JP2010065854A - Ammonia refrigerating device - Google Patents

Ammonia refrigerating device Download PDF

Info

Publication number
JP2010065854A
JP2010065854A JP2008229756A JP2008229756A JP2010065854A JP 2010065854 A JP2010065854 A JP 2010065854A JP 2008229756 A JP2008229756 A JP 2008229756A JP 2008229756 A JP2008229756 A JP 2008229756A JP 2010065854 A JP2010065854 A JP 2010065854A
Authority
JP
Japan
Prior art keywords
valve
ammonia
compressor body
electromagnetic valve
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008229756A
Other languages
Japanese (ja)
Other versions
JP5197255B2 (en
Inventor
Noboru Tsuboi
昇 壷井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008229756A priority Critical patent/JP5197255B2/en
Publication of JP2010065854A publication Critical patent/JP2010065854A/en
Application granted granted Critical
Publication of JP5197255B2 publication Critical patent/JP5197255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ammonia refrigerating device free from liquefaction of ammonia refrigerant intruding into a motor chamber, and having superior corrosion resistance and electrically insulating property. <P>SOLUTION: A first solenoid valve 11 is disposed between an evaporator 5 and an expansion valve 6, a bypass flow channel 14 bypassing a suction side check valve 9 is disposed, and a second solenoid valve 15 is disposed in the bypass flow channel 14. The first solenoid valve 11 is closed, and the second solenoid valve 15 is opened, when a compressor body 3 is stopped. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はアンモニアを冷媒とする冷凍サイクルからなるアンモニア冷凍装置に関する。   The present invention relates to an ammonia refrigeration apparatus comprising a refrigeration cycle using ammonia as a refrigerant.

従来、冷凍装置の冷媒としてフロンが用いられてきたが、オゾン層破壊や地球温暖化を防止し地球環境を保護するため、フロンの代替品としてアンモニアが見直されている。   Conventionally, chlorofluorocarbon has been used as a refrigerant in a refrigeration apparatus, but ammonia has been reviewed as a substitute for chlorofluorocarbon in order to prevent destruction of the ozone layer and global warming and protect the global environment.

しかし、アンモニアは、腐食性、吸湿性があるため、冷凍装置の圧縮機を駆動するモータが収容されたモータ室に侵入して、モータの固定子及び回転子の巻線の被覆を溶解し又は剥離して、巻線の短絡、焼損、断線を引き起こすことがある。   However, since ammonia is corrosive and hygroscopic, it enters the motor chamber in which the motor that drives the compressor of the refrigeration apparatus is housed, and dissolves the coating of the stator and rotor windings of the motor. It may cause peeling and cause short circuit, burnout, or disconnection of the winding.

図4に示すアンモニア冷凍装置は、電源1に接続されたモータ2により駆動される2段スクリュ圧縮機本体3、油分離回収器4、凝縮器5、膨張弁6、蒸発器7を有する冷凍サイクルの循環流路8からなり、圧縮機本体3の吸込み側と吐出側にそれぞれ逆止弁9,10を、凝縮器5と膨張弁6の間に電磁弁11を設け、油分離回収器4から油冷却器12を有する油流路13を介して圧縮機本体3の油給油箇所に給油する。   The ammonia refrigeration apparatus shown in FIG. 4 has a two-stage screw compressor body 3 driven by a motor 2 connected to a power source 1, an oil separator / recoverer 4, a condenser 5, an expansion valve 6, and an evaporator 7. Of the compressor body 3, check valves 9 and 10 are provided on the suction side and the discharge side of the compressor body 3, and an electromagnetic valve 11 is provided between the condenser 5 and the expansion valve 6. Oil is supplied to an oil supply portion of the compressor body 3 through an oil passage 13 having an oil cooler 12.

このアンモニア冷凍装置の運転時には、圧縮機本体3の吐出口から膨張弁6までは、例えば1.5MPa(相当飽和温度40℃)の高圧状態にあり、膨張弁6から圧縮機本体3の吸込み口までは、例えば0.1MPa(相当飽和温度−33℃)の低圧状態にある。圧縮機本体3が停止すると、圧縮機本体3の吐出口から吐出側逆止弁10までの高圧のアンモニアガスが吸込み側逆止弁9まで逆流する。この結果、吸込み側逆止弁9から吐出側逆止弁10までの間は、例えば0.7MPa(相当飽和温度14℃)の中間圧力状態となる。この中間圧力状態で、周囲温度が相当飽和温度の14℃以下となると、圧縮器本体3のモータ室内のアンモニアガスが液化し、モータ2の固定子巻線と接触し、腐食させることになる。   During the operation of the ammonia refrigeration apparatus, the pressure from the discharge port of the compressor body 3 to the expansion valve 6 is in a high pressure state of, for example, 1.5 MPa (equivalent saturation temperature 40 ° C.). Up to, for example, a low pressure state of 0.1 MPa (equivalent saturation temperature −33 ° C.). When the compressor body 3 stops, high-pressure ammonia gas from the discharge port of the compressor body 3 to the discharge side check valve 10 flows back to the suction side check valve 9. As a result, between the suction side check valve 9 and the discharge side check valve 10, an intermediate pressure state of, for example, 0.7 MPa (equivalent saturation temperature 14 ° C.) is obtained. In this intermediate pressure state, when the ambient temperature becomes 14 ° C. or less, which is the equivalent saturation temperature, the ammonia gas in the motor chamber of the compressor body 3 is liquefied and comes into contact with the stator windings of the motor 2 and corrodes.

そこで、特許文献1では、モータ室の下部に液溜部又は液溜器を設けて、固定子の巻線をアンモニア冷媒の気相域に配置し、液相域と接触しないようにすることが提案されている。
特開平6−17354号公報
Therefore, in Patent Document 1, a liquid reservoir or a liquid reservoir is provided in the lower part of the motor chamber, and the winding of the stator is disposed in the gas phase region of the ammonia refrigerant so as not to contact the liquid phase region. Proposed.
JP-A-6-17354

しかし、引用文献1の従来技術でも、気相域のアンモニアガスが液化するときに液化したアンモニア液が固定子巻線と接触し、前述の問題を引き起こすことがあった。   However, even in the prior art of the cited document 1, when the ammonia gas in the gas phase region is liquefied, the liquefied ammonia liquid may come into contact with the stator windings and cause the above-mentioned problems.

そこで、本発明は、モータ室に侵入したアンモニア冷媒が液化せず、耐食性、電気的絶縁性に優れたアンモニア冷凍装置を提供することを課題とする。   Therefore, an object of the present invention is to provide an ammonia refrigeration apparatus that is excellent in corrosion resistance and electrical insulation, because the ammonia refrigerant that has entered the motor chamber does not liquefy.

前記課題を解決するために、第1の手段は、
モータで駆動する圧縮機本体、凝縮器、膨張弁及び蒸発器を有し、アンモニアを冷媒とする冷凍サイクルからなり、前記圧縮機本体の吸込み側と吐出側にそれぞれ逆止弁を設けた冷凍装置において、
前記凝縮器と膨張弁の間に第1電磁弁を設け、前記吸込み側逆止弁をバイパスするバイパス流路を設けて前記バイパス流路に第2電磁弁を設け、前記圧縮機本体の停止時に前記第1電磁弁を閉鎖し、前記第2電磁弁を開放する。
In order to solve the above-mentioned problem, the first means is:
A refrigeration apparatus having a compressor body driven by a motor, a condenser, an expansion valve and an evaporator, comprising a refrigeration cycle using ammonia as a refrigerant, and provided with check valves on the suction side and the discharge side of the compressor body. In
A first electromagnetic valve is provided between the condenser and the expansion valve, a bypass flow path that bypasses the suction side check valve is provided, a second electromagnetic valve is provided in the bypass flow path, and the compressor main body is stopped. The first electromagnetic valve is closed and the second electromagnetic valve is opened.

前記構成の第1の手段では、圧縮機本体の運転を停止すると、圧縮機本体の吐出口から吸込み側逆止弁までの高圧のアンモニアガスが、圧縮機本体からバイパス流路を介して低圧部に逆流する。このため、圧縮機本体のモータ室内は低圧状態となるので、モータ室内のアンモニアガスは低圧部の相当飽和温度以下になるまで液化しない。これにより、モータ室内のアンモニアガスが液化して固定子の巻線に接触することがなくなる。   In the first means configured as described above, when the operation of the compressor main body is stopped, the high-pressure ammonia gas from the discharge port of the compressor main body to the suction side check valve flows from the compressor main body through the bypass flow path. To flow backwards. For this reason, since the motor chamber of the compressor body is in a low pressure state, the ammonia gas in the motor chamber is not liquefied until the temperature falls below the equivalent saturation temperature of the low pressure portion. As a result, ammonia gas in the motor chamber does not liquefy and come into contact with the stator windings.

第2の手段は、第1の手段において、前記バイパス流路に絞りを設ける。これにより、圧縮機本体の運転停止時に、圧縮機本体の吐出口から吸込み側逆止弁までの高圧のアンモニアガスが圧縮機本体とバイパス流路を通って逆流する速度が抑えられ、圧縮器本体の逆回転が防止される。   The second means is the first means, wherein the bypass channel is provided with a throttle. This suppresses the speed at which the high-pressure ammonia gas from the discharge port of the compressor body to the suction-side check valve flows backward through the compressor body and the bypass channel when the compressor body is shut down. Is prevented from reverse rotation.

第3の手段は、モータで駆動する圧縮機本体、凝縮器、膨張弁及び蒸発器を有し、アンモニアを冷媒とする冷凍サイクルからなり、前記圧縮機本体の吸込み側と吐出側にそれぞれ逆止弁を設けた冷凍装置において、
前記蒸発器と膨張弁の間に第1電磁弁を設け、前記吸込み側逆止弁の弁体に前記吸込み側逆止弁の前後に連通する穴を形成し、前記圧縮機本体の停止時に前記第1電磁弁を閉鎖する。
The third means includes a compressor body driven by a motor, a condenser, an expansion valve, and an evaporator, and includes a refrigeration cycle using ammonia as a refrigerant. In a refrigeration apparatus provided with a valve,
A first solenoid valve is provided between the evaporator and the expansion valve, a hole communicating with the front and rear of the suction side check valve is formed in the valve body of the suction side check valve, and when the compressor body is stopped, The first solenoid valve is closed.

前記構成の第3の手段では、圧縮機本体の運転を停止すると、圧縮機本体の吐出口から吸込み側逆止弁までの高圧のアンモニアガスが、吸込み側逆止弁の穴を介して低圧部に逆流する。このため、圧縮機本体のモータ室内は低圧状態となるので、モータ室内のアンモニアガスは低圧部の相当飽和温度以下になるまで液化しない。これにより、モータ室内のアンモニアガスが液化して固定子の巻線に接触することがなくなる。   In the third means configured as described above, when the operation of the compressor body is stopped, the high-pressure ammonia gas from the discharge port of the compressor body to the suction-side check valve passes through the hole of the suction-side check valve. To flow backwards. For this reason, since the motor chamber of the compressor body is in a low pressure state, the ammonia gas in the motor chamber is not liquefied until the temperature falls below the equivalent saturation temperature of the low pressure portion. As a result, ammonia gas in the motor chamber does not liquefy and come into contact with the stator windings.

第1の手段の発明によれば、圧縮機本体の運転停止時に、圧縮機本体のモータ室内がバイパス流路により低圧状態となるので、モータ室内のアンモニアガスが液化して固定子の巻線に接触することがなくなり、耐食性、電気的絶縁性が向上する。   According to the invention of the first means, when the operation of the compressor main body is stopped, the motor chamber of the compressor main body is in a low pressure state by the bypass flow path, so that the ammonia gas in the motor chamber is liquefied and becomes a winding of the stator. No contact, corrosion resistance and electrical insulation are improved.

第2の手段の発明によれば、バイパス流路に絞りを設けたことにより、圧縮機本体の運転停止時に、圧縮器本体の逆回転が防止される。   According to the second aspect of the invention, by providing the throttle in the bypass flow path, reverse rotation of the compressor body is prevented when the operation of the compressor body is stopped.

第3の手段の発明によれば、圧縮機本体の運転停止時に、圧縮機本体のモータ室内が吸込み側逆止弁の穴により低圧状態となるので、モータ室内のアンモニアガスが液化して固定子の巻線に接触することがなくなり、耐食性、電気的絶縁性が向上する。   According to the invention of the third means, when the operation of the compressor main body is stopped, the motor chamber of the compressor main body is in a low pressure state due to the hole of the suction side check valve, so that the ammonia gas in the motor chamber is liquefied and the stator This prevents contact with the windings of the metal and improves corrosion resistance and electrical insulation.

以下、本発明の実施の形態を添付図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の第1実施形態によるアンモニア冷凍装置を示す。このアンモニア冷凍装置は、吸込み側逆止弁9をバイパスするバイパス流路14を設け、このバイパス流路14に電磁弁15と絞り16を設けた以外は、図4に示す従来のアンモニア冷凍装置と実質的に同一であり、対応する部分には同一符号を附して説明を省略する。なお、以下、説明の便宜上、凝縮器5と絞り弁6の間の電磁弁11を第1電磁弁、バイパス流路14の電磁弁15を第2電磁弁という。   FIG. 1 shows an ammonia refrigerating apparatus according to a first embodiment of the present invention. This ammonia refrigeration apparatus is provided with a bypass flow path 14 that bypasses the suction-side check valve 9, and the conventional ammonia refrigeration apparatus shown in FIG. The corresponding parts are denoted by the same reference numerals and description thereof is omitted. Hereinafter, for convenience of explanation, the electromagnetic valve 11 between the condenser 5 and the throttle valve 6 is referred to as a first electromagnetic valve, and the electromagnetic valve 15 in the bypass flow path 14 is referred to as a second electromagnetic valve.

第1電磁弁11と第2電磁弁15は、制御装置17により制御される。制御装置17は、運転時には第1電磁弁11を開いて第2電磁弁15を閉じ、運転停止時には第1電磁弁11を閉じて第2電磁弁15を開く。絞り16は、第2電磁弁15の下流側にあってもよいし、上流側にあってもよい。   The first electromagnetic valve 11 and the second electromagnetic valve 15 are controlled by the control device 17. The control device 17 opens the first electromagnetic valve 11 and closes the second electromagnetic valve 15 during operation, and closes the first electromagnetic valve 11 and opens the second electromagnetic valve 15 when operation is stopped. The throttle 16 may be on the downstream side of the second electromagnetic valve 15 or on the upstream side.

図2は、アンモニア冷凍装置の圧縮機本体3の詳細な断面図を示す。圧縮機本体3は、モータ2、第1段圧縮部18、第2段圧縮部19により構成され、これらはケーシング20,21,22内に収容されている。   FIG. 2 shows a detailed sectional view of the compressor body 3 of the ammonia refrigeration apparatus. The compressor body 3 includes a motor 2, a first stage compression unit 18, and a second stage compression unit 19, which are accommodated in casings 20, 21, and 22.

モータ2は、回転子23と固定子24からなり、そのモータケーシング20には、その外面を囲むようにジャケット25が形成されている。ジャケット25には、圧縮機本体3の運転時に冷却用の水又は冷媒液が供給される。   The motor 2 includes a rotor 23 and a stator 24, and a jacket 25 is formed in the motor casing 20 so as to surround the outer surface thereof. Cooling water or refrigerant liquid is supplied to the jacket 25 during operation of the compressor body 3.

第1段圧縮部18は、回転可能に支持された互いに噛み合う雌雄1対のスクリュ形ロータ26,27からなっている。雄ロータ26は、一端のロータ軸28がモータ2の出力軸と一体に形成され、モータ2により駆動される。第1段圧縮部18のケーシング21のモータ側には、蒸発器5に連通する第1段吸込み口29が形成され、反対側には第1段吐出口30が形成されている。第1段吸込み口29には吸込み側逆止弁9が設けられている。   The first stage compression section 18 includes a pair of male and female screw rotors 26 and 27 that are rotatably supported and mesh with each other. The male rotor 26 has a rotor shaft 28 at one end formed integrally with the output shaft of the motor 2 and is driven by the motor 2. A first stage suction port 29 communicating with the evaporator 5 is formed on the motor side of the casing 21 of the first stage compression unit 18, and a first stage discharge port 30 is formed on the opposite side. A suction-side check valve 9 is provided in the first stage suction port 29.

第2段圧縮部19は、回転可能に支持された互いに噛み合う雌雄1対のスクリュ形ロータ31,32からなっている。雄ロータ31は、一端のロータ軸33が第1段圧縮部18の雄ロータ26の吐出側のロータ軸34とカップリング35を介して一体回転可能に連結されている。第2段圧縮部19の雄ロータ31及び雌ロータ32の第1段圧縮部18側には、第1段吐出口30に連通する第2吸込み口36が形成され、反対側には油分離回収器4に通じる第2段吐出口37が形成されている。   The second stage compression section 19 is composed of a pair of male and female screw rotors 31 and 32 that are rotatably supported and mesh with each other. The male rotor 31 has a rotor shaft 33 at one end connected to a discharge-side rotor shaft 34 of the male rotor 26 of the first stage compression unit 18 via a coupling 35 so as to be integrally rotatable. A second suction port 36 communicating with the first-stage discharge port 30 is formed on the first-stage compression section 18 side of the male rotor 31 and the female rotor 32 of the second-stage compression section 19, and oil separation and recovery is formed on the opposite side. A second-stage discharge port 37 communicating with the container 4 is formed.

前記構成からなるアンモニア冷凍機の動作を説明する。運転時、第1電磁弁11が開き、第2電磁弁15が閉じて、モータ2により第1段圧縮部18と第2段圧縮部19が駆動される。吸込み口29から吸い込まれたアンモニア冷媒は第1段圧縮部18と第2段圧縮部19で圧縮され、吐出口37から油分離回収器4に吐出される。油分離回収器4では、圧縮されたアンモニアガス中に含まれる潤滑油が分離され、下方に貯溜する。油分離回収器4で分離されたアンモニアガスは吐出側逆止弁10を通って凝縮器5に至り、ここで凝縮する。凝縮したアンモニア冷媒は第1電磁弁11を通過し、膨張弁8で減圧されて、蒸発器7に至り、ここで蒸発し、吸込み逆止弁9を介して圧縮機本体3の吸込み口29に戻る。油分離回収器4で分離された潤滑油は油流路13を介して圧縮機本体3の閉じ込み空間や軸受等に供給される。   The operation of the ammonia refrigerator having the above configuration will be described. During operation, the first electromagnetic valve 11 is opened, the second electromagnetic valve 15 is closed, and the first stage compression unit 18 and the second stage compression unit 19 are driven by the motor 2. The ammonia refrigerant sucked from the suction port 29 is compressed by the first stage compression unit 18 and the second stage compression unit 19, and is discharged from the discharge port 37 to the oil separation and recovery device 4. In the oil separator / collector 4, the lubricating oil contained in the compressed ammonia gas is separated and stored downward. The ammonia gas separated by the oil separator / recovery unit 4 passes through the discharge side check valve 10 and reaches the condenser 5 where it is condensed. The condensed ammonia refrigerant passes through the first electromagnetic valve 11, is depressurized by the expansion valve 8, reaches the evaporator 7, evaporates there, and enters the suction port 29 of the compressor body 3 through the suction check valve 9. Return. The lubricating oil separated by the oil separator / recovery unit 4 is supplied to the closed space of the compressor body 3, a bearing, and the like via the oil flow path 13.

圧縮機本体3の停止時には、第1電磁弁11が閉じて、第2電磁弁15が開き、吸込み逆止弁9のバイパス流路14が開く。これにより、圧縮機本体3の吐出口37から吐出側逆止弁10までの高圧のアンモニアガスは圧縮機本体3の内部に逆流し、さらに吸込み口29からバイパス流路14を介して低圧部に連通する。これにより、圧縮機本体3の内部は、特に、モータケーシング20の図中濁点で示す内部は、低圧部と同じ圧力となるので、モータケーシング20の内部のアンモニアガスは、モータ2の周囲温度が低圧部の相当飽和温度−33℃以下になるまで液化しない。このため、モータ2の固定子24の巻線がアンモニア液と接触することがなく、耐食性が増加する。   When the compressor body 3 is stopped, the first electromagnetic valve 11 is closed, the second electromagnetic valve 15 is opened, and the bypass flow path 14 of the suction check valve 9 is opened. As a result, the high-pressure ammonia gas from the discharge port 37 of the compressor body 3 to the discharge-side check valve 10 flows back into the compressor body 3 and further flows from the suction port 29 to the low-pressure portion via the bypass flow path 14. Communicate. As a result, the inside of the compressor body 3, in particular, the inside of the motor casing 20 indicated by the turbid point in the figure has the same pressure as the low pressure portion, so the ammonia gas inside the motor casing 20 has the ambient temperature of the motor 2. It does not liquefy until the equivalent saturation temperature of the low-pressure part is −33 ° C. or lower. For this reason, the coil | winding of the stator 24 of the motor 2 does not contact ammonia liquid, and corrosion resistance increases.

圧縮機本体3が停止すると同時に、高圧のアンモニアガスが圧縮機本体3の内部に急激に逆流すると、ロータ26,27、31,32が逆転すると同時に、軸受等への給油がなされなくなり、軸受が損傷し、ロータ26,27、31,32が焼き付くおそれがある。しかし、本実施形態では、バイパス流路14に絞り16があるので、少しずつアンモニアガスが第1電磁弁15を介して蒸発器7側に戻るので、ロータ26,27、31,32が逆転しない。   If the high-pressure ammonia gas suddenly flows back into the compressor main body 3 at the same time as the compressor main body 3 stops, the rotors 26, 27, 31, 32 are reversely rotated, and at the same time, no oil is supplied to the bearings. There is a risk that the rotors 26, 27, 31, 32 will seize. However, in this embodiment, since the bypass 16 has the restriction 16, the ammonia gas gradually returns to the evaporator 7 side via the first electromagnetic valve 15, so the rotors 26, 27, 31, and 32 do not reverse. .

図4(a),(b)は、本発明の第2実施形態によるアンモニア冷凍装置の圧縮機本体3を示す。このアンモニア冷凍装置は、第1実施形態のように吸込み側逆止弁9にバイパス流路14を設ける代わりに、吸込み側逆止弁9の弁体42に、弁体42の前後を連通する径1〜3mm程度の穴43を設けた以外は、第1実施形態と同様であり、対応する部分には同一符号を付して説明を省略する。   4 (a) and 4 (b) show the compressor body 3 of the ammonia refrigeration apparatus according to the second embodiment of the present invention. In this ammonia refrigeration apparatus, instead of providing the bypass flow passage 14 in the suction side check valve 9 as in the first embodiment, the diameter of the front and rear of the valve body 42 communicates with the valve body 42 of the suction side check valve 9. Except for providing a hole 43 of about 1 to 3 mm, it is the same as in the first embodiment, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.

この実施形態においても、圧縮機本体3の停止時に、吸込み逆止弁9の穴43を介して低圧部と吸込み口29が連通しているので、圧縮機本体3の吐出口37から吐出側逆止弁10までの高圧のアンモニアガスが圧縮機本体3の内部に逆流し、さらに吸込み逆止弁9の穴43を介して低圧部に連通する。これにより、モータケーシング20の内部のアンモニアガスは、モータ2の周囲温度が低圧部の相当飽和温度−33℃以下になるまで液化しない。このため、モータ2の固定子24の巻線がアンモニア液と接触することがなく、耐食性が増加する。   Also in this embodiment, when the compressor body 3 is stopped, the low pressure portion and the suction port 29 communicate with each other through the hole 43 of the suction check valve 9. The high-pressure ammonia gas up to the stop valve 10 flows back into the compressor main body 3 and further communicates with the low-pressure portion through the hole 43 of the suction check valve 9. Thereby, the ammonia gas inside the motor casing 20 is not liquefied until the ambient temperature of the motor 2 becomes equal to or lower than the equivalent saturation temperature −33 ° C. of the low pressure portion. For this reason, the coil | winding of the stator 24 of the motor 2 does not contact ammonia liquid, and corrosion resistance increases.

本発明の第1実施形態によるアンモニア冷凍装置の全体構成図。1 is an overall configuration diagram of an ammonia refrigeration apparatus according to a first embodiment of the present invention. 図1のアンモニア冷凍装置の圧縮機本体の断面図。Sectional drawing of the compressor main body of the ammonia refrigerating apparatus of FIG. 本発明の第2実施形態によるアンモニア冷凍装置の圧縮機本体の断面図。Sectional drawing of the compressor main body of the ammonia freezing apparatus by 2nd Embodiment of this invention. 従来のアンモニア冷凍装置の全体構成図。The whole ammonia refrigeration equipment block diagram.

符号の説明Explanation of symbols

2 モータ
3 圧縮機本体
5 凝縮器
6 膨張弁
7 蒸発器
9 吸込み側逆止弁
10 吐出側逆止弁
11 第1電磁弁
14 バイパス流路
15 第2電磁弁
16 絞り
17 制御装置
23 回転子
24 固定子
25 ジャケット
40 温水源
41 ポンプ
42 弁体
43 穴
2 Motor 3 Compressor Body 5 Condenser 6 Expansion Valve 7 Evaporator 9 Suction Side Check Valve 10 Discharge Side Check Valve 11 First Electromagnetic Valve 14 Bypass Channel 15 Second Electromagnetic Valve 16 Restrictor 17 Controller 23 Rotor 24 Stator 25 Jacket 40 Hot water source 41 Pump 42 Valve body 43 Hole

Claims (3)

モータで駆動する圧縮機本体、凝縮器、膨張弁及び蒸発器を有し、アンモニアを冷媒とする冷凍サイクルからなり、前記圧縮機本体の吸込み側と吐出側にそれぞれ逆止弁を設けた冷凍装置において、
前記凝縮器と膨張弁の間に第1電磁弁を設け、前記吸込み側逆止弁をバイパスするバイパス流路を設けて前記バイパス流路に第2電磁弁を設け、前記圧縮機本体の停止時に前記第1電磁弁を閉鎖し、前記第2電磁弁を開放することを特徴とするアンモニア冷凍装置。
A refrigeration apparatus having a compressor body driven by a motor, a condenser, an expansion valve and an evaporator, comprising a refrigeration cycle using ammonia as a refrigerant, and provided with check valves on the suction side and the discharge side of the compressor body. In
A first electromagnetic valve is provided between the condenser and the expansion valve, a bypass flow path that bypasses the suction side check valve is provided, a second electromagnetic valve is provided in the bypass flow path, and the compressor main body is stopped. An ammonia refrigerating apparatus, wherein the first electromagnetic valve is closed and the second electromagnetic valve is opened.
前記バイパス流路に絞りを設けたことを特徴とする請求項1に記載のアンモニア冷凍装置。   The ammonia refrigerating apparatus according to claim 1, wherein a throttle is provided in the bypass flow path. モータで駆動する圧縮機本体、凝縮器、膨張弁及び蒸発器を有し、アンモニアを冷媒とする冷凍サイクルからなり、前記圧縮機本体の吸込み側と吐出側にそれぞれ逆止弁を設けた冷凍装置において、
前記蒸発器と膨張弁の間に第1電磁弁を設け、前記吸込み側逆止弁の弁体に前記吸込み側逆止弁の前後に連通する穴を形成し、前記圧縮機本体の停止時に前記第1電磁弁を閉鎖することを特徴とするアンモニア冷凍装置。
A refrigeration apparatus having a compressor body driven by a motor, a condenser, an expansion valve and an evaporator, comprising a refrigeration cycle using ammonia as a refrigerant, and provided with check valves on the suction side and the discharge side of the compressor body. In
A first solenoid valve is provided between the evaporator and the expansion valve, a hole communicating with the front and rear of the suction side check valve is formed in the valve body of the suction side check valve, and when the compressor body is stopped, An ammonia refrigerating apparatus, wherein the first electromagnetic valve is closed.
JP2008229756A 2008-09-08 2008-09-08 Ammonia refrigeration equipment Active JP5197255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229756A JP5197255B2 (en) 2008-09-08 2008-09-08 Ammonia refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229756A JP5197255B2 (en) 2008-09-08 2008-09-08 Ammonia refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2010065854A true JP2010065854A (en) 2010-03-25
JP5197255B2 JP5197255B2 (en) 2013-05-15

Family

ID=42191587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229756A Active JP5197255B2 (en) 2008-09-08 2008-09-08 Ammonia refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5197255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128112A (en) * 2018-01-25 2019-08-01 株式会社神戸製鋼所 Refrigerating device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143014A (en) * 1977-05-19 1978-12-13 Sanyo Electric Co Ltd Rotary compressor
JPS62156763U (en) * 1986-03-28 1987-10-05
JPH05195955A (en) * 1992-01-16 1993-08-06 Hitachi Ltd Refrigerating compressor
JPH07259779A (en) * 1994-03-17 1995-10-09 Seiko Seiki Co Ltd Gas compressor
JPH08247074A (en) * 1995-03-09 1996-09-24 Kobe Steel Ltd Oil injection type positive displacement compressor
JPH1125344A (en) * 1997-07-04 1999-01-29 Sanyo Electric Co Ltd Cooling device for automatic vending machine and control method for the same
JP2002364938A (en) * 2001-06-07 2002-12-18 Hitachi Ltd Method for controlling internal pressure of compressor during interruption of air conditioner
JP2004309013A (en) * 2003-04-07 2004-11-04 Mayekawa Mfg Co Ltd Apparatus for preventing excess penetration of refrigerant into refrigerator oil
JP2005147511A (en) * 2003-11-14 2005-06-09 Kobe Steel Ltd Refrigerator
JP2006118417A (en) * 2004-10-21 2006-05-11 Kobe Steel Ltd Screw compressor for ammonia
JP2007205681A (en) * 2006-02-03 2007-08-16 Toshiba Corp Refrigerator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143014A (en) * 1977-05-19 1978-12-13 Sanyo Electric Co Ltd Rotary compressor
JPS62156763U (en) * 1986-03-28 1987-10-05
JPH05195955A (en) * 1992-01-16 1993-08-06 Hitachi Ltd Refrigerating compressor
JPH07259779A (en) * 1994-03-17 1995-10-09 Seiko Seiki Co Ltd Gas compressor
JPH08247074A (en) * 1995-03-09 1996-09-24 Kobe Steel Ltd Oil injection type positive displacement compressor
JPH1125344A (en) * 1997-07-04 1999-01-29 Sanyo Electric Co Ltd Cooling device for automatic vending machine and control method for the same
JP2002364938A (en) * 2001-06-07 2002-12-18 Hitachi Ltd Method for controlling internal pressure of compressor during interruption of air conditioner
JP2004309013A (en) * 2003-04-07 2004-11-04 Mayekawa Mfg Co Ltd Apparatus for preventing excess penetration of refrigerant into refrigerator oil
JP2005147511A (en) * 2003-11-14 2005-06-09 Kobe Steel Ltd Refrigerator
JP2006118417A (en) * 2004-10-21 2006-05-11 Kobe Steel Ltd Screw compressor for ammonia
JP2007205681A (en) * 2006-02-03 2007-08-16 Toshiba Corp Refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128112A (en) * 2018-01-25 2019-08-01 株式会社神戸製鋼所 Refrigerating device
KR20190090701A (en) * 2018-01-25 2019-08-02 가부시키가이샤 고베 세이코쇼 Refrigeration apparatus
KR102126815B1 (en) * 2018-01-25 2020-06-26 가부시키가이샤 고베 세이코쇼 Refrigeration apparatus
JP7025227B2 (en) 2018-01-25 2022-02-24 コベルコ・コンプレッサ株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JP5197255B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
TWI301188B (en) Refrigeant cycling device and compressor using the same
JP4859694B2 (en) Multistage compressor
EP2623890A1 (en) Turbo freezer device, control device therefor, and control method therefor
JP2009127902A (en) Refrigerating device and compressor
JP5017037B2 (en) Refrigeration cycle equipment
WO2001022008A1 (en) Multi-stage compression refrigerating device
JP4949817B2 (en) Multistage compressor and refrigeration cycle using the same
EP1403600B1 (en) Heat pump device
JP2015148407A (en) Refrigeration device
JP6097109B2 (en) Turbo refrigerator
KR101429363B1 (en) Oil-cooled two-stage compressor and heat pump
JP5197255B2 (en) Ammonia refrigeration equipment
CN110081626B (en) Refrigerating device
US9121278B2 (en) Positive displacement expander and refrigeration cycle apparatus including positive displacement expander
WO2013153970A1 (en) Two-stage oil-cooled compressor device
JP2003021089A (en) Two-stage compression refrigerating machine, and its operating method
JP2006200504A (en) Rotary compressor
JP2009186030A (en) Turbo refrigerator
JP2005214442A (en) Refrigerator
JP5469835B2 (en) Ammonia refrigeration equipment
JP6295121B2 (en) Turbo refrigerator
JP6370593B2 (en) Oil-cooled multistage screw compressor and oil draining method thereof
JP6971951B2 (en) Refrigeration equipment
JP2016128734A (en) Refrigeration device
JP2007147228A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5197255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350