JP2010065934A - Cooling method and cooling apparatus - Google Patents

Cooling method and cooling apparatus Download PDF

Info

Publication number
JP2010065934A
JP2010065934A JP2008232972A JP2008232972A JP2010065934A JP 2010065934 A JP2010065934 A JP 2010065934A JP 2008232972 A JP2008232972 A JP 2008232972A JP 2008232972 A JP2008232972 A JP 2008232972A JP 2010065934 A JP2010065934 A JP 2010065934A
Authority
JP
Japan
Prior art keywords
solid
cooling
mass
aggregate
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008232972A
Other languages
Japanese (ja)
Inventor
Kazuhiko Akaha
和彦 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2008232972A priority Critical patent/JP2010065934A/en
Publication of JP2010065934A publication Critical patent/JP2010065934A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for local rapid cooling having cooling time equal to that in conventional methods practically while improving a problem wherein in conventional local cooling of a solid surface, moisture adheres to the solid surface after the cooling and the moisture may cause a failure, in particular, in electronic circuit boards etc. <P>SOLUTION: A mass of coolant comprising an aggregate of powdery bodies is brought into contact with the solid surface, and while a contact area between the mass and the solid surface is maintained practically, the mass is pressed against the solid surface, so as to achieve local rapid cooling reducing moisture absorption. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

固体表面の冷却方法およびそれに用いる冷却器具に関する。   The present invention relates to a method for cooling a solid surface and a cooling device used therefor.

従来、固体表面を局所的に急冷する方法として、HFC−134a等を急冷剤に用いたエアゾール缶があった。これらは気体を吹き付けるので固形の冷却剤と異なり、凹凸な面を有する固体表面を急速に冷却できた。しかし、HFC−134aは温暖化物質の為、環境規制物質となった。このHFC−134aと同等な急冷効果を得る急冷剤として、一般に可燃性ガス系急冷剤があるが、出火災害の危険性がある為、特に電子機器を通電しながら冷却する場合には不適当であった。   Conventionally, as a method of locally quenching a solid surface, there has been an aerosol can using HFC-134a or the like as a quenching agent. Since these sprayed gas, unlike solid coolants, solid surfaces having uneven surfaces could be rapidly cooled. However, HFC-134a has become an environmentally regulated substance because it is a warming substance. As a quenching agent that obtains a quenching effect equivalent to that of HFC-134a, there is generally a flammable gas quenching agent. However, since there is a risk of a fire disaster, it is not suitable particularly when cooling electronic devices while energizing them. there were.

一方、特許文献1に示されたような炭酸ガスとスノードライアイスの噴射による局所急冷方法が提案されていた。   On the other hand, a local quenching method using carbon dioxide gas and snow dry ice injection as shown in Patent Document 1 has been proposed.

特開平6−159889号公報JP-A-6-1559889

図4に従来技術の局所急冷方法の一例を示す。従来技術の局所急冷方法では、冷媒となる気体、冷却剤等をエアゾール缶9からノズル8を経て直接噴射するために、冷却対象の雰囲気中で水分を吸収し、冷却後の固体7の表面に水分が付着しやすかった。この水分は、例えば冷却する固体7が電子部品の場合、冷却中あるいは冷却直後に通電するとショートの原因となることがあり、冷却完了後の表面からの水分除去が必要であり、生産性が悪かった。また、直接噴射で急速冷却する場合、大量の冷却用気体を噴射しなくてはいけなかった。HFC−134a等は温暖化物質であり、これらの大量噴射は地球環境に好ましくない作業であった。   FIG. 4 shows an example of a conventional local quenching method. In the local local quenching method of the prior art, in order to directly inject a gas, a coolant, or the like as a refrigerant from the aerosol can 9 through the nozzle 8, moisture is absorbed in the atmosphere to be cooled, and the surface of the solid 7 after cooling is absorbed. Moisture was easy to adhere. For example, in the case where the solid 7 to be cooled is an electronic component, this moisture may cause a short circuit if energized during or immediately after cooling, and it is necessary to remove moisture from the surface after cooling is completed, resulting in poor productivity. It was. In addition, in the case of rapid cooling by direct injection, a large amount of cooling gas had to be injected. HFC-134a and the like are warming substances, and these large-scale injections are unfavorable work for the global environment.

一方、固形状の冷却剤、例えばブロック状あるいはペレット状のドライアイスが市販されており、これらを押し当てて冷却する方法は上述の直接噴射よりも冷却剤の大気中への放出量が少ないので検討された。しかし、冷却対象の固体7の表面にこれらの固形状の冷却剤を直接接触させて冷却することは、表面が凹凸な形状な電子部品の場合は凹凸であるが為に接触面積を確保しにくいので、期待される程度に急速な冷却時間にすることができない。   On the other hand, solid coolant, such as block or pellet dry ice, is commercially available, and the method of cooling by pressing these is because the amount of coolant released into the atmosphere is smaller than the direct injection described above. It was examined. However, cooling by directly contacting these solid coolants on the surface of the solid 7 to be cooled is uneven in the case of an electronic component having an uneven surface, so it is difficult to secure a contact area. Therefore, the cooling time cannot be as rapid as expected.

よって、凹凸な表面を水分の付着無しに、急速に冷却できる方法、および温暖化物質の大気中への放出の少ない方法が求められていた。   Therefore, there has been a demand for a method capable of rapidly cooling an uneven surface without adhering moisture, and a method for releasing a warming substance into the atmosphere.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]
本適用例に係る冷却方法は、固体を冷却する冷却方法であって、粉体の集合体で構成された冷却剤の塊を前記固体の表面に接触させ、前記塊と前記固体の表面とが接触する面積を実用上同じくしながら、前記塊を前記固体表面に向けて押し当てることを特徴とする。
[Application Example 1]
The cooling method according to this application example is a cooling method for cooling a solid, wherein a mass of a coolant composed of an aggregate of powders is brought into contact with the surface of the solid, and the mass and the surface of the solid are brought into contact with each other. The lump is pressed against the solid surface while the contact area is practically the same.

この構成によれば、上述の冷却方法を用いることにより、空気中の水分を実用上無視できる程度に吸収せず、また、粉体の冷却剤は流動性があり、塊として凹凸な表面に沿って自在に変形可能なので、凹凸な固体表面との接触面積が冷却時間を急速にできる程度に確保でき、また実用上一定の接触面積にするように押し当てるので、冷却剤の気化によって発生する空隙を無くすことができ、冷却効果を安定させることができる。   According to this configuration, by using the above-described cooling method, moisture in the air is not absorbed to a practically negligible level, and the powder coolant is fluid and follows a rough surface as a lump. Because it can be freely deformed, the contact area with the uneven solid surface can be secured to the extent that the cooling time can be rapidly achieved, and it is pressed so that it is practically a constant contact area, so voids generated by vaporization of the coolant Can be eliminated, and the cooling effect can be stabilized.

[適用例2]
本適用例に係る冷却方法は、前記冷却剤の塊が粉体の固体炭酸の集合体であることが好ましい。
[Application Example 2]
In the cooling method according to this application example, it is preferable that the mass of the coolant is an aggregate of powdered solid carbonic acid.

この構成によれば、固体炭酸であるので引火性が無く、通電しながらの電子部品の冷却に用いても火災の恐れが無い。また、HFC−134aよりも温暖化係数の低い炭酸気体が排出されるので、地球温暖化防止にも効果的である。   According to this structure, since it is a solid carbonic acid, there is no flammability, and there is no fear of a fire even if it is used for cooling electronic components while energizing. Moreover, since carbon dioxide gas having a lower warming coefficient than HFC-134a is discharged, it is also effective in preventing global warming.

[適用例3]
本適用例に係る冷却器具は、固体を粉体の固体炭酸の集合体で冷却する方法に用いられる冷却器具であって、筒形状体と柱形状体で構成され、前記筒形状体の内部に前記固体炭酸の集合体の塊が充填され、前記柱形状体が前記筒形状体に挿入され、前記柱形状体が前記固体の表面の方向に向けて移動することによって、前記固体炭酸の集合体を前記固体の表面に押し当てることを特徴とする。
[Application Example 3]
The cooling device according to this application example is a cooling device used in a method of cooling a solid with an aggregate of powdered solid carbonic acid. The cooling device includes a cylindrical body and a columnar body, and the inside of the cylindrical body is The solid carbonic acid aggregate is filled, the columnar body is inserted into the cylindrical body, and the columnar body moves toward the surface of the solid, whereby the solid carbonic acid aggregate. Is pressed against the surface of the solid.

この構成によれば、上述の筒形状体と柱形状体を用いることにより、粉体の固体炭酸の集合体を一定の容積の塊として簡便に扱うことができ、前記集合体と前記固体表面の接触面積を実用上同じにすることができる。粉体の固体炭酸は冷却が進行すると気化により消失するので、特に固体表面近傍において塊に空隙が生じるが、本願の器具では柱形状体が前記固体の表面の方向に向けて移動し、上述の空隙を無くすように押し当てるので、前記塊と前記固体の表面との接触面積を実用上同じに保ち、冷却することができる。   According to this configuration, by using the cylindrical body and the columnar body described above, it is possible to easily handle the solid carbonic acid aggregate as a lump of a certain volume, and the aggregate and the solid surface The contact area can be practically the same. Since solid carbonic acid of the powder disappears due to vaporization as the cooling proceeds, voids are generated in the lump particularly in the vicinity of the solid surface, but in the device of the present application, the columnar body moves toward the surface of the solid, and the above-mentioned Since it presses so that a space | gap may be eliminated, the contact area of the said lump and the surface of the said solid can be kept practically the same, and it can cool.

[適用例4]
本適用例に係る冷却器具は、前記筒形状体が筒形錐台形状であり、且つ前記筒形状体の断面積が、前記固体表面に向かって小さくなることが好ましい。
[Application Example 4]
In the cooling device according to this application example, it is preferable that the cylindrical body has a cylindrical frustum shape, and a cross-sectional area of the cylindrical body decreases toward the solid surface.

この構成によれば、上記の筒形錐台形状の筒形状体を用いることにより、固体表面近傍において塊に発生した空隙を更に圧縮して無くすことができる。固体炭酸の集合体を押し当てて空隙を無くすことにより冷却時間を急速にすることができる。   According to this configuration, by using the cylindrical frustum-shaped cylindrical body, voids generated in the lump in the vicinity of the solid surface can be further compressed and eliminated. The cooling time can be accelerated by pressing the solid carbonic acid aggregate to eliminate voids.

以下、本発明を具体化した実施形態について、図面を参照しながら説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.

(実施形態)
図1および図2は、冷却器具の構造を示す模式断面図である。以下、冷却方法および冷却器具の構造を、主に図1を参照しながら説明する。
(Embodiment)
1 and 2 are schematic cross-sectional views showing the structure of the cooling device. Hereinafter, the cooling method and the structure of the cooling apparatus will be described mainly with reference to FIG.

図1に示すように、筒形状体5は冷却対象の固体4の表面で局所的に冷却したい場所の近傍に設置する。あらかじめ筒形状体5の内部に固体炭酸の粉体の集合体を充填して設置しても良いし、設置後において、固体炭酸の粉体の集合体を充填してもよい。   As shown in FIG. 1, the cylindrical body 5 is installed in the vicinity of a place to be locally cooled on the surface of the solid 4 to be cooled. The cylindrical body 5 may be preliminarily filled with a solid carbonate powder aggregate, or may be filled with a solid carbonate powder aggregate after installation.

固体炭酸の粉体は、液化炭酸ガス(純度99.90vol%以上)の貯蔵容器等からスノーホーンを経て大気中に炭酸ガスを噴出させて作成する。作成された固体炭酸の粉体は保冷容器に保存して、冷却剤の塊3(固体炭酸の粉体の集合体の塊)とする。なお、スノーホーンの噴出口付近に筒形状体5を置き、スノーホーンから筒形状体5の内部に固体炭酸の粉体を直接充填してもよい。   The solid carbon dioxide powder is prepared by blowing carbon dioxide into the atmosphere through a snow horn from a storage container of liquefied carbon dioxide (purity 99.90 vol% or more). The prepared solid carbonic acid powder is stored in a cold container to form a coolant mass 3 (solid carbon powder aggregate mass). Alternatively, the cylindrical body 5 may be placed near the snow horn outlet, and solid carbon dioxide powder may be directly filled into the cylindrical body 5 from the snow horn.

保冷容器に保存された固体炭酸の粉体をさじあるいはヘラ等の治具を用いて、筒形状体5の内部に充填する。なお、固体炭酸の粉体の充填方法は上述の方法に限定されない。耐寒および安全性が確保できる方法であればよく、例えば耐寒性手袋を用いて、人間の手で充填してもよい。   The solid carbon dioxide powder stored in the cold container is filled into the cylindrical body 5 using a jig such as a spoon or a spatula. The filling method of the solid carbonic acid powder is not limited to the method described above. Any method that can ensure cold resistance and safety may be used. For example, cold-resistant gloves may be used for filling with human hands.

固体炭酸の粉体を充填された筒形状体5に柱形状体6を挿入し、固体表面の方向に柱形状体6を移動させながら、冷却剤の塊3を固体表面に押し当てる。この柱形状体6の移動は気化による冷却剤の空隙を無くすように適時おこなえば良い。なお、図2に示すような先細りした筒形状体を用いてもよいし、図1に示すような断面がほぼ同じような筒形状体を用いてもよい。但し、図2のほうがより押し当てる効果が高いので、冷却時間を安定的に急速にできる。   The columnar body 6 is inserted into the cylindrical body 5 filled with solid carbonic acid powder, and the mass of coolant 3 is pressed against the solid surface while moving the columnar body 6 in the direction of the solid surface. This movement of the columnar body 6 may be performed in a timely manner so as to eliminate the gap of the coolant due to vaporization. A tapered cylindrical body as shown in FIG. 2 may be used, or a cylindrical body having substantially the same cross section as shown in FIG. 1 may be used. However, since the effect of pressing in FIG. 2 is higher, the cooling time can be stably and rapidly.

次に、上述の押し当てる力と冷却時間の関係について説明する。   Next, the relationship between the pressing force and the cooling time will be described.

図3には、冷却される固体表面の温度を冷却開始からの経過時間でプロットしてある。温度測定の固体として市販の樹脂製回路基板を用いた。この樹脂製回路基板の表面に熱電対K線を貼付し、測定器として横河電気製LR4120を用いて、前記の樹脂製回路基板表面温度を測定した。   In FIG. 3, the temperature of the solid surface to be cooled is plotted as the elapsed time from the start of cooling. A commercially available resin circuit board was used as a solid for temperature measurement. A thermocouple K wire was attached to the surface of the resin circuit board, and the surface temperature of the resin circuit board was measured using an LR4120 manufactured by Yokogawa Electric.

筒形状体5はセラミック製の外径約20mmから30mm、空洞部分の内径は約15mmから20mmの円筒を用いた。円筒の長さは約30mmである。なお、筒形状は円筒でも多角筒状でも良い。また、筒形状体5の材質はセラミックに限らず、樹脂、金属等を用いてもよい。   The cylindrical body 5 is a ceramic cylinder having an outer diameter of about 20 mm to 30 mm and a hollow portion having an inner diameter of about 15 mm to 20 mm. The length of the cylinder is about 30 mm. The cylindrical shape may be a cylindrical shape or a polygonal cylindrical shape. Moreover, the material of the cylindrical body 5 is not limited to ceramic, and resin, metal, or the like may be used.

図3に上述の実験で得られた結果を示す。示された結果の条件は3条件である。実線は柱形状体6で冷却剤の塊3を押し当てる条件の結果である。一方、破線は柱形状体6による冷却剤の塊3の押し当てをおこなわない条件の結果である。なお、比較実験として、HFC−134aのエアゾール缶からの気体の噴射による冷却もおこない、冷却時間の結果を2点鎖線で示している。   FIG. 3 shows the results obtained in the above experiment. The conditions of the results shown are 3 conditions. The solid line is the result of the condition in which the columnar body 6 presses the coolant mass 3. On the other hand, the broken line is the result of the condition in which the coolant mass 3 is not pressed by the columnar body 6. As a comparative experiment, cooling by gas injection from an aerosol can of HFC-134a is also performed, and the result of the cooling time is indicated by a two-dot chain line.

押し当てを行わない条件(破線)では−40℃になるまでの冷却時間は4分必要であったが、押し当てる条件(実線)ではそれが1分に短縮されている。比較として示すHFC−134aの噴射の条件(2点鎖線)の20秒よりも遅いが、押し当てる条件(実線)は実用上適用可能な冷却時間である。なお、HFC−134aの噴射の条件(2点鎖線)においてのみ、冷却直後の樹脂製回路基板の表面に水分の付着が観察された。   Under the condition where the pressing is not performed (broken line), the cooling time until reaching −40 ° C. was 4 minutes, but under the pressing condition (solid line), it was shortened to 1 minute. Although it is later than 20 seconds of the HFC-134a injection condition (two-dot chain line) shown as a comparison, the pressing condition (solid line) is a practically applicable cooling time. In addition, adhesion of moisture was observed on the surface of the resin circuit board immediately after cooling only under the condition of HFC-134a injection (two-dot chain line).

以上のように、粉体の集合体で構成された冷却剤の塊を固体の表面に接触させ、この塊と固体の表面とが接触する面積を実用上同じくしながら、塊を固体表面に向けて押し当てることにより、従来の冷却剤の気体等の噴射での局所急冷とほぼ同等な冷却時間で冷却し、水分の付着に少ない局所急冷を実現できる。なお、温暖化係数が規制物質よりも小さいガスを用い、その大気中の放出も少ないので環境にやさしい技術でもある。   As described above, the mass of the coolant composed of the powder aggregate is brought into contact with the solid surface, and the mass is directed to the solid surface while the area where the mass is in contact with the solid surface is practically the same. By being pressed, it is cooled in a cooling time substantially equivalent to the local quenching in the conventional jet of a coolant gas or the like, and the local quenching with less moisture adhesion can be realized. It is also an environmentally friendly technology because it uses a gas with a lower global warming potential than regulated substances and emits less in the atmosphere.

冷却器具の構造を示す模式断面図。The schematic cross section which shows the structure of a cooling device. 冷却器具の構造を示す模式断面図。The schematic cross section which shows the structure of a cooling device. 本願とHFC−134aの冷却効果を示すグラフ。The graph which shows the cooling effect of this application and HFC-134a. 従来の冷却方法を示す模式図。The schematic diagram which shows the conventional cooling method.

符号の説明Explanation of symbols

3…冷却剤の塊、4…固体、5…筒形状体、6…柱形状体。   3 ... lump of coolant, 4 ... solid, 5 ... cylindrical body, 6 ... columnar body.

Claims (4)

固体を冷却する冷却方法であって、
粉体の集合体で構成された冷却剤の塊を前記固体の表面に接触させ、前記塊と前記固体の表面とが接触する面積を実用上同じくしながら、前記塊を前記固体表面に向けて押し当てることを特徴とする冷却方法。
A cooling method for cooling a solid,
A coolant mass composed of an aggregate of powders is brought into contact with the surface of the solid, and the area where the mass and the surface of the solid are in contact is practically the same, while the mass is directed toward the solid surface. A cooling method characterized by pressing.
前記冷却剤の塊が粉体の固体炭酸の集合体であることを特徴とする請求項1に記載の冷却方法。   The cooling method according to claim 1, wherein the mass of the coolant is an aggregate of powdered solid carbonic acid. 固体を粉体の固体炭酸の集合体で冷却する方法に用いられる冷却器具であって、
筒形状体と柱形状体で構成され、前記筒形状体の内部に前記固体炭酸の集合体の塊が充填され、前記柱形状体が前記筒形状体に挿入され、前記柱形状体が前記固体の表面の方向に向けて移動することによって、前記固体炭酸の集合体を前記固体の表面に押し当てることを特徴とする冷却器具。
A cooling device used in a method of cooling a solid with an aggregate of powdered solid carbonic acid,
It is composed of a cylindrical body and a columnar body, the mass of the solid carbonic acid aggregate is filled inside the cylindrical body, the columnar body is inserted into the cylindrical body, and the columnar body is the solid body. A cooling apparatus, wherein the solid carbonic acid aggregate is pressed against the surface of the solid by moving toward the surface of the solid.
前記筒形状体が筒形錐台形状であり、且つ前記筒形状体の断面積が、前記固体表面に向かって小さくなることを特徴とする請求項3に記載の冷却器具。   The cooling device according to claim 3, wherein the cylindrical body has a cylindrical frustum shape, and a cross-sectional area of the cylindrical body decreases toward the solid surface.
JP2008232972A 2008-09-11 2008-09-11 Cooling method and cooling apparatus Withdrawn JP2010065934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232972A JP2010065934A (en) 2008-09-11 2008-09-11 Cooling method and cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232972A JP2010065934A (en) 2008-09-11 2008-09-11 Cooling method and cooling apparatus

Publications (1)

Publication Number Publication Date
JP2010065934A true JP2010065934A (en) 2010-03-25

Family

ID=42191663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232972A Withdrawn JP2010065934A (en) 2008-09-11 2008-09-11 Cooling method and cooling apparatus

Country Status (1)

Country Link
JP (1) JP2010065934A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144542U (en) * 1983-03-18 1984-09-27 三菱重工業株式会社 Wind tunnel floor cooling vessel
JPH02180057A (en) * 1989-01-04 1990-07-12 Hitachi Ltd Cooling of semiconductor device
JPH02131178U (en) * 1989-04-04 1990-10-31
JPH06159889A (en) * 1992-11-24 1994-06-07 Nippon Tansan Gas Co Ltd Locally cooling device with liquified carbon dioxide gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144542U (en) * 1983-03-18 1984-09-27 三菱重工業株式会社 Wind tunnel floor cooling vessel
JPH02180057A (en) * 1989-01-04 1990-07-12 Hitachi Ltd Cooling of semiconductor device
JPH02131178U (en) * 1989-04-04 1990-10-31
JPH06159889A (en) * 1992-11-24 1994-06-07 Nippon Tansan Gas Co Ltd Locally cooling device with liquified carbon dioxide gas

Similar Documents

Publication Publication Date Title
CN105729717B (en) The preparation method of the complex of metal and resin and complex obtained by this method
SG150470A1 (en) A method for the generation of a functional layer
US20130167877A1 (en) Substrate processing apparatus and substrate processing method
RU2008104147A (en) METHOD FOR PRODUCING STABILIZED METAL LITHIUM POWDER FOR LI-ION APPLICATIONS
CN101277780B (en) Laser peening method and apparatus using ablation layers to prevent pitting during laser peening
JP2010065934A (en) Cooling method and cooling apparatus
EP3666873A1 (en) Cleanser composition, cleaning aerosol, and method for cleaning soiled part
Yuan et al. Enhancing the oxidation resistance of copper by using sandblasted copper surfaces
JP2020157880A (en) Autonomous travel device equipped with cooling system
JP5338095B2 (en) Slag cooling method
JP2016136998A (en) Fire extinguishing method and fire extinguisher
JP2013169562A (en) Method of removing scale of steel and method of manufacturing rolled steel plate
US20180141220A1 (en) Robot device comprising a driven unit, and application method
JP2008221316A (en) Method for cooling continuously cast slab
CN102596331B (en) Spray head
JP5210285B2 (en) Local cooling method
JP5941942B2 (en) Cutting method, cutting apparatus and chuck
JP2006308176A (en) Coolant, cooling method and coolant feeder
JP4273466B2 (en) Vacuum insulation panel, method for manufacturing the same, and refrigerator using this vacuum insulation panel
US20220347818A1 (en) Blasting medium and method of surface treatment using such a blasting medium
KR101987943B1 (en) Cleaning method of metal parts
JP2020500724A (en) Arrangements and processes for treating surfaces
JP2015193506A (en) Method for pressurization steam-aging of steel slag
CN212585300U (en) High strength EPS cystosepiment
Lam et al. Hygrothermal delaminations in lead-free solder reflow of electronic packages

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Effective date: 20110819

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Effective date: 20121211

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130212