JP2010068595A - Stator of synchronous motor - Google Patents

Stator of synchronous motor Download PDF

Info

Publication number
JP2010068595A
JP2010068595A JP2008231329A JP2008231329A JP2010068595A JP 2010068595 A JP2010068595 A JP 2010068595A JP 2008231329 A JP2008231329 A JP 2008231329A JP 2008231329 A JP2008231329 A JP 2008231329A JP 2010068595 A JP2010068595 A JP 2010068595A
Authority
JP
Japan
Prior art keywords
rotor
stator
synchronous motor
stator core
facing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008231329A
Other languages
Japanese (ja)
Inventor
Atsushi Matsuoka
篤 松岡
Kazuhiko Baba
和彦 馬場
Hitoshi Kawaguchi
仁 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008231329A priority Critical patent/JP2010068595A/en
Publication of JP2010068595A publication Critical patent/JP2010068595A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stator of a synchronous motor, which can suppress vibration and noise, and reduce distortion in induced voltage. <P>SOLUTION: The stator of the synchronous motor includes a stator core 10 formed by laminating magnetic steel plates and a winding wound around the stator core 10 and electrified. The stator core 10 includes: a plurality of teeth parts 1 projecting toward a rotor rotating inside the stator of the synchronous motor; the opposing part 1a of the rotor opposite to the rotor, forming a part of the teeth parts 1; and a non-magnetic space 2 provided inside the opposing part 1a of the rotor and gradually increasing in volume toward the circumferential both ends from the circumferential center portion. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、回転子に永久磁石を用いる同期電動機の固定子に関する。   The present invention relates to a stator of a synchronous motor that uses a permanent magnet for a rotor.

回転子に永久磁石を用いる同期電動機は、回転子に生じる磁束が固定子の巻線に鎖交し、これに対して外部より巻線に電流を通電することによって、回転子を回転させるトルクを発生する。回転子より発生し、固定子の巻線に鎖交する磁束の変化が緩やかでないと、同期電動機が出力するトルクに変動が生じ、同期電動機から振動や騒音が発生する。   In a synchronous motor that uses a permanent magnet for the rotor, the magnetic flux generated in the rotor is linked to the stator winding, and the current is supplied to the winding from the outside to generate torque that rotates the rotor. appear. If the change in magnetic flux generated from the rotor and interlinked with the stator windings is not gradual, the torque output from the synchronous motor varies, and vibration and noise are generated from the synchronous motor.

また、一般的に固定子には、回転子の磁束をより巻線に鎖交させるため、磁束の通りやすい磁性体の材料を用いた固定子鉄心が用いられる。固定子の巻線は、固定子鉄心から回転子に向かって突出した歯部に巻回されることが多い。より巻線に磁束を鎖交させるために、隣り合う歯部の間には、スロット開口部が設けられることが多い。このとき、歯部の回転子対向部と開口部で磁気抵抗が異なるため、回転子より発生する磁束にアンバランスが生じ、コギングトルクが発生し、同期電動機の振動や騒音の要因となる。   Further, in general, a stator core using a magnetic material that allows easy passage of magnetic flux is used for the stator in order to link the magnetic flux of the rotor to the windings. The winding of the stator is often wound around a tooth portion protruding from the stator core toward the rotor. In order to link the magnetic flux more to the winding, a slot opening is often provided between adjacent teeth. At this time, since the magnetic resistance is different between the rotor facing portion and the opening of the tooth portion, the magnetic flux generated from the rotor is unbalanced, and cogging torque is generated, which causes vibration and noise of the synchronous motor.

この課題に対して、以下に示す技術の提案がなされている。即ち、回転子に対向する固定子歯部の一部に軸方向に貫く溝を設けて、擬似的な開口部とすることで、磁気的にアンバランスとなる部分の数を増やし、エネルギーを分散させ、コギングトルクを低減する回転電機が提案されている(例えば、特許文献1参照)。   In order to solve this problem, the following techniques have been proposed. In other words, a groove that penetrates in the axial direction is provided in a part of the stator tooth portion that faces the rotor to make a pseudo opening, thereby increasing the number of magnetically unbalanced portions and distributing energy. Thus, a rotating electrical machine that reduces cogging torque has been proposed (see, for example, Patent Document 1).

また、固定子鉄心のティースに補助溝を有するモータにおいて、補助溝の幅が理想形状から多少外れた場合でもプレス金型等の形状の変更無くコギングトルクの低減を図ることを目的として、ティースの永久磁石と対向する位置に補助溝が設けられた固定子鉄心を積層して固定子を形成する永久磁石型モータにおいて、補助溝の溝幅をゼロを含めて固定子鉄心の積層方向の位置により変化させることによりコギングトルクを低減する永久磁石型モータが提案されている(例えば、特許文献2参照)。   In addition, in a motor having auxiliary grooves in the teeth of the stator core, even if the width of the auxiliary grooves slightly deviates from the ideal shape, the purpose is to reduce the cogging torque without changing the shape of the press die or the like. In a permanent magnet type motor that forms a stator by laminating stator cores with auxiliary grooves provided at positions facing the permanent magnets, the width of the auxiliary grooves, including zero, depends on the position of the stator core in the stacking direction. A permanent magnet type motor that reduces cogging torque by changing it has been proposed (see, for example, Patent Document 2).

また、閉スロットタイプの固定子鉄心を備えた永久磁石形モータにおいて、トルクリップルを小さくするために、固定子鉄心は、各ティースの回転子側の先端部に隣り合ったティース間を連結する連結部を有する閉スロットタイプであり、かつ、各ティースの先端部付近に、軸方向に延びる穴を2個ずつ設けた構成とする。ティースの先端部付近に形成した穴が、回転子の回転時において連結部を流れる鎖交磁束の磁気抵抗となり、連結部側へ磁束が流れ難くなり、連結部を流れる鎖交磁束の量の急激な変化が抑えられるようになる。これにより、ティース(固定子巻線部)に発生する誘起電圧波形にひずみが発生することが抑えられ、ひいてはトルクリップルが発生することを極力抑えることができる永久磁石形モータが提案されている(例えば、特許文献3参照)。   In addition, in a permanent magnet motor equipped with a closed slot type stator core, the stator core is a connection that connects adjacent teeth to the tip of the rotor side of each tooth in order to reduce torque ripple. It is a closed slot type having a portion, and two holes extending in the axial direction are provided near the tip of each tooth. The hole formed near the tip of the teeth becomes the magnetic resistance of the interlinkage magnetic flux that flows through the connecting portion during rotation of the rotor, making it difficult for the magnetic flux to flow to the connecting portion side, and the amount of interlinkage magnetic flux flowing through the connecting portion is abrupt. Change will be suppressed. As a result, a permanent magnet motor has been proposed in which the occurrence of distortion in the induced voltage waveform generated in the teeth (stator winding portion) is suppressed, and as a result, the occurrence of torque ripple can be suppressed as much as possible ( For example, see Patent Document 3).

さらに、ステータコアに溝を設けることなくコギングトルクの小さいモータを安価に提供するために、ステータとしての積層厚みの1/2程度に積層したステータコアのティース部の片側先端部を加圧して磁気特性を劣化させる。同様に1/2程度積層したステータコアの他方先端部を加圧する。先端部を加圧した2つのステータコアを、先端部と先端部が点対称になるように積層すると磁気特性の劣化部が点対称となり、スキューと同様の効果が得られるモータが提案されている(例えば、特許文献4参照)。
特開昭62−77840号公報 特開2006−230116号公報 特開2006−288043号公報 特開2005−168153号公報
Furthermore, in order to provide a motor with a small cogging torque without providing a groove in the stator core at a low cost, the tip of one side of the teeth portion of the stator core laminated to about 1/2 of the laminated thickness of the stator is pressurized to provide magnetic characteristics. Deteriorate. Similarly, pressurize the other tip of the stator core laminated about 1/2. A motor has been proposed in which two stator cores with pressure applied at the tip end are laminated so that the tip end portion and the tip end are point symmetric, the deteriorated portion of the magnetic properties becomes point symmetric, and an effect similar to skew is obtained ( For example, see Patent Document 4).
JP 62-77840 A JP 2006-230116 A JP 2006-288043 A JP 2005-168153 A

しかしながら、上記特許文献1及び特許文献2のように、固定子の歯部の回転子対向部に軸方向に延びる溝を設けるのは、コギングトルクを低減する効果は得られるが、トルクリップルの原因となる誘起電圧の歪みを低減する効果は得られないという課題がある。   However, as in Patent Document 1 and Patent Document 2 described above, providing a groove extending in the axial direction at the rotor facing portion of the stator tooth portion provides an effect of reducing cogging torque, but causes torque ripple. There is a problem that the effect of reducing the distortion of the induced voltage cannot be obtained.

また、上記特許文献3に記載されている永久磁石形モータ(同期電動機)の場合、誘起電圧の歪みを低減することで、永久磁石形モータの振動・騒音を抑える効果を得ることができる。また、スロットの開口部が無いため、コギングトルクの発生が少なく、同様に永久磁石形モータの振動・騒音を抑える効果が期待できる。しかし、隣り合う歯部の先端を連結するため、回転子から生じる磁束がこの連結部で短絡して固定子の巻線に鎖交する量が減少し、永久磁石形モータの出力が低下するという課題がある。   Further, in the case of the permanent magnet motor (synchronous motor) described in Patent Document 3, the effect of suppressing vibration and noise of the permanent magnet motor can be obtained by reducing the distortion of the induced voltage. In addition, since there is no slot opening, the occurrence of cogging torque is small, and the effect of suppressing vibration and noise of the permanent magnet motor can be expected. However, since the tips of adjacent teeth are connected, the amount of magnetic flux generated from the rotor is short-circuited at this connecting part and linked to the stator windings is reduced, and the output of the permanent magnet motor is reduced. There are challenges.

また、上記特許文献4に記載されているモータ(同期電動機)の場合、固定子の歯部の回転子対向部にスキューと同等の効果が得られ、コギングトルクの低減,誘起電圧の歪み低減ができ、モータの振動・騒音を低減するという効果が得られるが、固定子鉄心の製造の際に、鉄心の一部に加圧を行い、磁気特性を劣化させる工程が必要となり、加工コストが増加するという課題がある。   Further, in the case of the motor (synchronous motor) described in Patent Document 4, an effect equivalent to skew is obtained at the rotor facing portion of the stator teeth, and cogging torque is reduced and induced voltage is reduced. This can reduce the vibration and noise of the motor, but when manufacturing the stator core, a part of the core is pressurized to deteriorate the magnetic properties, which increases processing costs. There is a problem of doing.

この発明は、上記のような課題を解決するためになされるもので、振動・騒音を抑えることができるとともに、誘起電圧の歪みを低減できる同期電動機の固定子を提供することを目的とする。   This invention is made in order to solve the above subjects, and it aims at providing the stator of the synchronous motor which can suppress a vibration and noise, and can reduce distortion of an induced voltage.

この発明に係る同期電動機の固定子は、電磁鋼板を積層して形成される固定子鉄心と、前記固定子鉄心に巻回され、電流が通電される巻線とを備えた同期電動機の固定子において、
前記固定子鉄心は、
当該同期電動機の固定子内部で回転する回転子に向かって突出する複数の歯部と、
前記歯部の一部を形成し、前記回転子に対向する回転子対向部と、
前記回転子対向部の内部に設けられ、周方向中央部から周方向両端部に向かって体積が徐々に大きくなる非磁性空間とを備えたことを特徴とする。
A stator of a synchronous motor according to the present invention includes a stator core formed by laminating electromagnetic steel plates, and a stator of a synchronous motor including a winding wound around the stator core and energized with current. In
The stator core is
A plurality of teeth protruding toward the rotor rotating inside the stator of the synchronous motor;
Forming a part of the tooth portion and facing the rotor, a rotor facing portion;
A non-magnetic space provided inside the rotor facing portion and having a volume gradually increasing from the circumferential center to both circumferential ends.

この発明に係る同期電動機の固定子は、回転子対向部の内部に周方向中央部から周方向両端部に向かって体積が徐々に大きくなる非磁性空間を備えたことにより、回転子より固定子に鎖交する磁束の変化が緩やかになり、誘起電圧の歪みを抑え、トルク脈動を抑え、同期電動機の振動・騒音を抑えることができる。   The stator of the synchronous motor according to the present invention includes a non-magnetic space whose volume gradually increases from the circumferential center to both ends in the circumferential direction inside the rotor facing portion. As a result, the change in the magnetic flux interlinked with the motor becomes gentle, the distortion of the induced voltage is suppressed, the torque pulsation is suppressed, and the vibration and noise of the synchronous motor can be suppressed.

実施の形態1.
図1乃至図10は実施の形態1を示す図で、図1は同期電動機の固定子鉄心10の斜視図、図2は図1の歯部1を拡大した斜視図、図3は図1の歯部1の回転子対向部1aを拡大した斜視図(a)とA〜E部の断面図(b)、図4は変形例1の固定子鉄心10の歯部1を拡大した斜視図、図5は図4の回転子対向部1aを拡大した斜視図、図6は変形例2の固定子鉄心10の歯部1を拡大した斜視図、図7は図6の歯部1の回転子対向部1aを拡大した斜視図(a)とA〜E部の断面図(b)、図8は図4に示す固定子鉄心10を用いた同期電動機の誘起電圧を示す図、図9は同固定子鉄心10を用いた同期電動機のコギングトルクを示す図、図10は誘起電圧の周波数成分分析の結果を示す図である。
Embodiment 1 FIG.
1 to 10 show the first embodiment, FIG. 1 is a perspective view of a stator core 10 of a synchronous motor, FIG. 2 is an enlarged perspective view of a tooth portion 1 of FIG. 1, and FIG. The perspective view (a) which expanded the rotor opposing part 1a of the tooth part 1, sectional drawing (b) of AE part, FIG. 4 is the perspective view which expanded the tooth part 1 of the stator core 10 of the modification 1, 5 is an enlarged perspective view of the rotor facing portion 1a of FIG. 4, FIG. 6 is an enlarged perspective view of the tooth portion 1 of the stator core 10 of Modification 2, and FIG. 7 is the rotor of the tooth portion 1 of FIG. The perspective view (a) which expanded the opposing part 1a, sectional drawing (b) of AE part, FIG. 8 is a figure which shows the induced voltage of the synchronous motor using the stator core 10 shown in FIG. 4, FIG. The figure which shows the cogging torque of the synchronous motor using the stator core 10, FIG. 10 is a figure which shows the result of the frequency component analysis of an induced voltage.

図1、図2を参照しながら、同期電動機の固定子鉄心10の構成を説明する。同期電動機の固定子は、主に板厚が0.1〜1.5mmの電磁鋼板を積層して形成される固定子鉄心10と、電流を通電する巻線(図示せず)とにより構成される。   The configuration of the stator core 10 of the synchronous motor will be described with reference to FIGS. 1 and 2. The stator of a synchronous motor is mainly composed of a stator core 10 formed by laminating electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm, and windings (not shown) that conduct current. The

固定子鉄心10は、固定子内部で回転する回転子(図示せず)に向かって突出する複数の歯部1を有する。図1の例では、6個の歯部1を有する。   The stator core 10 has a plurality of teeth 1 that protrude toward a rotor (not shown) that rotates inside the stator. In the example of FIG. 1, there are six tooth portions 1.

歯部1の先端(内周面)に、回転子に対向する回転子対向部1aを有する。回転子対向部1aの内周面は、軸方向に直交する断面の形状が略円弧である。6個の回転子対向部1aの内周面の円弧を結ぶと一つの円になる。   At the tip (inner peripheral surface) of the tooth portion 1, there is a rotor facing portion 1 a that faces the rotor. The inner peripheral surface of the rotor facing portion 1a has a substantially arc shape in cross section perpendicular to the axial direction. When the arcs of the inner peripheral surfaces of the six rotor facing portions 1a are connected, a single circle is formed.

通常、回転子対向部1aは、回転子からの磁束をより多く集めるために歯部1よりも周方向に幅広の形状である。   Usually, the rotor facing portion 1a has a shape wider in the circumferential direction than the tooth portion 1 in order to collect more magnetic flux from the rotor.

隣り合う歯部1の間のスロット3(空間)には巻線(図示せず)が挿入される。巻線は線径が太いほど抵抗が低くなり、通電時に巻線で発生する損失が少なくなるため、歯部1間のスロット3が大きくなるように、歯部1の幅(周方向)は回転子対向部1aの幅(周方向)より小さくしている。隣り合う歯部1の間には、スロット開口部3aが設けられる。   A winding (not shown) is inserted into the slot 3 (space) between the adjacent tooth portions 1. The larger the wire diameter is, the lower the resistance is, and the loss generated in the winding during energization is reduced. Therefore, the width (circumferential direction) of the tooth portion 1 is rotated so that the slot 3 between the tooth portions 1 becomes larger. The width is smaller than the width (circumferential direction) of the child facing portion 1a. A slot opening 3a is provided between adjacent teeth 1.

回転子対向部1aの内部には、回転子からみて四隅に非磁性空間2を有する。非磁性空間2の形状は、回転子からみて略直角三角形である。   Inside the rotor facing portion 1a, there are nonmagnetic spaces 2 at the four corners when viewed from the rotor. The shape of the nonmagnetic space 2 is a substantially right triangle as viewed from the rotor.

この非磁性空間2は、周方向の長さが回転子対向部1aの軸方向中央部から軸方向両端部に向かって徐々に大きくなっている。非磁性空間2の径方向の寸法は全体が略同一であるので、非磁性空間2の体積は回転子対向部1aの軸方向中央部から軸方向両端部に向かって徐々に大きくなる。別の言い方をすると、非磁性空間2の体積は回転子対向部1aの周方向中央部から周方向両端部に向かって徐々に大きくなる。即ち、非磁性空間2は、回転子対向部1aの軸方向両端部及び周方向両端部で最も大きな空間となる。これによって、回転子対向部1aの磁性体(電磁鋼板)が多く存在する領域の形状は、回転子からみて略八角形〜六角形となる。   The circumferential length of the nonmagnetic space 2 is gradually increased from the central portion in the axial direction of the rotor facing portion 1a toward both end portions in the axial direction. Since the overall dimension of the nonmagnetic space 2 in the radial direction is substantially the same, the volume of the nonmagnetic space 2 gradually increases from the axially central portion of the rotor facing portion 1a toward both axial end portions. In other words, the volume of the nonmagnetic space 2 gradually increases from the circumferential center of the rotor facing portion 1a toward both circumferential ends. That is, the nonmagnetic space 2 is the largest space at both axial end portions and circumferential end portions of the rotor facing portion 1a. As a result, the shape of the region of the rotor facing portion 1a in which many magnetic bodies (magnetic steel plates) are present is substantially octagonal to hexagonal when viewed from the rotor.

同期電動機の回転子が回転するとき、回転子の磁極に対向する固定子鉄心10の回転子対向部1aの面積は、非磁性空間2が無い固定子鉄心10の場合には、回転子の回転角に比例して徐々に増加する。   When the rotor of the synchronous motor rotates, the area of the rotor facing portion 1a of the stator core 10 that faces the magnetic poles of the rotor is the same as that of the stator core 10 without the nonmagnetic space 2. It gradually increases in proportion to the angle.

これに対して、非磁性空間2を有する同期電動機の固定子鉄心10では、回転子の回転角に対して、初めは回転子の磁極に対向する磁性体(電磁鋼板)が多く存在する領域の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the stator core 10 of the synchronous motor having the nonmagnetic space 2, in the region where there are many magnetic bodies (electromagnetic steel plates) opposed to the magnetic poles of the rotor at first with respect to the rotation angle of the rotor. The increase in area is small and the increase in area gradually increases.

固定子鉄心10の回転子対向部1aに非磁性空間2が無い場合、回転子の磁極より回転子対向部1aに流入する磁束の変化は、回転子磁極の磁束分布に従って変化する。   When there is no nonmagnetic space 2 in the rotor facing portion 1a of the stator core 10, the change in magnetic flux flowing from the rotor magnetic pole into the rotor facing portion 1a changes according to the magnetic flux distribution of the rotor magnetic pole.

例えばラジアル配向に着磁された回転子の場合、磁極間の磁束の変化は急であるため、固定子鉄心10の回転子対向部1aに流入する磁束の変化は、磁極の切り替わり付近で急に変化する。   For example, in the case of a rotor magnetized in a radial orientation, the change in the magnetic flux between the magnetic poles is abrupt. Therefore, the change in the magnetic flux flowing into the rotor facing portion 1a of the stator core 10 is suddenly changed near the switching of the magnetic poles. Change.

また、永久磁石を磁性体内部に配置する回転子の場合には、永久磁石より発生する磁束は、永久磁石の外周部にある磁性体部分で向きを自由に変化させるため、この磁性体部分が、回転子の回転に従って固定子鉄心10の回転子対向部1aに対向したと同時に、磁束が急激に回転子対向部1aへと集中するため、固定子鉄心10の回転子対向部1aに流入する磁束は急激に変動する。   Further, in the case of a rotor in which a permanent magnet is arranged inside a magnetic body, the magnetic flux generated from the permanent magnet is freely changed in direction at the magnetic body portion on the outer periphery of the permanent magnet. As the rotor rotates, the magnetic flux suddenly concentrates on the rotor facing portion 1a at the same time as it faces the rotor facing portion 1a of the stator core 10, and therefore flows into the rotor facing portion 1a of the stator core 10. Magnetic flux fluctuates rapidly.

これによって、固定子の巻線に生じる誘起電圧に歪みが生じ、同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   As a result, the induced voltage generated in the stator windings is distorted, and the torque pulsation of the synchronous motor is increased, causing vibration and noise.

本実施の形態による同期電動機の固定子鉄心10は、回転子が回転するときに、固定子鉄心10の回転子対向部1aが回転子磁極に対向する面積がはじめは小さく、歯部1中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、歯部1に急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   In the stator core 10 of the synchronous motor according to the present embodiment, when the rotor rotates, the area where the rotor facing portion 1a of the stator core 10 faces the rotor magnetic pole is initially small, and the tooth portion 1 is centered. As the rotation progresses, the area increase gradually increases. Therefore, the sudden flow of magnetic flux into the tooth portion 1 is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise is obtained.

通常、固定子鉄心10は電磁鋼板を積層して構成することが多く、図2に示す固定子鉄心10は、回転子対向部1aにある非磁性空間2を構成するための電磁鋼板を打ち抜く穴の形状を、図3に示すように、積層する電磁鋼板ごとに徐々に変化させることで実現できる。   Usually, the stator core 10 is often constructed by laminating electromagnetic steel plates, and the stator core 10 shown in FIG. 2 is a hole for punching out the electromagnetic steel plates for constituting the nonmagnetic space 2 in the rotor facing portion 1a. This shape can be realized by gradually changing the shape of each steel sheet to be laminated as shown in FIG.

図3に示すように、積層される電磁鋼板の非磁性空間2を形成する穴2aの形状は、軸方向端部(A)で最も大きく、軸方向の中央部に向かって徐々に小さくなる(A→E)。   As shown in FIG. 3, the shape of the hole 2a forming the nonmagnetic space 2 of the laminated magnetic steel sheets is the largest at the axial end (A) and gradually decreases toward the central part in the axial direction ( A → E).

しかし、この場合(図3)は、打ち抜く電磁鋼板の種類が多くなるため、大規模な金型、プレス設備が必要となる。   However, in this case (FIG. 3), since there are many types of electromagnetic steel sheets to be punched, a large-scale mold and press equipment are required.

これに対して、例えば、図4に示す変形例1の固定子鉄心10は、同一形状の電磁鋼板を複数枚連続して積層し、非磁性空間2の周方向長さを軸方向に対して階段状に変化させている。   On the other hand, for example, the stator core 10 of Modification 1 shown in FIG. 4 is formed by successively laminating a plurality of electromagnetic steel sheets having the same shape, and the circumferential length of the nonmagnetic space 2 with respect to the axial direction. It is changed in a staircase shape.

そのため、図5に示すように、変形例1の固定子鉄心10の電磁鋼板は、A〜Eの5種類になる。   Therefore, as shown in FIG. 5, there are five types of electromagnetic steel sheets A to E of the stator core 10 of the first modification.

このようにすることで、非磁性空間2を構成するための電磁鋼板の種類を削減でき、金型、プレス設備の規模を縮小できる。   By doing in this way, the kind of electromagnetic steel plate for comprising the nonmagnetic space 2 can be reduced, and the scale of a metal mold | die and a press installation can be reduced.

また、図6に示す変形例2の固定子鉄心10のように、非磁性空間2を、軸方向に開けられる複数のスリット孔2b,2c,2d,2eで構成してもよい。スリット孔2b,2c,2d,2eを、「空間」と定義する。   Moreover, you may comprise the nonmagnetic space 2 by the some slit hole 2b, 2c, 2d, 2e opened in an axial direction like the stator core 10 of the modification 2 shown in FIG. The slit holes 2b, 2c, 2d, and 2e are defined as “space”.

スリット孔2b,2c,2d,2eは、回転子対向部1aの周方向の中央部付近から周方向両端に向かって順に形成される。軸方向の長さは、中央部付近のスリット孔2bが最も短く、周方向両端に向かって徐々に長くなりスリット孔2eが最も長くなっている。   The slit holes 2b, 2c, 2d, and 2e are formed in order from the vicinity of the center in the circumferential direction of the rotor facing portion 1a toward both ends in the circumferential direction. The length in the axial direction is the shortest in the slit hole 2b near the center, gradually increases toward both ends in the circumferential direction, and the slit hole 2e is longest.

図6のように構成することで、図2に示す非磁性空間2に近い効果が得られる。   By configuring as shown in FIG. 6, an effect close to the nonmagnetic space 2 shown in FIG. 2 can be obtained.

図6に示す変形例2の固定子鉄心10は、図7に示すように、軸方向の位置A付近の電磁鋼板は、回転子対向部1aにスリット孔2b,2c,2d,2eを左右に略対称に有する。   As shown in FIG. 7, the stator iron core 10 of Modification 2 shown in FIG. 6 has an electromagnetic steel plate in the vicinity of the position A in the axial direction with slit holes 2b, 2c, 2d, 2e left and right in the rotor facing portion 1a. It has almost symmetry.

また、軸方向の位置B付近の電磁鋼板は、回転子対向部1aにスリット孔2c,2d,2eを左右に略対称に有する。   Further, the electromagnetic steel sheet near the position B in the axial direction has slit holes 2c, 2d, and 2e in the rotor facing portion 1a substantially symmetrically on the left and right.

また、軸方向の位置C付近の電磁鋼板は、回転子対向部1aにスリット孔2d,2eを左右に略対称に有する。   Further, the electromagnetic steel sheet near the position C in the axial direction has slit holes 2d and 2e in the rotor facing portion 1a substantially symmetrically on the left and right.

また、軸方向の位置D付近の電磁鋼板は、回転子対向部1aにスリット孔2eを左右に略対称に有する。   The electromagnetic steel sheet near the position D in the axial direction has slit holes 2e in the rotor facing portion 1a approximately symmetrically on the left and right.

また、軸方向の位置E付近の電磁鋼板は、回転子対向部1aにスリット孔が存在しない。   Further, the electromagnetic steel sheet near the axial position E has no slit hole in the rotor facing portion 1a.

このように、非磁性空間2を構成するために電磁鋼板を打ち抜く穴(スリット孔)も、図7に示すようにその数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   Thus, since holes (slit holes) for punching out electromagnetic steel sheets to form the nonmagnetic space 2 can also be realized by changing the number thereof as shown in FIG. Can be manufactured.

本実施の形態に示すように、固定子鉄心10の歯部1の回転子対向部1a内部に非磁性空間2を設けると、回転子対向部1aの軸方向端部の外観形状は、非磁性空間2のない回転子対向部1aの場合と同様となる。そのため、固定子鉄心10と巻線との間の絶縁として、また巻線が回転子側に倒れ込むことを防止する巻き枠として用いられる樹脂で構成されるインシュレータを特殊な形状にする必要が無い。また、インシュレータの一部をこの非磁性空間2にはめ込むことで、強度を上げることも可能である。   As shown in the present embodiment, when the nonmagnetic space 2 is provided inside the rotor facing portion 1a of the tooth portion 1 of the stator core 10, the external shape of the end portion in the axial direction of the rotor facing portion 1a is nonmagnetic. This is the same as in the case of the rotor facing portion 1a without the space 2. Therefore, it is not necessary to make the insulator made of resin used as insulation between the stator core 10 and the winding and as a winding frame for preventing the winding from falling to the rotor side to have a special shape. Further, the strength can be increased by fitting a part of the insulator into the nonmagnetic space 2.

また、回転子対向部1aの内周面(回転子と対向する面)に溝を入れないため、固定子鉄心10の内周面を円弧で構成でき、寸法の管理も容易となる。   In addition, since no groove is formed in the inner peripheral surface (the surface facing the rotor) of the rotor facing portion 1a, the inner peripheral surface of the stator core 10 can be configured by an arc, and the management of dimensions is facilitated.

また、例えば、本実施の形態の固定子鉄心10を備える同期電動機を、電動機本体が冷媒や冷凍機油の中で使用される圧縮機などに用いる場合、回転子と固定子間の空隙がスロット開口部3a以外は均一となるため、回転子の回転による空隙間の冷媒や冷凍機油の流れに乱れが生じにくく、損失が生じにくい。   Further, for example, when the synchronous motor including the stator core 10 of the present embodiment is used for a compressor in which the motor body is used in refrigerant or refrigeration oil, the gap between the rotor and the stator is a slot opening. Since the portions other than the portion 3a are uniform, the flow of the refrigerant and the refrigerating machine oil between the gaps due to the rotation of the rotor is less likely to be disturbed, and loss is less likely to occur.

図8は図4に示す固定子鉄心10を用いた同期電動機の誘起電圧波形を示したものである。比較のため、非磁性空間2を持たない固定子鉄心10を用いた同期電動機の誘起電圧波形も同時に示している。回転子には、永久磁石を表面に配置した形態の回転子を用いた。永久磁石は、円筒状のもので、ラジアル配向されたものを多極に着磁した。スロット数は6、極数は4である。   FIG. 8 shows an induced voltage waveform of the synchronous motor using the stator core 10 shown in FIG. For comparison, an induced voltage waveform of the synchronous motor using the stator core 10 having no nonmagnetic space 2 is also shown. As the rotor, a rotor having a permanent magnet disposed on the surface thereof was used. The permanent magnet was a cylindrical one, and a radially oriented magnet was magnetized in multiple poles. The number of slots is 6, and the number of poles is 4.

固定子鉄心10の回転子対向部1aに非磁性空間2を持たない固定子を用いたときの誘起電圧に比べると、図4の固定子鉄心10を用いた同期電動機の誘起電圧は、波形の歪みが少なくなっていることがわかる。   Compared to the induced voltage when a stator having no nonmagnetic space 2 is used for the rotor facing portion 1a of the stator core 10, the induced voltage of the synchronous motor using the stator core 10 of FIG. It can be seen that the distortion is reduced.

図10は誘起電圧の波形を周波数分析した結果を示している。図8中の回転角180°を1周期(基本周波数)として、これに対して、整数倍の周波数成分がどの程度含まれるかを分析したものである。各周波数成分の基本周波数成分に対する割合を2乗したものの総和の平方根をとったものを全歪率(THD)としている。成分によっては、増加しているものも見られるが(7次成分、11成分)、最も大きな成分である5次の成分が大きく低下しており、トータルとしての全歪率(THD)も低下しており、誘起電圧の歪みが低減されていることがわかる。   FIG. 10 shows the result of frequency analysis of the waveform of the induced voltage. The rotation angle 180 ° in FIG. 8 is defined as one period (basic frequency), and the degree to which an integer multiple frequency component is included is analyzed. The total distortion rate (THD) is obtained by taking the square root of the sum of the squares of the ratio of each frequency component to the fundamental frequency component. Some components are increasing (seventh component, eleventh component), but the fifth component, which is the largest component, is greatly decreased, and the total distortion (THD) as a whole is also decreased. It can be seen that the distortion of the induced voltage is reduced.

また、図9は図4に示す固定子鉄心10を用いた同期電動機のコギングトルクの波形を示す。比較のため、非磁性空間2を持たない固定子鉄心10を用いた同期電動機のコギングトルクの波形も同時に示している。スロット開口部3aの形状が同じであるため、コギングトルクには増加の傾向は見られず、僅かではあるが低下していることがわかる。   FIG. 9 shows the cogging torque waveform of the synchronous motor using the stator core 10 shown in FIG. For comparison, the waveform of the cogging torque of the synchronous motor using the stator core 10 having no nonmagnetic space 2 is also shown. Since the shape of the slot opening 3a is the same, it can be seen that the cogging torque does not show an increasing tendency and is slightly reduced.

以上のように、本実施の形態による同期電動機の固定子鉄心10は、回転子対向部1aの内部に、回転子からみて四隅に非磁性空間2を有する。この非磁性空間2の体積は回転子対向部1aの軸方向中央部から軸方向両端部に向かって徐々に大きくなっており、回転子対向部1aの軸方向両端部及び周方向両端部で最も大きな空間となる。これによって、回転子対向部1aの磁性体(電磁鋼板)が多く存在する領域の形状は、回転子からみて略八角形〜六角形となる。このような構成にしたので、回転子が回転するときに、固定子鉄心10の回転子対向部1aが回転子磁極に対向する面積がはじめは小さく、歯部1中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   As described above, the stator core 10 of the synchronous motor according to the present embodiment has the nonmagnetic spaces 2 at the four corners when viewed from the rotor inside the rotor facing portion 1a. The volume of the nonmagnetic space 2 gradually increases from the axially central portion of the rotor facing portion 1a toward both end portions in the axial direction, and is highest at both axial end portions and circumferential end portions of the rotor facing portion 1a. It becomes a big space. As a result, the shape of the region of the rotor facing portion 1a in which many magnetic bodies (magnetic steel plates) are present is substantially octagonal to hexagonal when viewed from the rotor. With this configuration, when the rotor rotates, the area where the rotor facing portion 1a of the stator core 10 faces the rotor magnetic pole is initially small, and the rotation proceeds toward the center of the tooth portion 1 as the rotor rotates. The amount of increase in area gradually increases. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

また、同一形状の電磁鋼板を複数枚連続して積層し、非磁性空間2の周方向長さを軸方向に対して階段状に変化させることで、非磁性空間2を構成するための電磁鋼板の種類を削減でき、金型、プレス設備の規模を縮小できる。   Moreover, the electromagnetic steel plate for comprising the nonmagnetic space 2 by laminating | stacking several electromagnetic steel plates of the same shape continuously, and changing the circumferential direction length of the nonmagnetic space 2 to step shape with respect to an axial direction. The size of molds and press facilities can be reduced.

また、非磁性空間2を、軸方向に開けられる複数のスリット孔2b,2c,2d,2eで構成することにより、非磁性空間2を構成するために電磁鋼板を打ち抜く穴(スリット孔)も、その数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   In addition, by configuring the nonmagnetic space 2 with a plurality of slit holes 2b, 2c, 2d, and 2e that can be opened in the axial direction, holes (slit holes) for punching out electromagnetic steel sheets to form the nonmagnetic space 2 are also provided. Since this can be realized by changing the number, it is possible to manufacture with a small-scale mold and press facility.

また、回転子対向部1aの内周面(回転子と対向する面)に溝を入れないため、固定子鉄心10の内周面を円弧で構成でき、寸法の管理も容易となる。   In addition, since no groove is formed in the inner peripheral surface (the surface facing the rotor) of the rotor facing portion 1a, the inner peripheral surface of the stator core 10 can be configured by an arc, and the management of dimensions is facilitated.

また、例えば、本実施の形態の固定子鉄心10を備える同期電動機を、電動機本体が冷媒や冷凍機油の中で使用される圧縮機などに用いる場合、回転子と固定子との間の空隙がスロット開口部3a以外は均一となるため、回転子の回転による空隙間の冷媒や冷凍機油の流れに乱れが生じにくく、損失が生じにくい。   Further, for example, when the synchronous motor including the stator core 10 of the present embodiment is used for a compressor whose motor body is used in refrigerant or refrigeration oil, a gap between the rotor and the stator is present. Since the portions other than the slot opening 3a are uniform, the flow of the refrigerant and the refrigerating machine oil between the gaps due to the rotation of the rotor is less likely to occur, and loss is less likely to occur.

実施の形態2.
図11乃至図13は実施の形態2を示す図で、図11は同期電動機の固定子鉄心10の歯部1を拡大した斜視図、図12は変形例1の固定子鉄心10の歯部1を拡大した斜視図、図13は変形例2の固定子鉄心10の歯部1を拡大した斜視図である。
Embodiment 2. FIG.
FIGS. 11 to 13 are views showing the second embodiment, FIG. 11 is an enlarged perspective view of the tooth portion 1 of the stator core 10 of the synchronous motor, and FIG. 12 is the tooth portion 1 of the stator core 10 of the first modification. 13 is an enlarged perspective view, and FIG. 13 is an enlarged perspective view of the tooth portion 1 of the stator core 10 of the second modification.

図11により、同期電動機の固定子鉄心10の構成を説明する。固定子鉄心10の歯部1の回転子対向部1aの内部には、回転子からみて二つの角(隅)に非磁性空間2を有する。これらの非磁性空間2は、対角線上に配置される。   The configuration of the stator core 10 of the synchronous motor will be described with reference to FIG. Inside the rotor facing portion 1 a of the tooth portion 1 of the stator core 10, there are nonmagnetic spaces 2 at two corners (corners) as viewed from the rotor. These nonmagnetic spaces 2 are arranged diagonally.

この非磁性空間2は、周方向の長さが回転子対向部1aの軸方向中央部から軸方向両端部に向かって徐々に大きくなっている。非磁性空間2の径方向の寸法は全体が略同一であるので、非磁性空間2の体積は回転子対向部1aの軸方向中央部から軸方向両端部に向かって徐々に大きくなる。別の言い方をすると、非磁性空間2の体積は回転子対向部1aの周方向中央部から周方向両端部に向かって徐々に大きくなる。即ち、非磁性空間2は、回転子対向部1aの軸方向両端部及び周方向両端部で最も大きな空間となる。   The circumferential length of the nonmagnetic space 2 is gradually increased from the central portion in the axial direction of the rotor facing portion 1a toward both end portions in the axial direction. Since the overall dimension of the nonmagnetic space 2 in the radial direction is substantially the same, the volume of the nonmagnetic space 2 gradually increases from the axially central portion of the rotor facing portion 1a toward both axial end portions. In other words, the volume of the nonmagnetic space 2 gradually increases from the circumferential center of the rotor facing portion 1a toward both circumferential ends. That is, the nonmagnetic space 2 is the largest space at both axial end portions and circumferential end portions of the rotor facing portion 1a.

これによって、回転子対向部1aの磁性体(電磁鋼板)が多く存在する領域の形状は、斜めに略六角形となる。   As a result, the shape of the region where the magnetic body (electromagnetic steel plate) in the rotor facing portion 1a is abundant is substantially hexagonal.

同期電動機の回転子が回転するとき、回転子の磁極に対向する固定子鉄心10の回転子対向部1aの面積は、非磁性空間2が無い固定子鉄心10の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor of the synchronous motor rotates, the area of the rotor facing portion 1a of the stator core 10 that faces the magnetic poles of the rotor is the same as that of the stator core 10 without the nonmagnetic space 2. It gradually increases in proportion to the angle.

これに対して、非磁性空間2を有する同期電動機の固定子鉄心10では、回転子の回転角に対して、初めは回転子の磁極に対向する磁性体(電磁鋼板)が多く存在する領域の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the stator core 10 of the synchronous motor having the nonmagnetic space 2, in the region where there are many magnetic bodies (electromagnetic steel plates) opposed to the magnetic poles of the rotor at first with respect to the rotation angle of the rotor. The increase in area is small and the increase in area gradually increases.

固定子鉄心10の回転子対向部1aに非磁性空間2が無い場合、回転子の磁極より回転子対向部1aに流入する磁束の変化は、回転子磁極の磁束分布に従って変化する。   When there is no nonmagnetic space 2 in the rotor facing portion 1a of the stator core 10, the change in magnetic flux flowing from the rotor magnetic pole into the rotor facing portion 1a changes according to the magnetic flux distribution of the rotor magnetic pole.

例えばラジアル配向に着磁された回転子の場合、磁極間の磁束の変化は急であるため、固定子鉄心10の回転子対向部1aに流入する磁束の変化は、磁極の切り替わり付近で急に変化する。   For example, in the case of a rotor magnetized in a radial orientation, the change in the magnetic flux between the magnetic poles is abrupt. Therefore, the change in the magnetic flux flowing into the rotor facing portion 1a of the stator core 10 is suddenly changed near the switching of the magnetic poles. Change.

また、永久磁石を磁性体内部に配置する回転子の場合には、永久磁石より発生する磁束は、永久磁石の外周部にある磁性体部分で向きを自由に変化するため、この磁性体部分が、回転子の回転に従って固定子鉄心10の回転子対向部1aに対向したと同時に、磁束が急激に回転子対向部1aへと集中するため、固定子鉄心10の回転子対向部1aに流入する磁束は急激に変動する。   Further, in the case of a rotor in which a permanent magnet is disposed inside a magnetic body, the magnetic flux generated from the permanent magnet can be freely changed in direction at the magnetic body portion on the outer peripheral portion of the permanent magnet. As the rotor rotates, the magnetic flux suddenly concentrates on the rotor facing portion 1a at the same time as it faces the rotor facing portion 1a of the stator core 10, and therefore flows into the rotor facing portion 1a of the stator core 10. Magnetic flux fluctuates rapidly.

これによって、固定子の巻線に生じる誘起電圧に歪みが生じ、同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   As a result, the induced voltage generated in the stator windings is distorted, and the torque pulsation of the synchronous motor is increased, causing vibration and noise.

本実施の形態による同期電動機の固定子は、回転子対向部1aの磁性体(電磁鋼板)が多い領域がちょうどスキューをかけたような形状となるため、回転子が回転するときに、回転子対向部1aが回転子磁極に対向する面積がはじめは小さく、歯部1中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、歯部1に急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   The stator of the synchronous motor according to the present embodiment has a shape in which a region where the magnetic material (electromagnetic steel plate) of the rotor facing portion 1a is large is just skewed, so that the rotor rotates when the rotor rotates. The area where the facing portion 1a faces the rotor magnetic pole is initially small, and the amount of increase in the area gradually increases as the rotation proceeds toward the center of the tooth portion 1. Therefore, the sudden flow of magnetic flux into the tooth portion 1 is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise is obtained.

また、一般的に、固定子鉄心10の隣り合う回転子対向部1a間のスロット開口部3aが大きくなると、回転子からみた外側(固定子鉄心10側)の磁気抵抗が大きくなる空間が広がり、スロット開口部3aと固定子鉄心10の回転子対向部1aとの磁気抵抗の差が大きくなり、コギングトルクが増大する。   In general, when the slot opening 3a between the adjacent rotor facing portions 1a of the stator core 10 is increased, a space in which the magnetic resistance on the outer side (stator core 10 side) viewed from the rotor is increased, The difference in magnetic resistance between the slot opening 3a and the rotor facing portion 1a of the stator core 10 increases, and the cogging torque increases.

例えば、固定子鉄心10の回転子対向部1aにおいて、軸方向端部を完全に非磁性空間とした場合、実質的なスロット開口部3aが広くなってしまうため(軸方向端部では、スロット開口部3aが広くなる)、前述のように誘起電圧の歪みを抑える効果は得られるものの、コギングトルクが増大してしまう。   For example, in the rotor facing portion 1a of the stator core 10, when the axial end portion is made completely non-magnetic space, the substantial slot opening portion 3a becomes wide (the slot opening at the axial end portion). As described above, the effect of suppressing the distortion of the induced voltage is obtained, but the cogging torque is increased.

これに対して、本実施の形態に示す同期電動機の固定子鉄心10の場合、スロット開口部3aの幅(周方向)は広がらないため、コギングトルクの増加を抑制することができる。   On the other hand, in the case of the stator core 10 of the synchronous motor shown in the present embodiment, since the width (circumferential direction) of the slot opening 3a does not widen, an increase in cogging torque can be suppressed.

通常、固定子鉄心10は電磁鋼板を積層して構成することが多く、図2に示す固定子鉄心10は、回転子対向部1aにある非磁性空間2を構成するための電磁鋼板を打ち抜く穴の形状を、積層する電磁鋼板ごとに徐々に変化させることで実現できる。   Usually, the stator core 10 is often constructed by laminating electromagnetic steel plates, and the stator core 10 shown in FIG. 2 is a hole for punching out the electromagnetic steel plates for constituting the nonmagnetic space 2 in the rotor facing portion 1a. Can be realized by gradually changing the shape of each steel sheet to be laminated.

しかし、この場合は、打ち抜く電磁鋼板の種類が多くなるため、大規模な金型、プレス設備が必要となる。   However, in this case, since there are many types of electromagnetic steel sheets to be punched, a large-scale mold and press equipment are required.

これに対して、例えば、図12に示す変形例1の同期電動機の固定子鉄心10は、同一形状の電磁鋼板を複数枚連続して積層し、非磁性空間2の周方向長さを軸方向に対して階段状に変化させている。   On the other hand, for example, the stator core 10 of the synchronous motor according to the modified example 1 shown in FIG. 12 is formed by successively laminating a plurality of electromagnetic steel plates having the same shape, and the circumferential length of the nonmagnetic space 2 is set in the axial direction. It is changed stepwise.

このようにすることで、非磁性空間2を構成するための電磁鋼板(打ち抜き後)の種類を削減でき、金型、プレス設備の規模を縮小できる。   By doing in this way, the kind of the electromagnetic steel plate (after punching) for comprising the nonmagnetic space 2 can be reduced, and the scale of a metal mold | die and a press installation can be reduced.

また、図13に示す変形例2の固定子鉄心10のように、非磁性空間2を、軸方向に開けられる複数のスリット孔2b,2c,2d,2eで構成してもよい。スリット孔2b,2c,2d,2eを、「空間」と定義する。   Moreover, you may comprise the nonmagnetic space 2 by several slit hole 2b, 2c, 2d, 2e opened to an axial direction like the stator core 10 of the modification 2 shown in FIG. The slit holes 2b, 2c, 2d, and 2e are defined as “space”.

スリット孔2b,2c,2d,2eは、回転子対向部1aの周方向の中央部付近から周方向端に向かって順に形成される。軸方向の長さは、中央部付近のスリット孔2bが最も短く、周方向両端に向かって徐々に長くなりスリット孔2eが最も長くなっている。   The slit holes 2b, 2c, 2d, and 2e are formed in order from the vicinity of the central portion in the circumferential direction of the rotor facing portion 1a toward the circumferential end. The length in the axial direction is the shortest in the slit hole 2b near the center, gradually increases toward both ends in the circumferential direction, and the slit hole 2e is longest.

このように構成することで、図11に示す非磁性空間2に近い効果が得られる。また、非磁性空間2を構成するために電磁鋼板を打ち抜く穴(スリット孔)も、その数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   By comprising in this way, the effect close | similar to the nonmagnetic space 2 shown in FIG. 11 is acquired. Further, since holes (slit holes) for punching out electromagnetic steel sheets to form the non-magnetic space 2 can be realized by changing the number thereof, it is possible to manufacture with a small-scale mold and press equipment.

本実施の形態に示すように、固定子鉄心10の歯部1の回転子対向部1a内部に非磁性空間2を設けると、回転子対向部1aの軸方向端部の外観形状は、非磁性空間2のない回転子対向部1aの場合と同様となる。そのため、固定子鉄心10と巻線との間の絶縁として、また巻線が回転子側に倒れ込むことを防止する巻き枠として用いられる樹脂で構成されるインシュレータを特殊な形状にする必要が無い。また、インシュレータの一部をこの非磁性空間2にはめ込むことで、強度を上げることも可能である。   As shown in the present embodiment, when the nonmagnetic space 2 is provided inside the rotor facing portion 1a of the tooth portion 1 of the stator core 10, the external shape of the end portion in the axial direction of the rotor facing portion 1a is nonmagnetic. This is the same as in the case of the rotor facing portion 1a without the space 2. Therefore, it is not necessary to make the insulator made of resin used as insulation between the stator core 10 and the winding and as a winding frame for preventing the winding from falling to the rotor side to have a special shape. Further, the strength can be increased by fitting a part of the insulator into the nonmagnetic space 2.

以上のように、この実施の形態によれば、固定子鉄心10の歯部1の回転子対向部1aの内部に、回転子からみて二つの角(隅)に対角線上に配置される非磁性空間2を有し、この非磁性空間2の体積は回転子対向部1aの軸方向中央部から軸方向両端部に向かって徐々に大きくなる。非磁性空間2は、回転子対向部1aの軸方向両端部及び周方向両端部で最も大きな空間となるようにすることにより、回転子対向部1aの磁性体(電磁鋼板)が多い領域がちょうどスキューをかけたような形状となるため、回転子が回転するときに、回転子対向部1aが回転子磁極に対向する面積がはじめは小さく、歯部1中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、歯部1に急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   As described above, according to this embodiment, the nonmagnetic property is arranged diagonally at the two corners (corners) as viewed from the rotor inside the rotor facing portion 1a of the tooth portion 1 of the stator core 10. A space 2 is provided, and the volume of the nonmagnetic space 2 gradually increases from the axially central portion of the rotor facing portion 1a toward both axial end portions. By setting the nonmagnetic space 2 to be the largest space at both axial end portions and circumferential end portions of the rotor facing portion 1a, the region where the magnetic material (electromagnetic steel plate) of the rotor facing portion 1a is large is just right. Because the shape is skewed, when the rotor rotates, the area where the rotor facing portion 1a faces the rotor magnetic pole is initially small and gradually increases as the rotation proceeds toward the center of the tooth portion 1. Increase in area increases. Therefore, the sudden flow of magnetic flux into the tooth portion 1 is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise is obtained.

また、スロット開口部3aの幅(周方向)が広がらないため、コギングトルクの増加を抑制することができる。   Further, since the width (circumferential direction) of the slot opening 3a does not increase, an increase in cogging torque can be suppressed.

また、同一形状の電磁鋼板を複数枚連続して積層し、非磁性空間2の周方向長さを軸方向に対して階段状に変化させることで、非磁性空間2を構成するための電磁鋼板(打ち抜き後)の種類を削減でき、金型、プレス設備の規模を縮小できる。   Moreover, the electromagnetic steel plate for comprising the nonmagnetic space 2 by laminating | stacking several electromagnetic steel plates of the same shape continuously, and changing the circumferential direction length of the nonmagnetic space 2 to step shape with respect to an axial direction. The number of types (after punching) can be reduced, and the scale of molds and press facilities can be reduced.

また、スリット孔2b,2c,2d,2eを、回転子対向部1aの周方向の中央部付近から周方向端に向かって順に形成し、軸方向の長さを、中央部付近のスリット孔2bが最も短く、周方向両端に向かって徐々に長くなりスリット孔2eが最も長くなるように構成することで、図11に示す非磁性空間2に近い効果が得られる。また、非磁性空間2を構成するために電磁鋼板を打ち抜く穴(スリット孔)も、その数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   Further, the slit holes 2b, 2c, 2d, 2e are formed in order from the vicinity of the central portion in the circumferential direction of the rotor facing portion 1a toward the circumferential end, and the length in the axial direction is set to the slit hole 2b in the vicinity of the central portion. 11 is the shortest, gradually lengthens toward both ends in the circumferential direction, and the slit hole 2e becomes the longest, thereby obtaining an effect close to the nonmagnetic space 2 shown in FIG. Further, since holes (slit holes) for punching out electromagnetic steel sheets to form the non-magnetic space 2 can be realized by changing the number thereof, it is possible to manufacture with a small-scale mold and press equipment.

実施の形態3.
図14乃至図16は実施の形態3を示す図で、図14は同期電動機の固定子鉄心10の歯部1を拡大した斜視図、図15は変形例1の固定子鉄心10の歯部1を拡大した斜視図、図16は変形例2の固定子鉄心10の歯部1を拡大した斜視図である。
Embodiment 3 FIG.
FIGS. 14 to 16 are diagrams showing the third embodiment, FIG. 14 is an enlarged perspective view of the tooth portion 1 of the stator core 10 of the synchronous motor, and FIG. 15 is the tooth portion 1 of the stator core 10 of the first modification. 16 is an enlarged perspective view, and FIG. 16 is an enlarged perspective view of the tooth portion 1 of the stator core 10 of the second modification.

図14により、同期電動機の固定子鉄心10の構成を説明する。回転子対向部1aの内部に、回転子からみて周方向両端で軸方向中央付近に非磁性空間2を有する。これらの非磁性空間2は、回転子対向部1aにおいて、周方向に対称に配置される。   The configuration of the stator core 10 of the synchronous motor will be described with reference to FIG. Inside the rotor facing portion 1a, there is a nonmagnetic space 2 near the center in the axial direction at both ends in the circumferential direction when viewed from the rotor. These nonmagnetic spaces 2 are arranged symmetrically in the circumferential direction in the rotor facing portion 1a.

この非磁性空間2は、周方向の長さが軸方向中央部から軸方向端部に向かって徐々に小さくなっている。非磁性空間2の径方向の寸法は全体が略同一であるので、非磁性空間2の体積は回転子対向部1aの軸方向中央部から軸方向両端部に向かって徐々に小さくなる。別の言い方をすると、非磁性空間2の体積は回転子対向部1aの周方向中央部から周方向両端部に向かって徐々に大きくなる。即ち、非磁性空間2は、回転子対向部1aの軸方向両端部及び周方向両端部で最も大きな空間となる。これによって、回転子対向部1aの磁性体(電磁鋼板)が多く存在する領域の形状は、上下に略台形の領域をひっくり返して重ねたような形状となる。   The nonmagnetic space 2 has a circumferential length that gradually decreases from the axial center to the axial end. Since the overall dimension of the nonmagnetic space 2 in the radial direction is substantially the same, the volume of the nonmagnetic space 2 gradually decreases from the axially central portion of the rotor facing portion 1a toward both axial end portions. In other words, the volume of the nonmagnetic space 2 gradually increases from the circumferential center of the rotor facing portion 1a toward both circumferential ends. That is, the nonmagnetic space 2 is the largest space at both axial end portions and circumferential end portions of the rotor facing portion 1a. As a result, the shape of the region of the rotor facing portion 1a in which many magnetic bodies (magnetic steel plates) are present is such that the substantially trapezoidal region is turned upside down and overlapped.

同期電動機の回転子が回転するとき、回転子の磁極に対向する固定子鉄心10の回転子対向部1aの面積は、非磁性空間2が無い固定子鉄心10の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor of the synchronous motor rotates, the area of the rotor facing portion 1a of the stator core 10 that faces the magnetic poles of the rotor is the same as that of the stator core 10 without the nonmagnetic space 2. It gradually increases in proportion to the angle.

これに対して、非磁性空間2を有する同期電動機の固定子鉄心10では、回転子の回転角に対して、初めは回転子の磁極に対向する磁性体(電磁鋼板)が多く存在する領域の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the stator core 10 of the synchronous motor having the nonmagnetic space 2, in the region where there are many magnetic bodies (electromagnetic steel plates) opposed to the magnetic poles of the rotor at first with respect to the rotation angle of the rotor. The increase in area is small and the increase in area gradually increases.

固定子鉄心10の回転子対向部1aに非磁性空間2が無い場合、回転子の磁極より回転子対向部1aに流入する磁束の変化は、回転子磁極の磁束分布に従って変化する。   When there is no nonmagnetic space 2 in the rotor facing portion 1a of the stator core 10, the change in magnetic flux flowing from the rotor magnetic pole into the rotor facing portion 1a changes according to the magnetic flux distribution of the rotor magnetic pole.

例えばラジアル配向に着磁された回転子の場合、磁極間の磁束の変化は急であるため、固定子鉄心10の回転子対向部1aに流入する磁束の変化は、磁極の切り替わり付近で急に変化する。   For example, in the case of a rotor magnetized in a radial orientation, the change in the magnetic flux between the magnetic poles is abrupt. Therefore, the change in the magnetic flux flowing into the rotor facing portion 1a of the stator core 10 is suddenly changed near the switching of the magnetic poles. Change.

また、永久磁石を磁性体内部に配置する回転子の場合には、永久磁石より発生する磁束は、永久磁石の外周部にある磁性体部分で向きを自由に変化させるため、この磁性体部分が、回転子の回転に従って固定子鉄心10の回転子対向部1aに対向したと同時に、磁束が急激に回転子対向部1aへと集中するため、固定子鉄心10の回転子対向部1aに流入する磁束は急激に変動する。   Further, in the case of a rotor in which a permanent magnet is arranged inside a magnetic body, the magnetic flux generated from the permanent magnet is freely changed in direction at the magnetic body portion on the outer periphery of the permanent magnet. As the rotor rotates, the magnetic flux suddenly concentrates on the rotor facing portion 1a at the same time as it faces the rotor facing portion 1a of the stator core 10, and therefore flows into the rotor facing portion 1a of the stator core 10. Magnetic flux fluctuates rapidly.

これによって、固定子の巻線に生じる誘起電圧に歪みが生じ、同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   As a result, the induced voltage generated in the stator windings is distorted, and the torque pulsation of the synchronous motor is increased, causing vibration and noise.

本実施の形態による同期電動機の固定子は、回転子対向部1aの磁性体が周方向端部では少ないため、回転子が回転するときに、回転子対向部1aが回転子磁極に対向する面積がはじめは小さく、歯部1中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、歯部1に急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   In the stator of the synchronous motor according to the present embodiment, since the magnetic body of the rotor facing portion 1a is small at the circumferential end, the area where the rotor facing portion 1a faces the rotor magnetic pole when the rotor rotates. However, the amount of increase in the area gradually increases as the rotation proceeds toward the center of the tooth portion 1. Therefore, the sudden flow of magnetic flux into the tooth portion 1 is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise is obtained.

また、一般的に、固定子鉄心10の隣り合う回転子対向部1a間のスロット開口部3aが大きくなると、回転子からみた外側(固定子鉄心10側)の磁気抵抗が大きくなる空間が広がり、スロット開口部3aと固定子鉄心10の回転子対向部1aとの磁気抵抗の差が大きくなり、コギングトルクが増大する。   In general, when the slot opening 3a between the adjacent rotor facing portions 1a of the stator core 10 is increased, a space in which the magnetic resistance on the outer side (stator core 10 side) viewed from the rotor is increased, The difference in magnetic resistance between the slot opening 3a and the rotor facing portion 1a of the stator core 10 increases, and the cogging torque increases.

例えば、固定子鉄心10の回転子対向部1aにおいて、軸方向端部を完全に非磁性空間とした場合、実質的なスロット開口部3aが広くなってしまうため(軸方向端部では、スロット開口部3aが広くなる)、前述のように誘起電圧の歪みを抑える効果は得られるものの、コギングトルクが増大してしまう。   For example, in the rotor facing portion 1a of the stator core 10, when the axial end portion is made completely non-magnetic space, the substantial slot opening portion 3a becomes wide (the slot opening at the axial end portion). As described above, the effect of suppressing the distortion of the induced voltage is obtained, but the cogging torque is increased.

これに対して、本実施の形態に示す同期電動機の固定子の場合、スロット開口部3aの幅(周方向)は広がらないため、コギングトルクの増加を抑制することができる。   On the other hand, in the case of the stator of the synchronous motor shown in the present embodiment, since the width (circumferential direction) of the slot opening 3a does not widen, an increase in cogging torque can be suppressed.

通常、固定子鉄心10は電磁鋼板を積層して構成することが多く、図14に示す固定子鉄心10は、回転子対向部1aにある非磁性空間2を構成するための電磁鋼板を打ち抜く穴の形状を、積層する電磁鋼板ごとに徐々に変化させることで実現できる。   Usually, the stator core 10 is often constructed by laminating electromagnetic steel plates, and the stator core 10 shown in FIG. 14 is a hole for punching out the electromagnetic steel plates for constituting the nonmagnetic space 2 in the rotor facing portion 1a. Can be realized by gradually changing the shape of each steel sheet to be laminated.

しかし、この場合は、打ち抜く電磁鋼板の種類が多くなるため、大規模な金型、プレス設備が必要となる。   However, in this case, since there are many types of electromagnetic steel sheets to be punched, a large-scale mold and press equipment are required.

これに対して、例えば、図15に示す変形例1の同期電動機の固定子鉄心10は、同一形状の電磁鋼板を複数枚連続して積層し、非磁性空間2の周方向長さを軸方向に対して階段状に変化させている。   On the other hand, for example, the stator iron core 10 of the synchronous motor according to the first modification shown in FIG. 15 is formed by successively laminating a plurality of electromagnetic steel plates having the same shape, and setting the circumferential length of the nonmagnetic space 2 in the axial direction. It is changed stepwise.

このようにすることで、非磁性空間2を構成するための電磁鋼板の種類を削減でき、金型、プレス設備の規模を縮小できる。   By doing in this way, the kind of electromagnetic steel plate for comprising the nonmagnetic space 2 can be reduced, and the scale of a metal mold | die and a press installation can be reduced.

また、図16に示す変形例2の同期電動機の固定子鉄心10のように、非磁性空間2を、軸方向に開けられる複数のスリット孔2b,2c,2d,2eで構成してもよい。スリット孔2b,2c,2d,2eを、「空間」と定義する。   Further, like the stator core 10 of the synchronous motor according to the modified example 2 shown in FIG. 16, the nonmagnetic space 2 may be composed of a plurality of slit holes 2b, 2c, 2d, and 2e that can be opened in the axial direction. The slit holes 2b, 2c, 2d, and 2e are defined as “space”.

スリット孔2b,2c,2d,2eは、回転子対向部1aの周方向の中央部付近から周方向両端に向かって順に形成される。軸方向の長さは、中央部付近のスリット孔2bが最も短く、周方向両端に向かって徐々に長くなりスリット孔2eが最も長くなっている。   The slit holes 2b, 2c, 2d, and 2e are formed in order from the vicinity of the center in the circumferential direction of the rotor facing portion 1a toward both ends in the circumferential direction. The length in the axial direction is the shortest in the slit hole 2b near the center, gradually increases toward both ends in the circumferential direction, and the slit hole 2e is longest.

このように構成することで、図14に示す非磁性空間2に近い効果が得られる。また、非磁性空間を構成するために電磁鋼板を打ち抜く穴(スリット孔)も、その数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   By comprising in this way, the effect close | similar to the nonmagnetic space 2 shown in FIG. 14 is acquired. Moreover, since holes (slit holes) for punching electromagnetic steel sheets to form a nonmagnetic space can also be realized by changing the number thereof, it is possible to manufacture with small-scale molds and press facilities.

本実施の形態に示すように、固定子鉄心10の回転子対向部1a内部で軸方向の中央付近に非磁性空間2を設けると、固定子鉄心10回転子対向部1aの軸方向端部に磁性体(電磁鋼板)が存在するため強度が高くなり、製造時や運搬時に鉄心の変形を防止できる。   As shown in the present embodiment, when the nonmagnetic space 2 is provided in the vicinity of the center in the axial direction inside the rotor facing portion 1a of the stator core 10, at the axial end of the stator core 10 rotor facing portion 1a. Since a magnetic body (magnetic steel sheet) is present, the strength is increased, and deformation of the iron core can be prevented during manufacturing and transportation.

また、本実施の形態に示すように、固定子鉄心10の歯部1の回転子対向部1a内部に非磁性空間2を設けると、回転子対向部1aの軸方向端部の外観形状は、非磁性空間2のない回転子対向部1aの場合と同様となる。そのため、固定子鉄心10と巻線との間の絶縁として、また巻線が回転子側に倒れ込むことを防止する巻き枠として用いられる樹脂で構成されるインシュレータを特殊な形状にする必要が無い。   Further, as shown in the present embodiment, when the nonmagnetic space 2 is provided inside the rotor facing portion 1a of the tooth portion 1 of the stator core 10, the external shape of the axial end portion of the rotor facing portion 1a is as follows. This is the same as in the case of the rotor facing portion 1a without the nonmagnetic space 2. Therefore, it is not necessary to make the insulator made of resin used as insulation between the stator core 10 and the winding and as a winding frame for preventing the winding from falling to the rotor side to have a special shape.

以上のように、この実施の形態によれば、固定子鉄心10の歯部1の回転子対向部1aの内部に、回転子からみて周方向両端で軸方向中央付近に周方向に対称に配置される非磁性空間2を有し、この非磁性空間2の体積は回転子対向部1aの軸方向中央部から軸方向両端部に向かって徐々に小さくなる。非磁性空間2は、回転子対向部1aの軸方向両端部及び周方向両端部で最も大きな空間となるようにすることにより、回転子対向部1aの磁性体が周方向端部では少ないため、回転子が回転するときに、回転子対向部1aが回転子磁極に対向する面積がはじめは小さく、歯部1中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、歯部1に急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   As described above, according to this embodiment, inside the rotor facing portion 1a of the tooth portion 1 of the stator core 10, symmetrically arranged in the circumferential direction near the axial center at both ends in the circumferential direction as viewed from the rotor. The volume of the nonmagnetic space 2 is gradually reduced from the central portion in the axial direction of the rotor facing portion 1a toward both end portions in the axial direction. Since the nonmagnetic space 2 is the largest space at both axial end portions and circumferential end portions of the rotor facing portion 1a, the magnetic material of the rotor facing portion 1a is small at the circumferential end portion. When the rotor rotates, the area where the rotor facing portion 1a faces the rotor magnetic pole is initially small, and the amount of increase in the area gradually increases as the rotation proceeds toward the center of the tooth portion 1. Therefore, the sudden flow of magnetic flux into the tooth portion 1 is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise is obtained.

また、スロット開口部3aの幅(周方向)は広がらないため、コギングトルクの増加を抑制することができる。   Further, since the width (circumferential direction) of the slot opening 3a does not increase, an increase in cogging torque can be suppressed.

また、同一形状の電磁鋼板を複数枚連続して積層し、非磁性空間2の周方向長さを軸方向に対して階段状に変化ることで、非磁性空間2を構成するための電磁鋼板の種類を削減でき、金型、プレス設備の規模を縮小できる。   Moreover, the electromagnetic steel plate for comprising the nonmagnetic space 2 by laminating | stacking several electromagnetic steel plates of the same shape continuously, and changing the circumferential direction length of the nonmagnetic space 2 to step shape with respect to an axial direction. The size of molds and press facilities can be reduced.

また、スリット孔2b,2c,2d,2eを、回転子対向部1aの周方向の中央部付近から周方向両端に向かって順に形成し、軸方向の長さを、中央部付近のスリット孔2bが最も短く、周方向両端に向かって徐々に長くなりスリット孔2eが最も長くなるように構成することで、図14に示す非磁性空間2に近い効果が得られる。また、非磁性空間を構成するために電磁鋼板を打ち抜く穴(スリット孔)も、その数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   The slit holes 2b, 2c, 2d, and 2e are formed in order from the vicinity of the central portion in the circumferential direction of the rotor facing portion 1a toward both ends in the circumferential direction, and the length in the axial direction is set to the slit hole 2b near the central portion. 14 is the shortest, gradually lengthens toward both ends in the circumferential direction, and the slit hole 2e becomes the longest, so that an effect close to that of the nonmagnetic space 2 shown in FIG. 14 can be obtained. Moreover, since holes (slit holes) for punching electromagnetic steel sheets to form a nonmagnetic space can also be realized by changing the number thereof, it is possible to manufacture with small-scale molds and press facilities.

また、固定子鉄心10の回転子対向部1a内部で軸方向の中央付近に非磁性空間2を設けると、固定子鉄心10回転子対向部1aの軸方向端部に磁性体(電磁鋼板)が存在するため強度が高くなり、製造時や運搬時に鉄心の変形を防止できる。   Further, when the nonmagnetic space 2 is provided in the vicinity of the center in the axial direction inside the rotor facing portion 1a of the stator core 10, a magnetic body (electromagnetic steel plate) is placed at the axial end of the stator core 10 rotor facing portion 1a. Since it exists, the strength is increased, and deformation of the iron core can be prevented during manufacturing and transportation.

また、固定子鉄心10の歯部1の回転子対向部1a内部に非磁性空間2を設けると、回転子対向部1aの軸方向端部の外観形状は、非磁性空間2のない回転子対向部1aの場合と同様となるため、固定子鉄心10と巻線との間の絶縁として、また巻線が回転子側に倒れ込むことを防止する巻き枠として用いられる樹脂で構成されるインシュレータを特殊な形状にする必要が無い。   Further, when the nonmagnetic space 2 is provided inside the rotor facing portion 1 a of the tooth portion 1 of the stator core 10, the outer shape of the end portion in the axial direction of the rotor facing portion 1 a is the rotor facing without the nonmagnetic space 2. Since this is the same as in the case of the part 1a, an insulator made of resin is used as an insulation between the stator core 10 and the winding and as a winding frame for preventing the winding from falling to the rotor side. There is no need to make a special shape.

実施の形態4.
図17乃至図19は実施の形態4を示す図で、図17は同期電動機の固定子鉄心10の歯部1を拡大した斜視図、図18は変形例1の固定子鉄心10の歯部1を拡大した斜視図、図19は変形例2の固定子鉄心10の歯部1を拡大した斜視図である。
Embodiment 4 FIG.
FIGS. 17 to 19 are views showing the fourth embodiment, FIG. 17 is an enlarged perspective view of the tooth portion 1 of the stator core 10 of the synchronous motor, and FIG. 18 is the tooth portion 1 of the stator core 10 of the first modification. 19 is an enlarged perspective view, and FIG. 19 is an enlarged perspective view of the tooth portion 1 of the stator core 10 of the second modification.

図17により、同期電動機の固定子鉄心10の構成を説明する。回転子対向部1aの内部に、回転子からみて、二つの角(隅)に略直角三角形の非磁性空間2を有する。二つの非磁性空間2が回転子対向部1aの略中央部を中心に点対称に配置される。二つの略直角三角形の長辺が、回転子対向部1aの略対角線上にある配置である。   The configuration of the stator core 10 of the synchronous motor will be described with reference to FIG. Inside the rotor facing portion 1a, a non-magnetic space 2 having a substantially right triangle is formed at two corners as seen from the rotor. The two nonmagnetic spaces 2 are arranged symmetrically with respect to the substantially central portion of the rotor facing portion 1a. In this arrangement, the long sides of the two substantially right-angled triangles are substantially on the diagonal line of the rotor facing portion 1a.

この非磁性空間2は、回転子対向部1aの軸方向中央部で最も大きく、軸方向端部に向かってそれぞれ徐々に小さくなっている。これによって、回転子対向部1aの磁性体(電磁鋼板)が多く存在する領域の形状は、長方形の1辺を切り欠いたものをひっくり返して重ねた様な形状となる。   The nonmagnetic space 2 is largest at the axially central portion of the rotor facing portion 1a and gradually decreases toward the axial end portion. As a result, the shape of the region of the rotor facing portion 1a where a large amount of magnetic material (magnetic steel plate) is present is such that the rectangular notch is turned upside down and overlapped.

同期電動機の回転子が回転するとき、回転子の磁極に対向する固定子鉄心10の回転子対向部1aの面積は、非磁性空間2が無い固定子鉄心10の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor of the synchronous motor rotates, the area of the rotor facing portion 1a of the stator core 10 that faces the magnetic poles of the rotor is the same as that of the stator core 10 without the nonmagnetic space 2. It gradually increases in proportion to the angle.

これに対して、非磁性空間2を有する同期電動機の固定子鉄心10では、回転子の回転角に対して、初めは回転子の磁極に対向する磁性体が多く存在する領域の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the stator core 10 of the synchronous motor having the nonmagnetic space 2, the area of the region where a large amount of magnetic material opposed to the magnetic poles of the rotor initially exists is increased with respect to the rotation angle of the rotor. The area increases gradually and gradually.

固定子鉄心10の回転子対向部1aに非磁性空間2が無い場合、回転子の磁極より回転子対向部1aに流入する磁束の変化は、回転子磁極の磁束分布に従って変化する。   When there is no nonmagnetic space 2 in the rotor facing portion 1a of the stator core 10, the change in magnetic flux flowing from the rotor magnetic pole into the rotor facing portion 1a changes according to the magnetic flux distribution of the rotor magnetic pole.

例えばラジアル配向に着磁された回転子の場合、磁極間の磁束の変化は急であるため、固定子鉄心10の回転子対向部1aに流入する磁束の変化は、磁極の切り替わり付近で急に変化する。   For example, in the case of a rotor magnetized in a radial orientation, the change in the magnetic flux between the magnetic poles is abrupt. Therefore, the change in the magnetic flux flowing into the rotor facing portion 1a of the stator core 10 is suddenly changed near the switching of the magnetic poles. Change.

また、永久磁石を磁性体内部に配置する回転子の場合には、永久磁石より発生する磁束は、永久磁石の外周部にある磁性体部分で向きを自由に変化させるため、この磁性体部分が、回転子の回転に従って固定子鉄心10の回転子対向部1aに対向したと同時に、磁束が急激に回転子対向部1aへと集中するため、固定子鉄心10の回転子対向部1aに流入する磁束は急激に変動する。   Further, in the case of a rotor in which a permanent magnet is arranged inside a magnetic body, the magnetic flux generated from the permanent magnet is freely changed in direction at the magnetic body portion on the outer periphery of the permanent magnet. As the rotor rotates, the magnetic flux suddenly concentrates on the rotor facing portion 1a at the same time as it faces the rotor facing portion 1a of the stator core 10, and therefore flows into the rotor facing portion 1a of the stator core 10. Magnetic flux fluctuates rapidly.

これによって、固定子の巻線に生じる誘起電圧に歪みが生じ、同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   As a result, the induced voltage generated in the stator windings is distorted, and the torque pulsation of the synchronous motor is increased, causing vibration and noise.

本実施の形態による同期電動機の固定子は、回転子対向部1aの磁性体(電磁鋼板)が多い領域がちょうどスキューをかけたような形状となるため、回転子が回転するときに、回転子対向部1aが回転子磁極に対向する面積がはじめは小さく、歯部1中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、歯部1に急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   The stator of the synchronous motor according to the present embodiment has a shape in which a region where the magnetic material (electromagnetic steel plate) of the rotor facing portion 1a is large is just skewed, so that the rotor rotates when the rotor rotates. The area where the facing portion 1a faces the rotor magnetic pole is initially small, and the amount of increase in the area gradually increases as the rotation proceeds toward the center of the tooth portion 1. Therefore, the sudden flow of magnetic flux into the tooth portion 1 is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise is obtained.

また、一般的に、固定子鉄心10の隣り合う回転子対向部1a間のスロット開口部3aが大きくなると、回転子からみた外側(固定子鉄心10側)の磁気抵抗が大きくなる空間が広がり、スロット開口部3aと固定子鉄心10の回転子対向部1aとの磁気抵抗の差が大きくなり、コギングトルクが増大する。   In general, when the slot opening 3a between the adjacent rotor facing portions 1a of the stator core 10 is increased, a space in which the magnetic resistance on the outer side (stator core 10 side) viewed from the rotor is increased, The difference in magnetic resistance between the slot opening 3a and the rotor facing portion 1a of the stator core 10 increases, and the cogging torque increases.

例えば、固定子鉄心10の回転子対向部1aにおいて、軸方向端部を完全に非磁性空間とした場合、実質的なスロット開口部3aが広くなってしまうため(軸方向端部では、スロット開口部3aが広くなる)、前述のように誘起電圧の歪みを抑える効果は得られるものの、コギングトルクが増大してしまう。   For example, in the rotor facing portion 1a of the stator core 10, when the axial end portion is made completely non-magnetic space, the substantial slot opening portion 3a becomes wide (the slot opening at the axial end portion). As described above, the effect of suppressing the distortion of the induced voltage is obtained, but the cogging torque is increased.

これに対して、本実施の形態に示す同期電動機の固定子鉄心10の場合、スロット開口部3aの幅は広がらないため、コギングトルクの増加を抑制することができる。   On the other hand, in the case of the stator core 10 of the synchronous motor shown in the present embodiment, since the width of the slot opening 3a does not increase, an increase in cogging torque can be suppressed.

通常、固定子鉄心10は電磁鋼板を積層して構成することが多く、図17に示す固定子鉄心10は、回転子対向部1aにある非磁性空間2を構成するための電磁鋼板を打ち抜く穴の形状を、積層する電磁鋼板ごとに徐々に変化させることで実現できる。   Usually, the stator core 10 is often constructed by laminating electromagnetic steel plates, and the stator core 10 shown in FIG. 17 is a hole for punching out the electromagnetic steel plates for constituting the nonmagnetic space 2 in the rotor facing portion 1a. Can be realized by gradually changing the shape of each steel sheet to be laminated.

しかし、この場合は、打ち抜く電磁鋼板の種類が多くなるため、大規模な金型、プレス設備が必要となる。   However, in this case, since there are many types of electromagnetic steel sheets to be punched, a large-scale mold and press equipment are required.

これに対して、例えば、図18に示す変形例1の同期電動機の固定子鉄心10は、同一形状の電磁鋼板を複数枚連続して積層し、非磁性空間2の周方向長さを軸方向に対して階段状に変化させている。   On the other hand, for example, the stator core 10 of the synchronous motor according to the first modification shown in FIG. 18 is formed by successively laminating a plurality of electromagnetic steel plates having the same shape, and the circumferential length of the nonmagnetic space 2 is set in the axial direction. It is changed stepwise.

このようにすることで、非磁性空間2を構成するための電磁鋼板の種類を削減でき、金型、プレス設備の規模を縮小できる。   By doing in this way, the kind of electromagnetic steel plate for comprising the nonmagnetic space 2 can be reduced, and the scale of a metal mold | die and a press installation can be reduced.

また、図19に示す変形例2の同期電動機の固定子鉄心10のように、非磁性空間2を、軸方向に開けられる複数のスリット孔2b,2c,2d,2eで構成してもよい。スリット孔2b,2c,2d,2eを、「空間」と定義する。   Moreover, you may comprise the nonmagnetic space 2 by the some slit hole 2b, 2c, 2d, 2e opened in an axial direction like the stator core 10 of the synchronous motor of the modification 2 shown in FIG. The slit holes 2b, 2c, 2d, and 2e are defined as “space”.

スリット孔2b,2c,2d,2eは、回転子対向部1aの周方向の中央部付近から周方向端に向かって順に形成される。軸方向の長さは、中央部付近のスリット孔2bが最も短く、周方向両端に向かって徐々に長くなりスリット孔2eが最も長くなっている。   The slit holes 2b, 2c, 2d, and 2e are formed in order from the vicinity of the central portion in the circumferential direction of the rotor facing portion 1a toward the circumferential end. The length in the axial direction is the shortest in the slit hole 2b near the center, gradually increases toward both ends in the circumferential direction, and the slit hole 2e is longest.

このように構成することで、図17に示す非磁性空間2に近い効果が得られる。また、非磁性空間2を構成するために電磁鋼板を打ち抜く穴(スリット孔)も、その数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   By comprising in this way, the effect close | similar to the nonmagnetic space 2 shown in FIG. 17 is acquired. Further, since holes (slit holes) for punching out electromagnetic steel sheets to form the non-magnetic space 2 can be realized by changing the number thereof, it is possible to manufacture with a small-scale mold and press equipment.

本実施の形態に示すように、固定子鉄心10の回転子対向部1a内部に、回転子対向部1aの軸方向中央部で最も大きく軸方向端部に向かってそれぞれ徐々に小さくなる非磁性空間を設けると、回転子対向部1aの端部に磁性体が存在するため強度が高くなり、製造時や運搬時に固定子鉄心10の変形を防止できる。   As shown in the present embodiment, a non-magnetic space inside the rotor facing portion 1a of the stator core 10 that is the largest at the axially central portion of the rotor facing portion 1a and gradually decreases toward the axial end. Since the magnetic substance is present at the end of the rotor facing portion 1a, the strength is increased, and deformation of the stator core 10 can be prevented during manufacturing and transportation.

また、回転子対向部1aの軸方向端部の外観形状は、非磁性空間2のない回転子対向部1aの場合と同様となる。そのため、固定子鉄心10と巻線との間の絶縁として、また巻線が回転子側に倒れ込むことを防止する巻き枠として用いられる樹脂で構成されるインシュレータを特殊な形状にする必要が無い。また、インシュレータの一部をこの非磁性空間2にはめ込むことで、強度を上げることも可能である。   The appearance of the end portion in the axial direction of the rotor facing portion 1a is the same as that of the rotor facing portion 1a without the nonmagnetic space 2. Therefore, it is not necessary to make the insulator made of resin used as insulation between the stator core 10 and the winding and as a winding frame for preventing the winding from falling to the rotor side to have a special shape. Further, the strength can be increased by fitting a part of the insulator into the nonmagnetic space 2.

以上のように、この実施の形態によれば、固定子鉄心10の回転子対向部1aの磁性体(電磁鋼板)が多い領域がちょうどスキューをかけたような形状となるため、回転子が回転するときに、回転子対向部1aが回転子磁極に対向する面積がはじめは小さく、歯部1中心に向かって回転が進むに従って徐々に面積の増加量が大きくなるため、歯部1に急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   As described above, according to this embodiment, since the region where the magnetic body (electromagnetic steel plate) of the rotor facing portion 1a of the stator core 10 is a lot is shaped like a skew, the rotor rotates. The area where the rotor facing portion 1a is opposed to the rotor magnetic pole is initially small, and the amount of increase in area gradually increases as the rotation proceeds toward the center of the tooth portion 1. Inflow of magnetic flux is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise is obtained.

また、スロット開口部3aの幅は広がらないため、コギングトルクの増加を抑制することができる。   Further, since the width of the slot opening 3a does not increase, an increase in cogging torque can be suppressed.

また、同一形状の電磁鋼板を複数枚連続して積層し、非磁性空間2の周方向長さを軸方向に対して階段状に変化させることで、非磁性空間2を構成するための電磁鋼板の種類を削減でき、金型、プレス設備の規模を縮小できる。   Moreover, the electromagnetic steel plate for comprising the nonmagnetic space 2 by laminating | stacking several electromagnetic steel plates of the same shape continuously, and changing the circumferential direction length of the nonmagnetic space 2 to step shape with respect to an axial direction. The size of molds and press facilities can be reduced.

また、スリット孔2b,2c,2d,2eを、回転子対向部1aの周方向の中央部付近から周方向両端に向かって順に形成し、軸方向の長さを、中央部付近のスリット孔2bが最も短く、周方向両端に向かって徐々に長くなりスリット孔2eが最も長くなるように構成することで、図17に示す非磁性空間2に近い効果が得られる。また、非磁性空間2を構成するために電磁鋼板を打ち抜く穴(スリット孔)も、その数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   The slit holes 2b, 2c, 2d, and 2e are formed in order from the vicinity of the central portion in the circumferential direction of the rotor facing portion 1a toward both ends in the circumferential direction, and the length in the axial direction is set to the slit hole 2b near the central portion. 17 is the shortest, gradually lengthens toward both ends in the circumferential direction, and the slit hole 2e becomes the longest, whereby an effect close to the nonmagnetic space 2 shown in FIG. 17 can be obtained. Further, since holes (slit holes) for punching out electromagnetic steel sheets to form the non-magnetic space 2 can be realized by changing the number thereof, it is possible to manufacture with a small-scale mold and press equipment.

また、固定子鉄心10の回転子対向部1a内部に、回転子対向部1aの軸方向中央部で最も大きく軸方向端部に向かってそれぞれ徐々に小さくなる非磁性空間を設けると、回転子対向部1aの端部に磁性体が存在するため強度が高くなり、製造時や運搬時に固定子鉄心10の変形を防止できる。   Further, when a nonmagnetic space is provided inside the rotor facing portion 1a of the stator core 10 so as to be the largest at the axially central portion of the rotor facing portion 1a and gradually decrease toward the end in the axial direction, the rotor facing portion is provided. Since a magnetic substance is present at the end of the portion 1a, the strength is increased, and deformation of the stator core 10 can be prevented during manufacturing and transportation.

また、回転子対向部1aの軸方向端部の外観形状は、非磁性空間2のない回転子対向部1aの場合と同様となるため、固定子鉄心10と巻線との間の絶縁として、また巻線が回転子側に倒れ込むことを防止する巻き枠として用いられる樹脂で構成されるインシュレータを特殊な形状にする必要が無い。また、インシュレータの一部をこの非磁性空間2にはめ込むことで、強度を上げることも可能である。   Moreover, since the external appearance shape of the axial direction edge part of the rotor opposing part 1a becomes the same as that of the case of the rotor opposing part 1a without the nonmagnetic space 2, as an insulation between the stator core 10 and the winding, Further, it is not necessary to make the insulator made of a resin used as a winding frame that prevents the winding from falling to the rotor side into a special shape. Further, the strength can be increased by fitting a part of the insulator into the nonmagnetic space 2.

本発明の活用例として、空気調和機に搭載される圧縮機に用いられる同期電動機の固定子への適用が可能である。   As an application example of the present invention, application to a stator of a synchronous motor used in a compressor mounted on an air conditioner is possible.

実施の形態1を示す図で、同期電動機の固定子鉄心10の斜視図。FIG. 3 shows the first embodiment and is a perspective view of the stator core 10 of the synchronous motor. 実施の形態1を示す図で、図1の歯部1を拡大した斜視図。FIG. 3 is a diagram showing the first embodiment, and is an enlarged perspective view of a tooth portion 1 in FIG. 1. 実施の形態1を示す図で、図1の歯部1の回転子対向部1aを拡大した斜視図(a)とA〜E部の断面図(b)。FIG. 2 shows the first embodiment, and is an enlarged perspective view (a) and a cross-sectional view (b) of A to E portions of the rotor facing portion 1a of the tooth portion 1 of FIG. 実施の形態1を示す図で、変形例1の固定子鉄心10の歯部1を拡大した斜視図。FIG. 5 is a diagram showing the first embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a first modification. 実施の形態1を示す図で、図4の回転子対向部1aを拡大した斜視図。FIG. 5 is a diagram showing the first embodiment, and is an enlarged perspective view of a rotor facing portion 1a in FIG. 実施の形態1を示す図で、変形例2の固定子鉄心10の歯部1を拡大した斜視図。FIG. 5 is a diagram showing the first embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a second modification. 実施の形態1を示す図で、図6の歯部1の回転子対向部1aを拡大した斜視図(a)とA〜E部の断面図(b)。It is a figure which shows Embodiment 1, The perspective view (a) which expanded the rotor opposing part 1a of the tooth | gear part 1 of FIG. 6, and sectional drawing (b) of AE part. 実施の形態1を示す図で、図4に示す固定子鉄心10を用いた同期電動機の誘起電圧を示す図。FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating an induced voltage of the synchronous motor using the stator core 10 illustrated in FIG. 4. 実施の形態1を示す図で、同固定子鉄心10を用いた同期電動機のコギングトルクを示す図。FIG. 3 shows the first embodiment and shows the cogging torque of the synchronous motor using the stator core 10. 実施の形態1を示す図で、は誘起電圧の周波数成分分析の結果を示す図同期電動機の固定子の斜視図。FIG. 3 is a diagram illustrating the first embodiment, and is a perspective view of a stator of a synchronous motor illustrating a result of frequency component analysis of an induced voltage. 実施の形態2を示す図で、同期電動機の固定子鉄心10の歯部1を拡大した斜視図。FIG. 5 is a diagram showing the second embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a synchronous motor. 実施の形態2を示す図で、変形例1の固定子鉄心10の歯部1を拡大した斜視図。FIG. 10 is a diagram showing the second embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a first modification. 実施の形態2を示す図で、変形例2の固定子鉄心10の歯部1を拡大した斜視図。FIG. 10 is a diagram showing the second embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a second modification. 実施の形態3を示す図で、同期電動機の固定子鉄心10の歯部1を拡大した斜視図。FIG. 9 is a diagram showing the third embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a synchronous motor. 実施の形態3を示す図で、変形例1の固定子鉄心10の歯部1を拡大した斜視図。FIG. 10 is a diagram showing the third embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a first modification. 実施の形態3を示す図で、変形例2の固定子鉄心10の歯部1を拡大した斜視図。FIG. 9 is a diagram showing the third embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a second modification. 実施の形態4を示す図で、同期電動機の固定子鉄心10の歯部1を拡大した斜視図。The perspective view which expanded Embodiment and is the figure which shows Embodiment 4 and the tooth | gear part 1 of the stator core 10 of a synchronous motor. 実施の形態4を示す図で、変形例1の固定子鉄心10の歯部1を拡大した斜視図。FIG. 10 is a diagram showing the fourth embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a first modification. 実施の形態4を示す図で、変形例2の固定子鉄心10の歯部1を拡大した斜視図。FIG. 12 is a diagram showing the fourth embodiment, and is an enlarged perspective view of a tooth portion 1 of a stator core 10 of a second modification.

符号の説明Explanation of symbols

1 歯部、1a 回転子対向部、2 非磁性空間、2a 穴、2b スリット孔、2c スリット孔、2d スリット孔、2e スリット孔、3 スロット、3a スロット開口部、10 固定子鉄心。   1 tooth part, 1a rotor facing part, 2 nonmagnetic space, 2a hole, 2b slit hole, 2c slit hole, 2d slit hole, 2e slit hole, 3 slot, 3a slot opening, 10 stator core.

Claims (9)

電磁鋼板を積層して形成される固定子鉄心と、前記固定子鉄心に巻回され、電流が通電される巻線とを備えた同期電動機の固定子において、
前記固定子鉄心は、
当該同期電動機の固定子内部で回転する回転子に向かって突出する複数の歯部と、
前記歯部の一部を形成し、前記回転子に対向する回転子対向部と、
前記回転子対向部の内部に設けられ、周方向中央部から周方向両端部に向かって体積が徐々に大きくなる非磁性空間とを備えたことを特徴とする同期電動機の固定子。
In a stator of a synchronous motor comprising a stator core formed by laminating electromagnetic steel sheets, and a winding wound around the stator core and energized with current,
The stator core is
A plurality of teeth protruding toward the rotor rotating inside the stator of the synchronous motor;
Forming a part of the tooth portion and facing the rotor, a rotor facing portion;
A stator for a synchronous motor, comprising a nonmagnetic space provided inside the rotor facing portion and having a volume gradually increasing from a circumferential central portion toward both circumferential end portions.
前記非磁性空間は、軸方向中央部から軸方向両端部に向かって体積が徐々に大きくなることを備えたことを特徴とする請求項1記載の同期電動機の固定子。
請求項1記載の同期電動機の固定子。
2. The stator of a synchronous motor according to claim 1, wherein the non-magnetic space has a volume that gradually increases from an axially central portion toward both axial end portions.
The stator of the synchronous motor according to claim 1.
前記非磁性空間が、軸方向両端において、前記歯部の前記回転子対向部の両端付近に集中することを特徴とする請求項2記載の同期電動機の固定子。   3. The stator of a synchronous motor according to claim 2, wherein the nonmagnetic space is concentrated near both ends of the rotor-facing portion of the tooth portion at both ends in the axial direction. 前記非磁性空間が、前記歯部の前記回転子対向部の軸方向両端において、周方向片側に集中して存在し、且つ前記軸方向両端部において集中する周方向の位置が異なることを特徴とする請求項2記載の同期電動機の固定子。   The nonmagnetic space is concentrated on one side in the circumferential direction at both ends in the axial direction of the rotor-facing portion of the tooth portion, and the circumferential position where the nonmagnetic space is concentrated at both ends in the axial direction is different. The stator of a synchronous motor according to claim 2. 前記非磁性空間は、軸方向両端部から軸方向中央部に向かって体積が徐々に大きくなることを備えたことを特徴とする請求項1記載の同期電動機の固定子。   The stator of a synchronous motor according to claim 1, wherein the non-magnetic space has a volume that gradually increases from both axial end portions toward an axial central portion. 前記非磁性空間が、軸方向中央部において、前記歯部の前記回転子対向部の両端付近に集中することを特徴とする請求項5記載の同期電動機の固定子。   6. The stator of a synchronous motor according to claim 5, wherein the nonmagnetic space is concentrated near both ends of the rotor-facing portion of the tooth portion at an axially central portion. 前記非磁性空間が、前記歯部の前記回転子対向部の軸方向中央部から軸方向端部において、周方向片側に集中して存在し、且つ前記軸方向中央部から軸方向端部において集中する周方向の位置が異なることを特徴とする請求項5記載の同期電動機の固定子。   The non-magnetic space is concentrated on one side in the circumferential direction from the axial center to the axial end of the rotor-facing portion of the tooth, and concentrated from the axial central to the axial end. The stator of the synchronous motor according to claim 5, wherein positions in the circumferential direction are different. 前記非磁性空間を、軸方向に階段状に変化させることを特徴とする請求項2乃至7のいずれかに記載の同期電動機の固定子。   The stator of a synchronous motor according to any one of claims 2 to 7, wherein the nonmagnetic space is changed stepwise in the axial direction. 前記非磁性空間を、軸方向の長さの異なる複数の空間により構成することを特徴とする請求項2乃至7のいずれかに記載の同期電動機の固定子。   The stator of a synchronous motor according to any one of claims 2 to 7, wherein the nonmagnetic space is constituted by a plurality of spaces having different axial lengths.
JP2008231329A 2008-09-09 2008-09-09 Stator of synchronous motor Pending JP2010068595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231329A JP2010068595A (en) 2008-09-09 2008-09-09 Stator of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231329A JP2010068595A (en) 2008-09-09 2008-09-09 Stator of synchronous motor

Publications (1)

Publication Number Publication Date
JP2010068595A true JP2010068595A (en) 2010-03-25

Family

ID=42193688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231329A Pending JP2010068595A (en) 2008-09-09 2008-09-09 Stator of synchronous motor

Country Status (1)

Country Link
JP (1) JP2010068595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180038A1 (en) * 2017-03-31 2018-10-04 日本電産株式会社 Motor and electric power steering device
US11444503B2 (en) 2017-09-28 2022-09-13 Nidec Corporation Motor and method of manufacturing motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119869A (en) * 1999-10-20 2001-04-27 Seiko Instruments Inc Coil yoke for motor, the motor, and rotating device
JP2004135380A (en) * 2002-10-08 2004-04-30 Daikin Ind Ltd Motor and rotary compressor
JP2005080432A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Motor and its manufacturing method
JP2007244004A (en) * 2006-02-08 2007-09-20 Nippon Densan Corp Motor and recording disc drive equipped with it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119869A (en) * 1999-10-20 2001-04-27 Seiko Instruments Inc Coil yoke for motor, the motor, and rotating device
JP2004135380A (en) * 2002-10-08 2004-04-30 Daikin Ind Ltd Motor and rotary compressor
JP2005080432A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Motor and its manufacturing method
JP2007244004A (en) * 2006-02-08 2007-09-20 Nippon Densan Corp Motor and recording disc drive equipped with it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180038A1 (en) * 2017-03-31 2018-10-04 日本電産株式会社 Motor and electric power steering device
CN110546857A (en) * 2017-03-31 2019-12-06 日本电产株式会社 Motor and electric power steering apparatus
CN110546857B (en) * 2017-03-31 2021-07-13 日本电产株式会社 Motor and electric power steering apparatus
US11444503B2 (en) 2017-09-28 2022-09-13 Nidec Corporation Motor and method of manufacturing motor

Similar Documents

Publication Publication Date Title
US8937420B2 (en) Rotor of permanent magnet embedded motor, blower, and compressor
WO2009084251A1 (en) Rotator for induction electric motor, induction electric motor, compressor, blower, and air-conditioning device
US20120267975A1 (en) Embedded permanent magnet electric motor
JP2008022663A (en) Rotating electric machine
US20180269734A1 (en) Rotor of rotary electric machine
JP2011223742A (en) Permanent magnet type rotary machine
JP2014150626A (en) Rotor for permanent magnet motor, method of manufacturing rotor for permanent magnet motor, and permanent magnet motor
JP5202492B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JP2010114952A (en) Motor, compressor, blower, and ventilator
JP5269032B2 (en) Synchronous motor rotor
JP2010183800A (en) Rotor of electric motor, electric motor, air blower and compressor
JP6121914B2 (en) Synchronous motor
JPH11113198A (en) Permanent magnet motor
JP2013123327A (en) Rotary electric machine
JP5490171B2 (en) Rotor and synchronous motor
CN204304642U (en) Electric rotating machine
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP2018110528A (en) Axial air gap type electric motor
JP2006254622A (en) Permanent magnet type motor
JP5471653B2 (en) Permanent magnet type electric motor
JP2010068595A (en) Stator of synchronous motor
JP2008199846A (en) Permanent magnet type electric rotating machine
JP2010068548A (en) Motor
JP2021016205A (en) Synchronous reluctance motor
JP2006254621A (en) Permanent magnet type motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20110601

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129