   As described above, the air conditioning system for a vehicle can perform a cooling operation and a heating operation, and at the time of maximum heating, the air can be heated by using both the heat pump refrigeration cycle A and the heating cycle B as heat sources. Is excellent. Further, during maximum heating, the heat recovery heat exchanger 7 absorbs heat from the inside air, which is higher than the outside air, so that the ventilation heat can be recovered and the heat recovery heat exchanger 7 is frozen. Can be prevented.

その上、ヒートポンプ式冷凍サイクルAの室内熱交換器5への冷媒の流入方向が冷房用循環経路と暖房用循環経路で同じであるため、室内熱交換器5への冷媒の流入方向が逆になることに起因する種々の不具合がない。つまり、室内熱交換器5は、冷房用循環経路による運転と暖房用循環経路による運転とで共に送風と冷媒の向きが効率の良い対向流となるよう設定でき、熱交換効率が低下することがない。ヒートポンプ式冷凍サイクルAの配管について、従来例より高圧用の配管部位を少なくでき、オイル循環に支障を来すおそれがない。   In addition, since the inflow direction of the refrigerant into the indoor heat exchanger 5 of the heat pump refrigeration cycle A is the same in the cooling circulation path and the heating circulation path, the inflow direction of the refrigerant into the indoor heat exchanger 5 is reversed. There are no various problems caused by That is, the indoor heat exchanger 5 can be set so that the direction of the air flow and the refrigerant is an efficient counter flow in both the operation by the cooling circulation path and the operation by the heating circulation path, and the heat exchange efficiency is reduced. Absent. With respect to the piping of the heat pump refrigeration cycle A, the number of piping portions for high pressure can be reduced as compared with the conventional example, and there is no possibility of disturbing oil circulation.

また、コンプレッサ(例えば電動コンプレッサ)1と、室外コンデンサ2と、室外コンデンサ2をバイパスする第1バイパス通路3と、室外コンデンサ2側と第1バイパス通路3のいずれかに冷媒を流すように冷媒流路を切り換える第1流路切換手段(例えば第1及び第2電磁弁11,12)と、室外コンデンサ2又は第1バイパス通路3を通った高圧の冷媒を減圧したり、減圧することなく流すことができる第1減圧手段(例えば第1膨張弁4)と、第1減圧手段により流出された冷媒と室内に導く送風との間で熱交換させる室内熱交換器5とを備えたヒートポンプ式冷凍サイクルを備えた車両用空気調和システムにおいて、第2減圧手段(例えば第2膨張弁6)と熱回収用熱交換器7を有する配管系と、第3電磁弁13とを後付けで付設することによって本発明の車両用空気調和システムに簡便に変更できる。   In addition, the refrigerant flow so that the refrigerant flows through one of the compressor (for example, the electric compressor) 1, the outdoor capacitor 2, the first bypass passage 3 that bypasses the outdoor capacitor 2, and the outdoor capacitor 2 side or the first bypass passage 3. The first passage switching means (for example, the first and second solenoid valves 11 and 12) for switching the passage and the high-pressure refrigerant that has passed through the outdoor capacitor 2 or the first bypass passage 3 is reduced or allowed to flow without being reduced. Heat pump type refrigeration cycle provided with a first pressure reducing means (for example, the first expansion valve 4) capable of performing heat exchange and an indoor heat exchanger 5 for exchanging heat between the refrigerant flown out by the first pressure reducing means and the air blown into the room In the vehicle air conditioning system having the above, a piping system having a second pressure reducing means (for example, the second expansion valve 6) and a heat recovery heat exchanger 7, and a third electromagnetic valve 13 are attached later. It can be easily changed in a vehicle air conditioning system of the present invention by Rukoto.

ヒートポンプ式冷凍サイクルAには、室外コンデンサ2の冷媒出口側と電動コンプレッサ1の冷媒入口側との間を接続する冷媒回収通路18と、冷媒回収通路18を開閉する第5電磁弁15とが設けられている。従って、暖房用循環経路による運転の際に第5電磁弁15を開位置とすると、冷媒回収通路18は室外コンデンサ2の冷媒出口側より電動コンプレッサ1の冷媒入口側の方が低圧となることから、室外コンデンサ2内で液化等した冷媒が冷媒回収通路18を通って電動コンプレッサ1に戻るため、いわゆる冷媒の寝込みを防止でき、適正な冷媒循環量を確保できる。   The heat pump refrigeration cycle A is provided with a refrigerant recovery passage 18 that connects between the refrigerant outlet side of the outdoor condenser 2 and the refrigerant inlet side of the electric compressor 1, and a fifth electromagnetic valve 15 that opens and closes the refrigerant recovery passage 18. It has been. Accordingly, when the fifth solenoid valve 15 is set to the open position during the operation by the heating circulation path, the refrigerant recovery passage 18 has a lower pressure on the refrigerant inlet side of the electric compressor 1 than on the refrigerant outlet side of the outdoor capacitor 2. Since the refrigerant liquefied in the outdoor condenser 2 returns to the electric compressor 1 through the refrigerant recovery passage 18, so-called refrigerant stagnation can be prevented and an appropriate refrigerant circulation amount can be secured.

暖房手段は、電気式温水ヒータであるPTC素子ヒータ30を熱源とするヒータコア31である。従って、エンジン廃熱による温水を利用できない電気自動車の暖房に適した車両用空気調和システムを提供できる。エンジン廃熱を利用せず、しかも、上述したように優れた最大暖房性能を発揮することから電気自動車用の極寒冷地に好適な車両用空気調和システムを提供できる。   The heating means is a heater core 31 having a PTC element heater 30 which is an electric hot water heater as a heat source. Therefore, it is possible to provide a vehicle air conditioning system suitable for heating an electric vehicle that cannot use hot water due to engine waste heat. Since the engine exhaust heat is not used and the excellent maximum heating performance is exhibited as described above, it is possible to provide a vehicle air conditioning system suitable for a very cold region for an electric vehicle.

電気式温水ヒータは、この実施形態ではPTC素子ヒータ30である。PTC素子ヒータ30は自動的に温度管理を自ら行うため、ヒータコア31の温度制御が容易である。電気式温水ヒータとしては、安価なシーズヒータを用いても良い。   The electric hot water heater is a PTC element heater 30 in this embodiment. Since the PTC element heater 30 automatically performs temperature management by itself, the temperature control of the heater core 31 is easy. An inexpensive sheathed heater may be used as the electric hot water heater.

尚、この実施形態では、第1流路切換手段は、第1電磁弁11と第2電磁弁12から構成されているが、電動コンプレッサ1からの冷媒流路を室外コンデンサ2側の経路と第1バイパス通路3に選択的に切換えできれば良く、三方弁にて構成しても良い。   In this embodiment, the first flow path switching means is composed of the first electromagnetic valve 11 and the second electromagnetic valve 12, but the refrigerant flow path from the electric compressor 1 is connected to the path on the outdoor capacitor 2 side and the first flow path switching means. As long as it can be selectively switched to one bypass passage 3, it may be constituted by a three-way valve.

尚、この実施形態では、第2流路切換手段は、第3電磁弁13と第4電磁弁14から構成されているが、室内熱交換器5からの冷媒流路を熱回収用熱交換器7側の経路と第2バイパス通路8に選択的に切換えできれば良く、三方弁にて構成しても良い。又、第4電磁弁14は第2膨張弁6にて兼用しても良い。   In this embodiment, the second flow path switching means is composed of the third electromagnetic valve 13 and the fourth electromagnetic valve 14, but the refrigerant flow path from the indoor heat exchanger 5 is used as the heat recovery heat exchanger. It is only necessary to be able to selectively switch to the 7-side path and the second bypass passage 8, and a three-way valve may be used. Further, the fourth electromagnetic valve 14 may be shared by the second expansion valve 6.

本発明の実施形態を示し、車両用空気調和システムの構成図である。1 shows an embodiment of the present invention and is a configuration diagram of an air conditioning system for a vehicle. 本発明の実施形態を示し、冷房時や除湿暖房時の運転状態を示す図である。It is a figure which shows the operation state at the time of air_conditioning | cooling and dehumidification heating which shows embodiment of this invention. 本発明の実施形態を示し、最大暖房時の運転状態を示す図である。It is a figure which shows embodiment of this invention and shows the driving | running state at the time of maximum heating. 本発明の実施形態を示し、冷房用循環経路による運転と暖房用循環経路による運転における各熱交換器の機能と電磁弁の切換状態を示す図である。It is a figure which shows embodiment of this invention and shows the switching state of the function of each heat exchanger in the driving | operation by the circulation path for cooling, and the driving | operation by the circulation path for heating. 従来例にかかる車両用空気調和システムのヒートポンプ式冷凍サイクルの構成図である。It is a block diagram of the heat pump type refrigeration cycle of the air conditioning system for vehicles concerning a prior art example.

符号の説明Explanation of symbols

A ヒートポンプ式冷凍サイクル
1 電動コンプレッサ(コンプレッサ)
2 室外コンデンサ
3 第1バイパス通路
4 第1膨張弁(第1減圧手段)
5 室内熱交換器
6 第2膨張弁(第2減圧手段)
7 熱回収用熱交換器
8 第2バイパス通路
11 第1電磁弁(第1流路切換手段)
12 第2電磁弁(第1流路切換手段)
13 第3電磁弁(第2流路切換手段)
14 第4電磁弁(第2流路切換手段)
15 第5電磁弁(開閉弁手段)
30 PTC素子ヒータ(電気温水ヒータ)
31 ヒータコア(暖房手段)
A Heat pump refrigeration cycle 1 Electric compressor (compressor)
2 outdoor condenser 3 first bypass passage 4 first expansion valve (first decompression means)
5 Indoor heat exchanger 6 Second expansion valve (second decompression means)
7 heat exchanger for heat recovery 8 second bypass passage 11 first solenoid valve (first flow path switching means)
12 Second solenoid valve (first flow path switching means)
13 3rd solenoid valve (2nd flow-path switching means)
14 4th solenoid valve (2nd flow-path switching means)
15 5th solenoid valve (open / close valve means)
30 PTC element heater (electric hot water heater)
31 Heater core (heating means)

Claims (4)

冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサ(1)と、
高温高圧の冷媒と外気との間で熱交換する室外コンデンサ(2)と、
前記室外コンデンサ(2)をバイパスする第1バイパス通路(3)と、
前記コンプレッサ(1)からの高温高圧の冷媒を前記室外コンデンサ(2)と前記第1バイパス通路(3)のいずれかに流すように冷媒流路を切り換える第1流路切換手段(11),(12)と、
前記室外コンデンサ(2)又は前記第1バイパス通路(3)を通った高圧の冷媒を減圧したり、減圧することなく流すことができる第1減圧手段(4)と、
前記第1減圧手段(4)により流出された冷媒と室内に導く送風との間で熱交換させる室内熱交換器(5)と、
前記室内熱交換器(5)を通った冷媒を減圧する第2減圧手段(6)と、
前記第2減圧手段(6)より流出された冷媒と室内から室外に排出する送風との間で熱交換させる熱回収用熱交換器(7)と、
前記熱回収用熱交換器(7)をバイパスする第2バイパス通路(8)とを有するヒートポンプ式冷凍サイクル(A)を備えると共に、
前記室内熱交換器(5)の送風下流に設けられ、車室内に導く送風を加熱する暖房手段(31)を備え、
前記コンプレッサ(1)からの高温高圧の冷媒が前記室外コンデンサ(2)を流れ、前記第1減圧手段(4)で減圧された後に前記室内熱交換器(5)を流れ、その後に前記第2バイパス通路(8)を通って前記コンプレッサ(1)に戻る冷房用循環経路による運転と、
前記コンプレッサ(1)からの高温高圧の冷媒が前記第1バイパス通路(3)を通り、前記第1減圧手段(4)で減圧することなく前記室内熱交換器(5)を流れ、前記第2減圧手段(6)で減圧された後に前記熱回収用熱交換器(7)を流れて前記コンプレッサ(1)に戻る暖房用循環経路による運転とを行うことができることを特徴とする車両用空気調和システム。
A compressor (1) that compresses the refrigerant and converts the refrigerant into a high-temperature and high-pressure refrigerant;
An outdoor condenser (2) for exchanging heat between the high-temperature and high-pressure refrigerant and the outside air;
A first bypass passage (3) for bypassing the outdoor capacitor (2);
First flow path switching means (11), (5) for switching the refrigerant flow path so that the high-temperature and high-pressure refrigerant from the compressor (1) flows to either the outdoor condenser (2) or the first bypass passage (3). 12)
First decompression means (4) capable of depressurizing or flowing the high-pressure refrigerant that has passed through the outdoor condenser (2) or the first bypass passage (3) without depressurization;
An indoor heat exchanger (5) for exchanging heat between the refrigerant flowed out by the first decompression means (4) and the air blown into the room;
Second decompression means (6) for decompressing the refrigerant that has passed through the indoor heat exchanger (5);
A heat recovery heat exchanger (7) for exchanging heat between the refrigerant discharged from the second decompression means (6) and the air blown out from the room to the outside;
A heat pump refrigeration cycle (A) having a second bypass passage (8) for bypassing the heat recovery heat exchanger (7);
Heating means (31) that is provided downstream of the indoor heat exchanger (5) and heats the air that is guided into the vehicle interior,
The high-temperature and high-pressure refrigerant from the compressor (1) flows through the outdoor condenser (2), is decompressed by the first decompression means (4), then flows through the indoor heat exchanger (5), and then the second Operation by a cooling circulation path returning to the compressor (1) through the bypass passage (8);
The high-temperature and high-pressure refrigerant from the compressor (1) passes through the first bypass passage (3) and flows through the indoor heat exchanger (5) without being depressurized by the first depressurization means (4), and the second The vehicle air conditioner is characterized in that after being decompressed by the decompression means (6), the vehicle can be operated by a heating circulation path that flows through the heat recovery heat exchanger (7) and returns to the compressor (1). system.
請求項1記載の車両用空気調和システムであって、
前記ヒートポンプ式冷凍サイクル(A)には、前記室外コンデンサ(2)の冷媒出口側と前記コンプレッサ(1)の冷媒入口側との間を接続する冷媒回収通路(18)と、前記冷媒回収通路(18)を開閉する開閉弁手段(15)とが設けられていることを特徴とする車両用空気調和システム。
The vehicle air conditioning system according to claim 1,
The heat pump refrigeration cycle (A) includes a refrigerant recovery passageway (18) connecting the refrigerant outlet side of the outdoor condenser (2) and the refrigerant inlet side of the compressor (1), and the refrigerant recovery passageway ( 18) An on-off valve means (15) for opening and closing 18) is provided.
請求項1又は請求項2記載の車両用空気調和システムであって、
前記暖房手段(31)は、電気式温水ヒータ(30)を熱源とするヒータコア(31)であることを特徴とする車両用空気調和システム。
The vehicle air conditioning system according to claim 1 or 2,
The air conditioning system for vehicles, wherein the heating means (31) is a heater core (31) using an electric hot water heater (30) as a heat source.
請求項3記載の車両用空気調和システムであって、
電気式温水ヒータ(30)は、PTC素子ヒータ(31)であることを特徴とする車両用空気調和システム。
The vehicle air conditioning system according to claim 3,
The electric hot water heater (30) is a PTC element heater (31).
JP2008236897A 2008-09-16 2008-09-16 Air conditioning system for vehicles Expired - Fee Related JP5346528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236897A JP5346528B2 (en) 2008-09-16 2008-09-16 Air conditioning system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008236897A JP5346528B2 (en) 2008-09-16 2008-09-16 Air conditioning system for vehicles

Publications (2)

Publication Number Publication Date
JP2010069947A true JP2010069947A (en) 2010-04-02
JP5346528B2 JP5346528B2 (en) 2013-11-20

Family

ID=42202141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236897A Expired - Fee Related JP5346528B2 (en) 2008-09-16 2008-09-16 Air conditioning system for vehicles

Country Status (1)

Country Link
JP (1) JP5346528B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013205735A1 (en) * 2013-04-02 2014-10-02 Bayerische Motoren Werke Aktiengesellschaft A method for removing air from a passenger compartment of a vehicle and refrigerant circuit, in particular heat pump cycle
CN105392647A (en) * 2013-07-08 2016-03-09 宝马股份公司 Method for controlling a heating and air conditioning system in a vehicle
CN106608157A (en) * 2015-10-23 2017-05-03 杭州三花研究院有限公司 Air conditioner system and air conditioner control method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015218A (en) * 1983-07-04 1985-01-25 Nippon Denso Co Ltd Air conditioner for automobile
JPH05294135A (en) * 1992-04-23 1993-11-09 Calsonic Corp Air conditioner for electric vehicle
JPH066024U (en) * 1992-06-29 1994-01-25 株式会社日本クライメイトシステムズ Refrigerant circulation cycle of automobile air conditioner
JPH06135221A (en) * 1992-10-27 1994-05-17 Nippondenso Co Ltd Air conditioner
JPH06206439A (en) * 1993-01-12 1994-07-26 Matsushita Electric Ind Co Ltd Heat pump type air-conditioning device for vehicle
JPH07237432A (en) * 1994-03-02 1995-09-12 Nippon Climate Syst:Kk Method to control air conditioner for electric automobile
JPH08276716A (en) * 1995-04-06 1996-10-22 Sanden Corp Air conditioner for vehicle
JP2000062449A (en) * 1998-08-19 2000-02-29 Calsonic Corp Heat pump type air conditioner for automobile
JP2001001748A (en) * 1999-06-15 2001-01-09 Bosch Automotive Systems Corp Air conditioner for vehicle
JP2001018640A (en) * 1999-07-05 2001-01-23 Calsonic Kansei Corp Refrigerant recovery type air conditioner for vehicle
JP2001130241A (en) * 1999-11-09 2001-05-15 Mitsubishi Heavy Ind Ltd Vehicular air-conditioner
JP2002106978A (en) * 2000-10-03 2002-04-10 Tgk Co Ltd Refrigerating cycle with bypass conduit
JP2005201500A (en) * 2004-01-14 2005-07-28 Denso Corp Refrigerating cycle device
JP2008056044A (en) * 2006-08-30 2008-03-13 Mitsubishi Heavy Ind Ltd Heating device for heat medium and air conditioner for vehicle using the same
JP2011152827A (en) * 2010-01-26 2011-08-11 Honda Motor Co Ltd Cooling media accumulating structure of vehicle air conditioning system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015218A (en) * 1983-07-04 1985-01-25 Nippon Denso Co Ltd Air conditioner for automobile
JPH05294135A (en) * 1992-04-23 1993-11-09 Calsonic Corp Air conditioner for electric vehicle
JPH066024U (en) * 1992-06-29 1994-01-25 株式会社日本クライメイトシステムズ Refrigerant circulation cycle of automobile air conditioner
JPH06135221A (en) * 1992-10-27 1994-05-17 Nippondenso Co Ltd Air conditioner
JPH06206439A (en) * 1993-01-12 1994-07-26 Matsushita Electric Ind Co Ltd Heat pump type air-conditioning device for vehicle
JPH07237432A (en) * 1994-03-02 1995-09-12 Nippon Climate Syst:Kk Method to control air conditioner for electric automobile
JPH08276716A (en) * 1995-04-06 1996-10-22 Sanden Corp Air conditioner for vehicle
JP2000062449A (en) * 1998-08-19 2000-02-29 Calsonic Corp Heat pump type air conditioner for automobile
JP2001001748A (en) * 1999-06-15 2001-01-09 Bosch Automotive Systems Corp Air conditioner for vehicle
JP2001018640A (en) * 1999-07-05 2001-01-23 Calsonic Kansei Corp Refrigerant recovery type air conditioner for vehicle
JP2001130241A (en) * 1999-11-09 2001-05-15 Mitsubishi Heavy Ind Ltd Vehicular air-conditioner
JP2002106978A (en) * 2000-10-03 2002-04-10 Tgk Co Ltd Refrigerating cycle with bypass conduit
JP2005201500A (en) * 2004-01-14 2005-07-28 Denso Corp Refrigerating cycle device
JP2008056044A (en) * 2006-08-30 2008-03-13 Mitsubishi Heavy Ind Ltd Heating device for heat medium and air conditioner for vehicle using the same
JP2011152827A (en) * 2010-01-26 2011-08-11 Honda Motor Co Ltd Cooling media accumulating structure of vehicle air conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013205735A1 (en) * 2013-04-02 2014-10-02 Bayerische Motoren Werke Aktiengesellschaft A method for removing air from a passenger compartment of a vehicle and refrigerant circuit, in particular heat pump cycle
CN105392647A (en) * 2013-07-08 2016-03-09 宝马股份公司 Method for controlling a heating and air conditioning system in a vehicle
CN105392647B (en) * 2013-07-08 2017-09-22 宝马股份公司 System for controlling air conditioner in a motor vehicle
CN106608157A (en) * 2015-10-23 2017-05-03 杭州三花研究院有限公司 Air conditioner system and air conditioner control method
CN106608157B (en) * 2015-10-23 2020-12-01 杭州三花研究院有限公司 Air conditioning system and air conditioning control method

Also Published As

Publication number Publication date
JP5346528B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP6634160B2 (en) Heat pump system for vehicles
JP6189098B2 (en) Heat pump air conditioning system for vehicles
JP5750797B2 (en) Air conditioner for vehicles
JP6415943B2 (en) Heat pump air conditioning system for vehicles
JP3233771B2 (en) Vehicle air conditioner
JP2010260450A (en) Air conditioner for vehicle
JP2000052757A (en) Air-conditioning and heating equipment for automobile
JP2016097817A5 (en)
JPH08216667A (en) Air-conditioning and dehumidification device in heat pump for electric vehicle
JP2009274517A (en) Air conditioning system
CN109982877B (en) Vehicle heat pump system
JP2010159008A (en) Air conditioner for vehicle
JP2004182168A (en) Vehicular air conditioner
JP2002019443A (en) Heat pump cycle
JP5884080B2 (en) Air conditioner for vehicles
JP4831030B2 (en) Refrigeration cycle equipment
JP5346528B2 (en) Air conditioning system for vehicles
JP3986422B2 (en) Air conditioner for vehicles
JP3272663B2 (en) Vehicle air conditioner
JP2011225174A (en) Vehicular air conditioner
JP5142032B2 (en) Air conditioner for vehicles
JP5040898B2 (en) Air conditioner for vehicles
JP2013193466A (en) Vehicle air conditioning device
JPH0891042A (en) Heat pump type air-conditioning cooling and heating equipment
WO2019167822A1 (en) Refrigeration cycle, drive method for refrigeration cycle, accumulator used in refrigeration cycle, and, air conditioning apparatus for vehicle having installed refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5346528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees