JP2010068665A - Optical voltage measuring apparatus - Google Patents

Optical voltage measuring apparatus Download PDF

Info

Publication number
JP2010068665A
JP2010068665A JP2008233941A JP2008233941A JP2010068665A JP 2010068665 A JP2010068665 A JP 2010068665A JP 2008233941 A JP2008233941 A JP 2008233941A JP 2008233941 A JP2008233941 A JP 2008233941A JP 2010068665 A JP2010068665 A JP 2010068665A
Authority
JP
Japan
Prior art keywords
voltage
main circuit
capacitance
embedded
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008233941A
Other languages
Japanese (ja)
Inventor
Masao Takahashi
正雄 高橋
Junichi Sato
純一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008233941A priority Critical patent/JP2010068665A/en
Priority to CA 2678212 priority patent/CA2678212A1/en
Priority to CH13922009A priority patent/CH699465B1/en
Priority to CN200910174389A priority patent/CN101672868A/en
Publication of JP2010068665A publication Critical patent/JP2010068665A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0356Mounting of monitoring devices, e.g. current transformers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photovoltage measuring device which divides voltage without receiving the influence of environmental characteristics, such as, temperature and humidity, and measures a main circuit voltage at high accuracy. <P>SOLUTION: The photovoltage measuring device includes a main circuit conductor 1; a dielectric 2 which supports the main circuit conductor 1 in an insulated state and is fixed to a ground member 3; an embedded electrode 6 buried in the dielectric 2; and an electro-optic element 20 for measuring a voltage of the main circuit conductor 1 connected to the embedded electrode 6. A voltage resulting from voltage division at the capacitance ratio between a capacitance between the main circuit conductor 1 and the embedded electrode 6 and the capacitance between the buried electrode 6, and the ground member 3 is applied to the electro-optic element 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発変電所などに用いられる開閉装置の主回路電圧の測定精度を向上し得る光電圧測定装置に関する。   The present invention relates to an optical voltage measurement device capable of improving the measurement accuracy of a main circuit voltage of a switchgear used in a power generation substation or the like.

数kV以上の高電圧開閉装置は、静電容量分圧や抵抗分圧によって主回路電圧が測定される。この種の測定装置は、図3に示すようなガス絶縁開閉装置に用いられるコーン形絶縁スペーサが知られている(例えば、特許文献1参照。)。   In a high-voltage switchgear of several kV or more, the main circuit voltage is measured by capacitance division or resistance division. As this type of measuring apparatus, a cone-shaped insulating spacer used in a gas-insulated switchgear as shown in FIG. 3 is known (for example, see Patent Document 1).

図3に示すように、主回路導体1は、コーン形絶縁スペーサ2に支持され、筒状の接地電位のタンク3に対して絶縁されている。絶縁スペーサ2は、エポキシ樹脂を注型して形成した第1の誘電体4と、これよりも抵抗率が小さく表面に層状に設けられた第2の誘電体5とから構成されている。また、タンク3側の第1の誘電体4内には、環状の埋め込み電極6が埋め込まれている。外周端部の両端には、環状の埋め込み金属7が設けられ、タンク3端と気密に固定される。   As shown in FIG. 3, the main circuit conductor 1 is supported by a cone-shaped insulating spacer 2 and insulated from a tank 3 having a cylindrical ground potential. The insulating spacer 2 includes a first dielectric 4 formed by casting an epoxy resin, and a second dielectric 5 having a lower resistivity than that and provided in a layered manner on the surface. An annular embedded electrode 6 is embedded in the first dielectric 4 on the tank 3 side. An annular embedded metal 7 is provided at both ends of the outer peripheral end portion and is airtightly fixed to the end of the tank 3.

埋め込み電極6には、二次側コンデンサ8が接続され、埋め込み金属7を介して接地される。二次側コンデンサ8には、検出インピーダンス9が並列接続されている。なお、主回路導体1と埋め込み電極6間には、一次側静電容量10と、第2の誘電体5による一次側体積抵抗11が形成される。   A secondary side capacitor 8 is connected to the embedded electrode 6 and is grounded through the embedded metal 7. A detection impedance 9 is connected to the secondary capacitor 8 in parallel. A primary-side capacitance 10 and a primary-side volume resistance 11 due to the second dielectric 5 are formed between the main circuit conductor 1 and the embedded electrode 6.

これにより、一次側静電容量10と検出インピーダンス9を含む二次側コンデンサ8とで分圧された電圧を測定することができる。また、第2の誘電体5は時定数の改善のために設けられたものであり、周波数の高いものでは一次側体積抵抗11による分圧となり、精度よく主回路電圧を測定することができる。   Thereby, the voltage divided by the primary side capacitance 10 and the secondary side capacitor 8 including the detection impedance 9 can be measured. The second dielectric 5 is provided for improving the time constant. When the frequency is high, the voltage is divided by the primary side volume resistance 11, and the main circuit voltage can be accurately measured.

一方、電圧の測定には、電気光学素子(ポッケルス効果素子)を用いたものが知られている(例えば、特許文献2参照。)。しかしながら、電気光学素子に印加できる電圧は約1kV以下であり、高電圧を測定するためには分圧器を用いなくてはならない。このため、分圧器には高精度のものが要求されるが、絶縁耐力などを考慮すると大形状となり、ガス絶縁開閉装置そのものが大型化する。
特開2000−232719号公報 (第4ページ、図1) 特開2000−258465号公報 (第3ページ、図1)
On the other hand, a voltage measurement using an electro-optic element (Pockels effect element) is known (see, for example, Patent Document 2). However, the voltage that can be applied to the electro-optic element is about 1 kV or less, and a voltage divider must be used to measure a high voltage. For this reason, a high-precision voltage divider is required. However, when the dielectric strength is taken into consideration, the voltage divider becomes large and the gas insulated switchgear itself becomes large.
Japanese Unexamined Patent Publication No. 2000-232719 (4th page, FIG. 1) JP 2000-258465 A (third page, FIG. 1)

上記の従来の高電圧開閉装置の主回路電圧測定においては、次のような問題がある。電気光学素子を用いようとすると、専用の分圧器が必要となり、ガス絶縁開閉装置が大型化する。そこで、絶縁スペーサ2を用いて分圧回路を作り、主回路電圧を測定しようとすると、一次側分圧回路の一次側静電容量10と一次側体積抵抗11とがタンク3内であり、二次分圧回路の二次側コンデンサ8と検出インピーダンス9とがタンク3外の気中となる。タンク3内では通電電流による温度上昇があり、またタンク3外では気温の変化があり、一次側と二次側の分圧回路の温度特性を同様とすることが困難であった。また、タンク3内では湿度が低いものの、タンク3外では湿度の影響を受けることになる。   The main circuit voltage measurement of the above-described conventional high voltage switchgear has the following problems. If an electro-optic element is to be used, a dedicated voltage divider is required, and the gas insulated switchgear becomes large. Therefore, when a voltage dividing circuit is made using the insulating spacer 2 and the main circuit voltage is measured, the primary side capacitance 10 and the primary side volume resistance 11 of the primary side voltage dividing circuit are in the tank 3, and The secondary side capacitor 8 and the detection impedance 9 of the secondary voltage dividing circuit are in the air outside the tank 3. In the tank 3, there is a temperature rise due to the energization current, and there is a change in temperature outside the tank 3, and it is difficult to make the temperature characteristics of the voltage dividing circuits on the primary side and the secondary side the same. Further, although the humidity is low in the tank 3, it is affected by the humidity outside the tank 3.

このため、ガス絶縁開閉装置の絶縁構造物である絶縁スペーサ2などを用い、温度や湿度などの環境特性を同様とすることのできる分圧回路を作り、主回路電圧を高精度に測定するものが望まれていた。また、電気光学素子を用いる場合、この電気光学素子を接続することにより二次側のインピーダンスが大きく変化せず、安定した分圧比が得られるものが望まれていた。   For this reason, a voltage dividing circuit that can have the same environmental characteristics such as temperature and humidity by using the insulating spacer 2 that is an insulating structure of the gas insulated switchgear is used to measure the main circuit voltage with high accuracy. Was desired. Further, when an electro-optic element is used, it has been desired to connect the electro-optic element so that the impedance on the secondary side does not change greatly and a stable voltage dividing ratio can be obtained.

本発明は上記問題を解決するためになされたもので、環境特性に影響を受けず、高精度で主回路電圧を測定する光電圧測定装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an optical voltage measuring device that measures a main circuit voltage with high accuracy without being affected by environmental characteristics.

上記目的を達成するために、本発明の光電圧測定装置は、主回路導体と、前記主回路導体を絶縁支持するとともに、接地部材に固定された誘電体と、前記誘電体内に埋め込まれた埋め込み電極と、前記埋め込み電極に接続された前記主回路導体の電圧を測定するための電気光学素子とを備え、前記電気光学素子には、前記主回路導体と前記埋め込み電極間、および前記埋め込み電極と前記接地部材間で形成される静電容量比で分圧された電圧が印加されることを特徴とする。   In order to achieve the above object, an optical voltage measuring device according to the present invention comprises a main circuit conductor, a dielectric that supports the main circuit conductor insulatively, is fixed to a ground member, and is embedded in the dielectric. An electro-optic element for measuring a voltage of the main circuit conductor connected to the embedded electrode, and the electro-optic element includes the main circuit conductor and the embedded electrode, and the embedded electrode; A voltage divided by a capacitance ratio formed between the ground members is applied.

本発明によれば、一次側静電容量と二次側静電容量とを同一の絶縁材料で形成し、これらの静電容量比で分圧した電圧を電気光学素子に接続しているので、静電容量比が温度、湿度などの環境特性に影響を受けず、高精度に主回路電圧を測定することができる。   According to the present invention, the primary side capacitance and the secondary side capacitance are formed of the same insulating material, and the voltage divided by these capacitance ratios is connected to the electro-optic element. The capacitance ratio is not affected by environmental characteristics such as temperature and humidity, and the main circuit voltage can be measured with high accuracy.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明の実施例1に係る光電圧測定装置を図1を参照して説明する。図1は、本発明の実施例1に係る分圧器として機能する絶縁スペーサの断面図である。なお、図1において、従来と同様の構成部分については、同一符号を付した。   First, an optical voltage measuring apparatus according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view of an insulating spacer that functions as a voltage divider according to Embodiment 1 of the present invention. In FIG. 1, the same components as those in the prior art are denoted by the same reference numerals.

図1に示すように、ガス絶縁開閉装置の主回路導体1は、コーン形絶縁スペーサ2に支持固定され、筒状の接地電位のタンク(接地部材)3に対して絶縁されている。絶縁スペーサ2は、エポキシ樹脂を注型して形成された第1の誘電体4で構成されている。また、タンク3側の第1の誘電体4内には、環状の埋め込み電極6が埋め込まれている。外周端部の両端には、環状の埋め込み金属7が設けられ、タンク3端と気密に固定される。タンク3内には、絶縁ガスが充填されている。   As shown in FIG. 1, a main circuit conductor 1 of a gas insulated switchgear is supported and fixed to a cone-shaped insulating spacer 2 and insulated from a cylindrical tank (grounding member) 3 having a ground potential. The insulating spacer 2 is composed of a first dielectric 4 formed by casting an epoxy resin. An annular embedded electrode 6 is embedded in the first dielectric 4 on the tank 3 side. An annular embedded metal 7 is provided at both ends of the outer peripheral end portion and is airtightly fixed to the end of the tank 3. The tank 3 is filled with an insulating gas.

埋め込み電極6には、BGO、BSOなどの単結晶を用いた電気光学素子20の一方端が接続され、電気光学素子20の他方端は接地されている。電気光学素子20には、光源駆動装置21、発光ダイオードなどの光源22、光ファイバー23、送光コリメータ部24、入射光を直線偏光に変換する偏光子25、直線偏光を円偏光に変換する1/4波長板26を介して電圧を測定するための測定光(光信号)が入射される。   One end of an electro-optic element 20 using a single crystal such as BGO or BSO is connected to the embedded electrode 6, and the other end of the electro-optic element 20 is grounded. The electro-optic element 20 includes a light source driving device 21, a light source 22 such as a light emitting diode, an optical fiber 23, a light transmission collimator unit 24, a polarizer 25 that converts incident light into linearly polarized light, and 1 / that converts linearly polarized light into circularly polarized light. Measurement light (optical signal) for measuring voltage is incident through the four-wavelength plate 26.

電気光学素子20では、入射された円偏光を電界強度の大きさに応じて楕円光に変換し、出射する。測定光は検光子27を透過し、一偏光成分のみが出射される。そして、受光コリメータ部28で光ファイバー29に導かれ、検出器30に送られる。検出器30では、測定光を電気信号に変換し、電子回路31で被測定電圧が演算される。送光コリメータ部24から受光コリメータ部28までは、電界の影響を除去するシールドケース32内に収納される。   In the electro-optic element 20, the incident circularly polarized light is converted into elliptical light according to the magnitude of the electric field intensity and emitted. The measurement light passes through the analyzer 27 and only one polarization component is emitted. Then, it is guided to the optical fiber 29 by the light receiving collimator unit 28 and sent to the detector 30. In the detector 30, the measurement light is converted into an electric signal, and the measured voltage is calculated by the electronic circuit 31. The light transmitting collimator unit 24 to the light receiving collimator unit 28 are housed in a shield case 32 that removes the influence of the electric field.

絶縁スペーサ2では、主回路導体1と埋め込み電極6間に一次側静電容量10が形成され、埋め込み電極6とタンク3間に二次側静電容量33が形成される。このため、電気光学素子20には、一次側静電容量10と、電気光学素子20自身の静電容量と二次側静電容量33との合成容量とで分圧された電圧が印加される。   In the insulating spacer 2, a primary side capacitance 10 is formed between the main circuit conductor 1 and the embedded electrode 6, and a secondary side capacitance 33 is formed between the embedded electrode 6 and the tank 3. For this reason, the voltage divided by the primary side capacitance 10 and the combined capacitance of the capacitance of the electro-optic element 20 itself and the secondary side capacitance 33 is applied to the electro-optic element 20. .

ここで、電気光学素子20の静電容量は二次側静電容量33と比べて格段に小さく、分圧比は二次側静電容量33でほぼ決定される。これは、電気光学素子20の比誘電率がエポキシ樹脂よりも大きいのにも係らず、埋め込み電極6とタンク3間の電極配置が同軸電極配置であり、対向する電極面積が電気光学素子20よりも格段に大きくなるためである。直径300mm程度の絶縁スペーサ2で、電気光学素子20と二次側静電容量33との静電容量比は100倍以上となる。   Here, the capacitance of the electro-optic element 20 is much smaller than the secondary side capacitance 33, and the voltage division ratio is substantially determined by the secondary side capacitance 33. This is because the electrode arrangement between the embedded electrode 6 and the tank 3 is a coaxial electrode arrangement even though the relative permittivity of the electro-optic element 20 is larger than that of the epoxy resin, and the opposing electrode area is larger than that of the electro-optic element 20. This is because the size will be much larger. With the insulating spacer 2 having a diameter of about 300 mm, the capacitance ratio between the electro-optic element 20 and the secondary-side capacitance 33 is 100 times or more.

これにより、一次側静電容量10と二次側静電容量33との静電容量比で分圧された電圧が電気光学素子20に印加され、主回路電圧を測定することができる。一次側静電容量10と二次側静電容量33とは、同一のエポキシ樹脂で形成されており、温度変化に伴う静電容量の変化が同様となる。また、タンク3内は、所定の低湿度で一定に保たれるので、湿度の影響を受けることはない。即ち、一次側静電容量10と二次側静電容量33とは同一の環境下に曝されることになる。なお、一次側静電容量10には、絶縁ガス中の浮遊静電容量が加算されるが、上述と同様に、環境特性に左右されることはない。   As a result, a voltage divided by the capacitance ratio between the primary side capacitance 10 and the secondary side capacitance 33 is applied to the electro-optic element 20, and the main circuit voltage can be measured. The primary side capacitance 10 and the secondary side capacitance 33 are formed of the same epoxy resin, and the change in the capacitance with the temperature change is the same. Further, since the inside of the tank 3 is kept constant at a predetermined low humidity, it is not affected by the humidity. That is, the primary side capacitance 10 and the secondary side capacitance 33 are exposed to the same environment. Although the floating capacitance in the insulating gas is added to the primary-side capacitance 10, it is not affected by environmental characteristics as described above.

上記実施例1の光電圧測定装置によれば、エポキシ樹脂よりなる第1の誘電体4内に埋め込み電極6を埋め込み、電気光学素子20に印加される電圧を、同一のエポキシ樹脂で形成される一次側静電容量10と二次側静電容量33とで分圧しているので、静電容量比が温度、湿度などの環境特性に影響を受けず、高精度で主回路電圧を測定することができる。   According to the optical voltage measuring apparatus of the first embodiment, the embedded electrode 6 is embedded in the first dielectric 4 made of epoxy resin, and the voltage applied to the electro-optic element 20 is formed of the same epoxy resin. Since the primary side capacitance 10 and the secondary side capacitance 33 are divided, the capacitance ratio is not affected by environmental characteristics such as temperature and humidity, and the main circuit voltage is measured with high accuracy. Can do.

次に、本発明の実施例2に係る光電圧測定装置を図2を参照して説明する。図2は、本発明の実施例2に係る分圧器として機能するポストスペーサの断面図である。なお、この実施例2が実施例1と異なる点は、分圧器として機能する絶縁物である。図2において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, an optical voltage measuring apparatus according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view of a post spacer that functions as a voltage divider according to the second embodiment of the present invention. The difference between the second embodiment and the first embodiment is an insulator that functions as a voltage divider. In FIG. 2, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に示すように、カップリング35で連結された主回路導体1は、エポキシ樹脂からなる第1の誘電体4で形成されたポストスペーサ36で支持固定されている。第1の誘電体4には、カップリング35側に主回路側埋め込み金属37が埋め込まれ、タンク3側に筒状の接地側埋め込み金属38が埋め込まれ、タンク3に固定されている。また、接地側埋め込み金属38の略中央部には、主回路電圧を分圧させるための円柱状の埋め込み電極39が埋め込まれている。埋め込み電極39には、電気光学素子が接続される。   As shown in FIG. 2, the main circuit conductor 1 connected by the coupling 35 is supported and fixed by a post spacer 36 formed of a first dielectric 4 made of epoxy resin. In the first dielectric 4, a main circuit side embedded metal 37 is embedded on the coupling 35 side, and a cylindrical ground side embedded metal 38 is embedded on the tank 3 side and fixed to the tank 3. Further, a cylindrical embedded electrode 39 for dividing the main circuit voltage is embedded in the substantially central portion of the ground-side embedded metal 38. An electro-optic element is connected to the embedded electrode 39.

これにより、主回路側埋め込み金属37と埋め込み電極39間で一次側静電容量40が形成され、また埋め込み電極39と接地側埋め込み金属38間で二次側静電容量41が形成され、主回路電圧が分圧される。埋め込み電極39と接地側埋め込み金属38間は同軸電極配置であり、一次側静電容量40よりも二次側静電容量41が大きくなる。これらの静電容量40、41は、同一の絶縁材料である第1の誘電体4で形成され、同一の環境下で用いられるので、環境特性に影響を受けることはない。   As a result, a primary side capacitance 40 is formed between the main circuit side embedded metal 37 and the embedded electrode 39, and a secondary side capacitance 41 is formed between the embedded electrode 39 and the ground side embedded metal 38. The voltage is divided. A coaxial electrode is disposed between the buried electrode 39 and the ground side buried metal 38, and the secondary side capacitance 41 is larger than the primary side capacitance 40. These capacitances 40 and 41 are formed of the first dielectric 4 that is the same insulating material and are used in the same environment, and therefore are not affected by the environmental characteristics.

上記実施例2の光電圧測定装置によれば、実施例1と同様の効果を得ることができる。   According to the optical voltage measurement apparatus of the second embodiment, the same effect as that of the first embodiment can be obtained.

なお、本発明は、上記実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で、種々変形して実施することができる。上記実施例では、第1の誘電体4を一般的なエポキシ樹脂を用いて説明したが、シリカなどの無機材料を充填すれば、温度特性を緩和することができる。また、混合比により比誘電率の調整が容易となり、静電容量の選択幅を増やすことができる。更に、ポリカーボネート樹脂、ポリエステル樹脂、フェノール樹脂など電気機器に適用される他の絶縁材料も用いることができる。   In addition, this invention is not limited to the said Example, In the range which does not deviate from the summary of invention, it can implement in various deformation | transformation. In the above embodiment, the first dielectric 4 is described using a general epoxy resin. However, if an inorganic material such as silica is filled, temperature characteristics can be relaxed. In addition, the relative permittivity can be easily adjusted by the mixing ratio, and the capacitance selection range can be increased. Furthermore, other insulating materials applied to electric devices such as polycarbonate resin, polyester resin, and phenol resin can be used.

また、管理された電気室などで使用され、汚損湿潤などでの沿面漏れ電流が無視できる場合には、気中においても適用することができる。即ち、一次側静電容量10、40と二次側静電容量33、41とが同一の絶縁材料で形成され、同一の環境下で使用し、沿面絶縁耐力が優れている場合には主回路電圧を精度よく測定することができる。   Moreover, when it is used in the controlled electric room etc. and the creeping leakage current due to fouling wetness can be ignored, it can be applied even in the air. That is, when the primary side capacitances 10 and 40 and the secondary side capacitances 33 and 41 are formed of the same insulating material, used in the same environment, and have excellent creeping dielectric strength, the main circuit The voltage can be measured with high accuracy.

本発明の実施例1に係る分圧器として機能する絶縁スペーサの断面図。Sectional drawing of the insulating spacer which functions as a voltage divider concerning Example 1 of the present invention. 本発明の実施例2に係る分圧器として機能するポストスペーサの断面図。Sectional drawing of the post spacer which functions as a voltage divider concerning Example 2 of the present invention. 従来の分圧器として機能する絶縁スペーサの断面図。Sectional drawing of the insulation spacer which functions as a conventional voltage divider.

符号の説明Explanation of symbols

1 主回路導体
2 絶縁スペーサ
3 タンク
4 第1の誘電体
5 第2の誘電体
6、39 埋め込み電極
7、37、38 埋め込み金属
8 二次側コンデンサ
9 検出インピーダンス
10、40 一次側静電容量
11 一次側体積抵抗
20 電気光学素子
21 光源駆動装置
22 光源
23、29 光ファイバー
24 送光コリメータ部
25 偏光子
26 1/4波長板
27 検光子
28 受光コリメータ部
30 検出器
31 電子回路
32 シールドケース
33、41 二次側静電容量
35 カップリング
36 ポストスペーサ
DESCRIPTION OF SYMBOLS 1 Main circuit conductor 2 Insulating spacer 3 Tank 4 1st dielectric material 5 2nd dielectric material 6 and 39 Embedded electrode 7, 37, 38 Embedded metal 8 Secondary side capacitor 9 Detection impedance 10, 40 Primary side capacitance 11 Primary-side volume resistance 20 Electro-optical element 21 Light source driving device 22 Light source 23, 29 Optical fiber 24 Transmitting collimator unit 25 Polarizer 26 1/4 wavelength plate 27 Analyzer 28 Light receiving collimator unit 30 Detector 31 Electronic circuit 32 Shield case 33, 41 Secondary capacitance 35 Coupling 36 Post spacer

Claims (4)

主回路導体と、
前記主回路導体を絶縁支持するとともに、接地部材に固定された誘電体と、
前記誘電体内に埋め込まれた埋め込み電極と、
前記埋め込み電極に接続された前記主回路導体の電圧を測定するための電気光学素子とを備え、
前記電気光学素子には、前記主回路導体と前記埋め込み電極間、および前記埋め込み電極と前記接地部材間で形成される静電容量比で分圧された電圧が印加されることを特徴とする光電圧測定装置。
A main circuit conductor;
Insulating and supporting the main circuit conductor, and a dielectric fixed to the ground member;
Embedded electrodes embedded in the dielectric,
An electro-optic element for measuring a voltage of the main circuit conductor connected to the embedded electrode,
The electro-optic element is applied with a voltage divided by a capacitance ratio formed between the main circuit conductor and the embedded electrode and between the embedded electrode and the ground member. Voltage measuring device.
前記主回路導体と前記埋め込み電極間、および前記埋め込み電極と前記接地部材間で形成される静電容量が同一の環境下に曝されることを特徴とする請求項1に記載の光電圧測定装置。   The photovoltage measuring device according to claim 1, wherein capacitances formed between the main circuit conductor and the embedded electrode and between the embedded electrode and the ground member are exposed to the same environment. . 前記埋め込み電極と前記接地部材とは、同軸電極配置であることを特徴とする請求項1または請求項2に記載の光電圧測定装置。   The photovoltage measuring device according to claim 1, wherein the embedded electrode and the ground member are arranged in a coaxial electrode. 前記誘電体は、エポキシ樹脂であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の光電圧測定装置。   The photovoltage measuring device according to any one of claims 1 to 3, wherein the dielectric is an epoxy resin.
JP2008233941A 2008-09-11 2008-09-11 Optical voltage measuring apparatus Pending JP2010068665A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008233941A JP2010068665A (en) 2008-09-11 2008-09-11 Optical voltage measuring apparatus
CA 2678212 CA2678212A1 (en) 2008-09-11 2009-09-08 Optical voltage measuring apparatus
CH13922009A CH699465B1 (en) 2008-09-11 2009-09-08 Optical voltage measuring device.
CN200910174389A CN101672868A (en) 2008-09-11 2009-09-11 Optical voltage measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233941A JP2010068665A (en) 2008-09-11 2008-09-11 Optical voltage measuring apparatus

Publications (1)

Publication Number Publication Date
JP2010068665A true JP2010068665A (en) 2010-03-25

Family

ID=41820804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233941A Pending JP2010068665A (en) 2008-09-11 2008-09-11 Optical voltage measuring apparatus

Country Status (4)

Country Link
JP (1) JP2010068665A (en)
CN (1) CN101672868A (en)
CA (1) CA2678212A1 (en)
CH (1) CH699465B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2479581A1 (en) * 2011-01-21 2012-07-25 PowerSense A/S An AC or DC power transmission system and a method of measuring a voltage
CN110057484B (en) * 2013-11-05 2021-05-04 精工爱普生株式会社 Force detection device, robot, and electronic component conveyance device
CN108802469B (en) * 2018-05-25 2020-12-18 北京航天时代光电科技有限公司 Novel low-voltage optical voltage sensing device

Also Published As

Publication number Publication date
CN101672868A (en) 2010-03-17
CH699465A2 (en) 2010-03-15
CH699465B1 (en) 2013-05-15
CA2678212A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
RU2567404C2 (en) High-voltage sensor with electrodes overlapping electrodes along axis
Bohnert et al. Fiber-optic current and voltage sensors for high-voltage substations
US7129693B2 (en) Modular voltage sensor
CN107430157B (en) Assembly of a gas-tight capsule and an optical voltage sensor
WO2014019692A1 (en) Voltage measurement device with an insulating body
KR101039650B1 (en) Optical voltage transformer
CN103477232B (en) The method of exchange or DC transmission system and measurement voltage
CN103675391A (en) Radial analyzer type optical voltage sensor
JP2010068665A (en) Optical voltage measuring apparatus
US6608481B1 (en) Pole of a circuit breaker with an integrated optical current sensor
US9442138B2 (en) High voltage sensor located within line insulator
JP5461260B2 (en) Insulated spacer with built-in optical fiber
KR100882562B1 (en) Electrical measuring insulator
JPH05273256A (en) Insulator built-in type photo voltage sensor
JP6590124B1 (en) Voltage measuring device and gas insulated switchgear
EP2577328B1 (en) High-voltage sensor with axially overlapping electrodes
CN108519504B (en) Independent pillar type optical current and voltage combined transformer
WO2015049725A1 (en) Partial discharge sensor
Marchese et al. Optical high voltage sensor with oil-and gas-free insulation
KR100305615B1 (en) Voltage detection device of extra high voltage distribution line
Marchese et al. Electro-optic voltage sensor based on BGO for air-insulated high voltage substations
RU2442176C1 (en) Stand-alone integrated automatic measuring device for monitoring and metering of electricity in high voltage networks in real time mode
KR20240040313A (en) Integrated Voltage and Partial Discharge Detection Probe Embedded in GIS Spacer and its Implementation Method
JP2921367B2 (en) Optical voltmeter
JPS59221671A (en) Optical voltage transformer device