JP2010069919A - Railroad vehicle - Google Patents

Railroad vehicle Download PDF

Info

Publication number
JP2010069919A
JP2010069919A JP2008236565A JP2008236565A JP2010069919A JP 2010069919 A JP2010069919 A JP 2010069919A JP 2008236565 A JP2008236565 A JP 2008236565A JP 2008236565 A JP2008236565 A JP 2008236565A JP 2010069919 A JP2010069919 A JP 2010069919A
Authority
JP
Japan
Prior art keywords
air
flow path
heat exchange
circulating
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008236565A
Other languages
Japanese (ja)
Inventor
Masahiko Kanda
田 正 彦 神
Mitsunori Nagase
瀬 光 範 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008236565A priority Critical patent/JP2010069919A/en
Publication of JP2010069919A publication Critical patent/JP2010069919A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To standardize system composition apparatus such as a heat exchanger and heating apparatus, to reduce the number of times of maintenance work, and to obtain a sufficient noise preventive effect. <P>SOLUTION: When passing thorough a circulating refrigerant heat exchanger 8, cooling water and cooling oil increased in temperature after finishing cooling action to a power conversion device 2 and a main transformer 3 is heat-exchanged with cooling air sent from an evaporator 11 side, and sent to the power conversion device 2 and the main transformer 3 again after being sufficiently cooled. At that time, the temperature of the cooling air sent out to the circulating refrigerant heat exchanger 8 side by rotations of a fan 15 can be kept at a predetermined temperature set in advance regardless of the external temperature of a vehicle 1. Therefore, regardless of weather environment in a local area in which the vehicle 1 is operated, a heat-exchanging function of the circulating refrigerant heat exchanger 8 can be kept at a fixed level. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱交換システムを備えた鉄道車両に関するものである。   The present invention relates to a railway vehicle equipped with a heat exchange system.

架線からの交流電力に基づき走行する交流電気車、又は架線からの直流電力に基づき走行する直流電気車、あるいはディーゼルエンジンにより走行するディーゼル車などの鉄道車両では、電力変換効率又はエンジン変換効率を如何に向上させても100パーセントにすることはできないため必ず熱損失を発生し、この熱損失により温度上昇が激しくなる発熱機器が存在する。そして、従来からこの発熱機器の温度上昇を抑制するための種々の構成又は方策が実施又は提案されている。   For railway vehicles such as AC electric vehicles that run on the basis of AC power from overhead wires, DC electric vehicles that run on the basis of DC power from overhead wires, or diesel vehicles that run on diesel engines, what is the power conversion efficiency or engine conversion efficiency? Even if it is improved to 100%, it cannot be made 100%, so there is a heat generating device that always generates heat loss, and the temperature rises severely due to this heat loss. And conventionally, various configurations or measures for suppressing the temperature rise of the heat generating device have been implemented or proposed.

例えば、コンバータ・インバータ方式を採用した近年の交流電気車では、電力変換装置の半導体素子の冷却に水を用いたり、主変圧器の冷却に絶縁目的を兼ねた油を用いるなどして、これら発熱機器の温度上昇を抑制するようにしている。   For example, in a recent AC electric vehicle that employs a converter / inverter system, water is used to cool the semiconductor elements of the power converter, or oil that serves the purpose of insulation is used to cool the main transformer. The temperature rise of the equipment is suppressed.

このような冷却水や冷却油などの冷媒は、冷媒流路を循環しているうちに温度が上昇するが、温度が上昇し過ぎると最早冷媒としての機能を果たすことができなくなるので、この循環冷媒流路途中に熱交換器を設け、冷媒を効率的に冷却する必要がある。そして、従来から広汎に実施されている熱交換システムは、車両に搭載した送風機により外気を取り込み、この取り込んだ外気を冷却風として熱交換器に接触させることにより冷媒を強制冷却しようとするものであった(例えば特許文献1参照)。   Such a coolant such as cooling water or cooling oil rises in temperature while circulating in the refrigerant flow path, but if the temperature rises too much, it can no longer function as a refrigerant. It is necessary to provide a heat exchanger in the middle of the refrigerant flow path to efficiently cool the refrigerant. A heat exchange system that has been widely used in the past attempts to forcibly cool the refrigerant by taking outside air with a blower mounted on a vehicle and bringing the taken outside air into contact with the heat exchanger as cooling air. (For example, refer to Patent Document 1).

図5は、このような従来システムについての説明図である。車両51(電気機関車)の機械室内には電力変換装置52(発熱機器)が搭載されており、この電力変換装置52の内部を循環冷媒流路53が通っている。循環冷媒流路53を流れる冷媒は、例えば冷却水であり、この冷却水は電力変換装置52内に設けられた水ポンプ(図示せず)により循環される。循環冷媒流路53の熱交換部は、ファン55を有する冷却装置54内に配設されている。   FIG. 5 is an explanatory diagram of such a conventional system. A power converter 52 (heat generating device) is mounted in the machine room of the vehicle 51 (electric locomotive), and a circulating refrigerant flow path 53 passes through the power converter 52. The refrigerant flowing through the circulation refrigerant channel 53 is, for example, cooling water, and this cooling water is circulated by a water pump (not shown) provided in the power conversion device 52. The heat exchange part of the circulation refrigerant flow path 53 is disposed in a cooling device 54 having a fan 55.

車両51の機械室内には、また、送風機56及びエアコンプレッサ装置57が搭載されている。送風機56は車輪59を駆動する主電動機58(発熱機器)を冷却するためのものであり、エアコンプレッサ装置57は列車の空気ブレーキ装置に使用する空気を供給するためのものである。   A blower 56 and an air compressor device 57 are also mounted in the machine room of the vehicle 51. The blower 56 is for cooling the main motor 58 (heat generating device) that drives the wheels 59, and the air compressor device 57 is for supplying air used for the air brake device of the train.

次に、図5の動作を説明する。車両51が運転走行されると、電力変換装置52の内部温度が発熱素子の発熱作用により次第に上昇するが、循環冷媒流路53を流れる冷却水の冷却作用により、このときの温度上昇が抑制される。   Next, the operation of FIG. 5 will be described. When the vehicle 51 is driven, the internal temperature of the power conversion device 52 gradually increases due to the heat generating action of the heating elements, but the temperature rise at this time is suppressed by the cooling action of the cooling water flowing through the circulating refrigerant flow path 53. The

冷却作用を終えた冷却水は、冷却装置54内に配設された熱交換部に移動するが、ファン55の回転によりルーバー60からの導入外気がこの熱交換部に取り込まれるので、温度上昇した冷却水はこの導入外気により冷却される。   The cooling water that has finished the cooling action moves to the heat exchanging portion disposed in the cooling device 54, but the temperature of the air has risen because the outside air introduced from the louver 60 is taken into the heat exchanging portion by the rotation of the fan 55. The cooling water is cooled by the introduced outside air.

また、送風機56の回転により、ルーバー61から導入外気が取り込まれ、冷却風が主電動機58に送られる。そして、エアコンプレッサ装置57は、機械室内の空気をエアコンプレッサの冷却用空気として吸気し、機械室内に排気を行う。なお、このときの送風機56の回転により、機械室内は与圧されるので、車両51の車外に与圧排気が送り出される。
WO 2007/031245 A1国際公開公報
Further, due to the rotation of the blower 56, the introduced outside air is taken in from the louver 61, and the cooling air is sent to the main motor 58. The air compressor device 57 sucks air in the machine room as cooling air for the air compressor and exhausts the air into the machine room. In addition, since the machine room is pressurized by the rotation of the blower 56 at this time, the pressurized exhaust is sent out of the vehicle 51.
WO 2007/031245 A1 International Publication

上記のように、図5の従来システムは、ルーバー60,61から取り込んだ外気を、冷却装置54内の熱交換部、及び主電動機58などに対して直接的に接触させることにより冷却を行うものであるため、外気温が一定以下であれば特に問題はないが、外気温が一定以上の高い気温になると最早充分な冷却が不可能になる。また、車両51の運行地域が高地である場合には、空気密度が小さくなるので、やはり充分な冷却が不可能になる。つまり、導入外気を直接用いて冷却しようとする従来システムでは、その冷却効率が車両外部の気象環境に大きく影響されることになる。   As described above, the conventional system of FIG. 5 performs cooling by bringing the outside air taken in from the louvers 60 and 61 into direct contact with the heat exchanging unit in the cooling device 54, the main motor 58, and the like. Therefore, there is no particular problem if the outside air temperature is below a certain level, but sufficient cooling is no longer possible when the outside temperature reaches a certain high temperature. In addition, when the operation area of the vehicle 51 is a high altitude, the air density becomes small, so that sufficient cooling is impossible. That is, in the conventional system that uses the introduced outside air to cool directly, the cooling efficiency is greatly influenced by the weather environment outside the vehicle.

そのため、従来システムに係る鉄道車両では、種々の外部気象環境に対応できるようにするため冷却装置などの熱交換装置の仕様を複数種類用意すると共に、電力変換装置や主変圧器などの発熱機器についても複数種類の仕様を用意しなければならず、システム構成機器の標準化を図ることができなかった。そして、このように複数種類の仕様を必要とする構成は、必然的にシステム全体のコストアップを招くと共に、製品納期の遅延や設計変更などの不都合を招く要因となっていた。   Therefore, in the railway vehicle according to the conventional system, in order to be able to cope with various external weather environments, a plurality of types of specifications of the heat exchange device such as a cooling device are prepared, and a heating device such as a power conversion device or a main transformer is prepared. However, multiple types of specifications had to be prepared, and standardization of system components could not be achieved. Such a configuration requiring a plurality of types of specifications inevitably increases the cost of the entire system, and causes inconveniences such as delays in product delivery and design changes.

また、車両外部からの大気を冷却装置54内の熱交換部に直接的に接触させる方式の場合、大気中に含まれる塵埃により冷却装置54内の熱交換部が汚損し、充分な熱交換ができなくなった場合、車両内の機器に故障が発生する虞があり、このような故障発生を防止するために清掃等のメンテナンス作業を頻繁に実施しなければならないという短所がある。   Further, in the case of a system in which the air from the outside of the vehicle is brought into direct contact with the heat exchanging portion in the cooling device 54, the heat exchanging portion in the cooling device 54 is contaminated by dust contained in the air, and sufficient heat exchange is performed. If it becomes impossible, there is a risk that a failure may occur in the equipment in the vehicle, and in order to prevent the occurrence of such a failure, a maintenance work such as cleaning must be frequently performed.

更に、ディーゼル車の場合、車両外部と車両室内との間で吸排気を行い、車両室内の換気を積極的に行おうとすると、換気口(吸排気口)を大きくせざるを得なくなり、この換気口からディーゼルエンジン音が漏れるため、騒音対策が困難になるという課題もあった。   Furthermore, in the case of a diesel vehicle, if intake / exhaust is performed between the outside of the vehicle and the vehicle interior, and the vehicle interior is actively ventilated, the ventilation port (intake / exhaust port) must be increased. There was also a problem that noise countermeasures became difficult because the diesel engine sound leaked from the mouth.

本発明は上記事情に鑑みてなされたものであり、熱交換装置、及び発熱機器などのシステム構成機器の標準化を可能にし、更に、メンテナンス作業の回数を削減できると共に、充分な騒音防止効果を得ることが可能な鉄道車両機器の熱交換システムを提供することを目的としている。   The present invention has been made in view of the above circumstances and enables standardization of system components such as a heat exchange device and a heat generating device. Further, the number of maintenance operations can be reduced, and a sufficient noise prevention effect can be obtained. The object is to provide a heat exchange system for railway vehicle equipment.

上記課題を解決するための手段として、請求項1記載の発明は、車両に搭載された発熱機器を通る循環冷媒流路途中に設けられ、循環冷媒に熱交換を行わせるための循環冷媒用熱交換器と、前記循環冷媒用熱交換器を通り且つ外部と遮断状態となるように形成した循環エア流路途中に設けられ、前記循環冷媒用熱交換器に対して所定温度の循環エアを送出することにより、前記循環冷媒用熱交換器の熱交換機能を一定レベルに維持するための熱交換機能保持用空調装置と、を含んで構成される熱交換システムを備えたことを特徴とする。   As means for solving the above-mentioned problems, the invention according to claim 1 is provided in the circulating refrigerant flow path passing through the heat generating device mounted on the vehicle, and heat for circulating refrigerant for causing the circulating refrigerant to exchange heat. A circulating air flow path formed so as to pass through the exchanger and the circulating refrigerant heat exchanger and to be disconnected from the outside, and sends circulating air at a predetermined temperature to the circulating refrigerant heat exchanger Thus, a heat exchange system including an air conditioner for maintaining a heat exchange function for maintaining a heat exchange function of the heat exchanger for circulating refrigerant at a certain level is provided.

請求項2記載の発明は、請求項1記載の発明において、前記循環エアは、前記循環エア流路内に予め充填しておいた、外気よりも比重の大きなエアである、ことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the circulating air is air having a higher specific gravity than the outside air, which is filled in the circulating air flow path in advance. .

請求項3記載の発明は、請求項1記載の発明において、前記熱交換機能保持用空調装置は、冷房機能に基づく冷風エア、又は暖房機能に基づく温風エアのいずれのエアについても送出可能なものである、ことを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the heat exchange function maintaining air conditioner can send out either cold air based on a cooling function or warm air based on a heating function. It is characterized by being.

請求項4記載の発明は、請求項1記載の発明において、前記熱交換機能保持用空調装置は、凝縮器及び蒸発器の2つの熱交換器を有し、一方の熱交換器が前記循環エア流路内に取り付けられると共に、他方の熱交換器が車両外部と連通するダクト配管内に取り付けられている、ことを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the invention, the heat exchange function maintaining air conditioner includes two heat exchangers, a condenser and an evaporator, and one of the heat exchangers is the circulating air. It is attached in the flow path, and the other heat exchanger is attached in duct piping connected with the vehicle exterior.

請求項5記載の発明は、請求項1記載の発明において、前記発熱機器を密閉容器内に配設すると共に、この密閉容器に前記循環エア流路から分岐させた分岐流路を連設し、前記熱交換機能保持用空調装置からの所定温度のエアの一部を密閉容器内部にも送出可能とした、ことを特徴とする。   The invention according to claim 5 is the invention according to claim 1, wherein the heat generating device is disposed in a sealed container, and a branched flow path branched from the circulation air flow path is connected to the sealed container, A part of the air at a predetermined temperature from the heat exchange function holding air conditioner can be sent into the sealed container.

請求項6記載の発明は、請求項5記載の発明において、前記循環エア流路及び分岐流路の各分岐個所付近にエア流路側開閉弁及び分岐流路側開閉弁を設けると共に、前記密閉容器内にこれら開閉弁の開閉制御を、発熱機器温度の検出又は密閉容器内温度の検出に基づき行う開閉弁制御手段を設けた、ことを特徴とする。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, an air flow path side opening / closing valve and a branch flow path side opening / closing valve are provided in the vicinity of each branch location of the circulation air flow path and the branch flow path, Further, the on-off valve control means for performing the on-off control of the on-off valve based on the detection of the temperature of the heat generating device or the detection of the temperature in the sealed container is provided.

請求項7記載の発明は、請求項1記載の発明において、前記循環エア流路にエア放出用ダクト及び室内エア吸入用ダクトを連設し、前記熱交換機能保持用空調装置からの所定温度のエアの一部を前記車両の室内に放出すると共に、この室内のエアを室内エア吸入用ダクトから吸入して前記熱交換機能保持用空調装置へ送出することにより、車両の室内空調についても可能とした、ことを特徴とする。   According to a seventh aspect of the present invention, in the first aspect of the present invention, an air discharge duct and an indoor air suction duct are connected to the circulation air flow path, and a predetermined temperature from the heat exchange function holding air conditioner is set. A part of the air is released into the vehicle interior, and the indoor air is taken in from the indoor air intake duct and sent to the heat exchange function holding air conditioner, so that the vehicle can be air-conditioned in the vehicle. It is characterized by that.

請求項8記載の発明は、請求項3記載の発明において、前記熱交換機能保持用空調装置は、外気導入口付近に設けられたエアヒータを有するものであり、前記暖房機能に基づく温風エアを送出する際は、このエアヒータにより予熱されたエアを導入するものである、ことを特徴とする。   The invention according to claim 8 is the invention according to claim 3, wherein the heat exchange function maintaining air conditioner has an air heater provided in the vicinity of the outside air inlet, and the warm air based on the heating function is generated. At the time of delivery, the air preheated by the air heater is introduced.

請求項9記載の発明は、請求項1記載の発明において、前記循環エア流路と分離した外気導入流路及び冷却外気放出流路が設置されると共に、前記熱交換機能保持用空調装置は流路切換手段を有しており、前記熱交換機能保持用空調装置はこの流路切換手段の切換により、前記循環エア流路を経由した前記循環冷媒用熱交換器に対する循環エアの送出に代えて、前記外気導入流路から取り込んだ外気を前記冷却外気放出流路を介して車両室内に放出することが可能なものである、ことを特徴とする。   According to a ninth aspect of the present invention, in the first aspect of the present invention, an outside air introduction passage and a cooling outside air discharge passage separated from the circulating air passage are installed, and the heat exchange function holding air conditioner is The air conditioner for maintaining heat exchange function is replaced by sending the circulating air to the heat exchanger for circulating refrigerant via the circulating air flow path by switching the flow path switching means. The outside air taken in from the outside air introduction flow path can be discharged into the vehicle compartment through the cooling outside air discharge flow path.

本発明によれば、熱交換装置、及び発熱機器などのシステム構成機器の標準化が可能になり、更に、メンテナンス作業の回数を削減できると共に、充分な騒音防止効果を得ることが可能になる。   According to the present invention, it is possible to standardize heat exchange devices and system components such as heat generating devices, and further reduce the number of maintenance operations and obtain a sufficient noise prevention effect.

図1は、本発明の第1の実施形態の説明図である。本実施形態では、鉄道車両が交流電気車である場合につき説明する。   FIG. 1 is an explanatory diagram of a first embodiment of the present invention. In the present embodiment, a case where the railway vehicle is an AC electric vehicle will be described.

車両1内には発熱機器である電力変換装置2(駆動電動機に電力供給を行う)及び主変圧器装置3(架線からの交流電圧を降圧する)が搭載されている。この電力変換装置2内を循環冷媒流路5が通っており、循環冷媒流路5を流れる冷却水は水ポンプ4により循環されるようになっている。同様に、主変圧器装置3内を循環冷媒流路7が通っており、循環冷媒流路7を流れる冷却油は油ポンプ6により循環されるようになっている。   A power converter 2 (which supplies power to the drive motor) and a main transformer device 3 (steps down the AC voltage from the overhead line), which are heat generating devices, are mounted in the vehicle 1. A circulating refrigerant flow path 5 passes through the power conversion device 2, and the cooling water flowing through the circulating refrigerant flow path 5 is circulated by the water pump 4. Similarly, the circulating refrigerant flow path 7 passes through the main transformer device 3, and the cooling oil flowing through the circulating refrigerant flow path 7 is circulated by the oil pump 6.

循環冷媒流路5,7の各熱交換部により構成される循環冷媒用熱交換器8は、循環エア流路9の途中に配設されている。そして、この循環冷媒用熱交換器8と対向する位置に熱交換機能保持用空調装置10が配設されている。   A circulation refrigerant heat exchanger 8 configured by the heat exchange portions of the circulation refrigerant flow paths 5 and 7 is disposed in the middle of the circulation air flow path 9. A heat exchange function holding air conditioner 10 is disposed at a position facing the circulating refrigerant heat exchanger 8.

熱交換機能保持用空調装置10は、蒸発器11、凝縮器12、冷媒流路13、コンプレッサ14、及びファン15,16により構成されている。そして、蒸発器11及びファン15が循環エア流路9の途中に取り付けられている。また、車両1の屋根部に形成された外気導入口17と、床下部に形成された排風口18との間にはダクト配管19が設けられており、このダクト配管19の途中に凝縮器12及びファン16が取り付けられている。   The heat exchange function maintaining air conditioner 10 includes an evaporator 11, a condenser 12, a refrigerant flow path 13, a compressor 14, and fans 15 and 16. An evaporator 11 and a fan 15 are attached in the middle of the circulating air flow path 9. Further, a duct pipe 19 is provided between an outside air inlet 17 formed in the roof portion of the vehicle 1 and an exhaust outlet 18 formed in the lower part of the floor. And a fan 16 is attached.

そして、本実施形態では、循環エア流路9は車両1の室内及び室外等の外部空間とは完全に遮断された状態となっている。したがって、流路内には予め外気よりも比重の大きなエアを必要により充填しておくこともできる。例えば、もし循環エア流路9が外部空間とは完全に遮断されておらず、且つ車両1の運行地域が高地である場合は、流路内は外気と同じ比重の小さなエアで満たされるため、循環冷媒用熱交換器8の熱交換機能が大きく低下する虞がある。しかし、上記のように、外気よりも比重が大きく熱交換効率が良好なエアを完全密封状態で充填しておけば、循環冷媒用熱交換器8の熱交換機能を一定レベルに維持することができるようになる。   In the present embodiment, the circulation air flow path 9 is in a state of being completely blocked from the external space such as the interior of the vehicle 1 and the exterior of the vehicle 1. Accordingly, the flow path can be preliminarily filled with air having a greater specific gravity than the outside air as necessary. For example, if the circulating air flow path 9 is not completely cut off from the external space and the operation area of the vehicle 1 is highland, the flow path is filled with air having the same specific gravity as the outside air. There is a possibility that the heat exchange function of the circulating refrigerant heat exchanger 8 may be greatly reduced. However, as described above, if the air having a higher specific gravity than the outside air and good heat exchange efficiency is filled in a completely sealed state, the heat exchange function of the circulating refrigerant heat exchanger 8 can be maintained at a certain level. become able to.

次に、図1の動作につき説明する。車両1が走行を開始すると、電力変換装置2及び主変圧器装置3が発熱するが、水ポンプ4及び油ポンプ6の起動により循環冷媒流路5,7を冷却水及び冷却油が流れるため、これらの発熱機器の温度上昇は抑制される。   Next, the operation of FIG. 1 will be described. When the vehicle 1 starts running, the power conversion device 2 and the main transformer device 3 generate heat. However, since the cooling water and the cooling oil flow through the circulating refrigerant flow paths 5 and 7 by starting the water pump 4 and the oil pump 6, The temperature rise of these heat generating devices is suppressed.

また、車両1の走行中は熱交換機能保持用空調装置10が稼働する。すなわち、コンプレッサ14の起動により、凝縮器12においては、高温高圧の冷媒がファン16の回転により外気導入口17から導入された外気により冷却される。一方、蒸発器11においては低温低圧の冷媒の気化により付近の雰囲気温度が低下するため、ファン15の回転によって冷却風が循環冷媒用熱交換器8に向かって送出される。   Further, while the vehicle 1 is traveling, the heat exchange function holding air conditioner 10 operates. That is, when the compressor 14 is started, in the condenser 12, the high-temperature and high-pressure refrigerant is cooled by the outside air introduced from the outside air introduction port 17 by the rotation of the fan 16. On the other hand, in the evaporator 11, the ambient temperature in the vicinity decreases due to the vaporization of the low-temperature and low-pressure refrigerant, so that the cooling air is sent out toward the circulating refrigerant heat exchanger 8 by the rotation of the fan 15.

したがって、電力変換装置2及び主変圧器装置3に対する冷却作用を終え、温度上昇した冷却水及び冷却油は循環冷媒用熱交換器8を通過する際に、蒸発器11側から送られてきた冷却風により熱交換されるので、充分に冷却された後に再び電力変換装置2及び主変圧器装置3に送られる。   Therefore, the cooling water and the cooling oil that have finished the cooling operation for the power conversion device 2 and the main transformer device 3 and have risen in temperature are sent from the evaporator 11 side when passing through the circulating refrigerant heat exchanger 8. Since the heat is exchanged by the wind, it is sent to the power conversion device 2 and the main transformer device 3 again after being sufficiently cooled.

このとき、ファン15の回転により循環冷媒用熱交換器8側へ送出される冷却風の温度は、車両1の外部温度にかかわらず予め設定してある所定温度に維持することが可能であり、更にこの冷却風は外気よりも比重が大きいものであって熱交換効率が良好なものである。したがって、車両1が運行する地方の気象環境にかかわらず、循環冷媒用熱交換器8の熱交換機能を一定レベルに維持することができる。それ故、熱交換機能保持用空調装置10については地方の気象環境に応じた能力が必要とされるけれども、電力変換装置2及び主変圧器装置3などの発熱機器や循環冷媒用熱交換器8の仕様については標準化することが可能になる。   At this time, the temperature of the cooling air sent to the circulating refrigerant heat exchanger 8 side by the rotation of the fan 15 can be maintained at a predetermined temperature set in advance regardless of the external temperature of the vehicle 1. Furthermore, the cooling air has a specific gravity greater than that of the outside air and has a good heat exchange efficiency. Therefore, regardless of the local weather environment in which the vehicle 1 operates, the heat exchange function of the circulating refrigerant heat exchanger 8 can be maintained at a certain level. Therefore, although the heat exchange function maintaining air conditioner 10 is required to have a capability according to the local weather environment, the heat exchanger 8 such as the power conversion device 2 and the main transformer device 3 and the heat exchanger 8 for the circulating refrigerant are used. The specification of can be standardized.

上述した図1の第1の実施形態は次のような態様をも広く包含するものである。   The above-described first embodiment of FIG. 1 broadly encompasses the following aspects.

(1)熱交換機能保持用空調装置10は、冷房機能に基づく冷風エアだけでなく、暖房機能に基づく温風エアも循環エア流路9内に送出することが可能なものである。
すなわち、寒冷地などでは車両1の走行開始時に熱交換機能保持用空調装置10を暖房機として用い、循環冷媒用熱交換器8に温風エアを送出することが要求されるが、このような場合は、四方弁(図1では図示せず)の切換により蒸発器11と凝縮器12とを入れ換えるようにすれば車両1の走行開始を円滑に行うことができる。
そして、車両走行を開始してからある程度の時間が経過すると、循環冷媒流路5,7の冷却水及び冷却油の温度が一定以上に上昇するのでその時点で、熱交換機能保持用空調装置10を再び冷房機に切り換えて循環冷媒用熱交換器8に冷風エアを送出するようにすればよい。
なお、熱交換機能保持用空調装置10を暖房機として用いる場合、外気導入口17付近にエアヒータを取り付け、車両走行開始時にこのエアヒータを通電するようにすれば、暖房機としての必要な熱交換機能を迅速に発揮させることができる。
(2)図1の構成では、熱交換機能保持用空調装置10の設置台数は1台であるが、冷房専用機及び暖房専用機の2台を設置する構成を採用することも可能である(その場合、2台の専用機の熱交換器を並列に取り付け、循環エア流路9及びダクト配管19内での流路切換は適当な切換手段又は開閉弁等により行うものとする。)。あるいは、車両運行地域が寒冷地ではなく、車両走行開始時の暖房機能が殆ど不要なことが明らかな場合には、冷房専用機のみ1台とすることも可能である。
(3)図1の構成は、車両1が交流電気車である場合につき説明したものであるが、本実施形態の構成は、車両1が直流電気車、ディーゼル車である場合についても適用可能である。但し、直流電気車の場合は、主変圧器装置3(及び油ポンプ6、循環冷媒流路7)が不要になり、ディーゼル車の場合は、主変圧器装置3がディーゼルエンジンに代替される。
(4)図1における熱交換機能保持用空調装置10は、循環エア流路9を介して冷却エアを送出することにより循環冷媒用熱交換器8の熱交換機能を一定レベルに維持することを目的として配設されたものであるが、その他に車両1の室内の換気も行うように構成することが可能である。
例えば、循環エア流路9と分離した外気導入流路(ダクト配管19の一部を分岐して外気導入口17からの外気を蒸発器11に導くようにする)及び冷却外気放出流路(蒸発器11で冷却された外気を車両1の室内に放出するための流路)を設置すると共に、この循環エア流路9と外気導入流路及び冷却外気放出流路との間の切換を行う流路切換手段を設けておくようにする。
そして、通常時は既述したように、循環エア流路9内のエアを循環冷媒用熱交換器8に向けて送出することにより循環冷媒用熱交換器8の熱交換機能を一定レベルに維持するようにする。しかし、循環冷媒用熱交換器8の熱交換機能が充分に高レベルの状態にあるときは、流路切換手段により蒸発器11及びファン15に連通する流路を循環エア流路9側から外気導入流路及び冷却外気放出流路側に切り換えることによって、熱交換機能保持用空調装置10を車両1の室内の換気のために利用することが可能になる。
(1) The heat exchange function holding air conditioner 10 can send not only cold air based on the cooling function but also warm air based on the heating function into the circulating air flow path 9.
That is, in cold districts or the like, it is required to use the heat exchange function maintaining air conditioner 10 as a heater at the start of traveling of the vehicle 1 and send warm air to the circulating refrigerant heat exchanger 8. In this case, if the evaporator 11 and the condenser 12 are switched by switching a four-way valve (not shown in FIG. 1), the vehicle 1 can be started smoothly.
Then, when a certain amount of time has elapsed since the start of vehicle travel, the temperature of the cooling water and the cooling oil in the circulating refrigerant flow paths 5 and 7 rises above a certain level. May be switched to the air conditioner again so that cold air is sent to the heat exchanger 8 for circulating refrigerant.
When the heat exchange function holding air conditioner 10 is used as a heater, an air heater is attached in the vicinity of the outside air introduction port 17 so that the air heater is energized when the vehicle starts running. Can be demonstrated quickly.
(2) In the configuration of FIG. 1, the number of installed heat exchange function maintaining air conditioners 10 is one, but it is also possible to adopt a configuration in which two units, a cooling only machine and a heating only machine, are installed ( In that case, heat exchangers of two dedicated machines are attached in parallel, and the flow path switching in the circulating air flow path 9 and the duct pipe 19 is performed by appropriate switching means or on-off valves. Alternatively, when it is clear that the vehicle operation area is not a cold region and the heating function at the start of vehicle travel is almost unnecessary, it is possible to use only one cooling-only machine.
(3) Although the configuration of FIG. 1 is described in the case where the vehicle 1 is an AC electric vehicle, the configuration of the present embodiment can also be applied to the case where the vehicle 1 is a DC electric vehicle or a diesel vehicle. is there. However, in the case of a DC electric vehicle, the main transformer device 3 (and the oil pump 6 and the circulating refrigerant flow path 7) is unnecessary, and in the case of a diesel vehicle, the main transformer device 3 is replaced with a diesel engine.
(4) The heat exchange function holding air conditioner 10 in FIG. 1 maintains the heat exchange function of the circulating refrigerant heat exchanger 8 at a certain level by sending cooling air through the circulation air flow path 9. Although arranged for the purpose, the vehicle 1 can also be configured to ventilate the room.
For example, an outside air introduction channel separated from the circulating air channel 9 (a part of the duct pipe 19 is branched to guide outside air from the outside air inlet 17 to the evaporator 11) and a cooling outside air discharge channel (evaporation). A flow path for discharging the outside air cooled by the vessel 11 into the interior of the vehicle 1 and a flow for switching between the circulation air flow path 9, the external air introduction flow path, and the cooling external air discharge flow path. A path switching means is provided.
In normal times, as described above, the heat in the circulating refrigerant heat exchanger 8 is maintained at a constant level by sending the air in the circulating air passage 9 toward the circulating refrigerant heat exchanger 8. To do. However, when the heat exchange function of the heat exchanger 8 for the circulating refrigerant is at a sufficiently high level, the flow path switching means connects the flow path communicating with the evaporator 11 and the fan 15 from the circulating air flow path 9 side to the outside air. By switching to the introduction flow path and the cooling outdoor air discharge flow path side, the heat exchange function maintaining air conditioner 10 can be used for the ventilation of the interior of the vehicle 1.

図2は、本発明の第2の実施形態の要部構成を示す説明図である。なお、図2では図面簡単化のため図1における電力変換装置2(及び水ポンプ4、循環冷媒流路5)のみを図示し、主変圧器装置3(及び油ポンプ6、循環冷媒流路7)の図示は省略してある。   FIG. 2 is an explanatory diagram showing the main configuration of the second embodiment of the present invention. 2, only the power conversion device 2 (and the water pump 4 and the circulating refrigerant flow path 5) in FIG. 1 is shown for simplification of the drawing, and the main transformer device 3 (and the oil pump 6 and the circulating refrigerant flow path 7 are illustrated). ) Is omitted.

図2において、電力変換装置2は密閉容器20を有しており、この密閉容器20内に、IGBT又はその他のスイッチング素子により構成される半導体回路21、CPU等により構成され半導体回路21を制御する半導体回路制御装置22、及びリアクトル23等の構成要素が配設されている。これらの構成要素のうち、水冷方式による冷却が適している半導体回路21が循環冷媒流路5を流れる冷却水により冷却されるようになっている。   In FIG. 2, the power conversion device 2 has a sealed container 20, and a semiconductor circuit 21 configured by an IGBT or other switching element, a CPU, and the like are controlled in the sealed container 20. Components such as the semiconductor circuit control device 22 and the reactor 23 are disposed. Among these components, the semiconductor circuit 21 suitable for cooling by the water cooling method is cooled by the cooling water flowing through the circulating refrigerant flow path 5.

そして、循環エア流路9の循環冷媒用熱交換器8付近の位置からは分岐流路9a,9bが分岐されており、これら分岐流路9a,9bは密閉容器20に連設されている。したがって、ファン15の回転により熱交換機能保持用空調装置10から循環エア流路9に送出される冷却風は、循環冷媒用熱交換器8を流れる冷却水を冷却するが、更に、分岐流路9aを通って密閉容器20内に送出され、半導体回路21、半導体回路制御装置22、及びリアクトル23を冷却した後、分岐流路9bを通って再び循環エア流路9に送出される。   Then, branch flow paths 9 a and 9 b are branched from the position of the circulation air flow path 9 near the circulating refrigerant heat exchanger 8, and these branch flow paths 9 a and 9 b are connected to the sealed container 20. Therefore, the cooling air sent to the circulating air flow path 9 from the heat exchange function holding air conditioner 10 by the rotation of the fan 15 cools the cooling water flowing through the circulating refrigerant heat exchanger 8, but further, the branch flow path After being sent into the sealed container 20 through 9a, the semiconductor circuit 21, the semiconductor circuit control device 22, and the reactor 23 are cooled, and then sent again to the circulating air flow path 9 through the branch flow path 9b.

図1の構成では、電力変換装置2を冷却する手段は循環冷媒流路5のみであったため、循環冷媒流路5が通っていない半導体回路制御装置22やリアクトル23は冷却されることはないが、図2の構成によれば、循環エア流路9を流れるエアの一部を分岐させることにより、密閉容器20内に配設されている全ての構成要素を冷却することが可能になる。   In the configuration of FIG. 1, only the circulating refrigerant flow path 5 is the means for cooling the power conversion device 2, so the semiconductor circuit control device 22 and the reactor 23 that do not pass through the circulating refrigerant flow path 5 are not cooled. According to the configuration of FIG. 2, it is possible to cool all the components arranged in the sealed container 20 by branching a part of the air flowing through the circulation air flow path 9.

また、図2の構成では、密閉容器20は分岐流路9a,9bを介して循環エア流路9と連通しているため、密閉容器20の内部温度を一定温度に保つことができるので、密閉容器20内に配置する各機器の仕様を標準設計仕様とすることが可能になる。   In the configuration of FIG. 2, since the sealed container 20 communicates with the circulating air flow path 9 via the branch flow paths 9a and 9b, the internal temperature of the sealed container 20 can be maintained at a constant temperature. The specification of each device arranged in the container 20 can be made the standard design specification.

そして、循環エア流路9から分岐流路9a,9bを介して出入りする循環エアは塵埃等を含まないきれいな空気であるため、密閉容器20内に配置される各機器に汚損を生じさせる虞がなくなり、その分メンテナンスの労力も軽減される。   Since the circulating air that enters and exits from the circulating air passage 9 via the branch passages 9a and 9b is clean air that does not contain dust or the like, there is a risk of causing damage to each device arranged in the sealed container 20. The maintenance effort will be reduced accordingly.

図3は、本発明の第3の実施形態の要部構成を示す説明図である。この第3の実施形態は第2の実施形態の変形例ともいえるものである。   FIG. 3 is an explanatory diagram showing the main configuration of the third embodiment of the present invention. This third embodiment can be said to be a modification of the second embodiment.

図3において、循環エア流路9及び分岐流路9a,9bの各分岐個所付近にエア流路側開閉弁24a,24b及び分岐流路側開閉弁25a,25bが設けられている。そして、電力変換装置2の密閉容器20内には、これら開閉弁の開閉制御を行う開閉弁制御手段26が設けられている。この開閉弁制御手段26には、半導体回路21に取り付けられた温度検出器27からの検出温度T1、及び密閉容器20内の雰囲気温度検出用の温度検出器28からの検出温度T2が入力されるようになっており、開閉弁制御手段26はこれらの検出温度に基づきエア流路側開閉弁24a,24b及び分岐流路側開閉弁25a,25bの開閉制御を行うようになっている。   In FIG. 3, air flow path side opening / closing valves 24a, 24b and branch flow path side opening / closing valves 25a, 25b are provided in the vicinity of the branch points of the circulation air flow path 9 and the branch flow paths 9a, 9b. And in the airtight container 20 of the power converter 2, the on-off valve control means 26 which performs on-off control of these on-off valves is provided. A detection temperature T1 from a temperature detector 27 attached to the semiconductor circuit 21 and a detection temperature T2 from an ambient temperature detection temperature detector 28 in the sealed container 20 are input to the on-off valve control means 26. The open / close valve control means 26 performs open / close control of the air flow path side open / close valves 24a, 24b and the branch flow path side open / close valves 25a, 25b based on these detected temperatures.

例えば、エア流路側開閉弁24a,24bを開くと共に、分岐流路側開閉弁25a,25bを閉じた状態にした場合、熱交換機能保持用空調装置10の熱交換促進機能は図1と同様になる。   For example, when the air flow path side opening / closing valves 24a, 24b are opened and the branch flow path side opening / closing valves 25a, 25b are closed, the heat exchange promotion function of the heat exchange function holding air conditioner 10 is the same as in FIG. .

また、エア流路側開閉弁24a,24b及び分岐流路側開閉弁25a,25bの全てを開いた状態にした場合、熱交換機能保持用空調装置10の熱交換促進機能は図2と同様になる。   When all of the air flow path side opening / closing valves 24a, 24b and the branch flow path side opening / closing valves 25a, 25b are opened, the heat exchange promotion function of the heat exchange function holding air conditioner 10 is the same as in FIG.

更に、エア流路側開閉弁24a,24bを閉じると共に、分岐流路側開閉弁25a,25bを開いた状態にした場合、熱交換機能保持用空調装置10の熱交換促進機能は循環冷媒用熱交換器8に対しては作用せず、密閉容器20内の全ての構成要素に対する冷却作用となる。したがって、水ポンプ4の故障等により循環冷媒流路5による冷却が不可能になったような場合でも、半導体回路21は分岐流路9a,9bからの冷却風によりある程度冷却されるので、半導体素子の温度上昇による破損を防止することができる。   Furthermore, when the air flow path side opening / closing valves 24a, 24b are closed and the branch flow path side opening / closing valves 25a, 25b are opened, the heat exchange promoting function of the heat exchange function holding air conditioner 10 is the heat exchanger for circulating refrigerant. 8 does not act, but acts as a cooling action on all the components in the sealed container 20. Therefore, even when the cooling by the circulating refrigerant flow path 5 becomes impossible due to a failure of the water pump 4 or the like, the semiconductor circuit 21 is cooled to some extent by the cooling air from the branch flow paths 9a and 9b. Can be prevented from being damaged by the temperature rise.

図4は、本発明の第4の実施形態の説明図である。本実施形態では、鉄道車両がディーゼル電気機関車である場合につき説明する。   FIG. 4 is an explanatory diagram of the fourth embodiment of the present invention. In the present embodiment, a case where the railway vehicle is a diesel electric locomotive will be described.

図4において、車両31内には、発熱機器である電力変換装置32及びディーゼルエンジン33が搭載されている。これら電力変換装置32及びディーゼルエンジン33は、その内部を通る循環冷媒流路34,35の各冷媒によって冷却されるようになっている。   In FIG. 4, a power converter 32 and a diesel engine 33, which are heat generating devices, are mounted in a vehicle 31. The power conversion device 32 and the diesel engine 33 are cooled by each refrigerant in the circulation refrigerant flow paths 34 and 35 passing through the inside thereof.

循環冷媒流路34,35の各熱交換部により構成される循環冷媒用熱交換器36は、循環エア流路37の途中に配設されている。そして、この循環冷媒用熱交換器36と対向する位置に熱交換機能保持用空調装置38が配設されている。   A circulation refrigerant heat exchanger 36 constituted by the heat exchange portions of the circulation refrigerant flow paths 34 and 35 is disposed in the middle of the circulation air flow path 37. A heat exchange function holding air conditioner 38 is disposed at a position facing the circulating refrigerant heat exchanger 36.

循環冷媒用熱交換器36は、図1の熱交換機能保持用空調装置10と同様のものであり、蒸発器(図示せず)が循環エア流路37の途中に取り付けられている。また、車両31の屋根部に形成された外気導入口39と、床下部に形成された排風口40との間にはダクト配管41が設けられており、このダクト配管41の途中に凝縮器(図示せず)が取り付けられている。   The circulation refrigerant heat exchanger 36 is the same as the heat exchange function maintaining air conditioner 10 of FIG. 1, and an evaporator (not shown) is attached in the middle of the circulation air flow path 37. In addition, a duct pipe 41 is provided between the outside air inlet 39 formed in the roof portion of the vehicle 31 and the air outlet 40 formed in the lower part of the floor, and a condenser ( (Not shown) is attached.

循環エア流路37には、エア放出用ダクト42及び室内エア吸入用ダクト43が連設されている。エア放出用ダクト42は、複数のエア放出口42aを有しており、このエア放出口42aから循環エア流路37を通る所定温度のエアの一部を車両室内に放出するようになっている。そして、室内エア吸入用ダクト43は、エア吸入口43aを有しており、室内のエアをこのエア吸入口43aから吸入して熱交換機能保持用空調装置10に送出するようになっている。本実施形態では、このように循環エア流路37にエア放出用ダクト42及び室内エア吸入用ダクト43を連設することにより、熱交換機能保持用空調装置38からのエアの一部により、車両31の室内空調も行えるようにしている。   An air discharge duct 42 and an indoor air intake duct 43 are connected to the circulation air flow path 37. The air discharge duct 42 has a plurality of air discharge ports 42a, and a part of air having a predetermined temperature passing through the circulation air flow path 37 is discharged from the air discharge ports 42a into the vehicle compartment. . The indoor air intake duct 43 has an air intake port 43a. The indoor air intake duct 43a draws indoor air from the air intake port 43a and sends it out to the heat exchange function holding air conditioner 10. In the present embodiment, the air discharge duct 42 and the indoor air intake duct 43 are connected to the circulation air flow path 37 in this way, so that the vehicle is partially used by the air from the heat exchange function holding air conditioner 38. 31 indoor air-conditioning can also be performed.

次に、図4の動作につき説明する。車両31が走行を開始すると、電力変換装置32及びディーゼルエンジン33が発熱するが、循環冷媒流路34,35を流れる冷媒の働きにより、これらの発熱機器の温度上昇は抑制される。そして、電力変換装置32及びディーゼルエンジン33に対する冷却を終えて温度上昇した冷媒は、循環エア流路37内に配設されている循環冷媒用熱交換器36において、熱交換機能保持用空調装置38からの所定温度のエアにより効率的に冷却される。   Next, the operation of FIG. 4 will be described. When the vehicle 31 starts to travel, the power conversion device 32 and the diesel engine 33 generate heat, but due to the action of the refrigerant flowing through the circulation refrigerant flow paths 34 and 35, the temperature rise of these heat generating devices is suppressed. The refrigerant whose temperature has risen after the cooling of the power conversion device 32 and the diesel engine 33 is finished is transferred to the heat exchanger 36 for circulating refrigerant disposed in the circulating air flow path 37. The air is efficiently cooled by air having a predetermined temperature.

このとき、熱交換機能保持用空調装置38から循環エア流路37に送出される所定温度のエアの一部はエア放出用ダクト42に分岐され、そのエア放出口42aから車両31の室内に放出される。したがって、室内の室温上昇も抑制される。そして、室内のエアはエア吸入口43aから吸入されて熱交換機能保持用空調装置38に送られ、蒸発器により冷却された後、再度、循環エア流路37及びエア放出用ダクト42に送出される。   At this time, a part of the air at a predetermined temperature sent from the heat exchange function holding air conditioner 38 to the circulation air flow path 37 is branched into the air discharge duct 42 and discharged into the vehicle 31 from the air discharge port 42a. Is done. Therefore, the room temperature rise in the room is also suppressed. The indoor air is sucked from the air suction port 43a and sent to the heat exchange function holding air conditioner 38, cooled by the evaporator, and then sent again to the circulation air flow path 37 and the air discharge duct 42. The

図4の構成では、車両31の外気導入口39及び排風口40の間をダクト配管41が貫通しているが、車両室内は外部とは遮断された密閉構造となっているので、ディーゼルエンジンのエンジン音が外部に漏れることを防止することができ、騒音防止効果を大きく向上させることができる。   In the configuration of FIG. 4, the duct pipe 41 passes through between the outside air inlet 39 and the air outlet 40 of the vehicle 31, but the vehicle interior has a sealed structure that is shut off from the outside. The engine sound can be prevented from leaking to the outside, and the noise prevention effect can be greatly improved.

また、図5に示した従来システムでは、冷却装置54がルーバー60から取り込んだ外気を循環冷媒流路53の熱交換部に直接当てる構成であり、このような構成では、外気中の塵埃に起因する機器故障の発生を防ぐため頻繁なメンテナンス作業が必要とせざるを得ず、更に、ルーバー60から外部に騒音が放出されてしまうため、ディーゼル車の大きな騒音を充分に低減することができなかった。しかし、図4の構成では、車両31の機関室をほぼ密閉構造とすることができるため、それほど頻繁なメンテナンス作業を必要とすることはなくなる。   Further, in the conventional system shown in FIG. 5, the cooling device 54 directly applies the outside air taken in from the louver 60 to the heat exchanging portion of the circulation refrigerant flow path 53. In such a configuration, the outside air is caused by dust in the outside air. In order to prevent the occurrence of equipment failure, frequent maintenance work is unavoidable, and noise is emitted from the louver 60 to the outside, so that the loud noise of diesel vehicles cannot be reduced sufficiently. . However, in the configuration of FIG. 4, the engine room of the vehicle 31 can be substantially sealed, so that frequent maintenance work is not required.

本発明の第1の実施形態の説明図。Explanatory drawing of the 1st Embodiment of this invention. 本発明の第2の実施形態の要部構成を示す説明図。Explanatory drawing which shows the principal part structure of the 2nd Embodiment of this invention. 本発明の第3の実施形態の要部構成を示す説明図。Explanatory drawing which shows the principal part structure of the 3rd Embodiment of this invention. 本発明の第4の実施形態の説明図。Explanatory drawing of the 4th Embodiment of this invention. 従来システムについての説明図。Explanatory drawing about a conventional system.

符号の説明Explanation of symbols

1:車両
2:電力変換装置
3:主変圧器装置
4:水ポンプ
5:循環冷媒流路
6:油ポンプ
7:循環冷媒流路
8:循環冷媒用熱交換器
9:循環エア流路
10:熱交換機能保持用空調装置
11:蒸発器
12:凝縮器
13:冷媒流路
14:コンプレッサ
15:ファン
16:ファン
17:外気導入口
18:排風口
19:ダクト配管
20:密閉容器
21:半導体回路
22:半導体回路制御装置
23:リアクトル
9a,9b:分岐流路
24a,24b:エア流路側開閉弁
25a,25b:分岐流路側開閉弁
26:開閉弁制御手段
27:温度検出器
28:温度検出器
T1:検出温度
T2:検出温度
31:車両
32:電力変換装置
33:ディーゼルエンジン
34:循環冷媒流路
35:環冷媒流路
36:循環冷媒用熱交換器
37:循環エア流路
38:熱交換機能保持用空調装置
39:外気導入口
40:排風口
41:ダクト配管
42:エア放出用ダクト
42a:エア放出口
43:室内エア吸入用ダクト
43a:エア吸入口
51:車両
52:電力変換装置
53:循環冷媒流路
54:冷却装置
55:ファン
56:送風機
57:エアコンプレッサ装置
58:主電動機
59:車輪
60:ルーバー
61:ルーバー
1: Vehicle 2: Power conversion device 3: Main transformer device 4: Water pump 5: Circulating refrigerant channel 6: Oil pump 7: Circulating refrigerant channel 8: Heat exchanger 9 for circulating refrigerant: Circulating air channel 10: Heat exchange function holding air conditioner 11: Evaporator 12: Condenser 13: Refrigerant flow path 14: Compressor 15: Fan 16: Fan 17: Outside air inlet 18: Air outlet 19: Duct pipe 20: Sealed container 21: Semiconductor circuit 22: Semiconductor circuit controller 23: Reactor 9a, 9b: Branch flow path 24a, 24b: Air flow path side opening / closing valve 25a, 25b: Branch flow path side opening / closing valve 26: Open / close valve control means 27: Temperature detector 28: Temperature detector T1: Detected temperature T2: Detected temperature 31: Vehicle 32: Power conversion device 33: Diesel engine 34: Circulating refrigerant channel 35: Circulating refrigerant channel 36: Circulating refrigerant heat exchanger 37: Circulating air channel 38: Heat exchange Function maintenance Air conditioner 39: outside air inlet 40: air outlet 41: duct piping 42: air discharge duct 42a: air discharge port 43: indoor air intake duct 43a: air intake port 51: vehicle 52: power converter 53: circulation Refrigerant flow path 54: Cooling device 55: Fan 56: Blower 57: Air compressor device 58: Main motor 59: Wheel 60: Louver 61: Louver

Claims (9)

車両に搭載された発熱機器を通る循環冷媒流路途中に設けられ、循環冷媒に熱交換を行わせるための循環冷媒用熱交換器と、
前記循環冷媒用熱交換器を通り且つ外部と遮断状態となるように形成した循環エア流路途中に設けられ、前記循環冷媒用熱交換器に対して所定温度の循環エアを送出することにより、前記循環冷媒用熱交換器の熱交換機能を一定レベルに維持するための熱交換機能保持用空調装置と、
を含んで構成される熱交換システムを備えたことを特徴とする鉄道車両。
A circulating refrigerant heat exchanger provided in the middle of the circulating refrigerant flow path that passes through the heat generating device mounted on the vehicle, and for causing the circulating refrigerant to exchange heat;
By passing through the circulating refrigerant heat exchanger and in the middle of the circulating air flow path formed so as to be cut off from the outside, by sending circulating air at a predetermined temperature to the circulating refrigerant heat exchanger, A heat exchange function holding air conditioner for maintaining the heat exchange function of the heat exchanger for circulating refrigerant at a certain level;
A railway vehicle comprising a heat exchange system including
前記循環エアは、前記循環エア流路内に予め充填しておいた、外気よりも比重の大きなエアである、
ことを特徴とする請求項1記載の鉄道車両。
The circulating air is air having a larger specific gravity than the outside air, which is filled in the circulating air flow path in advance.
The railway vehicle according to claim 1.
前記熱交換機能保持用空調装置は、冷房機能に基づく冷風エア、又は暖房機能に基づく温風エアのいずれのエアについても送出可能なものである、
ことを特徴とする請求項1記載の鉄道車両。
The heat exchange function holding air conditioner is capable of sending out either cold air based on a cooling function or warm air based on a heating function.
The railway vehicle according to claim 1.
前記熱交換機能保持用空調装置は、凝縮器及び蒸発器の2つの熱交換器を有し、一方の熱交換器が前記循環エア流路内に取り付けられると共に、他方の熱交換器が車両外部と連通するダクト配管内に取り付けられている、
ことを特徴とする請求項1記載の鉄道車両。
The heat exchange function maintaining air conditioner has two heat exchangers, a condenser and an evaporator, and one heat exchanger is mounted in the circulating air flow path, and the other heat exchanger is located outside the vehicle. Installed in duct piping communicating with
The railway vehicle according to claim 1.
前記発熱機器を密閉容器内に配設すると共に、この密閉容器に前記循環エア流路から分岐させた分岐流路を連設し、前記熱交換機能保持用空調装置からの所定温度のエアの一部を密閉容器内部にも送出可能とした、
ことを特徴とする請求項1記載の鉄道車両。
The heat generating device is disposed in a sealed container, and a branch flow path branched from the circulation air flow path is connected to the sealed container, and one air of a predetermined temperature from the heat exchange function holding air conditioner is provided. The part can also be sent inside the sealed container.
The railway vehicle according to claim 1.
前記循環エア流路及び分岐流路の各分岐個所付近にエア流路側開閉弁及び分岐流路側開閉弁を設けると共に、前記密閉容器内にこれら開閉弁の開閉制御を、発熱機器温度の検出又は密閉容器内温度の検出に基づき行う開閉弁制御手段を設けた、
ことを特徴とする請求項5記載の鉄道車両。
An air flow path side open / close valve and a branch flow path side open / close valve are provided in the vicinity of each branch point of the circulation air flow path and the branch flow path, and the open / close control of the open / close valve is controlled in the sealed container to detect or seal the temperature of the heat generating device. Provided on-off valve control means to perform based on the detection of the temperature in the container,
The railway vehicle according to claim 5.
前記循環エア流路にエア放出用ダクト及び室内エア吸入用ダクトを連設し、前記熱交換機能保持用空調装置からの所定温度のエアの一部を前記車両の室内に放出すると共に、この室内のエアを室内エア吸入用ダクトから吸入して前記熱交換機能保持用空調装置へ送出することにより、車両の室内空調についても可能とした、
ことを特徴とする請求項1記載の鉄道車両。
An air discharge duct and an indoor air intake duct are connected to the circulation air flow path, and a part of air at a predetermined temperature from the heat exchange function maintaining air conditioner is discharged into the vehicle interior. By inhaling the air from the indoor air intake duct and sending it to the heat exchange function holding air conditioner, it was also possible for the indoor air conditioning of the vehicle,
The railway vehicle according to claim 1.
前記熱交換機能保持用空調装置は、外気導入口付近に設けられたエアヒータを有するものであり、前記暖房機能に基づく温風エアを送出する際は、このエアヒータにより予熱されたエアを導入するものである、
ことを特徴とする請求項3記載の鉄道車両。
The air conditioner for holding the heat exchange function has an air heater provided in the vicinity of the outside air introduction port, and introduces air preheated by the air heater when sending warm air based on the heating function. Is,
The railway vehicle according to claim 3.
前記循環エア流路と分離した外気導入流路及び冷却外気放出流路が設置されると共に、前記熱交換機能保持用空調装置は流路切換手段を有しており、前記熱交換機能保持用空調装置はこの流路切換手段の切換により、前記循環エア流路を経由した前記循環冷媒用熱交換器に対する循環エアの送出に代えて、前記外気導入流路から取り込んだ外気を前記冷却外気放出流路を介して車両室内に放出することが可能なものである、
ことを特徴とする請求項1記載の鉄道車両。
An outside air introduction passage and a cooling outside air discharge passage separated from the circulation air passage are installed, and the heat exchange function holding air conditioner has a passage switching means, and the heat exchange function holding air conditioner By switching the flow path switching means, the apparatus replaces the circulation air to the circulation refrigerant heat exchanger via the circulation air flow path, and replaces the outside air taken in from the outside air introduction flow path with the cooling outside air discharge flow. Can be discharged into the vehicle compartment via the road,
The railway vehicle according to claim 1.
JP2008236565A 2008-09-16 2008-09-16 Railroad vehicle Pending JP2010069919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236565A JP2010069919A (en) 2008-09-16 2008-09-16 Railroad vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008236565A JP2010069919A (en) 2008-09-16 2008-09-16 Railroad vehicle

Publications (1)

Publication Number Publication Date
JP2010069919A true JP2010069919A (en) 2010-04-02

Family

ID=42202117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236565A Pending JP2010069919A (en) 2008-09-16 2008-09-16 Railroad vehicle

Country Status (1)

Country Link
JP (1) JP2010069919A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046492A1 (en) * 2011-09-26 2013-04-04 株式会社 東芝 Liquid-cooled electric power conversion device and railway vehicle
CN103646752A (en) * 2013-12-18 2014-03-19 中国北车集团大连机车研究所有限公司 Traction transformer cooling system of intercity CRH (China railway high-speed)
WO2014049895A1 (en) 2012-09-26 2014-04-03 株式会社 東芝 Railway vehicle
JP2014187869A (en) * 2013-03-22 2014-10-02 Alstom Transport Sa Power converter for rolling stock
JP2021501090A (en) * 2017-10-30 2021-01-14 アーベーベー・シュバイツ・アーゲーABB Schweiz AG Cooling system for rail vehicle power converters

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046492A1 (en) * 2011-09-26 2013-04-04 株式会社 東芝 Liquid-cooled electric power conversion device and railway vehicle
JP2013071482A (en) * 2011-09-26 2013-04-22 Toshiba Corp Liquid-cooled electric power conversion device
WO2014049895A1 (en) 2012-09-26 2014-04-03 株式会社 東芝 Railway vehicle
US10112626B2 (en) 2012-09-26 2018-10-30 Kabushiki Kaisha Toshiba Rail vehicle
JP2014187869A (en) * 2013-03-22 2014-10-02 Alstom Transport Sa Power converter for rolling stock
CN103646752A (en) * 2013-12-18 2014-03-19 中国北车集团大连机车研究所有限公司 Traction transformer cooling system of intercity CRH (China railway high-speed)
JP2021501090A (en) * 2017-10-30 2021-01-14 アーベーベー・シュバイツ・アーゲーABB Schweiz AG Cooling system for rail vehicle power converters

Similar Documents

Publication Publication Date Title
JP6434680B2 (en) Air conditioner
WO2013084476A1 (en) Vehicle air-conditioning device
US9517678B2 (en) High-voltage equipment cooling system for electric vehicle and high-voltage equipment cooling method for electric vehicle
WO2009151092A1 (en) Ventilating and air-conditioning apparatus for vehicle
KR101189417B1 (en) Temperature Control Apparatus for Vehicle
JP2007525353A (en) Modular bus air conditioning system
CN105050839B (en) Air conditioner for motor vehicle
JP2010069919A (en) Railroad vehicle
JP2007285544A (en) Air conditioner
US9732993B2 (en) Refrigerant circuit and method of controlling such a circuit
JP6728434B2 (en) Rail vehicle and method of controlling rail vehicle
WO2010007909A1 (en) Ventilation load reducer and air conditioner for automobile using same
WO2017051524A1 (en) Heat exchanging ventilation device
JP2008170131A (en) Air conditioning system
JP2020199805A (en) Air conditioner for vehicle
JP2004060999A (en) Parking area ventilation system and cooling tower system
JP2007062519A (en) Humidifier for vehicular air conditioner
JP2010255909A (en) Refrigerating device for land transportation
CN213831681U (en) Galley for a vehicle and vehicle
JP5705015B2 (en) Air conditioning system and building
JP4526397B2 (en) Air-conditioning ventilation system for high-speed railway vehicles
JP2004009900A (en) Ventilating device for vehicle
JP2014213653A (en) Railway vehicle
WO2024084564A1 (en) Air conditioning system for railway vehicle
JP2010047087A (en) Air conditioner for vehicle