JP2010065302A - Super ods steel - Google Patents

Super ods steel Download PDF

Info

Publication number
JP2010065302A
JP2010065302A JP2008234517A JP2008234517A JP2010065302A JP 2010065302 A JP2010065302 A JP 2010065302A JP 2008234517 A JP2008234517 A JP 2008234517A JP 2008234517 A JP2008234517 A JP 2008234517A JP 2010065302 A JP2010065302 A JP 2010065302A
Authority
JP
Japan
Prior art keywords
powder
steel
oxide
ods
oxide dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008234517A
Other languages
Japanese (ja)
Other versions
JP2010065302A5 (en
JP5339503B2 (en
Inventor
Akihiko Kimura
晃彦 木村
Ryuta Kasada
竜太 笠田
Somei Onuki
惣明 大貫
Shigeharu Ukai
重治 鵜飼
Kenki Inoue
賢紀 井上
Toshihiro Furukawa
智弘 古川
茂 ▲高▼屋
Shigeru Takaya
Tomohito Otsuka
智史 大塚
Takanari Okuda
隆成 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Kyoto University
Kobelco Research Institute Inc
Japan Atomic Energy Agency
Original Assignee
Hokkaido University NUC
Kyoto University
Kobelco Research Institute Inc
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Kyoto University, Kobelco Research Institute Inc, Japan Atomic Energy Agency filed Critical Hokkaido University NUC
Priority to JP2008234517A priority Critical patent/JP5339503B2/en
Publication of JP2010065302A publication Critical patent/JP2010065302A/en
Publication of JP2010065302A5 publication Critical patent/JP2010065302A5/ja
Application granted granted Critical
Publication of JP5339503B2 publication Critical patent/JP5339503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supper ODS (oxide dispersion strengthening) steel having high crrosion resistance to lead, bismuth and super critical pressure water and at the same time, the strength particularly the high temperature strength, is improved. <P>SOLUTION: The oxide dispersion strengthening type alloy steel is produced by applying a mechanical alloying treatment to powers, with which into Fe powder, as the ratio to the total weight, 13.0-23.0% Cr powder, 3.5-5.0% Al powder and 0.25-0.45% Y<SB>2</SB>O<SB>3</SB>powder, 0.02-0.05% C powder and at least one side of 0.2-0.7% Hf powder and 0.4-1.0% Zr powder, are mixed. Among those powders, Hf or/and Zr are prevented from the agglomeration of the oxide with Al, and since the distribution of the oxide becomes fine and high density, such as 9Cr ODS steel, the high temperature strength is improved. Further, Hf or/and Zr are formed as the carbide or the oxide in the crystal grain boundary, and thus, the high temperature strength is improved by restraining the grain-boundary slipping. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉛ビスマス(OBE-FR)や超臨界圧水冷却高速炉(SCW-FR)などの次世代原子力システムの燃料被覆管等に用いられる材料に関する。   The present invention relates to a material used for a fuel cladding tube of a next-generation nuclear system such as lead bismuth (OBE-FR) or a supercritical water-cooled fast reactor (SCW-FR).

燃料被覆管材料として従来のニッケル基合金、オーステナイト系ステンレス鋼及びフェライト系ステンレス鋼は、高燃焼度化を達成する上で、寸法安定性、照射脆化、ヘリウム脆化及び耐食性等に深刻な課題を抱えている。一方、本願発明者等によりナトリウム冷却高速炉用に開発された高性能な酸化物分散強化型(Oxide Dispersion Strengthened: ODS)9Crマルテンサイト鋼は、高温強度と耐照射性能の要件を満たしているが、元々考慮していなかった冷却材である鉛ビスマスや超臨界圧水に対する耐食性が十分ではない。そこで本発明者らは、独自に開発したクロム濃度が13%以上の高Cr ODSフェライト鋼技術をベースにして、従来にない合金設計と製造プロセス法を考案することにより、これらの冷却材に対する優れた耐食性を付与した燃料被覆管材料として、16Cr-4Al ODS鋼を開発した。   Conventional nickel-base alloys, austenitic stainless steels, and ferritic stainless steels as fuel cladding materials have serious problems in terms of dimensional stability, irradiation embrittlement, helium embrittlement, corrosion resistance, etc. in achieving high burnup. Have On the other hand, the high-performance oxide dispersion strengthened (ODS) 9Cr martensitic steel developed for the sodium-cooled fast reactor by the inventors of the present invention satisfies the requirements for high-temperature strength and irradiation resistance performance. Corrosion resistance to lead bismuth and supercritical pressure water, which have not been taken into consideration, is insufficient. Therefore, the present inventors based on the high-Cr ODS ferritic steel technology with a chromium concentration of 13% or more that was originally developed, devised an unprecedented alloy design and manufacturing process method, and was excellent for these coolants. 16Cr-4Al ODS steel was developed as a fuel cladding material with high corrosion resistance.

独立行政法人科学技術振興機構 原子力システム研究開発事業 成果報告会資料,平成20年1月,[online],[平成20年8月25日検索],インターネット<URL:http://www.jst.go.jp/nrd/result/h20/k1-h17-01.html>Japan Science and Technology Agency, Nuclear System R & D Project Results Report, January 2008, [online], [Search August 25, 2008], Internet <URL: http: //www.jst. go.jp/nrd/result/h20/k1-h17-01.html> 独立行政法人科学技術振興機構 原子力システム研究開発事業 平成17年度採択課題開発事業−基盤研究開発分野−中間評価 総合所見公表用,平成20年1月30日,[online],[平成20年8月25日検索],インターネット<URL:http://www.jst.go.jp/nrd/reporth17/shiryo5-12.html>Japan Science and Technology Agency, Nuclear Energy System Research and Development Project, FY2005 Adopted Project Development Project-Fundamental R & D Field-Interim Evaluation for Public Observation, January 30, 2008, [online], [August 2008] 25 days search], Internet <URL: http: //www.jst.go.jp/nrd/reporth17/shiryo5-12.html>

16Cr-4Al ODS鋼は、Alの添加により酸化アルミ(アルミナ)が表面を被覆し、高い耐食性を有するようになったものであるが、Alはまた、ODS鋼の強化の本質的機構である酸化物粒子を粗大化させ、その分散密度を低下させるという副作用を有する。このため、16Cr-4Al ODS鋼は鉛ビスマスや超臨界圧水に対する耐食性については十分な性能を持つものの、強度、特に高温強度において、従来の9Cr ODS鋼よりもやや劣るという課題を抱えている。   The 16Cr-4Al ODS steel has a surface that is coated with aluminum oxide (alumina) due to the addition of Al and has high corrosion resistance, but Al is also an oxidation mechanism that is an essential mechanism for strengthening of ODS steel. It has the side effect of coarsening the product particles and lowering their dispersion density. For this reason, although 16Cr-4Al ODS steel has sufficient performance with respect to corrosion resistance to lead bismuth and supercritical pressure water, it has a problem that it is slightly inferior to conventional 9Cr ODS steel in strength, particularly high-temperature strength.

本発明が解決しようとする課題は、従来のODS鋼に対して、耐食性を向上させるとともに、強度についてもその低下を抑え、高耐食性・高強度を同時に達成したスーパーODS鋼を提供することである。   The problem to be solved by the present invention is to provide a super ODS steel that improves the corrosion resistance and suppresses the decrease in strength and achieves high corrosion resistance and high strength at the same time as compared with the conventional ODS steel. .

上記課題を解決するために成された本発明に係るスーパーODS鋼は、
重量比でCr:13.0〜23.0%、Al:3.5〜5.0%、Y:0.18〜0.38%、C:0.02〜0.05%及びO:0.15〜0.25%と、
Hf:0.2〜0.7%及びZr:0.4〜1.0%の少なくとも一方と
を含有し、残部がFe及び不可避的不純物から構成される酸化物分散強化型合金鋼であることを特徴とする。
Super ODS steel according to the present invention made to solve the above problems,
By weight ratio: Cr: 13.0-23.0%, Al: 3.5-5.0%, Y: 0.18-0.38%, C: 0.02-0.05% and O: 0.15-0.25%,
It is characterized by being an oxide dispersion strengthened alloy steel containing at least one of Hf: 0.2 to 0.7% and Zr: 0.4 to 1.0%, and the balance being composed of Fe and inevitable impurities.

なお、本発明に係るスーパーODS鋼は、Ti:0.1〜0.25%を付加的に含有してもよい。   The super ODS steel according to the present invention may additionally contain Ti: 0.1 to 0.25%.

更に、W:1.0〜3.0%を付加的に含有してもよい。   Furthermore, you may contain W: 1.0-3.0% additionally.

ODS鋼は酸化物分散強化型鋼と呼ばれるように、非常に微細な酸化物(9Cr ODS鋼の場合、3nm程度)がマトリックス中に高密度に分散(9Cr ODS鋼の場合、5×1022m-3程度)することにより転位の移動を抑え、強度、特に高温での強度を高めている。Alは、上記の通り、鉛ビスマスや超臨界圧水に対する耐食性の向上に効果を有するものの、その酸化物の凝集を促進して各粒子のサイズを大きくし(7nm程度)、分散密度を低下させる(例えば、1.4×1022m-3)。これが16Cr-4Al ODS鋼の強度低下の原因である。 As ODS steels called oxide dispersion strengthened steel, (for 9Cr ODS steel, about 3 nm) very fine oxides when the high density dispersed (9Cr ODS steels in the matrix, 5 × 10 22 m - 3 ) to suppress the movement of dislocations and increase the strength, especially at high temperatures. As described above, Al has an effect of improving the corrosion resistance against lead bismuth and supercritical pressure water, but promotes the aggregation of the oxide to increase the size of each particle (about 7 nm) and lower the dispersion density. (For example, 1.4 × 10 22 m −3 ). This is the cause of the strength reduction of 16Cr-4Al ODS steel.

本発明に係るスーパーODS鋼では、Hf又は/及びZrがAlによる酸化物の凝集を妨げ、酸化物の分布を9Cr ODS鋼並の微細且つ高密度なものとする。また、Hf又は/及びZrは、粒界にそれ自身の酸化物や炭化物を形成する。ODS鋼の結晶粒が細かくなるほど、高温で粒界滑りを引き起こしやすくなり、高温強度が低下するが、本発明に係るスーパーODS鋼では、このように粒界に形成されたHf又は/及びZrの微細酸化物・炭化物がこのような粒界滑りを抑制し、高温強度の低下を防止する。   In the super ODS steel according to the present invention, Hf and / or Zr prevents the oxide from agglomerating with Al, and the oxide distribution is as fine and dense as 9Cr ODS steel. Further, Hf and / or Zr forms its own oxide or carbide at the grain boundary. As the crystal grains of ODS steel become finer, it becomes easier to cause intergranular slip at high temperature and the high temperature strength decreases. Fine oxides and carbides suppress such intergranular slip and prevent a decrease in high temperature strength.

また、このような強化原理であるため、例えば原子炉照射やヘリウム脆化等の燃料被覆管に要求されるその他の性能については、基本的には16Cr-4Al ODS鋼と変わらない。従って、本発明に係るスーパーODS鋼は、高強度と高耐食性等とを兼ね備えた燃料被覆管材料として使用することができる。   In addition, because of this strengthening principle, other performances required for fuel cladding such as reactor irradiation and helium embrittlement are basically the same as 16Cr-4Al ODS steel. Therefore, the super ODS steel according to the present invention can be used as a fuel cladding tube material having both high strength and high corrosion resistance.

なお、本発明に係るスーパーODS鋼は、原子力システム用の材料としてばかりではなく、同様の性能が要求される火力発電システムにも利用可能である。また、高温強度と高度な耐食性が要求される分野として、自動車のマフラーなどの配管材料、燃料電池セルの隔壁材料、更には、核融合炉のブランケット用配管材料としても利用可能と考えられる。   The super ODS steel according to the present invention can be used not only as a material for a nuclear system but also in a thermal power generation system that requires similar performance. In addition, as fields requiring high-temperature strength and high corrosion resistance, it can be used as piping materials for automobile mufflers, partition materials for fuel cells, and piping materials for fusion reactor blankets.

本発明にかかるスーパーODS鋼において、各元素を上記範囲に限定した理由は次の通りである。   In the super ODS steel according to the present invention, the reason why each element is limited to the above range is as follows.

Cr:13.0〜23.0%、Al:3.5〜5.0%、Y:0.18〜0.38%、C:0.02〜0.05%及びO:0.15〜0.25%
これらは従来よりある16Cr-4Al燃料被覆管用酸化物分散強化型合金鋼の主要成分であり、本発明においてもこれら元素の存在理由はそれと変わるところはない。すなわち、Crは鋼をフェライト相とし、同時に耐食性を向上させるための元素であり、その含有量を13.0〜23.0%とすることにより、鋼の基本相をフェライトとし、かつ、耐食性を向上させることができる。望ましくは、その範囲を14.5〜16.5%とすることにより、より安定したフェライト相を生成することができる。
Cr: 13.0-23.0%, Al: 3.5-5.0%, Y: 0.18-0.38%, C: 0.02-0.05% and O: 0.15-0.25%
These are the main components of conventional oxide dispersion strengthened alloy steel for 16Cr-4Al fuel cladding tubes, and the reason for the presence of these elements is not different in the present invention. In other words, Cr is an element for making steel a ferrite phase and at the same time improving corrosion resistance, and by making its content 13.0-23.0%, the basic phase of steel can be made ferrite and corrosion resistance can be improved. it can. Desirably, a more stable ferrite phase can be produced by setting the range to 14.5 to 16.5%.

Yは、酸化物Y2O3としてそのフェライト相中に微細に分散し、鋼を強化するための元素であり、その含有量が0.18%未満では十分な強度を確保することができず、0.38%を超える場合には酸化物粒子が凝集し始め、鋼の強度が逆に低下すると共に、脆化する。なお、Yが酸化物Y2O3となった場合、Y:0.18〜0.38%に相当するY2O3粉末の重量比範囲は0.25〜0.45%となる。 Y is an element for finely dispersing in the ferrite phase as oxide Y 2 O 3 and strengthening the steel, and if its content is less than 0.18%, sufficient strength cannot be ensured, 0.38 When it exceeds%, the oxide particles start to aggregate, and the strength of the steel decreases conversely and becomes brittle. When Y becomes oxide Y 2 O 3 , the weight ratio range of Y 2 O 3 powder corresponding to Y: 0.18 to 0.38% is 0.25 to 0.45%.

Alは前記の通り、鉛ビスマス及び超臨界圧水に対する耐食性を付与するための元素であり、その含有量が3.5%未満では所期の耐食性が付与できず、一方、5.0%を超えると酸化物粒子の凝集作用が大きくなり、鋼の強度を低下させる。望ましくはAl:3.5〜4.5%とすることにより、耐食性改善と強度低下抑制がバランス良く実現された鋼を作製することができる。
Cは、HfやZrと炭化物を形成し、粒界析出させる。多すぎると粒界析出量が過度になり、材料劣化を引き起こす。重量比でHfやZr量の1/10程度が好ましい。
Oは、酸化物を形成するために不可欠であり、重量比でYと同量程度が好ましい。
As described above, Al is an element for imparting corrosion resistance to lead bismuth and supercritical pressure water. If the content is less than 3.5%, the desired corrosion resistance cannot be imparted. The agglomeration effect of the particles is increased and the strength of the steel is reduced. Desirably, by making Al: 3.5 to 4.5%, it is possible to produce steel in which corrosion resistance improvement and strength reduction suppression are realized in a well-balanced manner.
C forms carbides with Hf and Zr and causes grain boundary precipitation. If the amount is too large, the amount of precipitation at the grain boundary becomes excessive, causing material deterioration. The weight ratio is preferably about 1/10 of the amount of Hf or Zr.
O is indispensable for forming an oxide and is preferably about the same amount as Y in weight ratio.

Hf:0.2〜0.7%及びZr:0.4〜1.0%の少なくとも一方
HfとZrはいずれも前記Y2O3酸化物の凝集を妨げる元素である。Y2O3酸化物1分子に対してZrは2原子で、Hfは1原子で作用するため、ZrはHfの2倍の量が必要となる。Hf:0.2%未満或いはZr:0.4%未満では、Y2O3酸化物の凝集抑止効果や粒界析出が十分ではなく、Hf:0.7%超或いはZr:1.0%超の場合には、Y2O3酸化物の凝集抑止効果が飽和し、また、過度の粒界析出が生じて強度の劣化が起こるためである。
At least one of Hf: 0.2 to 0.7% and Zr: 0.4 to 1.0%
Both Hf and Zr are elements that hinder the aggregation of the Y 2 O 3 oxide. One molecule of Y 2 O 3 oxide has 2 atoms of Zr and 1 atom of Hf, so Zr needs to be twice as much as Hf. If Hf: less than 0.2% or Zr: less than 0.4%, the aggregation suppression effect and grain boundary precipitation of Y 2 O 3 oxide are not sufficient, and if Hf: more than 0.7% or Zr: more than 1.0%, Y 2 aggregation inhibiting effect of O 3 oxide is saturated, also, because the strength deterioration of the generated excessive grain boundary precipitates can occur.

Tiは、Al添加の有無にかかわらず、(Y,Ti)酸化物の微細化に必要である。Yと同量程度以上が必要であり、多すぎると粗大なTi炭化物を形成し、材料劣化の原因となる。
W:1.0〜3.0%
Wはマトリックス中や酸化物中に固溶してクリープ強度を改善する。含有量が1.0%未満ではその効果が十分に得られない。また3.0%を超えると偏析する恐れがあり、また、靭性も低下する。
Ti is necessary for the refinement of (Y, Ti) oxide regardless of whether Al is added or not. The same amount or more as Y is necessary, and if it is too much, coarse Ti carbide is formed, which causes material deterioration.
W: 1.0-3.0%
W dissolves in the matrix or oxide to improve the creep strength. If the content is less than 1.0%, the effect cannot be obtained sufficiently. On the other hand, if it exceeds 3.0%, segregation may occur and the toughness will also decrease.

[クリープ強度]
本発明を実施した鋼である16Cr-4Al-Zr鋼(SOC-14)及び16Cr-4Al-Hf鋼(SOC-16)について、700℃クリープ破断試験を行った結果を図1に示す。図2は図1の高温クリープ破断試験を行った鋼の成分表である。ZrやHfを含有しない16Cr-4Al ODS鋼と比較して、それらを含有するODS鋼SOC-14やSOC-16はクリープ強度が高くなっていることがわかる。
[Creep strength]
FIG. 1 shows the results of a 700 ° C. creep rupture test for 16Cr-4Al—Zr steel (SOC-14) and 16Cr-4Al—Hf steel (SOC-16), which are steels embodying the present invention. FIG. 2 is a composition table of steel subjected to the high temperature creep rupture test of FIG. Compared with 16Cr-4Al ODS steel containing no Zr or Hf, ODS steels SOC-14 and SOC-16 containing them show higher creep strength.

[酸化物粒子サイズ・分布密度]
前記SOC-14及びSOC-16の電子顕微鏡写真を図3及び図5に、それらの酸化物粒子の大きさの分布を図4及び図6に示す。ZrやHfを添加しない16Cr-4Al ODS鋼では酸化物粒子の平均粒径は約7nm、分布密度は1.4×1022m-3であるのに対し、Zrを0.63%添加したSOC-14では平均粒径が4.74nm、分布密度が7.16×1022m-3、Hfを0.62%添加したSOC-16では平均粒径が3.46nm、分布密度が4.83×1022m-3と、いずれも酸化物粒子が微細化し、高密度に分布するようになっている。これが、図1に表れているクリープ強度改善の原因に帰することができる。
[Oxide particle size and distribution density]
FIGS. 3 and 5 show electron micrographs of the SOC-14 and SOC-16, and FIGS. 4 and 6 show the size distribution of these oxide particles. In the 16Cr-4Al ODS steel without addition of Zr or Hf, the average particle size of the oxide particles is about 7 nm and the distribution density is 1.4 × 10 22 m -3 , whereas in the SOC-14 with 0.63% Zr added, the average The particle size is 4.74 nm, the distribution density is 7.16 × 10 22 m -3 , and SOC-16 with 0.62% Hf added has an average particle size of 3.46 nm and the distribution density is 4.83 × 10 22 m -3 , both oxides The particles are miniaturized and distributed at high density. This can be attributed to the creep strength improvement shown in FIG.

[粒界析出物・析出密度]
前記SOC-14及びSOC-16の結晶粒界の電子顕微鏡写真を図7及び図8に示す。ZrやHfを添加しない16Cr-4Al ODS鋼では粒界析出物がほとんど観察されなかったのに対し、Zrを0.63%添加したSOC-14では平均粒径が23.2nm、分布面密度が3.3×1014m-2、Hfを0.62%添加したSOC-16では平均粒径が26.04nm、分布面密度が6.9×1013m-2の炭化物粒子及び酸化物粒子が結晶粒界に分布するようになっている。これも、図1に現れているクリープ強度改善の原因に帰することができる。
[Grain boundary precipitates and precipitation density]
7 and 8 show electron micrographs of the grain boundaries of the SOC-14 and SOC-16. In the 16Cr-4Al ODS steel with no addition of Zr or Hf, almost no grain boundary precipitates were observed, whereas with SOC-14 with 0.63% of Zr, the average grain size was 23.2 nm and the distribution surface density was 3.3 × 10. In SOC-16 with 14 m- 2 and 0.62% Hf added, carbide particles and oxide particles with an average particle size of 26.04 nm and a distribution surface density of 6.9 × 10 13 m -2 are distributed at the grain boundaries. ing. This can also be attributed to the improvement in creep strength appearing in FIG.

[超臨界圧水中の耐食性]
Al無添加の16Cr ODS鋼であるSOC-5及び(Al、Zr)添加の16Cr-4Al-0.6Zr ODS鋼であるSOC-14の超臨界圧水中(510℃、25MPa)での腐食試験後の試料断面観察結果を図9に比較して示す。SOC-5では、試料表面に錆びが生じており、腐食が進んでいる。一方、SOC-14では試料表面に薄いAl酸化物が形成されており、腐食も進んでおらず、Zr添加材でもAlの効果が現れている。Hfについても同様の効果を期待することができる。
[Corrosion resistance in supercritical pressure water]
After corrosion test in supercritical pressure water (510 ℃, 25MPa) of SOC-5 which is 16Cr ODS steel without Al and SOC-14 which is 16Cr-4Al-0.6Zr ODS steel with (Al, Zr) added The sample cross-sectional observation results are shown in comparison with FIG. In SOC-5, rust is generated on the sample surface, and corrosion is progressing. On the other hand, in SOC-14, a thin Al oxide is formed on the sample surface, corrosion does not progress, and the effect of Al appears even in the Zr additive. A similar effect can be expected for Hf.

[鉛ビスマス中の耐食性]
Al無添加の16Cr ODS鋼であるSOC-5及び(Al、Zr)添加の16Cr-4Al-0.6Zr ODS鋼であるSOC-14の鉛ビスマス中(650℃、10-8wt% 02)での腐食試験後の試料断面観察結果を図10に比較して示す。SOC-5では、試料表面に鉛が浸透し、腐食が進んでいる。一方、SOC-14では、試料表面に薄いAl酸化物が形成されており、腐食も進んでおらず、Zr添加材でもAlの効果が現れている。Hfについても同様の効果を期待することができる。
[Corrosion resistance in lead bismuth]
In lead bismuth (650 ° C, 10-8 wt% 0 2 ) of SOC-5, which is 16Cr ODS steel without addition of Al, and SOC-14, which is 16Cr-4Al-0.6Zr ODS steel, which is added with (Al, Zr) The sample cross-sectional observation results after the corrosion test are shown in FIG. In SOC-5, lead penetrates the sample surface and corrosion progresses. On the other hand, in SOC-14, a thin Al oxide is formed on the surface of the sample, corrosion does not progress, and the effect of Al appears even in the Zr additive. A similar effect can be expected for Hf.

[原子炉照射脆化]
本発明鋼は上記の通り、基本鋼たる16Cr-4Al ODS鋼のAl添加による酸化物粒子凝集に起因する強度低下を、Hf又は/及びZrにより抑制する点を基本的効果として利用している。このため、このような酸化物粒子のサイズ・分布等により影響を受けない特性については、基本鋼たる16Cr-4Al ODS鋼の特性をそのまま有するものと考えられる。
例えば原子炉照射による影響については、図11に示す成分のODS鋼において、図12に示すように、中性子照射量に応じて引張強さが増加し、材料が硬化するのに対し、伸びはほとんど低下しない。このような基本鋼の特性は、本発明鋼もそのまま有するものと思われる。
[Reactor irradiation embrittlement]
As described above, the steel according to the present invention utilizes, as a basic effect, the suppression of strength reduction due to oxide particle aggregation due to the addition of Al in the 16Cr-4Al ODS steel, which is a basic steel, by Hf or / and Zr. For this reason, it is considered that the characteristics that are not affected by the size / distribution of the oxide particles have the characteristics of the basic steel 16Cr-4Al ODS steel as it is.
For example, with respect to the effects of reactor irradiation, in the ODS steel having the components shown in FIG. 11, as shown in FIG. It does not decline. Such characteristics of the basic steel are considered to be possessed by the steel of the present invention as it is.

[酸化物形状安定性]
図13は、イオン照射を行った場合の酸化物粒子のサイズの変化を測定した結果である。基本鋼である19Cr-4Al(K4)では、酸化物の形状は多量のイオン照射によっても変化することなく、安定した状態を維持している。これは本発明鋼の場合にもそのまま当てはまるものと考えられる。図14、図15に、500℃、20dpa及び700℃、20dpaイオン照射後の組織の電子顕微鏡写真を示す。
[Oxide shape stability]
FIG. 13 shows the result of measuring the change in the size of the oxide particles when ion irradiation is performed. In 19Cr-4Al (K4), which is a basic steel, the shape of the oxide remains stable even when a large amount of ions are irradiated. This is considered to be the same as in the case of the steel of the present invention. 14 and 15 show electron micrographs of the tissues after irradiation with ions at 500 ° C., 20 dpa and 700 ° C., 20 dpa.

[燃料被覆管製造工程]
本発明鋼の利用の一例として、これより燃料被覆管を製造する方法の典型例を図16及び図17に示す。まず、所定分量に秤量した各原料粉末をプラネタリーミルで十分に攪拌し、均質な混合原料粉末を作製する(メカニカルアロイング; MA)。この原料混合粉末を円柱状カプセルに詰め、熱間で等方静圧を付与して成形する。成形された棒状体を1150℃に加熱しつつ押しだすことにより棒材を作製する。棒材は、1150℃×1時間加熱した後空冷することにより、組織を安定化させる。
[Fuel cladding tube manufacturing process]
As an example of the use of the steel of the present invention, a typical example of a method for producing a fuel cladding tube is shown in FIGS. First, each raw material powder weighed into a predetermined amount is sufficiently stirred by a planetary mill to produce a homogeneous mixed raw material powder (mechanical alloying; MA). This raw material mixed powder is packed into a cylindrical capsule and molded by applying isotropic static pressure with heat. A rod is produced by extruding the molded rod-shaped body while heating to 1150 ° C. The rod is heated at 1150 ° C. for 1 hour and then air-cooled to stabilize the structure.

この棒材を原料として、機械加工により外径18mm、内径12mmの素管を作製する(図17)。この素管に対してピルガーミルを用いて、中間軟化熱処理を挟みつつ複数回の冷間圧延を施すことにより、最終圧延率約90%となる外径8.5mm、内径7.5mmの被覆管を成形する。複数回の冷間圧延間の軟化熱処理では、徐々に温度を下げてゆくことが望ましい。最終寸法に成形した後、1150℃に加熱することにより最終再結晶熱処理を行い、燃料被覆管を完成する。   Using this rod as a raw material, an element tube having an outer diameter of 18 mm and an inner diameter of 12 mm is produced by machining (FIG. 17). By using a pilger mill for this raw tube, cold rolling is performed a plurality of times while interposing an intermediate softening heat treatment, thereby forming a cladding tube having an outer diameter of 8.5 mm and an inner diameter of 7.5 mm, which has a final rolling rate of about 90%. . In softening heat treatment between a plurality of cold rollings, it is desirable to gradually lower the temperature. After forming to the final dimensions, the final recrystallization heat treatment is performed by heating to 1150 ° C to complete the fuel cladding tube.

本発明に係るスーパーODS鋼は、原子力システム用の燃料被覆管材料として、その特性を最も好適に発揮することができる。しかし、燃料被覆管材料としてばかりではなく、同様の性能が要求される火力発電システムにも利用可能であり、また、高温強度と高度な耐食性が要求される分野として、自動車のマフラーなどの配管材料、燃料電池セルの隔壁材料、更には、核融合炉のブランケット用配管材料としても利用可能と考えられる。   The super ODS steel according to the present invention can best exhibit its characteristics as a fuel cladding material for a nuclear system. However, it can be used not only as a fuel cladding tube material but also in thermal power generation systems that require similar performance, and as a field requiring high temperature strength and high corrosion resistance, piping materials such as automobile mufflers. It is considered that it can be used as a partition material for fuel cells, and also as a piping material for a blanket of a nuclear fusion reactor.

高温強度特性を表す、700℃クリープ破断試験結果のグラフ。Graph of 700 ° C creep rupture test results showing high temperature strength characteristics. クリープ試験で用いた試料の成分表。The component table of the sample used in the creep test. 本発明鋼のうち、Zr添加鋼の酸化物粒子分散状況を示す電子顕微鏡写真。The electron micrograph which shows the oxide particle dispersion | distribution state of Zr addition steel among this invention steel. 本発明鋼のうち、Zr添加鋼の酸化物粒径分布を示すグラフ。The graph which shows the oxide particle size distribution of Zr addition steel among this invention steel. 本発明鋼のうち、Hf添加鋼の酸化物粒子分散状況を示す電子顕微鏡写真。The electron micrograph which shows the oxide particle dispersion | distribution state of Hf addition steel among this invention steel. 本発明鋼のうち、Hf添加鋼の酸化物粒径分布を示すグラフ。The graph which shows the oxide particle size distribution of Hf addition steel among this invention steel. 本発明鋼のうち、Zr添加鋼の結晶粒界での析出粒子分散状況を示す電子顕微鏡写真。The electron micrograph which shows the precipitation particle | grain dispersion | distribution condition in the crystal grain boundary of Zr addition steel among this invention steel. 本発明鋼のうち、Hf添加鋼の結晶粒界での析出粒子分散状況を示す電子顕微鏡写真。The electron micrograph which shows the precipitation particle | grain dispersion | distribution condition in the grain boundary of Hf addition steel among this invention steel. 超臨界圧水中での耐食性を示す、腐食試験後の試料表面近傍の写真。A photograph of the vicinity of the sample surface after the corrosion test, showing the corrosion resistance in supercritical pressure water. 鉛ビスマス中での耐食性を示す、腐食試験後の試料表面近傍の写真。A photograph of the vicinity of the sample surface after the corrosion test, showing the corrosion resistance in lead bismuth. 本発明鋼と同様の成分組成を有する各種ODS鋼の成分表。The component table | surface of the various ODS steel which has the component composition similar to this invention steel. 本発明鋼と同様の成分組成を有する各種ODS鋼の原子炉照射前後の引張強さ及び伸びの試験結果のグラフ。The graph of the test result of the tensile strength and elongation before and after the reactor irradiation of various ODS steels having the same composition as the steel of the present invention. 本発明鋼と同様の成分組成を有するODS鋼の原子炉照射後の酸化物の粒径の変化を示すグラフ。The graph which shows the change of the particle size of the oxide after nuclear reactor irradiation of the ODS steel which has the component composition similar to this invention steel. 本発明鋼と同様の成分組成を有するODS鋼(K4鋼)の500℃ 20dpa照射後の酸化物の分布及び形状を示す電子顕微鏡写真。An electron micrograph showing the distribution and shape of an oxide after irradiation at 500 ° C. and 20 dpa for an ODS steel (K4 steel) having the same composition as that of the steel of the present invention. 本発明鋼と同様の成分組成を有するODS鋼(K4鋼)の700℃ 20dpa照射後の酸化物の分布及び形状を示す電子顕微鏡写真。An electron micrograph showing the distribution and shape of an oxide after irradiation at 700 ° C. and 20 dpa for ODS steel (K4 steel) having the same composition as the steel of the present invention. 本発明鋼による燃料被覆管製造方法の前半を示す工程図。Process drawing which shows the first half of the fuel cladding tube manufacturing method by this invention steel. 本発明鋼による燃料被覆管製造方法の後半を示す工程図。The process figure which shows the second half of the fuel cladding tube manufacturing method by this invention steel.

Claims (10)

重量比でCr:13.0〜23.0%、Al:3.5〜5.0%、Y:0.18〜0.38%、C:0.02〜0.05%及びO:0.15〜0.25%と、
Hf:0.2〜0.7%及びZr:0.4〜1.0%の少なくとも一方と
を含有し、残部がFe及び不可避的不純物から構成される酸化物分散強化型合金鋼。
By weight ratio: Cr: 13.0-23.0%, Al: 3.5-5.0%, Y: 0.18-0.38%, C: 0.02-0.05% and O: 0.15-0.25%,
An oxide dispersion strengthened alloy steel containing at least one of Hf: 0.2 to 0.7% and Zr: 0.4 to 1.0%, the balance being composed of Fe and inevitable impurities.
更に、Ti:0.1〜0.25%を含有する請求項1に記載の酸化物分散強化型合金鋼。   The oxide dispersion strengthened alloy steel according to claim 1, further comprising Ti: 0.1 to 0.25%. Cr含有量が14.5〜16.5%である請求項1又は2に記載の酸化物分散強化型合金鋼。   The oxide dispersion strengthened alloy steel according to claim 1 or 2, wherein the Cr content is 14.5 to 16.5%. Al含有量が3.5〜4.5%である請求項1〜3のいずれかに記載の酸化物分散強化型合金鋼。   The oxide dispersion strengthened alloy steel according to any one of claims 1 to 3, wherein the Al content is 3.5 to 4.5%. 更に、W:1.0〜3.0%を含有する請求項1〜4のいずれかに記載の酸化物分散強化型合金鋼。   The oxide dispersion strengthened alloy steel according to any one of claims 1 to 4, further comprising W: 1.0 to 3.0%. Fe粉末に、
総重量に対する比でCr粉末:13.0〜23.0%、Al粉末:3.5〜5.0%、Y2O3粉末:0.25〜0.45%及びC粉末:0.02〜0.05%と、
Hf粉末:0.2〜0.7%及びZr粉末:0.4〜1.0%の少なくとも一方と
を添加した粉末をメカニカルアロイング処理することにより製造される酸化物分散強化型合金鋼。
Fe powder
Cr powder at a ratio to the total weight: 13.0 to 23.0% Al powder: 3.5 to 5.0% Y 2 O 3 powder: .25 to .45 percent, and C powders: and 0.02 to 0.05% by weight,
An oxide dispersion strengthened alloy steel produced by mechanically alloying a powder to which at least one of Hf powder: 0.2 to 0.7% and Zr powder: 0.4 to 1.0% is added.
原料粉に、更に、Ti粉末:0.1〜0.25%を添加する請求項6に記載の酸化物分散強化型合金鋼。   The oxide dispersion strengthened alloy steel according to claim 6, wherein Ti powder: 0.1 to 0.25% is further added to the raw material powder. 原料粉におけるCr粉末の分量を14.5〜16.5%とする請求項6又は7に記載の酸化物分散強化型合金鋼。   The oxide dispersion strengthened alloy steel according to claim 6 or 7, wherein the amount of Cr powder in the raw material powder is 14.5 to 16.5%. 原料粉におけるAl粉末の分量を3.5〜4.5%とする請求項6〜8のいずれかに記載の酸化物分散強化型合金鋼。   The oxide dispersion strengthened alloy steel according to any one of claims 6 to 8, wherein the amount of Al powder in the raw material powder is 3.5 to 4.5%. 原料粉に、更に、W粉末:1.0〜3.0%を添加する請求項6〜9のいずれかに記載の酸化物分散強化型合金鋼。   The oxide dispersion strengthened alloy steel according to any one of claims 6 to 9, wherein W powder: 1.0 to 3.0% is further added to the raw material powder.
JP2008234517A 2008-09-12 2008-09-12 Super ODS steel Expired - Fee Related JP5339503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234517A JP5339503B2 (en) 2008-09-12 2008-09-12 Super ODS steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234517A JP5339503B2 (en) 2008-09-12 2008-09-12 Super ODS steel

Publications (3)

Publication Number Publication Date
JP2010065302A true JP2010065302A (en) 2010-03-25
JP2010065302A5 JP2010065302A5 (en) 2011-10-27
JP5339503B2 JP5339503B2 (en) 2013-11-13

Family

ID=42191133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234517A Expired - Fee Related JP5339503B2 (en) 2008-09-12 2008-09-12 Super ODS steel

Country Status (1)

Country Link
JP (1) JP5339503B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374684A (en) * 2012-04-16 2013-10-30 中国科学院合肥物质科学研究院 Aluminum oxide containing dispersion strengthening ferrite steel and preparation method thereof
US20130299470A1 (en) * 2012-05-10 2013-11-14 Korea Hydro And Nuclear Power Co., Ltd. Method for oxide dispersion strengthening of metallic material using laser
CN103966500A (en) * 2014-05-22 2014-08-06 北京航空航天大学 ODS (ozone depleting substance) high temperature alloy added with composite oxide nanoparticles and preparation method thereof
CN105154775A (en) * 2015-07-24 2015-12-16 中国科学院等离子体物理研究所 Steel-base structure material capable of generating alpha-Al2O3 hydrogen retention pervious layer at low temperature for fusion reactor
WO2016140258A1 (en) * 2015-03-02 2016-09-09 国立大学法人北海道大学 Iron-chromium-aluminum-based oxide dispersion strengthened steel and method for producing same
CN106399807A (en) * 2016-09-28 2017-02-15 天津大学 Preparation method of oxide dispersion strengthened steel with micro-nano-scale double-crystal-grain structure
CN108665984A (en) * 2018-05-08 2018-10-16 西安交通大学 A kind of experimental provision studied fuel particle under lead base reactor disaster and migrate characteristic
CN108796345A (en) * 2017-11-10 2018-11-13 中国科学院金属研究所 The oxidation preparation method of nano composite oxide dispersion-strengtherning Fe based alloys
CN110343935A (en) * 2019-07-11 2019-10-18 中国科学院金属研究所 Oxide dispersion strengthening ferrite steel is prepared using surface oxidation+explosive compaction
CN110835716A (en) * 2019-12-05 2020-02-25 中国核动力研究设计院 Preparation method of FeCrAl-based ODS alloy for nuclear reactor core
CN110863152A (en) * 2019-12-05 2020-03-06 中国核动力研究设计院 Preparation method of FeCrAl-based ODS alloy for nuclear reactor accident-resistant fuel element cladding
CN111020346A (en) * 2019-12-05 2020-04-17 中国核动力研究设计院 Preparation method of FeCrAl-based ODS alloy material for nuclear reactor
CN111057958A (en) * 2019-12-22 2020-04-24 中国科学院金属研究所 Corrosion-resistant, anti-irradiation and high-strength super ODS steel and preparation method thereof
CN113444981A (en) * 2021-06-10 2021-09-28 北京科技大学 Method for preparing ODS-FeCrAl-based alloy
CN117403141A (en) * 2023-10-24 2024-01-16 上海交通大学 High-strength corrosion-resistant oxide dispersion strengthening steel and preparation method thereof
CN117403141B (en) * 2023-10-24 2024-05-31 上海交通大学 High-strength corrosion-resistant oxide dispersion strengthening steel and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110607487B (en) * 2019-10-09 2021-03-02 北京钢研高纳科技股份有限公司 ODS-Fe3Al alloy, alloy product and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193346A (en) * 1982-03-01 1983-11-11 ハンチントン・アロイス・インコ−ポレ−テツド Weldable oxide dispersion reinforced alloy
JPH0426737A (en) * 1990-05-22 1992-01-29 Sumitomo Metal Ind Ltd Oxide dispersion strengthened ferritic steel
JPH05195002A (en) * 1992-01-14 1993-08-03 Kobe Steel Ltd Heat resistant alloy reinforced by oxide dispersion and its production
JPH08225891A (en) * 1995-02-17 1996-09-03 Power Reactor & Nuclear Fuel Dev Corp Oxide dispersion strengthened ferritic steel having recrystallized structure and its production
JP2000282101A (en) * 1999-04-02 2000-10-10 Hokkaido Univ Manufacture of oxide dispersion-strengthened ferritic steel
JP2001050005A (en) * 1999-08-09 2001-02-23 Alstom Power Schweiz Ag Friction-receiving component of thermal turbo machinery
JP2002266026A (en) * 2001-03-07 2002-09-18 Japan Nuclear Cycle Development Inst States Of Projects Method for producing chromium-containing oxide dispersion strengthened ferritic iron alloy tube
JP2004131816A (en) * 2002-10-11 2004-04-30 Japan Nuclear Cycle Development Inst States Of Projects Method for producing oxide dispersion-strengthened ferritic steel tube

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193346A (en) * 1982-03-01 1983-11-11 ハンチントン・アロイス・インコ−ポレ−テツド Weldable oxide dispersion reinforced alloy
JPH0426737A (en) * 1990-05-22 1992-01-29 Sumitomo Metal Ind Ltd Oxide dispersion strengthened ferritic steel
JPH05195002A (en) * 1992-01-14 1993-08-03 Kobe Steel Ltd Heat resistant alloy reinforced by oxide dispersion and its production
JPH08225891A (en) * 1995-02-17 1996-09-03 Power Reactor & Nuclear Fuel Dev Corp Oxide dispersion strengthened ferritic steel having recrystallized structure and its production
JP2000282101A (en) * 1999-04-02 2000-10-10 Hokkaido Univ Manufacture of oxide dispersion-strengthened ferritic steel
JP2001050005A (en) * 1999-08-09 2001-02-23 Alstom Power Schweiz Ag Friction-receiving component of thermal turbo machinery
JP2002266026A (en) * 2001-03-07 2002-09-18 Japan Nuclear Cycle Development Inst States Of Projects Method for producing chromium-containing oxide dispersion strengthened ferritic iron alloy tube
JP2004131816A (en) * 2002-10-11 2004-04-30 Japan Nuclear Cycle Development Inst States Of Projects Method for producing oxide dispersion-strengthened ferritic steel tube

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374684A (en) * 2012-04-16 2013-10-30 中国科学院合肥物质科学研究院 Aluminum oxide containing dispersion strengthening ferrite steel and preparation method thereof
US20130299470A1 (en) * 2012-05-10 2013-11-14 Korea Hydro And Nuclear Power Co., Ltd. Method for oxide dispersion strengthening of metallic material using laser
US9346125B2 (en) * 2012-05-10 2016-05-24 Korea Atomic Energy Research Institute Method for oxide dispersion strengthening of metallic material using laser
CN103966500A (en) * 2014-05-22 2014-08-06 北京航空航天大学 ODS (ozone depleting substance) high temperature alloy added with composite oxide nanoparticles and preparation method thereof
CN103966500B (en) * 2014-05-22 2017-11-14 北京航空航天大学 A kind of ODS high temperature alloys for adding composite oxides nano particle and preparation method thereof
WO2016140258A1 (en) * 2015-03-02 2016-09-09 国立大学法人北海道大学 Iron-chromium-aluminum-based oxide dispersion strengthened steel and method for producing same
CN105154775A (en) * 2015-07-24 2015-12-16 中国科学院等离子体物理研究所 Steel-base structure material capable of generating alpha-Al2O3 hydrogen retention pervious layer at low temperature for fusion reactor
CN106399807A (en) * 2016-09-28 2017-02-15 天津大学 Preparation method of oxide dispersion strengthened steel with micro-nano-scale double-crystal-grain structure
CN108796345B (en) * 2017-11-10 2020-05-19 中国科学院金属研究所 Oxidation preparation method of nano composite oxide dispersion strengthening Fe-based alloy
CN108796345A (en) * 2017-11-10 2018-11-13 中国科学院金属研究所 The oxidation preparation method of nano composite oxide dispersion-strengtherning Fe based alloys
CN108665984A (en) * 2018-05-08 2018-10-16 西安交通大学 A kind of experimental provision studied fuel particle under lead base reactor disaster and migrate characteristic
CN110343935A (en) * 2019-07-11 2019-10-18 中国科学院金属研究所 Oxide dispersion strengthening ferrite steel is prepared using surface oxidation+explosive compaction
CN110835716A (en) * 2019-12-05 2020-02-25 中国核动力研究设计院 Preparation method of FeCrAl-based ODS alloy for nuclear reactor core
CN110863152A (en) * 2019-12-05 2020-03-06 中国核动力研究设计院 Preparation method of FeCrAl-based ODS alloy for nuclear reactor accident-resistant fuel element cladding
CN111020346A (en) * 2019-12-05 2020-04-17 中国核动力研究设计院 Preparation method of FeCrAl-based ODS alloy material for nuclear reactor
CN111020346B (en) * 2019-12-05 2021-04-27 中国核动力研究设计院 Preparation method of FeCrAl-based ODS alloy material for nuclear reactor
CN111057958A (en) * 2019-12-22 2020-04-24 中国科学院金属研究所 Corrosion-resistant, anti-irradiation and high-strength super ODS steel and preparation method thereof
CN111057958B (en) * 2019-12-22 2022-01-14 中国科学院金属研究所 Corrosion-resistant, anti-irradiation and high-strength super ODS steel and preparation method thereof
CN113444981A (en) * 2021-06-10 2021-09-28 北京科技大学 Method for preparing ODS-FeCrAl-based alloy
CN117403141A (en) * 2023-10-24 2024-01-16 上海交通大学 High-strength corrosion-resistant oxide dispersion strengthening steel and preparation method thereof
CN117403141B (en) * 2023-10-24 2024-05-31 上海交通大学 High-strength corrosion-resistant oxide dispersion strengthening steel and preparation method thereof

Also Published As

Publication number Publication date
JP5339503B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5339503B2 (en) Super ODS steel
Liang et al. Microstructure and mechanical properties of hot-rolled ZrTiAlV alloys
Li et al. Disordering induced work softening of Fe–6.5 wt% Si alloy during warm deformation
JP5948382B2 (en) Ferritic / martensitic oxide dispersion strengthened steel and method for producing the same
Nunes et al. Nickel–carbon nanocomposites: synthesis, structural changes and strengthening mechanisms
JPS608296B2 (en) Dispersion-strengthened ferrite-type alloy for liquid metal fast neutron breeder reactors
Hu et al. Combined effects of solute drag and Zener pinning on grain growth of a NiCoCr medium-entropy alloy
Zhang et al. Effects of Cr element on the crystal structure, microstructure, and mechanical properties of FeCrAl alloys
Zamani et al. Grain growth in high-entropy alloys (HEAs): A review
JP5837636B2 (en) Ferritic oxide dispersion strengthened alloy and method for producing the same
TW473550B (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JP2637371B2 (en) Method for producing Fe-Mn-based vibration damping alloy steel
CN106995902A (en) A kind of FeCrAl based alloys cladding materials and preparation method thereof
JP2010180459A (en) Duplex phase stainless steel and manufacturing method thereof
Kumar et al. Effect of Y2O3 addition and cooling rate on mechanical properties of Fe-24Cr-20Ni-2Mn steels by powder metallurgy route
JPH02140688A (en) Dispersion strengthening ferritic steel cladding pipe for nuclear reactor and production thereof
JP6535752B2 (en) Manufacturing method of zirconium component for nuclear fuel applying multistage hot rolling
JPS6325062B2 (en)
WO2017073422A1 (en) Dispersion strengthened austenitic stainless steel, method for manufacturing stainless steel and product made from stainless steel
JP5139021B2 (en) Soft magnetic steel material, soft magnetic steel component and manufacturing method thereof
Yang et al. The influences of La doping method on the microstructure and mechanical properties of Mo alloys
Zhang et al. Recent trends on studies of nanostructured metals
KR101601207B1 (en) super heat resistant alloy and the manufacturing method thereof
JP7122331B2 (en) Ferritic alloy and method for manufacturing nuclear fuel cladding using the same
JPS581051A (en) Molybdenum alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5339503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees