JP2010066160A - Battery state detection device and battery pack incorporated therewith - Google Patents

Battery state detection device and battery pack incorporated therewith Download PDF

Info

Publication number
JP2010066160A
JP2010066160A JP2008233727A JP2008233727A JP2010066160A JP 2010066160 A JP2010066160 A JP 2010066160A JP 2008233727 A JP2008233727 A JP 2008233727A JP 2008233727 A JP2008233727 A JP 2008233727A JP 2010066160 A JP2010066160 A JP 2010066160A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
resistance value
internal resistance
replacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008233727A
Other languages
Japanese (ja)
Other versions
JP5368038B2 (en
Inventor
Yoshifusa Majima
吉英 馬島
Kazuhiko Takeno
和彦 竹野
Yasumichi Kanai
康通 金井
Haruo Kamimura
治雄 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Mitsumi Electric Co Ltd
Original Assignee
NTT Docomo Inc
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc, Mitsumi Electric Co Ltd filed Critical NTT Docomo Inc
Priority to JP2008233727A priority Critical patent/JP5368038B2/en
Priority to US13/062,555 priority patent/US20120121952A1/en
Priority to CN2009801345904A priority patent/CN102144170A/en
Priority to PCT/JP2009/065067 priority patent/WO2010029863A1/en
Publication of JP2010066160A publication Critical patent/JP2010066160A/en
Application granted granted Critical
Publication of JP5368038B2 publication Critical patent/JP5368038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery state detection device and a battery pack incorporated therewith, accurately providing the information to a user as to the need to change a secondary battery regardless of the cause of the deterioration of the secondary battery. <P>SOLUTION: The battery state detection device for detecting the state of the secondary battery 200 feeding an electronic instrument 300 includes: a calculation processing unit 50 for calculating the capacity degradation rate and the internal resistance value of the secondary battery 200 and for determining the need to change the secondary battery 200 when either of the calculated capacity degradation rate and the internal resistance value or both of them reaches the value at which the change of the secondary battery 200 is needed; and a communication processing unit 70 for outputting the signal in accordance with the determined result by the calculation processing unit 50. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子機器に給電する二次電池の状態を検知する電池状態検知装置及びそれを内蔵する電池パックに関する。   The present invention relates to a battery state detection device that detects a state of a secondary battery that supplies power to an electronic device, and a battery pack that includes the battery state detection device.

二次電池の劣化の進行によって、その二次電池から給電される電子機器の稼動可能時間が次第に短縮したり、内部ショートなどの不具合が発生する確率が高くなったりすることが予想される。その主な劣化要因は、二次電池の内部抵抗値の増加と考えられている。この考えに基づき、二次電池の電圧や電流の検出値などによりその内部抵抗値を算出することによって、二次電池の劣化状態を判定することが行われている。   With the progress of the deterioration of the secondary battery, it is expected that the operable time of the electronic device fed from the secondary battery is gradually shortened and the probability of occurrence of a malfunction such as an internal short circuit is increased. The main deterioration factor is considered to be an increase in the internal resistance value of the secondary battery. Based on this idea, the deterioration state of the secondary battery is determined by calculating the internal resistance value based on the detected value of the voltage and current of the secondary battery.

一方、特許文献1には、劣化判定の結果として算出された推定比容量C/C(Cはリチウムイオン電池の推定容量、Cはリチウムイオン電池の公称容量)の値に応じて、電池の交換を促す表示(赤は交換、黄はまもなく交換、緑は交換不要)を行うLEDが開示されている。
特開2001−289924号公報
On the other hand, Patent Document 1 discloses a battery according to a value of an estimated specific capacity C / C 0 (C is an estimated capacity of a lithium ion battery and C 0 is a nominal capacity of a lithium ion battery) calculated as a result of deterioration determination. LEDs that provide a prompt for replacement (red is replacement, yellow will be replaced soon, green is not required to be replaced) are disclosed.
JP 2001-289924 A

しかしながら、特許文献1に記載された推定比容量を内部抵抗値に置き換えて、内部抵抗値の大きさに応じて二次電池の交換の必要性をユーザに情報提供しようとしても、充放電の繰り返しによる劣化の場合と高温状態での保存による劣化の場合とでは内部抵抗値の変化特性が異なるため、二次電池の劣化要因によっては、二次電池の交換の必要性をユーザに正確に情報提供することができない。   However, even if the estimated specific capacity described in Patent Document 1 is replaced with an internal resistance value and information about the necessity of replacement of the secondary battery is provided to the user according to the magnitude of the internal resistance value, charging and discharging are repeated. Depending on the deterioration factor of the secondary battery, depending on the deterioration factor of the secondary battery, the user must be accurately informed of the need for replacement of the secondary battery. Can not do it.

そこで、本発明は、二次電池の劣化要因にかかわらず、二次電池の交換の必要性をユーザに正確に情報提供することを可能にする、電池状態検知装置及びそれを内蔵する電池パックの提供を目的とする。   Therefore, the present invention provides a battery state detection device and a battery pack that incorporates the battery state detection device that can accurately provide the user with information on the necessity of replacement of the secondary battery regardless of the deterioration factor of the secondary battery. For the purpose of provision.

上記目的を達成するため、本発明に係る電池状態検知装置は、
電子機器に給電する二次電池の状態を検知する電池状態検知装置であって、
前記二次電池の容量劣化率を算出する容量劣化率算出手段と、
前記二次電池の内部抵抗値を算出する内部抵抗値算出手段と、
前記容量劣化率算出手段によって算出された容量劣化率と前記内部抵抗値算出手段によって算出された内部抵抗値とに基づいて前記二次電池の交換必要性を判断する判断手段と、
前記判断手段による判断結果に応じた信号を出力する出力手段とを備え、
前記判断手段は、
前記容量劣化率算出手段によって算出された容量劣化率と前記内部抵抗値算出手段によって算出された内部抵抗値の一方又は両方が前記二次電池の交換が必要となる値に到達した場合に前記二次電池の交換が必要と判断することを特徴とする。
In order to achieve the above object, a battery state detection device according to the present invention includes:
A battery state detection device for detecting a state of a secondary battery that supplies power to an electronic device,
A capacity deterioration rate calculating means for calculating a capacity deterioration rate of the secondary battery;
An internal resistance value calculating means for calculating an internal resistance value of the secondary battery;
Determining means for determining the necessity of replacement of the secondary battery based on the capacity deterioration rate calculated by the capacity deterioration rate calculating means and the internal resistance value calculated by the internal resistance value calculating means;
Output means for outputting a signal according to the determination result by the determination means,
The determination means includes
When one or both of the capacity deterioration rate calculated by the capacity deterioration rate calculation means and the internal resistance value calculated by the internal resistance value calculation means reach a value that requires replacement of the secondary battery, the second It is determined that the replacement of the secondary battery is necessary.

また、上記目的を達成するため、本発明に係る電池状態検知装置は、
電子機器に給電する二次電池の状態を検知する電池状態検知装置であって、
前記二次電池の容量劣化率を算出する容量劣化率算出手段と、
前記二次電池の内部抵抗値を算出する内部抵抗値算出手段と、
前記容量劣化率算出手段によって算出された容量劣化率と前記内部抵抗値算出手段によって算出された内部抵抗値とに基づいて前記二次電池の交換必要性を判断する判断手段と、
前記判断手段による判断結果に応じた信号を出力する出力手段とを備え、
前記判断手段は、
前記容量劣化率算出手段によって算出された容量劣化率と前記内部抵抗値算出手段によって算出された内部抵抗値とが前記二次電池の劣化状態を定める要素として反映された前記二次電池の劣化状態を表す劣化状態量を算出し、算出された劣化状態量が前記二次電池の交換が必要となる値に到達した場合に前記二次電池の交換が必要と判断することを特徴とする。
In order to achieve the above object, a battery state detection device according to the present invention includes:
A battery state detection device for detecting a state of a secondary battery that supplies power to an electronic device,
A capacity deterioration rate calculating means for calculating a capacity deterioration rate of the secondary battery;
An internal resistance value calculating means for calculating an internal resistance value of the secondary battery;
Determining means for determining the necessity of replacement of the secondary battery based on the capacity deterioration rate calculated by the capacity deterioration rate calculating means and the internal resistance value calculated by the internal resistance value calculating means;
Output means for outputting a signal according to the determination result by the determination means,
The determination means includes
The deterioration state of the secondary battery in which the capacity deterioration rate calculated by the capacity deterioration rate calculation means and the internal resistance value calculated by the internal resistance value calculation means are reflected as factors determining the deterioration state of the secondary battery. A deterioration state quantity representing the above is calculated, and when the calculated deterioration state quantity reaches a value that requires replacement of the secondary battery, it is determined that replacement of the secondary battery is necessary.

また、上記目的を達成するため、本発明に係る電池パックは、前記電池状態検知装置と前記二次電池とを内蔵する。   In order to achieve the above object, a battery pack according to the present invention incorporates the battery state detection device and the secondary battery.

本発明によれば、二次電池の劣化要因にかかわらず、二次電池の交換の必要性をユーザに正確に情報提供することが可能となる。   According to the present invention, it is possible to accurately provide the user with information on the necessity of replacement of the secondary battery regardless of the deterioration factor of the secondary battery.

以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。図1は、本発明に係る電池パックの実施形態であるインテリジェント電池パック100Aの全体構成図である。電池パック100Aは、リチウムイオン電池、ニッケル水素電池、電気二重層キャパシタなどの二次電池200の周囲温度を検出する温度検出部10と、二次電池200の電圧を検出する電圧検出部20と、二次電池200の充放電電流を検出する電流検出部30と、検出結果を示す各検出部から出力されるアナログ電圧値をデジタル値に変換するADコンバータ(以下、「ADC」という)40と、電流積算、容量補正、放電可能容量などの演算処理を行う演算処理部50(例えば、CPU51,ROM52及びRAM53などを備えるマイクロコンピュータ)と、その演算処理に利用される二次電池200や電池パック100Aの各構成部の特性を特定するための特性データや電池パック100Aの固有情報を格納するメモリ60(例えば、EEPROMやフラッシュメモリ等の記憶装置)と、二次電池200を電源とする携帯機器300に対して二次電池200に関する電池状態等の電池情報を伝送する通信処理部70(例えば、通信用IC)と、時間を管理するタイマ部80と、電流検出部30の検出結果に従って携帯機器300の起動電流を検出する起動電流検出部31とを備える電池状態検知装置を、その電池状態を管理する管理システムとして、内蔵している。電池状態検知装置のこれらの構成要素の一部又は全部は、集積化された回路によって構成されるとよい。また、携帯機器300は、ユーザに情報を提供する情報提供手段として、ディスプレイ等の表示部310を有する。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of an intelligent battery pack 100A that is an embodiment of a battery pack according to the present invention. The battery pack 100A includes a temperature detection unit 10 that detects the ambient temperature of the secondary battery 200 such as a lithium ion battery, a nickel metal hydride battery, and an electric double layer capacitor, a voltage detection unit 20 that detects the voltage of the secondary battery 200, A current detection unit 30 that detects a charging / discharging current of the secondary battery 200, an AD converter (hereinafter referred to as "ADC") 40 that converts an analog voltage value output from each detection unit indicating a detection result into a digital value, An arithmetic processing unit 50 (for example, a microcomputer including a CPU 51, a ROM 52, a RAM 53, etc.) that performs arithmetic processing such as current integration, capacity correction, and dischargeable capacity, and a secondary battery 200 and a battery pack 100A used for the arithmetic processing. A memory 60 (for example, storing characteristic data for specifying the characteristics of each component of the battery pack and unique information of the battery pack 100A) , A storage device such as an EEPROM or a flash memory) and a communication processing unit 70 (for example, a communication IC) that transmits battery information such as a battery state related to the secondary battery 200 to the portable device 300 that uses the secondary battery 200 as a power source. ), A timer unit 80 for managing the time, and a start-up current detection unit 31 for detecting the start-up current of the portable device 300 according to the detection result of the current detection unit 30, a management for managing the battery state Built in as a system. Some or all of these components of the battery state detection device may be constituted by an integrated circuit. The mobile device 300 includes a display unit 310 such as a display as information providing means for providing information to the user.

電池パック100Aは、二次電池200とその電池状態を管理する管理システムとを合わせたモジュール部品である。電池パック100Aは、電極端子(正極端子1及び負極端子2)と通信端子3とを介して携帯機器300に接続される。正極端子1は二次電池200の正極に通電経路を介して電気的に接続され、負極端子2は二次電池200の負極に通電経路を介して電気的に接続される。通信端子3は、通信処理部70に接続される。通信処理部70は、演算処理部50の処理結果に基づく伝送情報を携帯機器300に出力する出力手段である。   The battery pack 100A is a module component that combines the secondary battery 200 and a management system that manages the battery state. The battery pack 100 </ b> A is connected to the mobile device 300 via the electrode terminals (the positive terminal 1 and the negative terminal 2) and the communication terminal 3. The positive electrode terminal 1 is electrically connected to the positive electrode of the secondary battery 200 via an energization path, and the negative electrode terminal 2 is electrically connected to the negative electrode of the secondary battery 200 via an energization path. The communication terminal 3 is connected to the communication processing unit 70. The communication processing unit 70 is an output unit that outputs transmission information based on the processing result of the arithmetic processing unit 50 to the portable device 300.

携帯機器300は、人が携帯可能な電子機器であって、具体的には、携帯電話、PDAやモバイルパソコン等の情報端末装置、カメラ、ゲーム機、音楽やビデオ等のプレーヤーなどが挙げられる。電池パック100Aは、携帯機器300に、内蔵されたり、外付けされたりする。携帯機器300は、通信処理部70から取得した電池状態等の電池情報に基づいて、当該電池情報に応じた所定の動作を行う。携帯機器300は、例えば、電池状態情報をディスプレイ等の表示部に表示させたり(例えば、二次電池200の残量情報、劣化情報、交換時期情報などの表示)、電池状態情報に基づいて自身の動作モードを変更したりする(例えば、通常消費電力モードから低消費電力モードへの変更)。   The portable device 300 is an electronic device that can be carried by a person, and specifically includes a mobile phone, an information terminal device such as a PDA or a mobile personal computer, a camera, a game machine, a player such as music or video, and the like. The battery pack 100A is built in or externally attached to the mobile device 300. The mobile device 300 performs a predetermined operation according to the battery information based on the battery information such as the battery state acquired from the communication processing unit 70. For example, the portable device 300 displays battery state information on a display unit such as a display (for example, displays remaining amount information, deterioration information, replacement time information, etc. of the secondary battery 200), or based on the battery state information. (E.g., change from the normal power consumption mode to the low power consumption mode).

二次電池200は、携帯機器300の電源であって、ADC40と演算処理部50と通信処理部70とタイマ80の電源でもある。また、温度検出部10、電圧検出部20、電流検出部30、起動電流検出部31については、それらの回路構成に応じて、二次電池200からの給電が必要となることがある。メモリ60については、二次電池200からの給電が遮断されても、その記憶内容は保持される。温度検出部10、電圧検出部20、電流検出部30、ADC40及び演算処理部50は、二次電池200の電池状態を検知する状態検知部として機能する。   The secondary battery 200 is a power source for the portable device 300, and is also a power source for the ADC 40, the arithmetic processing unit 50, the communication processing unit 70, and the timer 80. Moreover, about the temperature detection part 10, the voltage detection part 20, the current detection part 30, and the starting current detection part 31, the electric power feeding from the secondary battery 200 may be needed according to those circuit structures. As for the memory 60, the stored contents are retained even when the power supply from the secondary battery 200 is cut off. The temperature detection unit 10, the voltage detection unit 20, the current detection unit 30, the ADC 40, and the arithmetic processing unit 50 function as a state detection unit that detects the battery state of the secondary battery 200.

温度検出部10は、二次電池200の周囲温度を検出し、その検出された周囲温度をADC40に入力可能な電圧に変換して出力する。ADC40によって変換された二次電池200の周囲温度を示す電池温度のデジタル値は、演算処理部50に伝達され、演算処理のためのパラメータとして利用される。また、電池温度のデジタル値は、演算処理部50によって予め決められた単位に換算され、二次電池200の電池状態を示す電池状態情報として、通信処理部70を介して携帯機器300に出力される。なお、温度検出部10は、二次電池200は電池パック100Aに内蔵されているので、二次電池200自体の温度やその雰囲気温度を、電池パック100Aやその構成部の温度として検出してもよい。   The temperature detection unit 10 detects the ambient temperature of the secondary battery 200, converts the detected ambient temperature into a voltage that can be input to the ADC 40, and outputs the converted voltage. The digital value of the battery temperature indicating the ambient temperature of the secondary battery 200 converted by the ADC 40 is transmitted to the arithmetic processing unit 50 and used as a parameter for the arithmetic processing. The digital value of the battery temperature is converted into a predetermined unit by the arithmetic processing unit 50 and is output to the portable device 300 through the communication processing unit 70 as battery state information indicating the battery state of the secondary battery 200. The Note that, since the secondary battery 200 is built in the battery pack 100A, the temperature detection unit 10 detects the temperature of the secondary battery 200 itself and the ambient temperature as the temperature of the battery pack 100A and its components. Good.

電圧検出部20は、二次電池200の電圧を検出し、その検出された電圧をADC40に入力可能な電圧に変換して出力する。ADC40によって変換された二次電池200の電圧を示す電池電圧のデジタル値は、演算処理部50に伝達され、演算処理のためのパラメータとして利用される。また、電池電圧のデジタル値は、演算処理部50によって予め決められた単位に換算され、二次電池200の電池状態を示す電池状態情報として、通信処理部70を介して携帯機器300に出力される。   The voltage detection unit 20 detects the voltage of the secondary battery 200, converts the detected voltage into a voltage that can be input to the ADC 40, and outputs the voltage. The digital value of the battery voltage indicating the voltage of the secondary battery 200 converted by the ADC 40 is transmitted to the arithmetic processing unit 50 and used as a parameter for the arithmetic processing. In addition, the digital value of the battery voltage is converted into a predetermined unit by the arithmetic processing unit 50, and is output to the portable device 300 via the communication processing unit 70 as battery state information indicating the battery state of the secondary battery 200. The

電流検出部30は、二次電池200の充放電電流を検出し、その検出された電流をADC40に入力可能な電圧に変換して出力する。電流検出部30は、二次電池200と直列に接続された電流検出抵抗30aと電流検出抵抗30aの両端に発生する電圧を増幅するオペアンプとを備え、電流検出抵抗30aとオペアンプとによって充放電電流を電圧に変換する。オペアンプは、ADC40に備えられてもよい。ADC40によって変換された二次電池200の充放電電流を示す電池電流のデジタル値は、演算処理部50に伝達され、演算処理のためのパラメータとして利用される。また、電池電流のデジタル値は、演算処理部50によって予め決められた単位に換算され、二次電池200の電池状態を示す電池状態情報として、通信処理部70を介して携帯機器300に出力される。   The current detection unit 30 detects the charge / discharge current of the secondary battery 200, converts the detected current into a voltage that can be input to the ADC 40, and outputs the voltage. The current detection unit 30 includes a current detection resistor 30a connected in series with the secondary battery 200 and an operational amplifier that amplifies the voltage generated at both ends of the current detection resistor 30a. The current detection resistor 30a and the operational amplifier are used to charge and discharge current. To voltage. The operational amplifier may be provided in the ADC 40. The digital value of the battery current indicating the charging / discharging current of the secondary battery 200 converted by the ADC 40 is transmitted to the arithmetic processing unit 50 and used as a parameter for the arithmetic processing. In addition, the digital value of the battery current is converted into a predetermined unit by the arithmetic processing unit 50, and is output to the portable device 300 via the communication processing unit 70 as battery state information indicating the battery state of the secondary battery 200. The

演算処理部50は、二次電池200の残容量の算出をする。残容量の算出方法については任意の適切な方法を用いればよいが、以下にその算出方法を例示する。   The arithmetic processing unit 50 calculates the remaining capacity of the secondary battery 200. Any appropriate method may be used as the remaining capacity calculation method, and the calculation method is exemplified below.

演算処理部50は、二次電池200の充電状態又は放電状態(例えば、携帯機器300の動作により所定値以上の電流が消費されている状態)で電流検出部30によって検出された電流値を積分することによって、二次電池200において充放電される電気量を算出することができるとともに、二次電池200が蓄えている現在の電気量(残容量)を算出することができる。残容量を算出するにあたって、例えば、特開2004−226393号公報には、二次電池の充放電において温度や電流などの条件が変化した場合、充放電効率が変化するのではなく、各充放電条件に応じて一時的に充電や放電ができない電気量が存在し、その量が変化するという考え方が開示されている。この考え方によれば、充放電効率についての補正処理は行わなくてもよい。   The arithmetic processing unit 50 integrates the current value detected by the current detection unit 30 in a charged state or a discharged state of the secondary battery 200 (for example, a state where a current of a predetermined value or more is consumed by the operation of the portable device 300). As a result, the amount of electricity charged and discharged in the secondary battery 200 can be calculated, and the current amount of electricity (remaining capacity) stored in the secondary battery 200 can be calculated. In calculating the remaining capacity, for example, Japanese Patent Application Laid-Open No. 2004-226393 discloses that charging / discharging efficiency does not change when conditions such as temperature and current change in charging / discharging of a secondary battery, There is disclosed an idea that there is an amount of electricity that cannot be temporarily charged or discharged according to conditions, and the amount changes. According to this concept, the correction process for the charge / discharge efficiency may not be performed.

ただし、電池パック100Aの構成部に温度に依存する温度依存回路部が存在する場合には、演算処理部50は、温度検出部10によって周囲温度を検出し、「充放電電流−温度」特性に基づいて、ADC40によって変換された二次電池200の充放電電流値を補正してもよい。「充放電電流−温度」特性は、補正テーブルや補正関数によって表される。補正テーブル内のデータや補正関数の係数が特性データとしてメモリ60に格納される。演算処理部50は、メモリ60から読み出された特性データを反映させた補正テーブルや補正関数に従って、温度検出部10によって測定された温度に応じて充放電電流値の補正を行う。   However, when there is a temperature-dependent circuit unit that depends on temperature in the constituent parts of the battery pack 100A, the arithmetic processing unit 50 detects the ambient temperature by the temperature detection unit 10 and obtains the “charge / discharge current-temperature” characteristic. Based on this, the charge / discharge current value of the secondary battery 200 converted by the ADC 40 may be corrected. The “charge / discharge current-temperature” characteristic is represented by a correction table or a correction function. Data in the correction table and coefficients of the correction function are stored in the memory 60 as characteristic data. The arithmetic processing unit 50 corrects the charge / discharge current value according to the temperature measured by the temperature detection unit 10 in accordance with a correction table or correction function reflecting the characteristic data read from the memory 60.

一方、二次電池200の充放電が休止状態(例えば、携帯機器300の動作が停止又はスタンバイ状態)になることにより、充電状態や放電状態に比べて充電電流値は小さくなる。その結果、分解能等の理由により電流検出部30やADC40による測定では誤差が多く含まれる状態や測定不可となる状態が一定期間継続すると、残容量の算出のために上述の電流積算の処理の誤差が積算されるため、残容量算出の正確さが失われる。それを防ぐため、演算処理部50は、電流値の積算処理を停止するか、又は予め測定しておいた携帯機器300の消費電流値をメモリ60に格納しておき、その値を積算するとよい。   On the other hand, when the charging / discharging of the secondary battery 200 is in a dormant state (for example, the operation of the portable device 300 is stopped or in a standby state), the charging current value is smaller than that in the charging state or the discharging state. As a result, if the measurement by the current detection unit 30 or the ADC 40 includes a lot of errors or the measurement is impossible for a certain period due to reasons such as resolution, an error in the above-described current integration process for calculating the remaining capacity. Is accumulated, the accuracy of remaining capacity calculation is lost. In order to prevent this, the arithmetic processing unit 50 may stop the current value integration process or store the current consumption value of the portable device 300 measured in advance in the memory 60 and integrate the values. .

また、残容量や充電率等の演算精度を高めるために、演算処理部50は、携帯機器300の休止状態が所定時間継続した場合、定期的に二次電池200の電圧(開放電圧)を測定し、「開放電圧−充電率」特性(図5参照)に基づいて、充電率を算出・補正する。開放電圧とは、安定した二次電池200の両極間を開放して又はハイインピーダンスで測定した両極間電圧である。充電率とは、そのときの二次電池200の満充電容量を100としたときにその二次電池200の残容量の割合を%で表示したものをいう。「開放電圧−充電率」特性は、補正テーブルや補正関数によって表される。補正テーブル内のデータや補正関数の係数が特性データとしてメモリ60に格納される。演算処理部50は、メモリ60から読み出された特性データを反映させた補正テーブルや補正関数に従って、電圧検出部20によって測定された開放電圧に対応する充電率の算出・補正を行う。   In addition, in order to increase the calculation accuracy such as the remaining capacity and the charging rate, the calculation processing unit 50 periodically measures the voltage (open voltage) of the secondary battery 200 when the portable device 300 is in a suspended state for a predetermined time. The charge rate is calculated and corrected based on the “open-circuit voltage-charge rate” characteristic (see FIG. 5). The open circuit voltage is a voltage between both electrodes measured with a high impedance or between the electrodes of the stable secondary battery 200 opened. The charging rate means a percentage of the remaining capacity of the secondary battery 200 displayed in% when the full charge capacity of the secondary battery 200 at that time is 100. The “open-circuit voltage-charge rate” characteristic is represented by a correction table or a correction function. Data in the correction table and coefficients of the correction function are stored in the memory 60 as characteristic data. The arithmetic processing unit 50 calculates and corrects the charging rate corresponding to the open-circuit voltage measured by the voltage detection unit 20 in accordance with a correction table or correction function reflecting the characteristic data read from the memory 60.

また、二次電池200の開放電圧に温度特性が存在する場合、演算処理部50は、開放電圧について所定の温度補正を行ってもよい。例えば、演算処理部50は、温度検出部10によって周囲温度を検出し、「開放電圧−温度」特性に基づいて、ADC40によって変換された二次電池200の開放電圧を補正してもよい。「開放電圧−温度」特性は、補正テーブルや補正関数によって表される。補正テーブル内のデータや補正関数の係数が特性データとしてメモリ60に格納される。演算処理部50は、メモリ60から読み出された特性データを反映させた補正テーブルや補正関数に従って、温度検出部10によって測定された温度に応じて開放電圧の補正を行う。   Moreover, when the temperature characteristic exists in the open circuit voltage of the secondary battery 200, the arithmetic processing unit 50 may perform a predetermined temperature correction on the open circuit voltage. For example, the arithmetic processing unit 50 may detect the ambient temperature by the temperature detection unit 10 and correct the open-circuit voltage of the secondary battery 200 converted by the ADC 40 based on the “open-circuit voltage-temperature” characteristic. The “open voltage-temperature” characteristic is represented by a correction table or a correction function. Data in the correction table and coefficients of the correction function are stored in the memory 60 as characteristic data. The arithmetic processing unit 50 corrects the open-circuit voltage according to the temperature measured by the temperature detection unit 10 according to a correction table or correction function reflecting the characteristic data read from the memory 60.

上述のように、演算処理部50は、二次電池200の充電率を算出することができるが、二次電池200の残容量は満充電容量と充電率との関係に基づいて算出可能であるため、二次電池200の満充電容量が測定又は推定されていなければ、二次電池200の残容量を算出することはできない。   As described above, the arithmetic processing unit 50 can calculate the charging rate of the secondary battery 200, but the remaining capacity of the secondary battery 200 can be calculated based on the relationship between the full charge capacity and the charging rate. Therefore, the remaining capacity of the secondary battery 200 cannot be calculated unless the full charge capacity of the secondary battery 200 is measured or estimated.

二次電池200の満充電容量を算出する方法として、例えば、二次電池200の放電量に基づいて算出する方法や充電量に基づいて算出する方法がある。例えば、充電量に基づいて算出する場合、パルス充電以外であれば定電圧又は定電流での充電となるため、携帯機器300の消費電流特性に影響されやすい放電量に基づいて算出する場合に比べ、正確な充電電流を測定することができる。もちろん、どちらの方法を利用するかは、携帯機器300の特性などを考慮した上で、両方又は片方を選択すればよい。   As a method of calculating the full charge capacity of the secondary battery 200, for example, there are a method of calculating based on the discharge amount of the secondary battery 200 and a method of calculating based on the charge amount. For example, when the calculation is based on the charge amount, charging is performed at a constant voltage or constant current except for pulse charging, so that the calculation is based on the discharge amount that is easily influenced by the current consumption characteristics of the mobile device 300. Accurate charging current can be measured. Of course, which method is to be used may be selected in consideration of the characteristics of the mobile device 300 or both.

もっとも、正確な満充電容量が測定できる条件は、残容量がゼロの状態から満充電状態になるまでの期間継続して充電が行われる場合であり、この充電期間中に積算された電流値が満充電容量となる。しかしながら、一般的な利用のされ方を考えると、このような充電が行われることはまれであり、通常はある程度の残存容量がある状態から充電が行われる。   However, the condition under which the full charge capacity can be accurately measured is that the battery is continuously charged from the state where the remaining capacity is zero to the full charge state, and the current value accumulated during this charge period is Fully charged capacity. However, in consideration of general usage, such charging is rarely performed, and charging is normally performed from a state where there is a certain remaining capacity.

そこで、演算処理部50は、このような場合を考慮して、充電開始直前の電池電圧と充電終了時点から所定時間経過時の電池電圧とに基づいて、二次電池200の満充電容量を算出する。すなわち、演算処理部50は、充電開始直前の電池電圧と「開放電圧−充電率」特性(図5参照)とに基づいて、充電開始直前の充電率を算出するとともに、充電終了時点から所定時間経過時の電池電圧と「開放電圧−充電率」特性(図5参照)とに基づいて、充電終了時点から所定時間経過時の充電率を算出する。そして、演算処理部50は、満充電容量をFCC[mAh]、充電開始直前の充電率をSOC1[%]、充電終了時点から所定時間経過時の充電率をSOC2[%]、充電開始時点から充電終了時点までの充電期間において充電された電気量をQ[mAh]とすると、演算式
FCC=Q/{(SOC2−SOC1)/100} ・・・(1)
に基づいて、二次電池200の満充電容量FCCを算出することができる。なお、SOC1やSOC2は温度補正されたものであれば、より正確な値が算出され得る。また、充電終了時点から所定時間経過時の電池電圧を用いることによって、充電終了時点よりも安定した電池電圧を演算に反映して演算結果の精度を高めることができる。
Therefore, in consideration of such a case, the arithmetic processing unit 50 calculates the full charge capacity of the secondary battery 200 based on the battery voltage immediately before the start of charging and the battery voltage when a predetermined time has elapsed since the end of charging. To do. That is, the arithmetic processing unit 50 calculates the charging rate immediately before the start of charging based on the battery voltage immediately before the start of charging and the “open-circuit voltage-charging rate” characteristic (see FIG. 5), and at a predetermined time from the end of charging. Based on the battery voltage at the time of elapse and the “open-circuit voltage-charging rate” characteristic (see FIG. 5), the charging rate at the elapse of a predetermined time from the end of charging is calculated. Then, the arithmetic processing unit 50 sets the full charge capacity to FCC [mAh], the charge rate immediately before the start of charge to SOC1 [%], the charge rate after a predetermined time has elapsed from the end of charge to SOC2 [%], If the amount of electricity charged in the charging period up to the end of charging is Q [mAh], the calculation formula FCC = Q / {(SOC2-SOC1) / 100} (1)
Based on the above, the full charge capacity FCC of the secondary battery 200 can be calculated. If SOC1 and SOC2 are temperature-corrected, more accurate values can be calculated. Further, by using the battery voltage at the time when the predetermined time has elapsed from the end of charging, the battery voltage more stable than the end of charging can be reflected in the calculation, and the accuracy of the calculation result can be improved.

したがって、上述のように算出された充電率及び満充電容量に基づいて、二次電池200の残容量を算出することができる(残容量=満充電容量×充電率)。   Therefore, the remaining capacity of the secondary battery 200 can be calculated based on the charging rate and the full charging capacity calculated as described above (remaining capacity = full charging capacity × charge rate).

また、満充電容量FCCの算出が可能となることで、二次電池200の容量劣化率SOH[%]を推定することが可能となる。演算処理部50は、初期の満充電容量をAFCC,任意の時点での満充電容量をRFCCとすると、演算式
SOH=RFCC/AFCC×100 ・・・(2)
に基づいて、任意の時点での二次電池200の容量劣化率SOHを算出することができる。本実施例での容量劣化率SOHは、言い換えれば新品度であって、(2)式からも明らかなように、その値が小さいほど二次電池が劣化していることを表す。もちろん、場合によっては、容量劣化率SOHの値が大きいほど二次電池が劣化していることを表すように(2)式の定義を書き換えてもよい。
In addition, since the full charge capacity FCC can be calculated, the capacity deterioration rate SOH [%] of the secondary battery 200 can be estimated. When the initial full charge capacity is AFCC and the full charge capacity at an arbitrary time point is RFCC, the arithmetic processing unit 50 calculates an arithmetic expression SOH = RFCC / AFCC × 100 (2)
Based on the above, the capacity deterioration rate SOH of the secondary battery 200 at an arbitrary time can be calculated. In other words, the capacity deterioration rate SOH in the present embodiment is the degree of newness, and as is clear from the equation (2), the smaller the value, the more the secondary battery is deteriorated. Of course, in some cases, the definition of equation (2) may be rewritten to indicate that the secondary battery is more degraded as the value of the capacity degradation rate SOH is larger.

さらに、本実施例では、演算処理部50は、二次電池200の内部抵抗値を算出する。内部抵抗値の算出方法については任意の適切な方法を用いればよいが、以下にその算出方法を例示する。   Further, in this embodiment, the arithmetic processing unit 50 calculates the internal resistance value of the secondary battery 200. Any appropriate method may be used as a calculation method of the internal resistance value, and the calculation method is exemplified below.

演算処理部50は、二次電池200の充電開始時点を含む単位時間において、その単位時間での充放電電流の電流差及びその単位時間と同じ期間での電池電圧の電圧差を検出・算出することによって二次電池200の内部抵抗値を算出する。   The arithmetic processing unit 50 detects and calculates the current difference of the charge / discharge current in the unit time and the voltage difference of the battery voltage in the same period as the unit time in the unit time including the charging start time of the secondary battery 200. Thus, the internal resistance value of the secondary battery 200 is calculated.

すなわち、充電開始直前の電池電圧をV0,その充電開始直前の充電電流をI0,その充電開始から規定時間経過時の電池電圧をV1,その充電開始からその規定時間経過時の充電電流をI1とすると、充電開始直前の内部抵抗値と充電開始から規定時間経過時の内部抵抗値が等しいとみなして、二次電池200の内部抵抗値Rcは、内部抵抗値演算式
Rc=(V1−V0)/(I1−I0) ・・・(3)
によって算出することができる。
That is, the battery voltage immediately before the start of charging is V0, the charge current immediately before the start of charging is I0, the battery voltage when the specified time has elapsed since the start of charging is V1, and the charging current when the specified time has elapsed since the start of charging is I1. Then, assuming that the internal resistance value immediately before the start of charging is equal to the internal resistance value at the time when the specified time has elapsed since the start of charging, the internal resistance value Rc of the secondary battery 200 is an internal resistance value calculation formula Rc = (V1-V0) / (I1-I0) (3)
Can be calculated.

なお、この点に関して、充電開始前後のそれぞれの時点で検出された電流と電圧とを演算式(3)に代入することによって内部抵抗値を算出する場合に、内部抵抗値の安定した算出結果が得られることを確かめるために行った確認試験の結果についての説明は省略するが、この確認試験の結果によれば、新品時に比べ劣化が進んだ状態で、充電電流が異なっても、充電開始前後間での電圧値及び電流差に基づいて、安定した内部抵抗値を算出できる。   In this regard, when the internal resistance value is calculated by substituting the current and voltage detected at each time before and after the start of charging into the calculation formula (3), the stable calculation result of the internal resistance value is Although the explanation of the result of the confirmation test conducted to confirm that it is obtained is omitted, the result of this confirmation test shows that the deterioration has progressed compared with the new product and the charge current is different even before and after the start of charging. A stable internal resistance value can be calculated based on the voltage value and current difference between the two.

したがって、演算処理部50は、二次電池200の充放電電流値が零又は二次電池200に微小な充放電電流が流れている休止状態を一定時間検出後に、休止状態の電流値より大きい所定値以上の充電電流値が流れている充電状態を検出した場合、当該所定値以上の充電電流値の検出時点から一定時間経過時の充電状態での二次電池200の電圧値及び電流値と、当該所定値以上の充電電流値の検出時点前の休止状態での二次電池200の電圧値及び電流値と、に基づいて、二次電池200の内部抵抗値を上記の演算式(3)に従って算出するとよい。演算処理部50は、算出した内部抵抗値がその初期値(メモリ60等に予め記憶)から減少していることを検出することにより、二次電池200の微小短絡を判定することができる。その判定情報は、通信処理部70を介して、携帯機器300に伝送される。   Therefore, the arithmetic processing unit 50 detects a pause state in which the charge / discharge current value of the secondary battery 200 is zero or a minute charge / discharge current flows through the secondary battery 200 for a predetermined time, and then is greater than the current value in the pause state. When a charging state in which a charging current value equal to or greater than the value is detected is detected, the voltage value and current value of the secondary battery 200 in a charging state after a predetermined time has elapsed since the detection of the charging current value equal to or greater than the predetermined value; Based on the voltage value and current value of the secondary battery 200 in the resting state before the detection time of the charging current value equal to or greater than the predetermined value, the internal resistance value of the secondary battery 200 is calculated according to the above equation (3). It is good to calculate. The arithmetic processing unit 50 can determine whether the calculated internal resistance value has decreased from its initial value (previously stored in the memory 60 or the like), thereby determining a micro short circuit of the secondary battery 200. The determination information is transmitted to the mobile device 300 via the communication processing unit 70.

図3は、電池パック100A内の管理システムの内部抵抗値の算出フローである。管理システムは、演算処理部50が主体となって動作する。演算処理部50は、管理システムの初期化後に、温度検出部10による温度測定、電圧検出部20による電圧測定、電流検出部30による電流測定を行う(ステップ10)。演算処理部50は、これらの検出部による測定値を所定の検出周期で検出し、電圧値、電流値及び温度値の同時点のデータをRAM53等のメモリに記憶する。この検出周期は、二次電池200の充電時の電池電圧の立ち上がり前後間での電圧差及び電流差を正確に検出できるように、二次電池200の充電時の電池電圧の立ち上がり特性などを考慮して決定されるとよい。   FIG. 3 is a calculation flow of the internal resistance value of the management system in the battery pack 100A. The management system operates mainly by the arithmetic processing unit 50. After initialization of the management system, the arithmetic processing unit 50 performs temperature measurement by the temperature detection unit 10, voltage measurement by the voltage detection unit 20, and current measurement by the current detection unit 30 (step 10). The arithmetic processing unit 50 detects the measurement values obtained by these detection units at a predetermined detection cycle, and stores data on the simultaneous points of the voltage value, the current value, and the temperature value in a memory such as the RAM 53. This detection cycle takes into consideration the rising characteristics of the battery voltage when charging the secondary battery 200 so that the voltage difference and current difference before and after the rising of the battery voltage when charging the secondary battery 200 can be accurately detected. To be determined.

演算処理部50は、電流検出部30によって充放電電流値が零又は微小な充放電電流が流れている休止状態を一定期間検出した後に、電流検出部30によって検出された電流が二次電池200の充電開始を判定するための所定の正の第1の電流閾値以上であるか否かを判断する(ステップ10,12)。演算処理部50は、ステップ10の検出タイミングで電流検出部30によって検出された電流が第1の電流閾値以上でなければ、その検出された電圧、電流、温度を、充電開始直前の検出値として、V0,I0,Tempと決定する(ステップ14)。決定後、ステップ10に戻る。ステップ12において電流検出部30によって検出された電流が第1の電流閾値以上となるまで、V0,I0,Tempは更新される。   The arithmetic processing unit 50 detects a resting state in which a charging / discharging current value is zero or a small charging / discharging current flows by the current detection unit 30 for a certain period, and then the current detected by the current detection unit 30 is the secondary battery 200. It is determined whether or not it is equal to or greater than a predetermined positive first current threshold value for determining the start of charging (steps 10 and 12). If the current detected by the current detection unit 30 at the detection timing of step 10 is not equal to or greater than the first current threshold, the arithmetic processing unit 50 uses the detected voltage, current, and temperature as detection values immediately before the start of charging. , V0, I0, Temp are determined (step 14). After the determination, the process returns to step 10. V0, I0, and Temp are updated until the current detected by the current detection unit 30 in step 12 becomes equal to or greater than the first current threshold.

なお、ステップ10において電流検出部30において検出された電流が第1の電流閾値(絶対値)以上ではないものの、零又は零より大きい所定値以上の放電電流値(絶対値)である場合には、正しい内部抵抗値の算出に適する検出値ではないとして、その検出値は内部抵抗値を算出するための電流として除外されてもよい。   When the current detected by the current detection unit 30 in step 10 is not equal to or greater than the first current threshold (absolute value), but is zero or a discharge current value (absolute value) greater than a predetermined value greater than zero. Assuming that the detected value is not suitable for calculating the correct internal resistance value, the detected value may be excluded as a current for calculating the internal resistance value.

一方、演算処理部50は、ステップ12において、ステップ10の検出タイミングで電流検出部30によって検出された電流が第1の電流閾値以上である場合には、二次電池200に対する充電が開始されたとみなして、温度検出部10による温度測定、電圧検出部20による電圧測定、電流検出部30による電流測定を再度行う(ステップ16)。演算処理部50は、ステップ16において電流検出部30によって検出された電流が、第1の電流閾値より大きい所定の第2の電流閾値以上であるか否かを判断する(ステップ18)。第2の電流閾値は、二次電池200に対する充電電流が立ち上がった後の安定した充電状態(充電電流の変動量が充電電流の立ち上がり状態に比べ小さい充電状態)であるかを判断するための判断閾値である。   On the other hand, in step 12, when the current detected by the current detection unit 30 at the detection timing of step 10 is greater than or equal to the first current threshold value, the arithmetic processing unit 50 has started charging the secondary battery 200. Accordingly, the temperature measurement by the temperature detection unit 10, the voltage measurement by the voltage detection unit 20, and the current measurement by the current detection unit 30 are performed again (step 16). The arithmetic processing unit 50 determines whether or not the current detected by the current detection unit 30 in step 16 is greater than or equal to a predetermined second current threshold value that is greater than the first current threshold value (step 18). The second current threshold is a determination for determining whether the charging state is stable after the charging current for the secondary battery 200 rises (a charging state in which the fluctuation amount of the charging current is smaller than the rising state of the charging current). It is a threshold value.

演算処理部50は、ステップ16において電流検出部30によって検出された電流が第2の電流閾値以上でない場合には、充電開始後に充電電流がまだ安定しておらず内部抵抗値の算出に不適であるとして、本フローを終了する。一方、演算処理部50は、ステップ16において電流検出部30によって検出された電流が第2の電流閾値以上である場合には、充電電流が安定しているとみなして、その検出された電圧及び電流を、充電開始から規定時間経過時の検出値として、V1,I1と決定する(ステップ20)。また、ステップ22において、第1の電流閾値以上の電流値が検出されてから規定時間経過していなければ、充電電流がまだ立ち上がり途中であるとみなしてステップ16に戻る。一方、経過していればステップ24に移行する。ステップ24において、演算処理部50は、演算式(3)に従って、二次電池200の内部抵抗値Rcを算出する。   If the current detected by the current detection unit 30 in step 16 is not equal to or greater than the second current threshold value, the arithmetic processing unit 50 is not suitable for calculating the internal resistance value because the charging current is not yet stable after the start of charging. If there is, this flow ends. On the other hand, when the current detected by the current detection unit 30 in step 16 is equal to or greater than the second current threshold, the arithmetic processing unit 50 regards the charging current as stable and detects the detected voltage and The current is determined as V1 and I1 as detected values when the specified time has elapsed from the start of charging (step 20). If the specified time has not elapsed since the detection of a current value equal to or greater than the first current threshold value in step 22, the charging current is considered to be still rising and the process returns to step 16. On the other hand, if it has elapsed, the process proceeds to step 24. In step 24, the arithmetic processing unit 50 calculates the internal resistance value Rc of the secondary battery 200 according to the arithmetic expression (3).

したがって、二次電池200の充電がされる度に内部抵抗値Rcが算出され、図4に示されるように、充電開始を判定するための第1の電流閾値と第1の電流閾値より大きい第2の電流閾値とを設定することによって、二次電池200に対する充電開始時点を確実に捉えて、安定した充電状態での検出値を内部抵抗値の算出に用いることができる。   Therefore, each time the secondary battery 200 is charged, the internal resistance value Rc is calculated. As shown in FIG. 4, the first current threshold value for determining the start of charging and the first current threshold value greater than the first current threshold value are calculated. By setting the current threshold value of 2, it is possible to reliably capture the charging start time for the secondary battery 200 and use the detected value in a stable charged state for the calculation of the internal resistance value.

また、携帯機器300が間欠的に電流を消費するような動作をする場合(例えば、通常電力消費モードと低消費電力モードとの切り替えが間欠的に行われる場合、定常状態の消費電流は1mAであるが定期的に消費電流が100mAになる場合)、充電開始前電流I0や充電開始後電流I1の検出タイミングに充電の立ち上がりタイミングが重なると、内部抵抗値の算出誤差が大きくなる。しかしながら、携帯機器300の動作状態を考慮して、上述のように、2つの電流閾値を設定して内部抵抗値を算出することによって、内部抵抗値の算出誤差を抑えることができる。また、内部抵抗値の算出誤差を抑えるため、携帯機器300の動作状態を考慮し、例えば、複数回の検出値の平均値、複数回の検出値のうち多数一致の平均値、連続n回一致する検出値などを、内部抵抗値演算式の代入値として採用してもよい。   Further, when the mobile device 300 operates to intermittently consume current (for example, when switching between the normal power consumption mode and the low power consumption mode is performed intermittently, the steady-state current consumption is 1 mA. If the consumption current periodically becomes 100 mA), and the rising timing of charging overlaps with the detection timing of the current I0 before starting charging or the current I1 after starting charging, the calculation error of the internal resistance value becomes large. However, in consideration of the operating state of the mobile device 300, the calculation error of the internal resistance value can be suppressed by setting the two current threshold values and calculating the internal resistance value as described above. In order to suppress the calculation error of the internal resistance value, the operation state of the mobile device 300 is taken into consideration, for example, an average value of a plurality of detection values, an average value of a large number of coincidence among the detection values of a plurality of times, The detected value or the like to be used may be adopted as a substitution value for the internal resistance value calculation formula.

ところが、二次電池200や電池パック100Aの構成部に温度特性が存在する場合、内部抵抗値Rcは温度特性を持っている。例えば、二次電池200の開放電圧は、その周囲温度が高くなるにつれて小さくなる傾向がある。また、温度検出部10、電圧検出部20、電流検出部30、ADC40などが、抵抗やトランジスタやアンプ等のアナログ素子を備えるため、温度依存回路部になり得る。基本的に集積回路の設計段階では、ウエハ内素子の温度依存性を考慮して設計されるが、製造プロセスのばらつきやウエハ面内の特性ばらつき等が存在するため、僅かではあるが製造されたICは温度特性を持つことになる。   However, when the temperature characteristic exists in the constituent parts of the secondary battery 200 or the battery pack 100A, the internal resistance value Rc has the temperature characteristic. For example, the open circuit voltage of the secondary battery 200 tends to decrease as the ambient temperature increases. Further, since the temperature detection unit 10, the voltage detection unit 20, the current detection unit 30, the ADC 40, and the like include analog elements such as resistors, transistors, and amplifiers, they can be temperature-dependent circuit units. Basically, at the design stage of an integrated circuit, it is designed in consideration of the temperature dependence of the elements in the wafer. However, since there are variations in the manufacturing process and variations in the characteristics in the wafer surface, it was manufactured to a small extent. The IC will have temperature characteristics.

そこで、抵抗算出時の温度情報を利用して、いかなる温度で測定を行った場合であっても、算出された内部抵抗値が等しくなるように補正演算を行う。演算処理部50は、ステップ24で算出した抵抗値Rcを周囲温度に応じて補正することによって、第1の補正抵抗値Rcompを算出する(ステップ26)。   Therefore, using the temperature information at the time of resistance calculation, a correction operation is performed so that the calculated internal resistance values are equal regardless of the measurement temperature. The arithmetic processor 50 calculates the first corrected resistance value Rcomp by correcting the resistance value Rc calculated in step 24 according to the ambient temperature (step 26).

内部抵抗値の温度による補正方法は、任意の適切な方法を用いればよい。「内部抵抗値−温度」特性は、補正テーブルや補正関数によって表される。補正テーブル内のデータや補正関数の係数が特性データとしてメモリ60に格納される。演算処理部50は、メモリ60から読み出された特性データを反映させた補正テーブルや補正関数に従って、温度検出部10による測定時の温度により内部抵抗値Rcを補正した第1の補正抵抗値Rcompを算出することができる。   Any appropriate method may be used as a method for correcting the internal resistance value by temperature. The “internal resistance value-temperature” characteristic is represented by a correction table or a correction function. Data in the correction table and coefficients of the correction function are stored in the memory 60 as characteristic data. The arithmetic processing unit 50 has a first corrected resistance value Rcomp obtained by correcting the internal resistance value Rc according to the temperature at the time of measurement by the temperature detecting unit 10 according to a correction table or correction function reflecting the characteristic data read from the memory 60. Can be calculated.

さらに、算出された内部抵抗値は、二次電池の残容量に応じても変化するため、測定時の残容量が異なっても略一定の内部抵抗値が算出されるように、補正演算を行う。演算処理部50は、ステップ26で算出した抵抗値Rcompを残容量に応じて補正することによって、第2の補正抵抗値Rcomp2を算出する(ステップ28)。   Furthermore, since the calculated internal resistance value also changes depending on the remaining capacity of the secondary battery, correction calculation is performed so that a substantially constant internal resistance value is calculated even if the remaining capacity at the time of measurement is different. . The arithmetic processing unit 50 calculates the second corrected resistance value Rcomp2 by correcting the resistance value Rcomp calculated in step 26 according to the remaining capacity (step 28).

内部抵抗値の残容量による補正方法は、任意の適切な方法を用いればよい。「内部抵抗値−残容量」特性は、補正テーブルや補正関数によって表される。補正テーブル内のデータや補正関数の係数が特性データとしてメモリ60に格納される。演算処理部50は、メモリ60から読み出された特性データを反映させた補正テーブルや補正関数に従って、充電開始直前の残容量Q0により第1の補正抵抗値Rcompを補正した第2の補正抵抗値Rcomp2を算出することができる。これによって、内部抵抗値が正確に算出することができる。   Any appropriate method may be used as a method for correcting the internal resistance value by the remaining capacity. The “internal resistance value−remaining capacity” characteristic is represented by a correction table or a correction function. Data in the correction table and coefficients of the correction function are stored in the memory 60 as characteristic data. The arithmetic processing unit 50 corrects the first corrected resistance value Rcomp with the remaining capacity Q0 immediately before the start of charging according to a correction table or correction function reflecting the characteristic data read from the memory 60. Rcomp2 can be calculated. Thereby, the internal resistance value can be accurately calculated.

ところで、リチウムイオン電池等の二次電池は、充放電の繰り返しや高温で保存することによって内部抵抗値の増加や電池容量(満充電容量)が低下する。このような状態となった電池を使用し続けた場合、携帯機器の稼働可能時間は短くなり頻繁に充電を行う必要が発生する。また、電池としては長期間使用し続けることで、内部ショートなどの不具合が発生する確率が高くなることが予想される。そこで、本実施例では、以下に述べるように、携帯機器の利用者に対して適切な電池の交換時期を伝えるために、満充電容量の低下率と内部抵抗値に対して閾値を設定することで、利用者の利便性と電池の安全性を向上させている。   By the way, secondary batteries, such as a lithium ion battery, increase an internal resistance value and a battery capacity (full charge capacity) falls by repeating charging / discharging or preserve | saving at high temperature. When the battery in such a state is continuously used, the operation time of the portable device is shortened, and it is necessary to charge frequently. In addition, the battery is expected to have a higher probability of occurrence of a malfunction such as an internal short circuit if it is used for a long period of time. Therefore, in this embodiment, as described below, a threshold is set for the rate of decrease of the full charge capacity and the internal resistance value in order to inform the user of the portable device of an appropriate battery replacement time. Therefore, the convenience of the user and the safety of the battery are improved.

電池の劣化は、利用者の立場からは使用時間が減少する現象として現れるが、電池の内部では電解液及び電極の劣化として現れており、それぞれ異なる特性を示す。充放電の繰り返しによる劣化は電解液の特性変化として現れ、この場合、内部抵抗値は僅かしか増加しない。一方、高温保存による劣化は電極の劣化として現れ、この場合、内部抵抗値の増加が観測される。この点について、図6を参照して説明する。   The deterioration of the battery appears from the user's standpoint as a phenomenon in which the usage time decreases, but it appears as the deterioration of the electrolyte and the electrode inside the battery, and shows different characteristics. Deterioration due to repeated charge and discharge appears as a change in the characteristics of the electrolyte, and in this case, the internal resistance value increases only slightly. On the other hand, deterioration due to high temperature storage appears as electrode deterioration, and in this case, an increase in internal resistance value is observed. This point will be described with reference to FIG.

図6は、リチウムイオン電池の劣化要因及び劣化状態の違いによる、内部抵抗値と残容量との関係を測定した結果を示した図である。内部抵抗値と残容量は、上述の方法によって測定している。「80%Chg」は、保存劣化により容量劣化率を80%に調整した電池について測定した結果を示し、「70%Chg」は、保存劣化により容量劣化率を70%に調整した電池について測定した結果を示し、「60%Chg」は、保存劣化により容量劣化率を60%に調整した電池について測定した結果を示し、「フレッシュChg」は、容量劣化率が100%の電池(すなわち、新品)について測定した結果を示す。また、「1400サイクルChg」は、1400回の充放電が繰り返された電池について測定した結果を示す。   FIG. 6 is a diagram showing the results of measuring the relationship between the internal resistance value and the remaining capacity due to the difference in the deterioration factor and the deterioration state of the lithium ion battery. The internal resistance value and the remaining capacity are measured by the method described above. “80% Chg” indicates the result of measurement for a battery whose capacity deterioration rate was adjusted to 80% due to storage deterioration, and “70% Chg” was measured for a battery whose capacity deterioration rate was adjusted to 70% due to storage deterioration. “60% Chg” indicates the result of measurement for a battery whose capacity deterioration rate is adjusted to 60% due to storage deterioration, and “fresh Chg” indicates a battery with a capacity deterioration rate of 100% (ie, a new battery). The result measured about is shown. Further, “1400 cycle Chg” indicates a result of measurement performed on a battery that has been charged and discharged 1400 times.

保存劣化による電池について見てみると、容量劣化率60%(実際は63.9%)の電池の内部抵抗値は600mΩ近傍を示している。この容量劣化率63.9%は試験品の電池仕様の下限電圧が2.75Vのときの値であるため、下限電圧が上がるほど使用可能な容量は減るので、実際の携帯機器が二次電池に対して要求する下限電圧を3.4Vであると仮定すると、容量劣化率は53.4%に相当する。したがって、容量劣化率50%を二次電池の交換が必要な時点と仮定するならば、内部抵抗値を二次電池の交換が必要な時点を判断するための指標とする場合、600mΩが二次電池の交換が必要な時点に相当する。すなわち、内部抵抗値の閾値を600mΩと設定することで、保存劣化に対する二次電池の交換時点の目安とすることができる。   Looking at the battery due to storage deterioration, the internal resistance value of the battery having a capacity deterioration rate of 60% (actually 63.9%) is in the vicinity of 600 mΩ. The capacity deterioration rate of 63.9% is a value when the lower limit voltage of the battery specification of the test product is 2.75 V. Therefore, the usable capacity decreases as the lower limit voltage increases. Assuming that the lower limit voltage required for is 3.4 V, the capacity deterioration rate corresponds to 53.4%. Therefore, if it is assumed that the capacity deterioration rate is 50% when the secondary battery needs to be replaced, if the internal resistance value is an index for determining when the secondary battery needs to be replaced, 600 mΩ is secondary. This corresponds to the time when the battery needs to be replaced. That is, by setting the threshold value of the internal resistance value to 600 mΩ, it can be used as a guide when the secondary battery is replaced with respect to storage deterioration.

また、サイクル劣化で保存劣化とほぼ同じ容量劣化率となる内部抵抗値は240mΩであり、図6の試験結果からも新品の場合に比べ内部抵抗値があまり増加していないことが判明した。したがって、サイクル劣化については、内部抵抗値のみに基づく劣化判定が難しいため、容量劣化率に基づく劣化判定をすればよい。例えば、容量劣化率を50%とすることでサイクル劣化による容量劣化の閾値とする。   Further, the internal resistance value at which the capacity deterioration rate is approximately the same as the storage deterioration due to cycle deterioration is 240 mΩ, and it was found from the test results of FIG. 6 that the internal resistance value did not increase much compared to the new case. Therefore, with regard to cycle deterioration, since it is difficult to determine deterioration based only on the internal resistance value, deterioration determination based on the capacity deterioration rate may be performed. For example, by setting the capacity deterioration rate to 50%, the threshold for capacity deterioration due to cycle deterioration is set.

二次電池の交換が必要な容量劣化率の数値を規定した交換時点判定閾値と二次電池の交換が必要な内部抵抗値の数値を規定した交換時点判定閾値は、携帯機器の稼動時間や電池の安全性を考慮して設定すればよい。   Replacement time point determination threshold value that specifies the value of capacity deterioration rate that requires replacement of the secondary battery and replacement time point determination threshold value that specifies the value of the internal resistance value that requires replacement of the secondary battery are the operating time of the mobile device and the battery. It may be set in consideration of safety.

例えば、容量劣化率に基づいて二次電池の交換必要性を判断する場合、容量劣化率はその大きさが小さくなるほど劣化が進んでいることを示すため、演算処理部50は、算出した容量劣化率が交換時点判定閾値より大きい場合には交換不要と判断し、当該交換時点判定閾値以下の場合には交換必要と判断する。   For example, when the necessity for replacement of the secondary battery is determined based on the capacity deterioration rate, the capacity deterioration rate indicates that the deterioration is progressing as the size thereof is reduced. If the rate is greater than the replacement time determination threshold, it is determined that replacement is not necessary, and if it is less than the replacement time determination threshold, it is determined that replacement is necessary.

また、交換時点判定閾値を利用可能な最終状態と考え、容量劣化率がとりうる範囲を複数の区間に区分することによって、二次電池の交換必要性を段階的に判断することができる。例えば、容量劣化率50%を交換時点判定閾値とした場合、演算処理部50は、算出した容量劣化率が、100〜70%のときに「正常(交換不要)」と判断し、70〜50%のときに「注意(まもなく交換が必要)」と判断し、50〜40%のときに「要交換」と判断し、40〜0%のときに「危険(至急交換が必要)」と判断する。   Further, the replacement time determination threshold value is considered as the final state that can be used, and the range in which the capacity deterioration rate can be taken is divided into a plurality of sections, whereby the necessity for replacement of the secondary battery can be determined step by step. For example, when the capacity deterioration rate of 50% is set as the replacement time point determination threshold, the arithmetic processing unit 50 determines that the calculated capacity deterioration rate is “normal (no replacement required)” when the calculated capacity deterioration rate is 100 to 70%. %, “Caution (requires replacement soon)”, 50-40%, “requires replacement”, 40-40%, “danger (requires immediate replacement)” To do.

一方、内部抵抗値に基づいて二次電池の交換必要性を判断する場合、内部抵抗値はその大きさが大きくなるほど劣化が進んでいることを示すため、演算処理部50は、算出した内部抵抗値が交換時点判定閾値より小さい場合には交換不要と判断し、当該交換時点判定閾値以上の場合には交換必要と判断する。   On the other hand, when determining the necessity of replacement of the secondary battery based on the internal resistance value, the internal resistance value indicates that the deterioration is progressing as the magnitude thereof is increased. When the value is smaller than the replacement time determination threshold, it is determined that replacement is not necessary, and when the value is equal to or greater than the replacement time determination threshold, it is determined that replacement is necessary.

また、同様に、交換時点判定閾値を利用可能な最終状態と考え、内部抵抗値がとりうる範囲を複数の区間に区分することによって、二次電池の交換必要性を段階的に判断することができる。例えば、内部抵抗値600mΩを交換時点判定閾値とした場合、演算処理部50は、算出した内部抵抗値が、100〜300mΩのときに「正常(交換不要)」と判断し、300〜450mΩのときに「注意(まもなく交換が必要)」と判断し、450〜600mΩのときに「要交換」と判断し、600〜1000mΩのときに「危険(至急交換が必要)」と判断する。   Similarly, it is possible to determine the necessity of replacement of the secondary battery in stages by considering the replacement time determination threshold as a usable final state and dividing the possible range of the internal resistance value into a plurality of sections. it can. For example, when the internal resistance value 600 mΩ is set as the replacement time point determination threshold, the arithmetic processing unit 50 determines that the calculated internal resistance value is “normal (no replacement required)” when the calculated internal resistance value is 100 to 300 mΩ, and when the calculated internal resistance value is 300 to 450 mΩ. Is determined to be “Caution (requires replacement soon)”, determined to be “replacement required” when 450 to 600 mΩ, and determined to be “dangerous (requires immediate replacement)” when 600 to 1000 mΩ.

しかしながら、実際の使用環境では、劣化の要因は様々であるため、算出した容量劣化率と算出した内部抵抗値のどちらかが先に交換時点判定閾値に到達すると考えられる。そのため、容量劣化率と内部抵抗値を観測し、どちらかが先にその交換時点判定閾値に到達した段階で電池の交換時点と判断すればよい。   However, since there are various factors of deterioration in the actual use environment, it is considered that either the calculated capacity deterioration rate or the calculated internal resistance value reaches the replacement time determination threshold first. For this reason, the capacity deterioration rate and the internal resistance value are observed, and it may be determined that the battery replacement point is reached when one of them reaches the replacement point determination threshold first.

すなわち、演算処理部50は、算出した容量劣化率と内部抵抗値のいずれかが交換時点判定閾値に到達した場合に、二次電池の交換が必要と判断する。これにより、サイクル劣化のために内部抵抗値の算出値があまり変化しないことにより内部抵抗値の交換時点判定閾値に到達しない場合であっても、容量劣化率の算出値が容量劣化率の交換時点判定閾値に到達するため、確実に二次電池の交換が必要となる時点を判定することができる。また、演算処理部50は、算出した容量劣化率と内部抵抗値の両方が交換時点判定閾値に到達した場合に、二次電池の交換が必要と判断してもよい。容量劣化率と内部抵抗値の2つの要素で二次電池の交換時点を判断するので、1つの要素で判断する場合に比べ誤判断を防止することができる。   That is, the arithmetic processing unit 50 determines that the secondary battery needs to be replaced when either the calculated capacity deterioration rate or the internal resistance value reaches the replacement time determination threshold value. As a result, even if the calculated value of the internal resistance value does not change so much due to cycle deterioration and the internal resistance value replacement point determination threshold value is not reached, the calculated value of the capacity deterioration rate becomes the replacement point of the capacity deterioration rate. Since the determination threshold value is reached, it is possible to reliably determine when the secondary battery needs to be replaced. Further, the arithmetic processing unit 50 may determine that the secondary battery needs to be replaced when both the calculated capacity deterioration rate and the internal resistance value reach the replacement time determination threshold value. Since the replacement time of the secondary battery is determined based on the two elements of the capacity deterioration rate and the internal resistance value, erroneous determination can be prevented as compared with the case of determination based on one element.

また、容量劣化率に基づいて二次電池の交換必要性を判断する場合と内部抵抗値に基づいて二次電池の交換必要性を判断する場合、劣化要因によって容量劣化率と内部抵抗値の変化の仕方は異なるので、互いの判断結果が必ずしも同じになるとは限らない(例えば、一方が「注意」と判断し、もう一方が「要交換」と判断する場合など)。この場合、判断結果は、安全性を考慮して、交換必要性が高く判断された方を採用すればよい。   In addition, when determining the necessity for replacement of the secondary battery based on the capacity deterioration rate and when determining the necessity for replacement of the secondary battery based on the internal resistance value, changes in the capacity deterioration rate and the internal resistance value depending on the deterioration factor. Therefore, the determination results are not necessarily the same (for example, when one is determined to be “caution” and the other is determined to be “replacement required”). In this case, the determination result may be determined based on the determination that the necessity for replacement is high in consideration of safety.

すなわち、演算処理部50は、容量劣化率の大きさに応じて判定した「容量劣化率に基づく交換必要度」と内部抵抗値の大きさに応じて判定した「内部抵抗値に基づく交換必要度」とを比較して、交換必要度が高い方の大きさに応じて二次電池の交換必要性を判断する。「交換必要度」は、その数値が大きいほど交換の必要性が高くなることを示す。「交換必要度」を採用することによって、容量劣化率と内部抵抗値のようにその数値を単純比較できない場合でも、交換必要性を明確にすることができる。   In other words, the arithmetic processing unit 50 determines the “necessity of replacement based on the capacity deterioration rate” determined according to the size of the capacity deterioration rate and the “requirement level of replacement based on the internal resistance value” determined according to the size of the internal resistance value. ”And the necessity for replacement of the secondary battery is determined according to the size of the higher replacement necessity. The “necessity of replacement” indicates that the greater the value, the higher the necessity for replacement. By adopting the “necessity of replacement”, it is possible to clarify the necessity of replacement even when the numerical values cannot be simply compared, such as the capacity deterioration rate and the internal resistance value.

具体的には、演算処理部50は、算出した容量劣化率が、100〜70%のときに「交換必要度1(交換不要)」と判定し、70〜50%のときに「交換必要度2(まもなく交換が必要)」と判定し、50〜40%のときに「交換必要度3(要交換)」と判定し、40〜0%のときに「交換必要度4(至急交換が必要)」と判定する。また、演算処理部50は、算出した内部抵抗値が、100〜300mΩのときに「交換必要度1(交換不要)」と判定し、300〜450mΩのときに「交換必要度2(まもなく交換が必要)」と判定し、450〜600mΩのときに「交換必要度3(要交換)」と判定し、600〜1000mΩのときに「交換必要度4(至急交換が必要)」と判定する。そして、例えば、容量劣化率に基づく交換必要度が「2」であり、内部抵抗値に基づく交換必要度が「3」である場合、二次電池の交換必要度は「3」と判定する。   Specifically, the arithmetic processing unit 50 determines “replacement necessity 1 (replacement not required)” when the calculated capacity deterioration rate is 100 to 70%, and determines “replacement necessity” when it is 70 to 50%. 2 ”(replacement is required soon)”, when it is 50 to 40%, it is determined “replacement necessity 3 (replacement required)”, and when it is 40 to 0%, “replacement necessity 4 (urgent replacement is necessary) ) ”. The arithmetic processing unit 50 determines that “replacement necessity 1 (requires no replacement)” when the calculated internal resistance value is 100 to 300 mΩ, and “replacement necessity 2 (soon to be replaced) when 300 to 450 mΩ. Necessary) ”is determined, and when it is 450 to 600 mΩ, it is determined that“ replacement necessity 3 (requires replacement) ”, and when it is 600 to 1000 mΩ, it is determined that“ replacement necessity 4 (urgent replacement is necessary) ”. For example, when the replacement necessity based on the capacity deterioration rate is “2” and the replacement necessity based on the internal resistance value is “3”, the replacement necessity of the secondary battery is determined to be “3”.

通信処理部70は、交換必要度の高い方の大きさに応じた情報を携帯機器300のユーザに対する情報提供部である表示部310に出力させる信号を出力する。例えば、交換必要度の高い方の大きさが「2」であれば、図2に示されるように、携帯機器300内のマイクロコンピュータ等の制御部は、表示部310に電池交換時期として「注意」と表示されるように表示制御する。   The communication processing unit 70 outputs a signal that causes the display unit 310, which is an information providing unit for the user of the mobile device 300, to output information corresponding to the size of the higher necessity of replacement. For example, if the size of the higher replacement necessity is “2”, as shown in FIG. 2, the control unit such as the microcomputer in the portable device 300 displays “caution” as the battery replacement time on the display unit 310. The display is controlled so as to be displayed.

さらに、演算処理部50は、算出した容量劣化率と内部抵抗値とが二次電池の劣化状態を定める要素として反映された二次電池の劣化状態を表す劣化状態量を算出し、算出された劣化状態量が交換時点判定閾値に到達した場合に、二次電池の交換が必要と判断してもよい。例えば、この劣化状態量は、
劣化状態量=(1/容量劣化率)×重みK1+内部抵抗値×重みK2 ・・・(4)
という演算式によって算出されるとよい(K1,K2は零又は正数)。重みを変更することによって、容量劣化率及び内部抵抗値の劣化状態量に対する反映度を変更することができる。
Further, the arithmetic processing unit 50 calculates and calculates a deterioration state amount representing the deterioration state of the secondary battery in which the calculated capacity deterioration rate and the internal resistance value are reflected as factors determining the deterioration state of the secondary battery. When the deterioration state amount reaches the replacement time determination threshold value, it may be determined that the secondary battery needs to be replaced. For example, this deterioration state quantity is
Degradation state quantity = (1 / capacity degradation rate) × weight K1 + internal resistance value × weight K2 (4)
(K1 and K2 are zero or positive numbers). By changing the weight, the degree of reflection of the capacity deterioration rate and the internal resistance value with respect to the deterioration state quantity can be changed.

演算式(4)によって得られる劣化状態量に基づいて二次電池の交換必要性を判断する場合、この劣化状態量はその大きさが大きくなるほど劣化が進んでいることを示すため、演算処理部50は、算出した劣化状態量が交換時点判定閾値より小さい場合には交換不要と判断し、当該交換時点判定閾値以上の場合には交換必要と判断することができる。   When the necessity of replacement of the secondary battery is determined based on the deterioration state quantity obtained by the arithmetic expression (4), the deterioration state quantity indicates that the deterioration is progressing as the magnitude thereof is increased. 50, it can be determined that the replacement is not necessary when the calculated deterioration state quantity is smaller than the replacement time determination threshold, and it can be determined that the replacement is necessary when the calculated deterioration state quantity is equal to or greater than the replacement time determination threshold.

また、同様に、交換時点判定閾値を利用可能な最終状態と考え、劣化状態量がとりうる範囲を複数の区間に区分することによって、二次電池の交換必要性を段階的に判断することができる。例えば、劣化状態量100を交換時点判定閾値とした場合、演算処理部50は、算出した劣化状態量が、0〜60のときに「正常(交換不要)」と判断し、60〜80のときに「注意(まもなく交換が必要)」と判断し、80〜100のときに「要交換」と判断し、100〜1000のときに「危険(至急交換が必要)」と判断する。また、演算処理部50は、劣化状態量の大きさに応じて二次電池の交換必要性を判断し、劣化状態量が大きくなるほど二次電池の交換必要度が高くなる。   Similarly, it is possible to determine the necessity of replacement of the secondary battery in stages by considering the replacement time point determination threshold as a usable final state and dividing the possible range of the deterioration state amount into a plurality of sections. it can. For example, when the deterioration state quantity 100 is set as the replacement time point determination threshold, the arithmetic processing unit 50 determines that the calculated deterioration state quantity is “normal (replacement unnecessary)” when the calculated deterioration state quantity is 0 to 60, and when the calculated deterioration state quantity is 60 to 80. Is determined to be “Caution (requires replacement soon)”. When it is 80 to 100, it is determined to be “replacement required”, and when it is 100 to 1000, it is determined to be “danger (requires immediate replacement)”. The arithmetic processing unit 50 determines the necessity for replacement of the secondary battery according to the magnitude of the deterioration state quantity, and the degree of necessity for replacement of the secondary battery increases as the deterioration state quantity increases.

通信処理部70は、劣化状態量の大きさに応じた情報を携帯機器300のユーザに対する情報提供部である表示部310に出力させる信号を出力する。例えば、劣化状態量の大きさが「70」であれば、図2に示されるように、携帯機器300内のマイクロコンピュータ等の制御部は、表示部310に電池交換時期として「注意」と表示されるように表示制御する。   The communication processing unit 70 outputs a signal that causes the display unit 310 serving as an information providing unit for the user of the mobile device 300 to output information corresponding to the magnitude of the deterioration state quantity. For example, if the magnitude of the deterioration state quantity is “70”, as shown in FIG. 2, the control unit such as the microcomputer in the portable device 300 displays “CAUTION” on the display unit 310 as the battery replacement time. Display control.

したがって、上述の実施例によれば、二次電池の劣化が進む要因が保存劣化であとうとサイクル劣化であろうと、二次電池の交換の必要性をユーザに正確に情報提供することができる。その結果、ユーザの利便性や電池の安全性が向上する。   Therefore, according to the above-described embodiment, it is possible to accurately provide the user with information on the necessity of replacement of the secondary battery regardless of whether the deterioration of the secondary battery is caused by storage deterioration or cycle deterioration. As a result, user convenience and battery safety are improved.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

例えば、上述の劣化状態量に、二次電池の充電時間の累積値と二次電池の保存時間の累積値の少なくともいずれか一方が二次電池の劣化状態を定める要素として反映されてもよい。これにより、二次電池の交換の必要性をユーザに更に正確に情報提供することができる。具体的な要素として、出荷時からの総充電時間、所定の基準温度を下回る低温状態での総充電時間、所定の基準温度を上回る高温状態での総充電時間、出荷時からの経過日数、高温で保存された積算時間、低温で保存された積算時間などが挙げられる。   For example, at least one of the accumulated value of the charging time of the secondary battery and the accumulated value of the storage time of the secondary battery may be reflected in the above-described deterioration state quantity as an element that determines the deterioration state of the secondary battery. Thereby, it is possible to provide the user with more accurate information on the necessity of replacement of the secondary battery. Specific factors include the total charge time from the time of shipment, the total charge time in a low temperature state below a predetermined reference temperature, the total charge time in a high temperature state above a predetermined reference temperature, the number of days elapsed since shipment, and a high temperature And accumulated time stored at a low temperature.

本発明に係る電池パックの実施形態であるインテリジェント電池パック100Aの全体構成図である。1 is an overall configuration diagram of an intelligent battery pack 100A that is an embodiment of a battery pack according to the present invention. FIG. 表示部310による表示例である。It is an example of a display by the display part 310. FIG. 電池パック100A内の管理システムの内部抵抗値の算出フローである。It is a calculation flow of the internal resistance value of the management system in the battery pack 100A. 充電検出のシーケンスである。It is a sequence of charge detection. 25℃における「開放電圧−充電率」特性を示した図である。It is the figure which showed the "open circuit voltage-charge rate" characteristic in 25 degreeC. リチウムイオン電池の劣化要因及び劣化状態の違いによる、内部抵抗値と残容量との関係を測定した結果を示した図である。It is the figure which showed the result of having measured the relationship between internal resistance value and remaining capacity by the difference in the deterioration factor and deterioration state of a lithium ion battery.

符号の説明Explanation of symbols

50 演算処理部
60 メモリ
70 通信処理部
100A 電池パック
200 二次電池
300 携帯機器
310 表示部
50 arithmetic processing unit 60 memory 70 communication processing unit 100A battery pack 200 secondary battery 300 portable device 310 display unit

Claims (7)

電子機器に給電する二次電池の状態を検知する電池状態検知装置であって、
前記二次電池の容量劣化率を算出する容量劣化率算出手段と、
前記二次電池の内部抵抗値を算出する内部抵抗値算出手段と、
前記容量劣化率算出手段によって算出された容量劣化率と前記内部抵抗値算出手段によって算出された内部抵抗値とに基づいて前記二次電池の交換必要性を判断する判断手段と、
前記判断手段による判断結果に応じた信号を出力する出力手段とを備え、
前記判断手段は、
前記容量劣化率算出手段によって算出された容量劣化率と前記内部抵抗値算出手段によって算出された内部抵抗値の一方又は両方が前記二次電池の交換が必要となる値に到達した場合に前記二次電池の交換が必要と判断することを特徴とする、電池状態検知装置。
A battery state detection device for detecting a state of a secondary battery that supplies power to an electronic device,
A capacity deterioration rate calculating means for calculating a capacity deterioration rate of the secondary battery;
An internal resistance value calculating means for calculating an internal resistance value of the secondary battery;
Determining means for determining the necessity of replacement of the secondary battery based on the capacity deterioration rate calculated by the capacity deterioration rate calculating means and the internal resistance value calculated by the internal resistance value calculating means;
Output means for outputting a signal according to the determination result by the determination means,
The determination means includes
When one or both of the capacity deterioration rate calculated by the capacity deterioration rate calculation means and the internal resistance value calculated by the internal resistance value calculation means reach a value that requires replacement of the secondary battery, the second A battery state detection device, characterized in that it is determined that replacement of a secondary battery is necessary.
前記判断手段は、
前記容量劣化率算出手段によって算出された容量劣化率の大きさに応じて判定した容量劣化率に基づく交換必要度と前記内部抵抗値算出手段によって算出された内部抵抗値の大きさに応じて判定した内部抵抗値に基づく交換必要度とを比較して、交換必要度が高い方の大きさに応じて前記二次電池の交換必要性を判断する、請求項1に記載の電池状態検知装置。
The determination means includes
Determining according to the degree of necessity of replacement based on the capacity deterioration rate determined according to the size of the capacity deterioration rate calculated by the capacity deterioration rate calculating means and the size of the internal resistance value calculated by the internal resistance value calculating means The battery state detection device according to claim 1, wherein the necessity for replacement of the secondary battery is determined in accordance with a magnitude of a higher replacement degree by comparing with a replacement degree based on the internal resistance value.
前記出力手段は、前記交換必要度が高い方の大きさに応じた情報を前記電子機器に設けられたユーザに対する情報提供部に出力させる信号を出力する、請求項2に記載の電池状態検知装置。   3. The battery state detection device according to claim 2, wherein the output unit outputs a signal that causes an information providing unit for a user provided in the electronic device to output information corresponding to a size of the higher replacement necessity. 4. . 電子機器に給電する二次電池の状態を検知する電池状態検知装置であって、
前記二次電池の容量劣化率を算出する容量劣化率算出手段と、
前記二次電池の内部抵抗値を算出する内部抵抗値算出手段と、
前記容量劣化率算出手段によって算出された容量劣化率と前記内部抵抗値算出手段によって算出された内部抵抗値とに基づいて前記二次電池の交換必要性を判断する判断手段と、
前記判断手段による判断結果に応じた信号を出力する出力手段とを備え、
前記判断手段は、
前記容量劣化率算出手段によって算出された容量劣化率と前記内部抵抗値算出手段によって算出された内部抵抗値とが前記二次電池の劣化状態を定める要素として反映された前記二次電池の劣化状態を表す劣化状態量を算出し、算出された劣化状態量が前記二次電池の交換が必要となる値に到達した場合に前記二次電池の交換が必要と判断することを特徴とする、電池状態検知装置。
A battery state detection device for detecting a state of a secondary battery that supplies power to an electronic device,
A capacity deterioration rate calculating means for calculating a capacity deterioration rate of the secondary battery;
An internal resistance value calculating means for calculating an internal resistance value of the secondary battery;
Determining means for determining the necessity of replacement of the secondary battery based on the capacity deterioration rate calculated by the capacity deterioration rate calculating means and the internal resistance value calculated by the internal resistance value calculating means;
Output means for outputting a signal according to the determination result by the determination means,
The determination means includes
The deterioration state of the secondary battery in which the capacity deterioration rate calculated by the capacity deterioration rate calculation means and the internal resistance value calculated by the internal resistance value calculation means are reflected as factors determining the deterioration state of the secondary battery. The battery is characterized by calculating a deterioration state quantity representing the battery, and determining that the replacement of the secondary battery is necessary when the calculated deterioration state quantity reaches a value that requires replacement of the secondary battery. Condition detection device.
前記判断手段は、前記劣化状態量の大きさに応じて前記二次電池の交換必要性を判断する、請求項4に記載の電池状態検知装置。   The battery state detection device according to claim 4, wherein the determination unit determines whether or not the secondary battery needs to be replaced according to the magnitude of the deterioration state amount. 前記出力手段は、前記劣化状態量の大きさに応じた情報を前記電子機器に設けられたユーザに対する情報提供部に出力させる信号を出力する、請求項5に記載の電池状態検知装置。   The battery state detection device according to claim 5, wherein the output unit outputs a signal that causes an information providing unit for a user provided in the electronic device to output information corresponding to the magnitude of the deterioration state amount. 請求項1から6のいずれか一項に記載の電池状態検知装置と前記二次電池とを内蔵する電池パック。   A battery pack including the battery state detection device according to any one of claims 1 to 6 and the secondary battery.
JP2008233727A 2008-09-11 2008-09-11 Battery state detection device and battery pack incorporating the same Expired - Fee Related JP5368038B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008233727A JP5368038B2 (en) 2008-09-11 2008-09-11 Battery state detection device and battery pack incorporating the same
US13/062,555 US20120121952A1 (en) 2008-09-11 2009-08-28 Battery status detecting device and battery pack where the battery status detecting device is provided
CN2009801345904A CN102144170A (en) 2008-09-11 2009-08-28 Battery state detection device and battery pack containing the same
PCT/JP2009/065067 WO2010029863A1 (en) 2008-09-11 2009-08-28 Battery state detection device and battery pack containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233727A JP5368038B2 (en) 2008-09-11 2008-09-11 Battery state detection device and battery pack incorporating the same

Publications (2)

Publication Number Publication Date
JP2010066160A true JP2010066160A (en) 2010-03-25
JP5368038B2 JP5368038B2 (en) 2013-12-18

Family

ID=42005120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233727A Expired - Fee Related JP5368038B2 (en) 2008-09-11 2008-09-11 Battery state detection device and battery pack incorporating the same

Country Status (4)

Country Link
US (1) US20120121952A1 (en)
JP (1) JP5368038B2 (en)
CN (1) CN102144170A (en)
WO (1) WO2010029863A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013186956A (en) * 2012-03-06 2013-09-19 Shindengen Electric Mfg Co Ltd Charge management device
KR20140062772A (en) * 2012-11-15 2014-05-26 현대모비스 주식회사 Intelligent battery sensor and battery nominal capacity estimation method using iteration thereof
JP2014535038A (en) * 2011-09-30 2014-12-25 ケーピーアイティ テクノロジーズ リミテッド System and method for determining the state of charge of a battery
JP2015204149A (en) * 2014-04-11 2015-11-16 ソニー株式会社 Power storage device, control method, control device, power storage system, maintenance system, electric vehicle and electronic apparatus
JP2016506512A (en) * 2012-12-18 2016-03-03 ブルー・ソリューションズBluesolutions Method and device for characterizing a module for storing energy via capacitive effect
JP2016038276A (en) * 2014-08-07 2016-03-22 矢崎総業株式会社 Deterioration factor estimation method and remaining life time estimation method
JP2016045149A (en) * 2014-08-26 2016-04-04 矢崎総業株式会社 Deterioration factor estimation method and remaining life estimation method
JP2016125932A (en) * 2015-01-06 2016-07-11 スズキ株式会社 Deterioration state estimation device for secondary battery

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691198B1 (en) * 2010-07-29 2011-06-01 三菱重工業株式会社 Mobile battery system and control method for mobile battery system
JP5174111B2 (en) * 2010-09-27 2013-04-03 三菱重工業株式会社 Battery system
US9323298B2 (en) * 2011-06-30 2016-04-26 Broadcom Corporation Adaptive power management
JP5780359B2 (en) * 2012-04-19 2015-09-16 トヨタ自動車株式会社 Inspection device and inspection method for all solid state battery
US9018913B2 (en) 2012-05-18 2015-04-28 Caterpillar Inc. System for determining battery impedance
JP6347212B2 (en) * 2012-11-28 2018-06-27 株式会社村田製作所 Control device, power storage module, electric vehicle, power supply system, and control method
JP2013253991A (en) * 2012-11-30 2013-12-19 Gs Yuasa Corp Deteriorated capacity estimating device and deteriorated capacity estimating method for electricity storage elements, and electricity storage system
CN103018680B (en) * 2012-12-11 2014-07-16 矽力杰半导体技术(杭州)有限公司 Metering method and metering device of battery level and battery supply set
WO2014127150A1 (en) * 2013-02-15 2014-08-21 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
JP6098216B2 (en) * 2013-02-20 2017-03-22 株式会社デンソー Timer reminder
JP6211302B2 (en) * 2013-05-09 2017-10-11 矢崎総業株式会社 Battery state detection device
JP6048448B2 (en) * 2014-05-22 2016-12-21 トヨタ自動車株式会社 Method for determining reusable product application of used secondary battery and reconfiguring assembled battery reassembled product
EP3163669B1 (en) * 2014-06-24 2019-10-30 Kabushiki Kaisha Toshiba Degradation control device of storage battery system and method for same
JP6443656B2 (en) * 2014-07-02 2018-12-26 パナソニックIpマネジメント株式会社 Battery status judgment device
KR102318789B1 (en) * 2014-09-02 2021-10-28 삼성전자 주식회사 Method for managing bettery charging and electlronic device implementing the same
CN105467324B (en) 2014-09-30 2020-03-03 株式会社杰士汤浅国际 Battery degradation determination device, battery degradation determination method, and battery pack
JP6695224B2 (en) * 2016-07-06 2020-05-20 富士フイルム株式会社 Radiation irradiation device
TWI657639B (en) * 2017-12-04 2019-04-21 Industrial Technology Research Institute Method and system for determining a discharging flow of a battery
JP2020189516A (en) * 2019-05-20 2020-11-26 本田技研工業株式会社 Influence degree display device, influence degree display method, and program
JP7215438B2 (en) * 2020-01-27 2023-01-31 トヨタ自動車株式会社 Diagnostic device for secondary battery and method for detecting SOC unevenness
US20230065968A1 (en) * 2020-02-21 2023-03-02 Panasonic Intellectual Property Management Co., Ltd. Calculation system, battery characteristic estimation method, and battery characteristic estimation program
JP7027488B2 (en) * 2020-06-22 2022-03-01 レノボ・シンガポール・プライベート・リミテッド Charge control device, secondary battery, electronic device, and control method
CN112014751B (en) * 2020-09-04 2023-04-07 福建飞毛腿动力科技有限公司 SOC estimation method based on estimation of actual dischargeable capacity of lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315015A (en) * 1992-05-14 1993-11-26 Matsushita Electric Ind Co Ltd Capacity deterioration rate calculating method for storage battery and deterioration diagnosing device
JPH104603A (en) * 1996-06-14 1998-01-06 Hino Motors Ltd Display for battery mounted on vehicle
JP2005043059A (en) * 2003-07-22 2005-02-17 Makita Corp Device and method for diagnosing battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012098A (en) * 1998-06-26 2000-01-14 Nissan Motor Co Ltd Battery degradation diagnosis method
US6087808A (en) * 1999-04-23 2000-07-11 Pritchard; Jeffrey A. System and method for accurately determining remaining battery life
EP1450173A3 (en) * 2003-02-24 2009-07-22 Daimler AG Method for determination of ageing of a battery
JP2004301779A (en) * 2003-03-31 2004-10-28 Yazaki Corp Battery state monitoring device and its method
JP5048963B2 (en) * 2006-04-06 2012-10-17 パナソニック株式会社 Battery system
FR2901070B1 (en) * 2006-05-11 2013-04-26 Commissariat Energie Atomique METHOD FOR MANAGING A BATTERY OR A PARK OF RECHARGEABLE BATTERIES UTILIZING THE CHARGING WHIPPING EFFECT

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315015A (en) * 1992-05-14 1993-11-26 Matsushita Electric Ind Co Ltd Capacity deterioration rate calculating method for storage battery and deterioration diagnosing device
JPH104603A (en) * 1996-06-14 1998-01-06 Hino Motors Ltd Display for battery mounted on vehicle
JP2005043059A (en) * 2003-07-22 2005-02-17 Makita Corp Device and method for diagnosing battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014535038A (en) * 2011-09-30 2014-12-25 ケーピーアイティ テクノロジーズ リミテッド System and method for determining the state of charge of a battery
JP2013186956A (en) * 2012-03-06 2013-09-19 Shindengen Electric Mfg Co Ltd Charge management device
KR20140062772A (en) * 2012-11-15 2014-05-26 현대모비스 주식회사 Intelligent battery sensor and battery nominal capacity estimation method using iteration thereof
KR101960090B1 (en) * 2012-11-15 2019-03-19 현대모비스 주식회사 Intelligent battery sensor and battery nominal capacity estimation method using iteration thereof
JP2016506512A (en) * 2012-12-18 2016-03-03 ブルー・ソリューションズBluesolutions Method and device for characterizing a module for storing energy via capacitive effect
JP2015204149A (en) * 2014-04-11 2015-11-16 ソニー株式会社 Power storage device, control method, control device, power storage system, maintenance system, electric vehicle and electronic apparatus
US10164298B2 (en) 2014-04-11 2018-12-25 Murata Manufacturing Co., Ltd. Power storage device, control method, control device, power storage system, maintenance system, electric vehicle, and electronic equipment
JP2016038276A (en) * 2014-08-07 2016-03-22 矢崎総業株式会社 Deterioration factor estimation method and remaining life time estimation method
JP2016045149A (en) * 2014-08-26 2016-04-04 矢崎総業株式会社 Deterioration factor estimation method and remaining life estimation method
JP2016125932A (en) * 2015-01-06 2016-07-11 スズキ株式会社 Deterioration state estimation device for secondary battery

Also Published As

Publication number Publication date
WO2010029863A1 (en) 2010-03-18
JP5368038B2 (en) 2013-12-18
US20120121952A1 (en) 2012-05-17
CN102144170A (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP5368038B2 (en) Battery state detection device and battery pack incorporating the same
JP5815195B2 (en) Battery state detection device and battery pack incorporating the same
JP5561916B2 (en) Battery status monitoring device
WO2010004985A1 (en) Battery state detection device
US8234087B2 (en) Apparatus and method for detecting a status of a secondary battery connected to a load
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
WO2011108249A1 (en) Full charge capacity value correction circuit, battery pack, and charging system
JP2009031220A (en) Battery state detection method and device
JP2013083612A (en) Battery state measurement method and battery state measurement apparatus
KR20070091554A (en) Battery pack, and residual capacity information feeding device therefor
WO2011102180A1 (en) Battery state detection device and method
JP2009097954A (en) Battery pack and residual capacity correction method of secondary battery
JP2007327971A (en) Measuring device of remaining battery life
JP2011172415A (en) Secondary battery device
JP2007322398A (en) Battery pack and method for detecting fully-charge capacity
JP5601214B2 (en) Battery capacity correction device and battery capacity correction method
US20070247118A1 (en) Method of end of discharge voltage measurement for battery with estimation thereof
JP2005195388A (en) Instrument for measuring residual level of battery
JP2001095159A (en) Secondary battery unit, and method of measuring electric capacity thereof
JP2003151645A (en) Battery residual power detecting method and electric apparatus
JP2007322353A (en) Battery capacity determining device, method, and battery pack using the same
JP2004170231A (en) Battery equipment system indicating degradation of battery
JP2011203259A (en) Method and device for detecting battery state
JP2012010492A (en) Battery residual quantity notification circuit, battery pack, and electrical apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5368038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees