JP5490171B2 - Rotor and synchronous motor - Google Patents

Rotor and synchronous motor Download PDF

Info

Publication number
JP5490171B2
JP5490171B2 JP2012087491A JP2012087491A JP5490171B2 JP 5490171 B2 JP5490171 B2 JP 5490171B2 JP 2012087491 A JP2012087491 A JP 2012087491A JP 2012087491 A JP2012087491 A JP 2012087491A JP 5490171 B2 JP5490171 B2 JP 5490171B2
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
rotor
permanent magnets
induced voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012087491A
Other languages
Japanese (ja)
Other versions
JP2013219896A (en
Inventor
篤 松岡
和彦 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012087491A priority Critical patent/JP5490171B2/en
Priority to CN 201320165951 priority patent/CN203219034U/en
Publication of JP2013219896A publication Critical patent/JP2013219896A/en
Application granted granted Critical
Publication of JP5490171B2 publication Critical patent/JP5490171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、回転子および同期電動機に関する。   The present invention relates to a rotor and a synchronous motor.

同期電動機の回転子に高磁力な磁石を用いる場合、希土類磁石は、非常に高価な材料であるため、使用量を抑えるために、できるだけ肉厚を薄くした形状で利用することが多い(例えば、下記特許文献1、2参照)。また、送風機用途の電動機の場合、羽根を直接電動機の回転軸に取り付けて使用するため、電動機の出力するトルクに脈動が生じると、羽根を通して騒音の要因となる。このため、リラクタンストルクによるトルク脈動が発生しやすい磁石埋込型(IPM:Interior Permanent Magnet)の構造よりも、磁石を回転子表面に配置する構造(SPM:Surface Permanent Magnet)を取ることが多い。この場合、回転子は鉄などの軟磁性材料をバックヨークとして用い、回転子表面に薄肉のリング磁石あるいは円弧状の瓦磁石を配置する構造をとるものが一般的である。   When using a magnet with high magnetic force for the rotor of a synchronous motor, rare earth magnets are very expensive materials, so in order to reduce the amount of use, they are often used in the form of as thin a wall as possible (for example, See Patent Documents 1 and 2 below). Further, in the case of an electric motor for blower use, since the blade is directly attached to the rotating shaft of the electric motor and used, if pulsation occurs in the torque output from the electric motor, it causes noise through the blade. For this reason, the structure (SPM: Surface Permanent Magnet) which arranges a magnet on a rotor surface is often used rather than the structure of a magnet embedded type (IPM: Interior Permanent Magnet) which is easy to generate torque ripple by reluctance torque. In this case, the rotor generally has a structure in which a soft magnetic material such as iron is used as a back yoke and a thin ring magnet or arc-shaped roof magnet is disposed on the rotor surface.

電動機の外径が軸方向の寸法よりも大きな、扁平なモータの場合、固定子鉄心の積厚よりも回転子の軸方向長を大きく取ったときに、回転子が固定子鉄心と対向しない部分の磁束が固定に鎖交する量が電動機に特性に与える影響が大きくなる。このため、扁平なモータの場合、固定子鉄心の積厚よりも回転子の永久磁石の軸方向の寸法を大きく取ることが多い。   In the case of a flat motor in which the outer diameter of the motor is larger than the axial dimension, the part where the rotor does not face the stator core when the axial length of the rotor is larger than the thickness of the stator core The amount of magnetic flux that is fixedly linked to the motor greatly affects the characteristics of the motor. For this reason, in the case of a flat motor, the axial dimension of the permanent magnet of the rotor is often larger than the thickness of the stator core.

また、回転子を、軸方向において、複数の異なる構造あるいは磁石材料で構成し、高磁力な希土類の焼結磁石およびフェライトの焼結磁石を用いた回転子がある(例えば、下記特許文献3、4参照)。焼結希土類磁石は、大きな磁石のブロックを焼結した後、このブロックから所定の形状に切り出す製造方法をとることが多いことから、磁石の製造コストを抑えるため、平板形状で利用する場合が多い。このため、同期電動機の回転子で利用する場合には、軟磁性のコアに磁石挿入孔を設けて、回転子内部に永久磁石を配置するIPMの形態を取ることが多い。また、フェライトの焼結磁石も回転周波数が高い用途などでは、遠心力による磁石の飛散を防止するために、同様にIPMの構造をとることが多い。   In addition, there is a rotor in which the rotor is composed of a plurality of different structures or magnet materials in the axial direction, and a high-magnetism rare earth sintered magnet and a ferrite sintered magnet are used (for example, Patent Document 3 below, 4). Sintered rare earth magnets are often used in the form of a flat plate in order to reduce the manufacturing cost of the magnet because a large magnet block is sintered and then cut into a predetermined shape from the block. . For this reason, when used in a rotor of a synchronous motor, an IPM is often used in which a magnet insertion hole is provided in a soft magnetic core and a permanent magnet is disposed inside the rotor. Also, in applications where sintered ferrite magnets have a high rotational frequency, in order to prevent scattering of the magnets due to centrifugal force, an IPM structure is often used as well.

また、回転子の性能を向上させるため、より磁力の高い希土類磁石を用いることがある。磁力の高い希土類磁石は材料が高価であるため、低磁力の磁石で構成される回転子の一部に希土類磁石を組み込む方法がある(例えば、下記特許文献5、6参照)。   Further, in order to improve the performance of the rotor, a rare earth magnet having a higher magnetic force may be used. Since the material of a rare earth magnet having a high magnetic force is expensive, there is a method of incorporating a rare earth magnet into a part of a rotor composed of a low magnetic force magnet (see, for example, Patent Documents 5 and 6 below).

特開2005−312166号公報Japanese Patent Laying-Open No. 2005-312166 特開2009−142144号公報JP 2009-142144 A 特開2005−304204号公報JP-A-2005-304204 特開2010−68600号公報JP 2010-68600 A 実開平7−3278号公報Japanese Utility Model Publication No. 7-3278 特開平9−205746号公報JP-A-9-205746

しかしながら、上記特許文献1、2のように同期電動機の回転子に肉厚を薄くした形状の希土類磁石を利用する場合、軸方向の寸法を固定子鉄心よりも大きくすると、固定子鉄心に対向しない部分は、磁石表面に非磁性の空間(空気)が多く存在することとなり、磁石のパーミアンスが低下して磁石が発生する磁力が低下する。希土類磁石の永久磁石を薄く用いるため、このパーミアンスの低下による磁力の低下はより大きなものとなる。このため、固定子の積厚に対して、回転子軸方向長を長くしても、材料コストの増加に対して効果が小さくなるという問題がある。   However, when a rare earth magnet having a reduced thickness is used for the rotor of a synchronous motor as in Patent Documents 1 and 2, if the axial dimension is made larger than that of the stator core, it does not face the stator core. In the portion, there are many nonmagnetic spaces (air) on the magnet surface, the permeance of the magnet is lowered, and the magnetic force generated by the magnet is lowered. Since the permanent magnet of the rare earth magnet is thinly used, the decrease in magnetic force due to the decrease in permeance becomes larger. For this reason, even if the rotor axial length is increased with respect to the stator thickness, there is a problem that the effect is reduced with respect to an increase in material cost.

また、上記特許文献3、4のように、軸方向において、複数の異なる構造あるいは磁石材料を用いるIPM構造の回転子の場合、隣り合う磁極の間に鉄心である軟磁性材料が存在するため、この部分を通過して、隣の磁極に短絡する磁束が多く存在する。フェライト焼結磁石の場合は、希土類の焼結磁石と比較すると磁力が低いため、磁極間の磁束の短絡の影響が希土類磁石に比べて大きい。これを固定子鉄心に対向しない回転子軸方向の両端に配置した場合、回転子表面より外側は空気であるため、磁気抵抗が大きく、パーミアンスが低下し、磁石から発生する磁束が低下する。回転子内部の磁極間で短絡する磁束は、固定子鉄心の有無に大きく影響されないため、短絡する磁束量に変化は少なく、結果として磁石より発生する磁束に対して、回転子内部で短絡する磁束量の割合が大きくなり、効果的に磁石の磁力を利用することが難しくなるという問題がある。また、希土類の焼結磁石を用いる場合は、高コストとなるという問題がある。   In addition, in the case of an IPM structure rotor using a plurality of different structures or magnet materials in the axial direction as in Patent Documents 3 and 4, since a soft magnetic material that is an iron core exists between adjacent magnetic poles, There are many magnetic fluxes that pass through this portion and short-circuit to the adjacent magnetic poles. In the case of a ferrite sintered magnet, since the magnetic force is lower than that of a rare earth sintered magnet, the influence of a short circuit of magnetic flux between magnetic poles is larger than that of a rare earth magnet. When these are arranged at both ends in the rotor axial direction that do not face the stator core, air is outside the rotor surface, so that the magnetic resistance is large, the permeance is reduced, and the magnetic flux generated from the magnet is reduced. The magnetic flux that is short-circuited between the magnetic poles inside the rotor is not greatly affected by the presence or absence of the stator core, so there is little change in the amount of magnetic flux that is short-circuited. There is a problem that the ratio of the amount increases and it becomes difficult to effectively use the magnetic force of the magnet. In addition, when a rare earth sintered magnet is used, there is a problem of high cost.

しかしながら、上記特許文献5のような構成の場合、磁力の高い永久磁石によりステータのバックヨークが磁気飽和を起こして磁束がモータの外部に漏れるのを防ぐ必要があるため、それほど高い磁力を得ることができない。また、上記特許文献6の様な構成とした場合、高磁力の磁石によって周方向の一部の磁力が強くなるため、回転子表面の磁束密度の分布波形が大きく歪んでしまうという問題がある。   However, in the case of the configuration as described in Patent Document 5, it is necessary to prevent the magnetic flux from leaking outside the motor by causing the stator back yoke to be magnetically saturated by the permanent magnet having a high magnetic force. I can't. Moreover, when it is set as the said patent document 6, since the one part magnetic force of the circumferential direction becomes strong with a high magnetic force magnet, there exists a problem that the distribution waveform of the magnetic flux density on a rotor surface will be distorted greatly.

本発明は、上記に鑑みてなされたものであって、高価な高磁力磁石(希土類磁石等)の使用量を減らしても十分な磁束量を得ることができ、磁束密度の部分的な低下を抑えるこができる同期電動機の回転子を実現できる。   The present invention has been made in view of the above, and even if the amount of expensive high-magnetism magnets (rare earth magnets, etc.) is reduced, a sufficient amount of magnetic flux can be obtained, and the magnetic flux density is partially reduced. A rotor of a synchronous motor that can be suppressed can be realized.

上述した課題を解決し、目的を達成するために、本発明は、円環状の固定子鉄心を有する固定子と対向する回転子であって、外周側に配置された高磁力のラジアル配向の第1の永久磁石と前記第1の永久磁石の内周側に配置された軟磁性材料のバックヨークとを備える磁石部と、前記第1の永久磁石より磁力が低く極異方の配向がなされた円環状の第2および第3の永久磁石と、を備え、前記磁石部の軸方向の中心を固定子鉄心に対向する範囲の軸方向の中心としかつ前記磁石部の軸方向の厚さは前記固定子鉄心の軸方向の厚さ以下とし、前記第2および第3の永久磁石を、前記磁石部の軸方向の両端面にそれぞれ接するよう配置することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a rotor that faces a stator having an annular stator core, and has a first magnetically oriented radial orientation arranged on the outer peripheral side. A magnet portion including one permanent magnet and a back yoke made of a soft magnetic material disposed on the inner peripheral side of the first permanent magnet; and a magnetic force lower than that of the first permanent magnet and an anisotropic orientation. Annular second and third permanent magnets, wherein the axial center of the magnet part is the axial center of the range facing the stator core, and the axial thickness of the magnet part is The thickness is equal to or less than the axial thickness of the stator core, and the second and third permanent magnets are disposed so as to be in contact with both end surfaces of the magnet portion in the axial direction.

本発明によれば、高価な高磁力磁石(希土類磁石等)の使用量を減らしても十分な磁束量を得ることができ、磁束密度の部分的な低下を抑えることができるという効果を奏する。   According to the present invention, a sufficient amount of magnetic flux can be obtained even if the amount of expensive high-magnetism magnets (rare earth magnets, etc.) used is reduced, and the partial decrease in magnetic flux density can be suppressed.

図1は、実施の形態1の同期電動機の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of the synchronous motor according to the first embodiment. 図2は、実施の形態1の永久磁石と軟磁性材バックヨークの形状例を示す図である。FIG. 2 is a diagram showing a shape example of the permanent magnet and the soft magnetic material back yoke according to the first embodiment. 図3は、第2の永久磁石における極異方配向の一例を示す図である。FIG. 3 is a diagram illustrating an example of polar anisotropic orientation in the second permanent magnet. 図4は、実施の形態1の第1の永久磁石および第2、第3の永久磁石の配置例を示す図である。FIG. 4 is a diagram illustrating an arrangement example of the first permanent magnet and the second and third permanent magnets according to the first embodiment. 図5は、実施の形態1の回転子の誘起電圧と比較例の誘起電圧との比較を示す図である。FIG. 5 is a diagram showing a comparison between the induced voltage of the rotor of Embodiment 1 and the induced voltage of the comparative example. 図6は、実施の形態2の同期電動機の誘起電圧の波形の一例を示す図である。FIG. 6 is a diagram illustrating an example of a waveform of an induced voltage of the synchronous motor according to the second embodiment. 図7は、実施の形態3の回転子の磁極の配置例を示す図である。FIG. 7 is a diagram illustrating an arrangement example of the magnetic poles of the rotor according to the third embodiment. 図8は、実施の形態3の同期電動機の誘起電圧の波形の一例を示す図である。FIG. 8 is a diagram illustrating an example of an induced voltage waveform of the synchronous motor according to the third embodiment.

以下に、本発明にかかる回転子および同期電動機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a rotor and a synchronous motor according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明にかかる同期電動機の実施の形態1の構成例を示す図である。図1は、同期電動機の横断面を示しており、固定子7は、円環状の固定子鉄心8を有し、固定子7の内部には、回転子5が回転可能に配置される。固定子7の固定子鉄心8は、回転子5に対して、複数の突起状のティースを有しており、ティース間の空間(スロット)には外部から電流を印加するための巻線6を配置する。巻線6は、各ティース毎に集中的に巻回されている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of a first embodiment of a synchronous motor according to the present invention. FIG. 1 shows a cross section of the synchronous motor. The stator 7 has an annular stator core 8, and the rotor 5 is rotatably disposed inside the stator 7. The stator core 8 of the stator 7 has a plurality of protruding teeth with respect to the rotor 5, and windings 6 for applying a current from outside are provided in spaces (slots) between the teeth. Deploy. The winding 6 is intensively wound for each tooth.

回転子5は、永久磁石1(第1の永久磁石)と永久磁石2−1,2−2(第2の永久磁石,第3の永久磁石)との2種類の永久磁石を備えており、軸方向長が固定子7の積厚(固定子鉄心8の積厚)よりも大きくなっている。永久磁石1は、高磁力の永久磁石である。永久磁石1は、例えば、希土類磁石と樹脂を混合したボンド磁石であり、希土類磁石には例えばNdFeBやSmFeNなどの材料が用いられ、樹脂の材料には、ナイロンやPPS(ポリフェニレンサルファイド),エポキシなどの材料が用いられる。永久磁石2−1,2−2は、永久磁石1と比べて低磁力の永久磁石であり、例えばフェライト磁石と樹脂を混合したボンド磁石が用いられる。これに用いられる樹脂材料は、永久磁石1のものと同様である。   The rotor 5 includes two types of permanent magnets, a permanent magnet 1 (first permanent magnet) and permanent magnets 2-1 and 2-2 (second permanent magnet, third permanent magnet). The axial length is larger than the thickness of the stator 7 (the thickness of the stator core 8). The permanent magnet 1 is a high magnetic force permanent magnet. The permanent magnet 1 is, for example, a bonded magnet in which a rare earth magnet and a resin are mixed. For example, a material such as NdFeB or SmFeN is used for the rare earth magnet. These materials are used. The permanent magnets 2-1 and 2-2 are permanent magnets having a lower magnetic force than the permanent magnet 1, and for example, a bonded magnet in which a ferrite magnet and a resin are mixed is used. The resin material used for this is the same as that of the permanent magnet 1.

図2は、本実施の形態の永久磁石1と軟磁性材バックヨーク3の形状例を示す図である。回転子5の軸方向の中央部(固定子7(固定子鉄心8)に対向している部分の軸方向中心から両側にそれぞれ一定距離までの部分)は、図2に示すように永久磁石1と軟磁性材バックヨーク3で構成される構造を用いている。永久磁石1は、薄肉リング形状であり、回転子5の回転軸4を中心として放射状に広がる、いわゆるラジアル配向となっている。   FIG. 2 is a view showing a shape example of the permanent magnet 1 and the soft magnetic material back yoke 3 of the present embodiment. The central portion of the rotor 5 in the axial direction (the portion of the portion facing the stator 7 (stator core 8) from the center in the axial direction to a certain distance on both sides) is a permanent magnet 1 as shown in FIG. And the structure comprised by the soft-magnetic material back yoke 3 is used. The permanent magnet 1 has a thin ring shape and has a so-called radial orientation that spreads radially around the rotation axis 4 of the rotor 5.

永久磁石1は、薄肉の磁石であるため固定子鉄心8と対向しない位置に配置すると、永久磁石1の外側が空気となり、磁気抵抗が高くなりパーミアンスが下がり表面に現れる磁束が大きく低下する。このため、永久磁石1の軸方向寸法を固定子5の軸方向寸法よりも大きくした場合には、永久磁石1の寸法を増やした割には磁束量の増加が少なく、コストパフォーマンスが悪い。したがって、永久磁石1の軸方向寸法を固定子5の軸方向寸法以下としつつ磁束量を増やすことが望ましい。本実施の形態では、永久磁石1の上下に永久磁石2−1,2−2を配置することにより、永久磁石1の軸方向寸法を固定子5の軸方向寸法以下としつつ磁束量を増やしている。   Since the permanent magnet 1 is a thin-walled magnet and is disposed at a position that does not face the stator core 8, the outside of the permanent magnet 1 becomes air, the magnetic resistance increases, the permeance decreases, and the magnetic flux appearing on the surface is greatly reduced. For this reason, when the axial direction dimension of the permanent magnet 1 is made larger than the axial direction dimension of the stator 5, the increase in the size of the permanent magnet 1 causes a small increase in the amount of magnetic flux, resulting in poor cost performance. Therefore, it is desirable to increase the amount of magnetic flux while keeping the axial dimension of the permanent magnet 1 below the axial dimension of the stator 5. In the present embodiment, by disposing the permanent magnets 2-1 and 2-2 above and below the permanent magnet 1, the amount of magnetic flux is increased while keeping the axial dimension of the permanent magnet 1 below the axial dimension of the stator 5. Yes.

永久磁石2−1,2−2は、それぞれ永久磁石1と同軸のリング形状であり、永久磁石2−1と永久磁石2−2の間に永久磁石1を挟まれるように配置される。図1に示すように、永久磁石2−1,2−2と永久磁石1の外径は略同一である。永久磁石2−1,2−2の径方向の厚さは、永久磁石1の径方向の厚さより厚く、永久磁石2−1,2−2の内側面と回転軸4との間は空洞となっている。   The permanent magnets 2-1 and 2-2 each have a ring shape coaxial with the permanent magnet 1, and are disposed so that the permanent magnet 1 is sandwiched between the permanent magnet 2-1 and the permanent magnet 2-2. As shown in FIG. 1, the outer diameters of the permanent magnets 2-1 and 2-2 and the permanent magnet 1 are substantially the same. The thickness in the radial direction of the permanent magnets 2-1 and 2-2 is larger than the thickness in the radial direction of the permanent magnet 1, and there is a cavity between the inner surface of the permanent magnets 2-1 and 2-2 and the rotary shaft 4. It has become.

永久磁石2−1,2−2には、回転子5の磁極に合わせた極異方の配向がなされている。図3は、永久磁石2−1,2−2における極異方配向の一例を示す図である。極異方の配向によって、磁極を構成している磁石の肉厚は、寸法上の肉厚(外径−内径)よりも大きくなっており、固定子鉄心8からの距離が遠くても磁石のパーミアンスの低下が小さく、固定子鉄心からの距離が離れた場合においても、磁束量の低下が少ない。極異方の磁石は磁石の厚みが大きくとれるため、固定子鉄心に対向しない回転子の軸方向端部においても比較的大きな磁束を回転子5の表面に発生させることが可能である。   The permanent magnets 2-1 and 2-2 are poled anisotropically in accordance with the magnetic poles of the rotor 5. FIG. 3 is a diagram illustrating an example of polar anisotropic orientation in the permanent magnets 2-1 and 2-2. Due to the anisotropic orientation, the thickness of the magnet constituting the magnetic pole is larger than the dimensional thickness (outer diameter-inner diameter), and even if the distance from the stator core 8 is far, Even when the decrease in permeance is small and the distance from the stator core is increased, the decrease in the amount of magnetic flux is small. Since the magnet of the anisotropic magnet has a large thickness, a relatively large magnetic flux can be generated on the surface of the rotor 5 even at the axial end portion of the rotor that does not face the stator core.

以上のことから、本実施の形態では、回転子5の軸方向中央部には、図2に示すような永久磁石1と軟磁性材バックヨーク3で構成される磁石部を配置し、当該磁石部の軸方向の上下に永久磁石2−1,2−2をそれぞれ配置して、回転子5を構成する。図4は、本実施の形態の永久磁石1および永久磁石2−1,2−2の配置例を示す図である。   From the above, in the present embodiment, a magnet portion composed of the permanent magnet 1 and the soft magnetic material back yoke 3 as shown in FIG. Permanent magnets 2-1 and 2-2 are respectively arranged above and below the axial direction of the part to constitute the rotor 5. FIG. 4 is a diagram illustrating an arrangement example of the permanent magnet 1 and the permanent magnets 2-1 and 2-2 according to the present embodiment.

このように、本実施の形態では、同期電動機において、磁石のパーミアンスを高く取れる回転子5の軸方向中央付近の固定子鉄心8に対向している部分には、高磁力の永久磁石1を配置し、パーミアンスが低くなりやすい固定子鉄心8に対向しない部分を含む軸方向の端部には低磁力ではあるが極異方の配向をもった永久磁石2−1,2−2を配置するようにした。このため、高価な高磁力の永久磁石の使用量を減らしても十分な磁束量を得ることができ、磁束密度の部分的な低下を抑えることができる。   As described above, in the present embodiment, in the synchronous motor, the high-magnetism permanent magnet 1 is disposed in a portion facing the stator core 8 in the vicinity of the center in the axial direction of the rotor 5 that can take high magnet permeance. In addition, permanent magnets 2-1 and 2-2 having a low magnetic force but having an anisotropic orientation are arranged at end portions in the axial direction including portions that do not face the stator core 8 where permeance tends to be low. I made it. Therefore, a sufficient amount of magnetic flux can be obtained even if the amount of expensive high magnetic permanent magnets used is reduced, and a partial decrease in magnetic flux density can be suppressed.

また、永久磁石1の内側に軟磁性材バックヨーク3の代わりに、永久磁石2−1,2−2と同じ材料で、極配向を行った永久磁石を配置する構成も考えられる。この場合、永久磁石1の背面は、非磁性材料となるため、パーミアンスが低くなり、永久磁石1から発生する磁束量が低下するが、内側に配置する永久磁石の磁力が加わることで、全体の磁束量の低下をおさえることができる。なお、永久磁石1の磁極数が多いとき、永久磁石1の表面の磁極の幅が狭いとき、あるいは、永久磁石1の肉厚を厚く用いる場合ほど、永久磁石1のパーミアンスの低下は小さくなるので、永久磁石1の内側に軟磁性材のバックヨークを配置した場合との差は小さくなる。また、磁極の幅が広くなる、あるいは永久磁石1の厚みを薄くすると、パーミアンスの低下が大きくなり、内側に軟磁性材バックヨーク3を配置した本実施の形態の方が、より大きな磁束を取り出すことができる。   Further, a configuration in which a permanent magnet with the same orientation as that of the permanent magnets 2-1 and 2-2 is arranged inside the permanent magnet 1 instead of the soft magnetic material back yoke 3 is also conceivable. In this case, since the back surface of the permanent magnet 1 is made of a non-magnetic material, the permeance is reduced and the amount of magnetic flux generated from the permanent magnet 1 is reduced. A decrease in the amount of magnetic flux can be suppressed. In addition, since the permanent magnet 1 has a large number of magnetic poles, the width of the magnetic pole on the surface of the permanent magnet 1 is narrow, or the thickness of the permanent magnet 1 is increased, the decrease in permeance of the permanent magnet 1 becomes smaller. The difference from the case where the back yoke of the soft magnetic material is arranged inside the permanent magnet 1 becomes small. Further, when the width of the magnetic pole is increased or the thickness of the permanent magnet 1 is reduced, the permeance is greatly reduced, and the present embodiment in which the soft magnetic material back yoke 3 is disposed on the inner side takes out a larger magnetic flux. be able to.

図5は、本実施の形態の回転子の誘起電圧と比較例の誘起電圧との比較を示す図である。図5の横軸は、回転子5の永久磁石1の軸方向長さを示しており、縦軸は同期電動機を構成した際の誘起電圧の値を示す。図5は、固定子鉄心8の積厚を15mmとした場合の3次元の磁界解析の結果を示したものである。誘起電圧11,12は、比較例における3次元の磁界解析を示しており、誘起電圧13は、本実施の形態の3次元の磁界解析を示している。   FIG. 5 is a diagram showing a comparison between the induced voltage of the rotor of the present embodiment and the induced voltage of the comparative example. The horizontal axis in FIG. 5 indicates the axial length of the permanent magnet 1 of the rotor 5, and the vertical axis indicates the value of the induced voltage when the synchronous motor is configured. FIG. 5 shows the results of a three-dimensional magnetic field analysis when the thickness of the stator core 8 is 15 mm. The induced voltages 11 and 12 indicate the three-dimensional magnetic field analysis in the comparative example, and the induced voltage 13 indicates the three-dimensional magnetic field analysis of the present embodiment.

誘起電圧11は、比較例として、軸方向長さが15mmの永久磁石1で構成される回転子により得られる誘起電圧を示し、誘起電圧12は、比較例として、軸方向長さが合計19mmの永久磁石2−1,2−2で構成される回転子により得られる誘起電圧を示している。誘起電圧13は、永久磁石1と永久磁石2−1,2−2を組み合わせた本実施の形態の回転子5による誘起電圧を示しており、永久磁石1と永久磁石2−1,2−2の合計の厚さを19mmに固定し、永久磁石1の軸方向長さを変化させた時の誘起電圧を示している。例えば、永久磁石1の軸方向長さを15mmとすると、永久磁石2−1,2−2の軸方向の長さは、永久磁石の上限に2mm((19−15)/2[mm])ずつの合計4mmとなる。   The induced voltage 11 indicates an induced voltage obtained by a rotor composed of the permanent magnet 1 having an axial length of 15 mm as a comparative example, and the induced voltage 12 has a total axial length of 19 mm as a comparative example. The induced voltage obtained by the rotor comprised with the permanent magnets 2-1 and 2-2 is shown. An induced voltage 13 indicates an induced voltage generated by the rotor 5 according to the present embodiment in which the permanent magnet 1 and the permanent magnets 2-1 and 2-2 are combined. The permanent magnet 1 and the permanent magnets 2-1 and 2-2 are illustrated in FIG. The induced voltage when the total thickness is fixed to 19 mm and the axial length of the permanent magnet 1 is changed is shown. For example, if the axial length of the permanent magnet 1 is 15 mm, the axial length of the permanent magnets 2-1 and 2-2 is 2 mm ((19-15) / 2 [mm]) at the upper limit of the permanent magnet. The total is 4 mm each.

永久磁石1のみを用いた回転子により得られる誘起電圧11と、本実施の形態の回転子5により得られる誘起電圧13と、を両者とも永久磁石1の軸方向長さが15mmとなる場合で比較する(横軸15mmの位置で比較)と、本実施の形態の回転子5により得られる誘起電圧13は、永久磁石2−1,2−2を組み合わせたことにより、誘起電圧11より大きな誘起電圧が得られている。図5に示す同期電動機の例では、永久磁石1の軸方向長さが15mmの場合、本実施の形態の回転子5では、永久磁石1のみの回転子より約10%高い誘起電圧が得られた。   In the case where both the induced voltage 11 obtained by the rotor using only the permanent magnet 1 and the induced voltage 13 obtained by the rotor 5 of this embodiment are 15 mm in the axial length of the permanent magnet 1. When compared (comparison at a position of 15 mm on the horizontal axis), the induced voltage 13 obtained by the rotor 5 of the present embodiment is induced more than the induced voltage 11 by combining the permanent magnets 2-1 and 2-2. Voltage is obtained. In the example of the synchronous motor shown in FIG. 5, when the axial length of the permanent magnet 1 is 15 mm, the rotor 5 of the present embodiment can obtain an induced voltage that is about 10% higher than the rotor of the permanent magnet 1 alone. It was.

また、永久磁石1と永久磁石2−1,2−2の合計の厚さを19mmに固定して、永久磁石1の軸方向長さを徐々に小さくしていくと、永久磁石1の軸方向長さの減少に伴い誘起電圧13は小さくなっていく。そして、図5に示すように、永久磁石1の軸方向長さが、約11.5mm付近(永久磁石2−1,2−2の合計の軸方向長さは7.5mm)で、軸方向長さが15mmの永久磁石1のみで構成される回転子の誘起電圧11とほぼ同等の値となる。このことから、本実施の形態の回転子5を用いると、永久磁石1の軸方向長さを15mmから11.5mmに縮小することができ、約25%の削減が可能となる。なお、以上述べた永久磁石1、永久磁石2−1,2−2の軸方向長さは一例であり、永久磁石1、永久磁石2−1,2−2の軸方向長さは上述の例に限定されない。   Further, when the total thickness of the permanent magnet 1 and the permanent magnets 2-1 and 2-2 is fixed to 19 mm and the axial length of the permanent magnet 1 is gradually reduced, the axial direction of the permanent magnet 1 is increased. As the length decreases, the induced voltage 13 decreases. As shown in FIG. 5, the axial length of the permanent magnet 1 is about 11.5 mm (the total axial length of the permanent magnets 2-1 and 2-2 is 7.5 mm). The value is substantially equivalent to the induced voltage 11 of the rotor composed of only the permanent magnet 1 having a length of 15 mm. From this, when the rotor 5 of the present embodiment is used, the axial length of the permanent magnet 1 can be reduced from 15 mm to 11.5 mm, and a reduction of about 25% is possible. The axial lengths of the permanent magnet 1 and the permanent magnets 2-1 and 2-2 described above are examples, and the axial lengths of the permanent magnet 1 and the permanent magnets 2-1 and 2-2 are the above-described examples. It is not limited to.

永久磁石1に用いる希土類磁石と永久磁石2−1,2−2に用いるフェライト磁石の材料単価は、10倍以上異なっているため、回転子5の軸方向長が長くなり、フェライト磁石の使用量が増加しても、材料コスト全体から見た低減効果は十分大きなものになる。   Since the unit price of the rare earth magnet used for the permanent magnet 1 and the ferrite magnet used for the permanent magnets 2-1 and 2-2 is more than 10 times different, the axial length of the rotor 5 becomes longer, and the amount of ferrite magnet used is increased. Even if increases, the reduction effect seen from the whole material cost becomes sufficiently large.

また、永久磁石1の内部には、軟磁性材バックヨーク3が存在している。永久磁石2−1,2−2を用いずに永久磁石1の軸方向の長さを増やすと軟磁性材バックヨークの体積も増え、回転子の重量が大きくなる。本実施の形態では、永久磁石2−1,2−2と組み合わせて、永久磁石1と同時に軟磁性材バックヨークの体積を減らすことで、回転子の軽量化も可能となる。   A soft magnetic material back yoke 3 exists inside the permanent magnet 1. When the axial length of the permanent magnet 1 is increased without using the permanent magnets 2-1 and 2-2, the volume of the soft magnetic material back yoke increases and the weight of the rotor increases. In this embodiment, by combining the permanent magnets 2-1 and 2-2 and reducing the volume of the soft magnetic material back yoke simultaneously with the permanent magnet 1, the weight of the rotor can be reduced.

実施の形態2.
次に、本発明にかかる実施の形態2の永久磁石2−1,2−2の配向方法について説明する。本実施の形態の同期電動機の構成および回転子5の構成は、実施の形態1と同様である。
Embodiment 2. FIG.
Next, a method for orienting the permanent magnets 2-1 and 2-2 according to the second embodiment of the present invention will be described. The configuration of the synchronous motor and the configuration of the rotor 5 of the present embodiment are the same as those of the first embodiment.

永久磁石1は、図2に示すように薄肉のリング磁石であり、ラジアル配向の磁石である。このため、永久磁石1の表面の磁束密度分布は、台形波状になっており、永久磁石1を用いた回転子5を備える同期電動機の誘起電圧の波形は、ピーク付近が平になった台形状の波形になる。   The permanent magnet 1 is a thin ring magnet as shown in FIG. 2, and is a radially oriented magnet. For this reason, the magnetic flux density distribution on the surface of the permanent magnet 1 has a trapezoidal wave shape, and the waveform of the induced voltage of the synchronous motor including the rotor 5 using the permanent magnet 1 has a trapezoidal shape in the vicinity of the peak. It becomes the waveform.

図6は、本実施の形態の同期電動機の誘起電圧の波形の一例を示す図である。図6では、永久磁石1の軸方向長さを11.5mmとし、永久磁石2−1,2−2の合計の軸方向長さを7.5mmとした場合、永久磁石1により発生する誘起電圧21と、永久磁石2−1,2−2により発生する誘起電圧22と、実施の形態1と同様に永久磁石1と永久磁石2−1,2−2を組み合わせた場合の誘起電圧23と、を示している。   FIG. 6 is a diagram illustrating an example of a waveform of an induced voltage of the synchronous motor according to the present embodiment. In FIG. 6, when the axial length of the permanent magnet 1 is 11.5 mm and the total axial length of the permanent magnets 2-1 and 2-2 is 7.5 mm, the induced voltage generated by the permanent magnet 1 21, the induced voltage 22 generated by the permanent magnets 2-1 and 2-2, and the induced voltage 23 when the permanent magnet 1 and the permanent magnets 2-1 and 2-2 are combined as in the first embodiment, Is shown.

永久磁石1により発生する誘起電圧21は、上述のように台形状となる。これに対して、永久磁石2−1,2−2により発生する誘起電圧22が、図6に示しように、例えば略三角波のように、磁極中心で尖った形状となるようにすると、永久磁石1と永久磁石2を組み合わせた回転子5を用いた同期電動機で生じる誘起電圧23は、永久磁石1のみで発生する誘起電圧の波形よりもピーク付近が少し曲線を持った歪みの少ない波形となる。   The induced voltage 21 generated by the permanent magnet 1 has a trapezoidal shape as described above. On the other hand, if the induced voltage 22 generated by the permanent magnets 2-1 and 2-2 has a pointed shape at the center of the magnetic pole as shown in FIG. The induced voltage 23 generated in the synchronous motor using the rotor 5 in which the 1 and the permanent magnet 2 are combined has a waveform with a slight curve near the peak and less distortion than the waveform of the induced voltage generated only by the permanent magnet 1. .

これは、永久磁石2-1,2−2の表面磁束密度の分布波形が永久磁石1の表面磁束密度の分布波形と比較すると、より正弦波に近く、両者を組み合わせることで誘起電圧全体に占める永久磁石1の高調波成分の割合を減らすことで得られるものである。   This is because the distribution waveform of the surface magnetic flux density of the permanent magnets 2-1 and 2-2 is closer to a sine wave compared to the distribution waveform of the surface magnetic flux density of the permanent magnet 1, and occupies the entire induced voltage by combining the two. This is obtained by reducing the ratio of the harmonic components of the permanent magnet 1.

本実施の形態では、永久磁石2−1,2−2の表面磁束密度分布波形のピーク付近を尖らせた略三角波状にして、誘起電圧22を三角波に近い波形としている。永久磁石2−1,2−2は、成形する際に外部より極異方の磁場をかけて配向するため、この磁場を制御することで、表面磁束密分布の波形が磁極中心でピークを有する三角形状になるように調整することができる。   In the present embodiment, the induced voltage 22 has a waveform close to a triangular wave by making the shape of the surface magnetic flux density distribution waveform of the permanent magnets 2-1 and 2-2 sharp in the vicinity of the peak. Since the permanent magnets 2-1 and 2-2 are oriented by applying an extremely anisotropic magnetic field from the outside during molding, the waveform of the surface magnetic flux density distribution has a peak at the center of the magnetic pole by controlling this magnetic field. It can be adjusted to be triangular.

このように、本実施の形態では、永久磁石2−1,2−2の磁束密度分布波形を略三角形状にするよう永久磁石2−1,2−2を配向するようにした。このため、実施の形態1と同様の効果が得られるとともに、永久磁石1と永久磁石2−1,2−2を組み合わせた回転子5の誘起電圧の波形の歪みを実施の形態1より少なくすることができる。   Thus, in this embodiment, the permanent magnets 2-1 and 2-2 are oriented so that the magnetic flux density distribution waveforms of the permanent magnets 2-1 and 2-2 are substantially triangular. For this reason, the same effect as in the first embodiment can be obtained, and the distortion of the waveform of the induced voltage of the rotor 5 in which the permanent magnet 1 and the permanent magnets 2-1 and 2-2 are combined is less than that in the first embodiment. be able to.

永久磁石1を用いた回転子の誘起電圧21、永久磁石2−1,2−2を用いた回転子の誘起電圧22は、どちらも奇数倍の周波数の成分(高調波成分)を含んでいるが、含まれる周波数成分の位相が異なることで、永久磁石1の波形は台形波状、永久磁石2−1,2−2の波形は三角波状にそれぞれ歪んでいる。永久磁石1の波形に対して、永久磁石2−1,2−2の波形は、含まれる高周波成分の位相がちょうど反転しており、永久磁石1と永久磁石2−1,2−2を組み合わせることで、それぞれに含まれる高周波成分が打ち消し合うため、誘起電圧の歪みをより少なくすることができる。誘起電圧の歪みが小さくなると、同期電動機の運転中のトルク脈動が小さくなるため、同期電動機の振動・騒音を小さくすることができる。   The induced voltage 21 of the rotor using the permanent magnet 1 and the induced voltage 22 of the rotor using the permanent magnets 2-1 and 2-2 both include an odd frequency component (harmonic component). However, because the phases of the frequency components included are different, the waveform of the permanent magnet 1 is distorted in a trapezoidal waveform, and the waveforms of the permanent magnets 2-1 and 2-2 are distorted in a triangular waveform. The waveforms of the permanent magnets 2-1 and 2-2 are just inverted with respect to the waveform of the permanent magnet 1, and the permanent magnet 1 and the permanent magnets 2-1 and 2-2 are combined. As a result, the high-frequency components contained in each cancel each other, so that distortion of the induced voltage can be further reduced. When the distortion of the induced voltage is reduced, the torque pulsation during operation of the synchronous motor is reduced, so that the vibration and noise of the synchronous motor can be reduced.

実施の形態3.
図7は、本発明にかかる回転子の実施の形態3の磁極の配置例を示す図である。本実施の形態の同期電動機の構成および回転子5の構成は、実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 7 is a diagram illustrating an arrangement example of magnetic poles of the rotor according to the third embodiment of the present invention. The configuration of the synchronous motor and the configuration of the rotor 5 of the present embodiment are the same as those of the first embodiment.

本実施の形態では、実施の形態1と同様に、図2に示した永久磁石1(永久磁石1と軟磁性材バックヨーク3で構成される磁石部)と永久磁石2−1,2−2とを組み合わせるが、組み合わせる際に、図7に示すように磁極の位置をそれぞれずらして、スキューをかけたように組み合わせる。   In the present embodiment, as in the first embodiment, the permanent magnet 1 (the magnet portion composed of the permanent magnet 1 and the soft magnetic material back yoke 3) and the permanent magnets 2-1 and 2-2 shown in FIG. When combining, the positions of the magnetic poles are shifted as shown in FIG. 7 and combined as if skewed.

本実施の形態では、永久磁石2−1,2−2の表面磁束密度分布は台形状の波形になっている。永久磁石2−1,2−2は、成形する際に外部より極異方の磁場をかけて配向するため、この磁場を制御することで、表面磁束密度分布の波形が磁極中心のピーク付近がフラットな台形形状になるように調整することができる。また、永久磁石2−1,2−2により発生する誘起電圧の位相が、永久磁石1により発生する誘起電圧の位相とそれぞれ前後にずれるように磁極の位置を調整する。   In the present embodiment, the surface magnetic flux density distribution of the permanent magnets 2-1 and 2-2 has a trapezoidal waveform. The permanent magnets 2-1 and 2-2 are oriented by applying an extremely anisotropic magnetic field from the outside during molding. Therefore, by controlling this magnetic field, the waveform of the surface magnetic flux density distribution is near the peak at the magnetic pole center. It can be adjusted to a flat trapezoidal shape. Further, the position of the magnetic pole is adjusted so that the phase of the induced voltage generated by the permanent magnets 2-1 and 2-2 is shifted forward and backward from the phase of the induced voltage generated by the permanent magnet 1, respectively.

図8は、本実施の形態の同期電動機の誘起電圧の波形の一例を示す図である。例えば、軸方向長さ11.5mmの永久磁石1により発生する誘起電圧21は、図8に示すように台形状である。図8の誘起電圧24は、軸方向長さ3.75mm(永久磁石2−1,2−2合計の軸方向長さ7.5mm)の永久磁石2−1により発生する誘起電圧であり、誘起電圧25は、軸方向長さ3.75mmの永久磁石2−2により発生する誘起電圧である。誘起電圧21の波形に対して、誘起電圧24、誘起電圧25は、位相がそれぞれ前後にずれた台形波状の波形となっている。このような誘起電圧を発生する永久磁石1と永久磁石2−1,2−2を組み合わせた回転子5を用いた同期電動機で生じる誘起電圧26は、図8に示すように、永久磁石1により発生する誘起電圧の波形よりもピーク付近が少し曲線を持った歪みの少ない波形となる。   FIG. 8 is a diagram illustrating an example of a waveform of an induced voltage of the synchronous motor according to the present embodiment. For example, the induced voltage 21 generated by the permanent magnet 1 having an axial length of 11.5 mm is trapezoidal as shown in FIG. The induced voltage 24 in FIG. 8 is an induced voltage generated by the permanent magnet 2-1 having an axial length of 3.75 mm (a total axial length of the permanent magnets 2-1 and 2-2 of 7.5 mm). The voltage 25 is an induced voltage generated by the permanent magnet 2-2 having an axial length of 3.75 mm. In contrast to the waveform of the induced voltage 21, the induced voltage 24 and the induced voltage 25 are trapezoidal waveforms whose phases are shifted forward and backward. As shown in FIG. 8, the induced voltage 26 generated in the synchronous motor using the rotor 5 in which the permanent magnet 1 that generates such an induced voltage and the permanent magnets 2-1 and 2-2 is combined is generated by the permanent magnet 1. The waveform near the peak has a slight curve and less distortion than the waveform of the induced voltage generated.

永久磁石1および永久磁石2−1,2−2を用いた回転子の誘起電圧は、どちらも奇数倍の周波数の成分(高調波成分)を含んでいるが、合成する誘起電圧の位相をずらすことで、それぞれに含まれる周波数成分が打ち消し合うため、誘起電圧の歪みをより少なくすることができる。   Although the induced voltage of the rotor using the permanent magnet 1 and the permanent magnets 2-1 and 2-2 both includes an odd frequency component (harmonic component), the phase of the induced voltage to be synthesized is shifted. Thus, since the frequency components included in each cancel each other, distortion of the induced voltage can be further reduced.

誘起電圧の歪みが小さくなると、同期電動機の運転中のトルク脈動が小さくなるため、同期電動機の振動・騒音を小さくすることができる。   When the distortion of the induced voltage is reduced, the torque pulsation during operation of the synchronous motor is reduced, so that the vibration and noise of the synchronous motor can be reduced.

以上のように、本発明にかかる回転子および同期電動機は、コストを押させて大きな磁束を得ることが要求される同期電動機に有用である。   As described above, the rotor and the synchronous motor according to the present invention are useful for a synchronous motor that is required to increase cost and obtain a large magnetic flux.

1,2−1,2−2 永久磁石
3 軟磁性材バックヨーク
4 回転軸
5 回転子
6 巻線
7 固定子
8 固定子鉄心
11〜13,21〜26 誘起電圧
1, 2-1, 2-2 Permanent magnet 3 Soft magnetic material back yoke 4 Rotating shaft 5 Rotor 6 Winding 7 Stator 8 Stator iron core 11-13, 21-26 Induced voltage

Claims (6)

円環状の固定子鉄心を有する固定子と対向する回転子であって、
外周側に配置された高磁力のラジアル配向の第1の永久磁石と前記第1の永久磁石の内周側に配置された軟磁性材料のバックヨークとを備える磁石部と、
前記第1の永久磁石より磁力が低く極異方の配向がなされた円環状の第2および第3の永久磁石と、
を備え、
前記磁石部の軸方向の中心を固定子鉄心に対向する範囲の軸方向の中心としかつ前記磁石部の軸方向の厚さは前記固定子鉄心の軸方向の厚さ以下とし、
前記第2および第3の永久磁石を、前記磁石部の軸方向の両端面にそれぞれ接するよう配置することを特徴とする回転子。
A rotor facing a stator having an annular stator core,
A magnet unit comprising a first permanent magnet of high magnetic force radial orientation disposed on the outer peripheral side and a back yoke of soft magnetic material disposed on the inner peripheral side of the first permanent magnet;
Annular second and third permanent magnets having a magnetic force lower than that of the first permanent magnet and having an anisotropic orientation;
With
The axial center of the magnet part is the axial center of the range facing the stator core, and the axial thickness of the magnet part is equal to or less than the axial thickness of the stator core,
The rotor according to claim 1, wherein the second and third permanent magnets are arranged so as to be in contact with both axial end surfaces of the magnet portion.
前記第2および第3の永久磁石は、前記第2および第3の永久磁石により発生する誘起電圧が略三角形状となるよう配向されることを特徴とする請求項1に記載の回転子。   2. The rotor according to claim 1, wherein the second and third permanent magnets are oriented so that an induced voltage generated by the second and third permanent magnets has a substantially triangular shape. 前記第2および第3の永久磁石は、前記第2および第3の永久磁石により発生する誘起電圧が台形状となるよう配向され、かつ前記第2および第3の永久磁石は、前記第2および第3の永久磁石により発生する誘起電圧の位相が前記第1の永久磁石により発生する誘起電圧の位相と互いに異なる方向にずれるように前記第1の永久磁石とそれぞれ磁極をずらして配置されることを特徴とする請求項1に記載の回転子。   The second and third permanent magnets are oriented such that the induced voltage generated by the second and third permanent magnets is trapezoidal, and the second and third permanent magnets are the second and third permanent magnets. The first permanent magnet and the magnetic pole are shifted from each other so that the phase of the induced voltage generated by the third permanent magnet is shifted in a direction different from the phase of the induced voltage generated by the first permanent magnet. The rotor according to claim 1. 前記第1の永久磁石を希土類磁石で構成することを特徴とする請求項1、2または3に記載の回転子。   4. The rotor according to claim 1, wherein the first permanent magnet is made of a rare earth magnet. 5. 前記第2および第3の永久磁石をフェライト磁石で構成することを特徴とする請求項1〜4のいずれか1つに記載の回転子。   The rotor according to any one of claims 1 to 4, wherein the second and third permanent magnets are composed of ferrite magnets. 円環状の固定子鉄心を有する固定子と、
前記固定子に対向する請求項1〜5のいずれか1つに記載の回転子と、
を備えることを特徴とする同期電動機。
A stator having an annular stator core;
The rotor according to any one of claims 1 to 5, which faces the stator,
A synchronous motor comprising:
JP2012087491A 2012-04-06 2012-04-06 Rotor and synchronous motor Active JP5490171B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012087491A JP5490171B2 (en) 2012-04-06 2012-04-06 Rotor and synchronous motor
CN 201320165951 CN203219034U (en) 2012-04-06 2013-04-03 Rotor and synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087491A JP5490171B2 (en) 2012-04-06 2012-04-06 Rotor and synchronous motor

Publications (2)

Publication Number Publication Date
JP2013219896A JP2013219896A (en) 2013-10-24
JP5490171B2 true JP5490171B2 (en) 2014-05-14

Family

ID=49208536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087491A Active JP5490171B2 (en) 2012-04-06 2012-04-06 Rotor and synchronous motor

Country Status (2)

Country Link
JP (1) JP5490171B2 (en)
CN (1) CN203219034U (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013219309A1 (en) * 2013-09-25 2015-03-26 Robert Bosch Gmbh Modular system and method for manufacturing an electric machine
CN203554102U (en) * 2013-11-12 2014-04-16 中山大洋电机股份有限公司 Permanent magnetic motor structure reducing torque ripple of surface mounted permanent magnet rotor
CN104734384A (en) * 2015-04-03 2015-06-24 叶露微 Permanent magnet motor
CN106451828B (en) * 2016-10-26 2019-08-23 珠海格力节能环保制冷技术研究中心有限公司 Magneto, rotor and its permanent magnet
WO2020026406A1 (en) * 2018-08-02 2020-02-06 三菱電機株式会社 Rotor, motor, fan, air conditioning device, and method for manufacturing rotor

Also Published As

Publication number Publication date
JP2013219896A (en) 2013-10-24
CN203219034U (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5347587B2 (en) Claw pole type motor
JP6007593B2 (en) Rotor, rotating electric machine provided with the same, and method of manufacturing rotor
CN103872821B (en) Electric rotating machine
JP5713075B2 (en) Rotor and rotating electrical machine
JP5061207B2 (en) Permanent magnet synchronous machine
CN106877615A (en) Motor and it is equipped with the electrical equipment of the motor
CN105305679A (en) Motor
JP5490171B2 (en) Rotor and synchronous motor
JP2002503078A (en) Hybrid stepper motor with optimized torque density
JP2007236073A (en) Hybrid rotary electric machine
JP2018148597A (en) Electric rotating machine
JP6615375B2 (en) Electric motor and air conditioner
CN107408850A (en) Permanent magnetic baried type motor, pressure fan and refrigerating and air-conditioning
JP2018137853A (en) Embedded-magnet synchronous motor
JP6212117B2 (en) Synchronous motor
JP2014236577A (en) Permanent magnetic rotary electric machine
JP5596074B2 (en) Permanent magnet type rotating electric machine
JP6121914B2 (en) Synchronous motor
JPWO2011062064A1 (en) Permanent magnet synchronous motor
JP2009247041A (en) Rotating machine
JP2009027849A (en) Permanent magnet type rotary electric machine
JP2011199918A (en) Permanent-magnet electric motor
JP5077369B2 (en) Brushless motor
JP2007068323A (en) Dc brushless motor device and its permanent magnet
WO2018101160A1 (en) Magnet unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5490171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250