JP2010064947A - Method for producing group iii nitride semiconductor crystal, and apparatus for producing group iii nitride semiconductor - Google Patents

Method for producing group iii nitride semiconductor crystal, and apparatus for producing group iii nitride semiconductor Download PDF

Info

Publication number
JP2010064947A
JP2010064947A JP2008235804A JP2008235804A JP2010064947A JP 2010064947 A JP2010064947 A JP 2010064947A JP 2008235804 A JP2008235804 A JP 2008235804A JP 2008235804 A JP2008235804 A JP 2008235804A JP 2010064947 A JP2010064947 A JP 2010064947A
Authority
JP
Japan
Prior art keywords
group iii
nitride semiconductor
iii nitride
crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008235804A
Other languages
Japanese (ja)
Other versions
JP5056688B2 (en
Inventor
Koji Hirata
宏治 平田
Shiro Yamazaki
史郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2008235804A priority Critical patent/JP5056688B2/en
Publication of JP2010064947A publication Critical patent/JP2010064947A/en
Application granted granted Critical
Publication of JP5056688B2 publication Critical patent/JP5056688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a group III nitride semiconductor crystal in which a low quality crystal is not grown during the temperature decrease after the completion of crystal growth by a flux method, and to provide an apparatus for producing a group III nitride semiconductor. <P>SOLUTION: The apparatus for producing a group III nitride semiconductor has a melt feeder 17 for feeding an Na melt with which Si is mixed to a mixed melt 14 in a crucible 11. After the completion of the growth of a GaN crystal, the Na melt with which Si is mixed is fed to the mixed melt 14 by the melt feeder 17 before the temperature is decreased. Since Si has an effect to prevent the crystal growth of GaN, the growth of the GaN crystal stops at the stage where Si is introduced into the mixed melt 14. As a result, a low quality crystal is not grown during the temperature decrease. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アルカリ金属を用いたフラックス法によるIII 族窒化物半導体結晶の製造方法、およびIII 族窒化物半導体製造装置に関する。   The present invention relates to a method for producing a group III nitride semiconductor crystal by a flux method using an alkali metal, and a group III nitride semiconductor production apparatus.

従来より、Naフラックス法によるIII 族窒化物半導体の結晶成長方法が知られている。これは、Na(ナトリウム)とGa(ガリウム)を融解して800℃程度に保ち、数十気圧の圧力下で窒素と反応させて、GaN(窒化ガリウム)を種結晶表面に結晶成長させるものである。   Conventionally, a method for growing a group III nitride semiconductor crystal by the Na flux method is known. In this method, Na (sodium) and Ga (gallium) are melted and maintained at about 800 ° C., and reacted with nitrogen under a pressure of several tens of atmospheres to grow GaN (gallium nitride) on the seed crystal surface. is there.

また、特許文献1には、Naフラックス法によりIII 族窒化物半導体結晶を成長させる場合に、酸化物や水酸化物が結晶成長を阻害することが示されている。
特開2008−69028
Patent Document 1 shows that an oxide or hydroxide inhibits crystal growth when a group III nitride semiconductor crystal is grown by the Na flux method.
JP 2008-69028 A

しかし、従来のNaフラックス法によるIII 族窒化物半導体結晶の製造方法では、結晶育成を終了して混合融液に成長させた結晶を保持したまま降温すると、適した成長温度よりも低い温度での結晶成長となり、低品質の結晶ができてしまうという問題があった。   However, in the conventional method for producing a group III nitride semiconductor crystal by the Na flux method, when the temperature is lowered while holding the crystal grown in the mixed melt after the completion of the crystal growth, the temperature is lower than a suitable growth temperature. There was a problem that crystal growth occurred and a low-quality crystal was formed.

そこで本発明の目的は、降温時に低品質の結晶が成長しないIII 族窒化物半導体結晶の製造方法、およびIII 族窒化物半導体製造装置を提供することにある。   Accordingly, an object of the present invention is to provide a group III nitride semiconductor crystal manufacturing method and a group III nitride semiconductor manufacturing apparatus in which low quality crystals do not grow when the temperature is lowered.

第1の発明は、III 族金属とアルカリ金属とを少なくとも含む混合融液と、少なくとも窒素を含む気体とを反応させてIII 族窒化物半導体を結晶成長させるIII 族窒化物半導体結晶の製造方法において、結晶成長を終了させる際に、結晶成長を阻害する物質を混合融液中に供給し、その後に降温する、ことを特徴とするIII 族窒化物半導体結晶の製造方法である。   A first invention relates to a method for producing a group III nitride semiconductor crystal in which a mixed melt containing at least a group III metal and an alkali metal is reacted with a gas containing at least nitrogen to grow a group III nitride semiconductor crystal. The method for producing a group III nitride semiconductor crystal is characterized in that when the crystal growth is terminated, a substance that inhibits the crystal growth is supplied into the mixed melt, and then the temperature is lowered.

アルカリ金属は通常Naを用いるが、K(カリウム)を用いることもできる。また、Mg(マグネシウム)、Ca(カルシウム)などの2族金属や、Li(リチウム)、炭素などを混合させてもよい。また、窒素を含む気体とは、窒素分子や窒素化合物の気体を含む単一または混合気体をいい、希ガス等の不活性ガスを含んでいてもよい。   The alkali metal is usually Na, but K (potassium) can also be used. Moreover, you may mix 2 group metals, such as Mg (magnesium) and Ca (calcium), Li (lithium), carbon, etc. Further, the gas containing nitrogen refers to a single or mixed gas containing nitrogen molecule or nitrogen compound gas, and may contain an inert gas such as a rare gas.

成長を阻害する物質は、たとえば、Si単体やSiを含む化合物、酸素単体や酸化物、水酸化物などの酸素を含む化合物である。   The substance that inhibits growth is, for example, a simple substance of Si, a compound containing Si, or a compound containing oxygen, such as a simple substance of oxygen, an oxide, or a hydroxide.

また、成長を阻害する物質は、Ga融液、Na融液、GaとNaの混合融液などに混合して供給してもよい。成長を阻害する物質が気体である場合には、窒素などに混合して供給してもよい。   Further, the substance that inhibits the growth may be supplied by mixing with Ga melt, Na melt, Ga and Na mixed melt, or the like. When the substance that inhibits growth is a gas, it may be mixed with nitrogen and supplied.

第2の発明は、第1の発明において、結晶成長を阻害する物質は、Si単体またはSiを含む化合物、もしくは酸素単体または酸素を含む化合物であることを特徴とするIII 族窒化物半導体結晶の製造方法である。   According to a second invention, in the group III nitride semiconductor crystal according to the first invention, the substance that inhibits crystal growth is a simple substance of Si, a compound containing Si, or a simple substance of oxygen or a compound containing oxygen. It is a manufacturing method.

第3の発明は、第1の発明または第2の発明において、結晶成長を阻害する物質は、III 族金属融液、アルカリ金属融液、またはその双方を含む混合融液に混合して供給する、ことを特徴とするIII 族窒化物半導体結晶の製造方法である。   According to a third invention, in the first invention or the second invention, the substance that inhibits crystal growth is mixed and supplied to a mixed melt containing a Group III metal melt, an alkali metal melt, or both. This is a method for producing a Group III nitride semiconductor crystal.

第4の発明は、III 族金属とアルカリ金属とを少なくとも含む混合融液と、少なくとも窒素を含む気体とを反応させてIII 族窒化物半導体を結晶成長させるIII 族窒化物半導体製造装置において、結晶成長を阻害する物質を供給する供給管を有することを特徴とするIII 族窒化物半導体製造装置である。   According to a fourth invention, there is provided a group III nitride semiconductor manufacturing apparatus for crystal growth of a group III nitride semiconductor by reacting a mixed melt containing at least a group III metal and an alkali metal with a gas containing at least nitrogen. A group III nitride semiconductor manufacturing apparatus having a supply pipe for supplying a substance that inhibits growth.

第5の発明は、第4の発明において、結晶成長を阻害する物質は、Si単体、またはSiを含む化合物であることを特徴とするIII 族窒化物半導体製造装置である。   A fifth invention is the group III nitride semiconductor manufacturing apparatus according to the fourth invention, wherein the substance that inhibits crystal growth is a simple substance of Si or a compound containing Si.

第6の発明は、第4の発明または第5の発明において、供給管は、結晶成長を阻害する物質をIII 族金属融液、アルカリ金属融液、またはその双方を含む混合融液に混合して供給する、ことを特徴とするIII 族窒化物半導体製造装置である。   According to a sixth invention, in the fourth or fifth invention, the supply pipe mixes a substance that inhibits crystal growth into a mixed melt containing a Group III metal melt, an alkali metal melt, or both. A group III nitride semiconductor manufacturing apparatus, characterized in that:

第1の発明のように、結晶の育成を終了して降温をする前に、III 族窒化物半導体の結晶成長を阻害する物質を導入することにより、降温時に低品質の結晶が成長するのを防止することができる。その結果、高品質のIII 族窒化物半導体結晶が得られる。   As in the first aspect of the invention, by introducing a substance that inhibits the crystal growth of the group III nitride semiconductor before the crystal growth is finished and the temperature is lowered, a low quality crystal grows at the time of the temperature fall. Can be prevented. As a result, a high-quality group III nitride semiconductor crystal can be obtained.

また、第2の発明のように、結晶成長を阻害する物質には、Si単体やSiを含む化合物を用いることができる。   In addition, as in the second invention, the substance that inhibits crystal growth can be a simple substance of Si or a compound containing Si.

また、第3の発明のように、結晶育成を阻害する物質をIII 族金属融液、アルカリ金属融液、またはその双方を含む混合融液に混合すれば、容易に混合融液中に結晶成長を阻害する物質を導入することができる。   Further, as in the third aspect of the invention, if a substance that inhibits crystal growth is mixed with a mixed melt containing a group III metal melt, an alkali metal melt, or both, crystal growth can easily occur in the mixed melt. Can be introduced.

また、第4〜6の発明のIII 族窒化物半導体製造装置によれば、III 族窒化物半導体の結晶成長を阻害する物質を降温前に供給することができるので、品質のよいIII 族窒化物半導体結晶を製造することができる。   Further, according to the Group III nitride semiconductor manufacturing apparatus of the fourth to sixth inventions, a substance that inhibits the crystal growth of the Group III nitride semiconductor can be supplied before the temperature is lowered. Semiconductor crystals can be manufactured.

以下、本発明の具体的な実施例について図を参照に説明するが、本発明は実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to the examples.

図1は、III 族窒化物半導体製造装置の構成を示す図である。III 族窒化物半導体製造装置は、反応容器10と、反応容器10内部に配置され、GaとNaとの混合融液14と、種結晶13を保持する坩堝11と、反応容器10を加熱する加熱装置12と、反応容器10内に窒素を供給する供給管16と、坩堝11にSiが混合されたNa融液を供給する融液供給装置17と、反応容器10内部の雰囲気を外部へ排気する排気管19と、により構成されている。   FIG. 1 is a diagram showing a configuration of a group III nitride semiconductor manufacturing apparatus. The group III nitride semiconductor manufacturing apparatus is a reaction vessel 10, a mixed melt 14 of Ga and Na, a crucible 11 for holding a seed crystal 13, and heating for heating the reaction vessel 10. The apparatus 12, the supply pipe 16 for supplying nitrogen into the reaction vessel 10, the melt supply device 17 for supplying Na melt mixed with Si into the crucible 11, and the atmosphere inside the reaction vessel 10 are exhausted to the outside. And an exhaust pipe 19.

反応容器10は、円筒形状のステンレス製で、耐圧・耐熱性を有している。反応容器10の内部には、坩堝11が配置されている。   The reaction vessel 10 is made of cylindrical stainless steel and has pressure resistance and heat resistance. A crucible 11 is arranged inside the reaction vessel 10.

坩堝11は、BN(窒化ホウ素)からなり、反応容器10内部に配置されている。坩堝11内部には、GaとNaとの混合融液14が保持される。   The crucible 11 is made of BN (boron nitride) and disposed inside the reaction vessel 10. A mixed melt 14 of Ga and Na is held inside the crucible 11.

種結晶13は、GaN基板でもよいし、サファイアなどの異種基板にMOCVD法などによってGaNを成長させたテンプレート基板であってもよい。また、c面、a面、m面など各種面方位の基板を用いることができる。   The seed crystal 13 may be a GaN substrate, or a template substrate obtained by growing GaN on a heterogeneous substrate such as sapphire by the MOCVD method or the like. In addition, substrates having various plane orientations such as c-plane, a-plane, and m-plane can be used.

供給管16には、バルブ16vが設けられていて、このバルブ16vにより窒素の供給量を制御する。また、排気管19には、バルブ19vが設けられていて、反応容器10からの排気量を制御する。   The supply pipe 16 is provided with a valve 16v, and the supply amount of nitrogen is controlled by the valve 16v. The exhaust pipe 19 is provided with a valve 19v for controlling the exhaust amount from the reaction vessel 10.

融液供給装置17は、供給管18を介して坩堝11に保持された混合融液14中にSiが混合されたNa融液を供給する。Siの混合比は任意の値でよい。供給管18にはバルブ18vが設けられていて、Na融液の供給量を調整する。   The melt supply device 17 supplies Na melt obtained by mixing Si into the mixed melt 14 held in the crucible 11 through the supply pipe 18. The mixing ratio of Si may be an arbitrary value. The supply pipe 18 is provided with a valve 18v for adjusting the amount of Na melt supplied.

次に、このIII 族窒化物半導体製造装置を用いたGaN結晶の製造工程について説明する。   Next, the manufacturing process of the GaN crystal using this group III nitride semiconductor manufacturing apparatus will be described.

まず、種結晶13と、所定の量のGa、Naを坩堝11に入れ、坩堝11を反応容器10内に配置し、反応容器10に蓋をして密閉する。これら一連の作業は、アルゴンなどの不活性ガスに満たされたグローブボックス内で行い、GaやNaが酸化しないようにする。   First, seed crystal 13 and predetermined amounts of Ga and Na are put in crucible 11, crucible 11 is placed in reaction vessel 10, and reaction vessel 10 is covered and sealed. A series of these operations is performed in a glove box filled with an inert gas such as argon so that Ga and Na are not oxidized.

次に、供給管16のバルブ16v、排気管19のバルブ19vを開いて反応容器10内に窒素を供給し、バルブ16v、バルブ19vを調整して4.5〜4.7MPaまで加圧する。   Next, the valve 16v of the supply pipe 16 and the valve 19v of the exhaust pipe 19 are opened to supply nitrogen into the reaction vessel 10, and the pressure is increased to 4.5 to 4.7 MPa by adjusting the valves 16v and 19v.

そして、加熱装置12によって800〜900℃まで昇温させ、この圧力、温度を100時間以上維持する。これにより、種結晶13表面にGaN結晶を成長させる。なお、III 族窒化物半導体製造装置に坩堝を支持して回転させる回転装置を設け、結晶育成中に回転装置により坩堝11を回転させるようにすると望ましい。坩堝11の回転によって混合融液14が攪拌されるため、GaNを均一に結晶成長させることができる。   And it heats up to 800-900 degreeC with the heating apparatus 12, and maintains this pressure and temperature for 100 hours or more. Thereby, a GaN crystal is grown on the surface of the seed crystal 13. It is desirable to provide a rotation device for supporting and rotating the crucible in the group III nitride semiconductor manufacturing apparatus so that the crucible 11 is rotated by the rotation device during crystal growth. Since the mixed melt 14 is agitated by the rotation of the crucible 11, GaN can be grown uniformly.

次に、供給管18のバルブ18vを開き、融液供給装置17によって坩堝11中の混合融液14中にSiが混合されたNa融液を供給する。SiはGaNの結晶成長を阻害する効果があるため、Siが混合融液14中に混合された段階でGaN結晶の成長が停止する。Siの量は極微量でよく、混合融液14に対して0.01mol%以上含まれていれば、十分に結晶成長を阻害する効果が得られる。Siの添加範囲は、0.01〜1mol%が望ましい。0.01mol%よりも少ないと、部分的に低品質のGaNが成長するため望ましくなく、1mol%よりも多いと、Siが多量に残るため望ましくない。より望ましいのは、0.1〜0.5mol%の範囲である。   Next, the valve 18v of the supply pipe 18 is opened, and the Na melt obtained by mixing Si into the mixed melt 14 in the crucible 11 is supplied by the melt supply device 17. Since Si has an effect of inhibiting the growth of GaN crystals, the growth of GaN crystals stops when Si is mixed in the mixed melt 14. The amount of Si may be extremely small, and if it is contained in an amount of 0.01 mol% or more with respect to the mixed melt 14, an effect of sufficiently inhibiting crystal growth can be obtained. As for the addition range of Si, 0.01-1 mol% is desirable. If the amount is less than 0.01 mol%, low quality GaN is partially grown, which is not desirable. If the amount is more than 1 mol%, a large amount of Si remains, which is not desirable. More desirable is the range of 0.1 to 0.5 mol%.

次に、加熱装置12による加熱を停止し、温度を常温まで下げる。ここで、Siの導入によりGaN結晶の成長は停止されているため、従来のように降温中に低品質のGaN結晶が成長することはない。   Next, heating by the heating device 12 is stopped, and the temperature is lowered to room temperature. Here, since the growth of the GaN crystal is stopped by the introduction of Si, the low-quality GaN crystal does not grow during the temperature lowering as in the prior art.

次に、圧力を常圧まで下げた後、反応容器10を開封し、坩堝11を取り出す。そして、坩堝11内に残留した混合融液14を除去して種結晶13に育成されたGaN結晶を取り出す。さらにその後、種結晶13部分をワイヤなどで切断し、研磨等を行うことでGaN基板を得ることができる。   Next, after reducing the pressure to normal pressure, the reaction vessel 10 is opened and the crucible 11 is taken out. Then, the mixed melt 14 remaining in the crucible 11 is removed, and the GaN crystal grown on the seed crystal 13 is taken out. Further, after that, the GaN substrate can be obtained by cutting the seed crystal 13 portion with a wire or the like and performing polishing or the like.

以上のように、実施例1のGaN結晶製造方法では、育成終了時にSiを混合融液中に導入し、降温時に低品質の結晶が成長しないようにしているため、高品質のGaN結晶が得られる。   As described above, in the GaN crystal manufacturing method of Example 1, Si is introduced into the mixed melt at the end of growth, so that low-quality crystals do not grow when the temperature is lowered, so that high-quality GaN crystals are obtained. It is done.

なお、実施例ではSiをNa融液に混合して供給しているが、Ga融液に混合して供給するようにしてもよいし、NaとGaの混合融液にSiを混合して供給するようにしてもよい。また、Si単体を混合するのではなく、Siを構成元素とする化合物を混合して供給してもよい。また、シランなどのSiを構成元素とする気体を窒素に混合して供給してもよい。   In the embodiment, Si is mixed and supplied to the Na melt, but it may be mixed and supplied to the Ga melt, or Si may be mixed and supplied to the mixed melt of Na and Ga. You may make it do. Further, instead of mixing Si alone, a compound containing Si as a constituent element may be mixed and supplied. A gas containing Si as a constituent element such as silane may be mixed with nitrogen and supplied.

また、実施例ではSiを混合融液中に導入により結晶成長を阻害しているが、Si以外の結晶成長を阻害する物質を導入するようにしてもよい。たとえば、酸化物や水酸化物などの酸素を含む化合物によってGaNの結晶育成を阻害することができる。   In the embodiment, Si is introduced into the mixed melt to inhibit crystal growth. However, substances other than Si that inhibit crystal growth may be introduced. For example, crystal growth of GaN can be inhibited by a compound containing oxygen such as an oxide or a hydroxide.

また、実施例ではGaN結晶の製造方法について説明しているが、本発明はGaNに限るものではなく、AlGaN、InGaN、AlGaInNなど、III 族窒化物半導体結晶の製造方法に適用することができる。   In the embodiments, a method for producing a GaN crystal is described. However, the present invention is not limited to GaN, and can be applied to a method for producing a group III nitride semiconductor crystal such as AlGaN, InGaN, and AlGaInN.

また、実施例では、フラックスとしてNaを用いているが、他にもLiやKなどのアルカリ金属や、MgやCaなどのアルカリ土類金属、およびそれらの混合物を用いることができる。また、結晶成長の促進、雑晶発生の抑制などのために炭素などを混合させてもよい。   In the embodiment, Na is used as the flux, but other alkali metals such as Li and K, alkaline earth metals such as Mg and Ca, and mixtures thereof can be used. Further, carbon or the like may be mixed in order to promote crystal growth or suppress generation of miscellaneous crystals.

本発明によって得られるIII 族窒化物半導体結晶は、半導体素子製造のための成長基板などに用いることができる。   The group III nitride semiconductor crystal obtained by the present invention can be used as a growth substrate for manufacturing semiconductor devices.

III 族窒化物半導体製造装置の構成を示した図。The figure which showed the structure of the group III nitride semiconductor manufacturing apparatus.

符号の説明Explanation of symbols

10:反応容器
11:坩堝
12:加熱装置
13:種結晶
14:混合融液
16、18:供給管
17:融液供給装置
19:排気管
10: reaction vessel 11: crucible 12: heating device 13: seed crystal 14: mixed melt 16, 18: supply pipe 17: melt supply device 19: exhaust pipe

Claims (6)

III 族金属とアルカリ金属とを少なくとも含む混合融液と、少なくとも窒素を含む気体とを反応させてIII 族窒化物半導体を結晶成長させるIII 族窒化物半導体結晶の製造方法において、
結晶成長を終了させる際に、結晶成長を阻害する物質を前記混合融液中に供給し、その後に降温する、
ことを特徴とするIII 族窒化物半導体結晶の製造方法。
In a method for producing a Group III nitride semiconductor crystal, a Group III nitride semiconductor crystal is grown by reacting a mixed melt containing at least a Group III metal and an alkali metal with a gas containing at least nitrogen.
When terminating crystal growth, a substance that inhibits crystal growth is supplied into the mixed melt, and then the temperature is lowered.
A method for producing a group III nitride semiconductor crystal characterized by the above.
前記結晶成長を阻害する物質は、Si単体またはSiを含む化合物、もしくは酸素単体または酸素を含む化合物であることを特徴とする請求項1に記載のIII 族窒化物半導体結晶の製造方法。   2. The method for producing a group III nitride semiconductor crystal according to claim 1, wherein the substance that inhibits crystal growth is a simple substance of Si, a compound containing Si, or a simple substance of oxygen or a compound containing oxygen. 前記結晶成長を阻害する物質は、III 族金属融液、アルカリ金属融液、またはその双方を含む混合融液に混合して供給する、ことを特徴とする請求項1または請求項2に記載のIII 族窒化物半導体結晶の製造方法。   3. The substance according to claim 1, wherein the substance that inhibits crystal growth is supplied by being mixed with a Group III metal melt, an alkali metal melt, or a mixed melt containing both. A method for producing a group III nitride semiconductor crystal. III 族金属とアルカリ金属とを少なくとも含む混合融液と、少なくとも窒素を含む気体とを反応させてIII 族窒化物半導体を結晶成長させるIII 族窒化物半導体製造装置において、
結晶成長を阻害する物質を供給する供給管を有することを特徴とするIII 族窒化物半導体製造装置。
In a Group III nitride semiconductor manufacturing apparatus for crystal growth of a Group III nitride semiconductor by reacting a mixed melt containing at least a Group III metal and an alkali metal with a gas containing at least nitrogen,
A group III nitride semiconductor manufacturing apparatus having a supply pipe for supplying a substance that inhibits crystal growth.
前記結晶成長を阻害する物質は、Si単体、またはSiを含む化合物であることを特徴とする請求項4に記載のIII 族窒化物半導体製造装置。   5. The group III nitride semiconductor manufacturing apparatus according to claim 4, wherein the substance that inhibits crystal growth is a simple substance of Si or a compound containing Si. 前記供給管は、前記結晶成長を阻害する物質をIII 族金属融液、アルカリ金属融液、または前記混合融液に混合して供給する、ことを特徴とする請求項4または請求項5に記載のIII 族窒化物半導体製造装置。   The said supply pipe | tube mixes and supplies the substance which inhibits the said crystal growth to a group III metal melt, an alkali metal melt, or the said mixed melt, The Claim 4 or Claim 5 characterized by the above-mentioned. Group III nitride semiconductor manufacturing equipment.
JP2008235804A 2008-09-15 2008-09-15 Group III nitride semiconductor crystal manufacturing method Active JP5056688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235804A JP5056688B2 (en) 2008-09-15 2008-09-15 Group III nitride semiconductor crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235804A JP5056688B2 (en) 2008-09-15 2008-09-15 Group III nitride semiconductor crystal manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012134878A Division JP5522204B2 (en) 2012-06-14 2012-06-14 Group III nitride semiconductor crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2010064947A true JP2010064947A (en) 2010-03-25
JP5056688B2 JP5056688B2 (en) 2012-10-24

Family

ID=42190857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235804A Active JP5056688B2 (en) 2008-09-15 2008-09-15 Group III nitride semiconductor crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP5056688B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014450A (en) * 2011-07-01 2013-01-24 Hitachi Cable Ltd Nitride semiconductor epitaxial substrate and nitride semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154254A (en) * 2003-10-31 2005-06-16 Sumitomo Electric Ind Ltd Group iii nitride crystal, its manufacturing method, and manufacturing device of group iii nitride crystal
JP2007126315A (en) * 2005-11-02 2007-05-24 Toyoda Gosei Co Ltd Semiconductor crystal manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154254A (en) * 2003-10-31 2005-06-16 Sumitomo Electric Ind Ltd Group iii nitride crystal, its manufacturing method, and manufacturing device of group iii nitride crystal
JP2007126315A (en) * 2005-11-02 2007-05-24 Toyoda Gosei Co Ltd Semiconductor crystal manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014450A (en) * 2011-07-01 2013-01-24 Hitachi Cable Ltd Nitride semiconductor epitaxial substrate and nitride semiconductor device
US9105755B2 (en) 2011-07-01 2015-08-11 Hitachi Metals, Ltd. Method of manufacturing a nitride semiconductor epitaxial substrate
US9397232B2 (en) 2011-07-01 2016-07-19 Sumitomo Chemical Company, Limited Nitride semiconductor epitaxial substrate and nitride semiconductor device

Also Published As

Publication number Publication date
JP5056688B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP2010037153A (en) Method for producing group iii nitride semiconductor and seed crystal for growing group iii nitride semiconductor
JP2005206403A (en) Method for producing gallium-containing nitride single crystal
JP2006347856A (en) Apparatus for manufacturing semiconductor single crystal
US8501141B2 (en) Method for producing group III nitride semiconductor
JP5464004B2 (en) Group III nitride semiconductor crystal manufacturing method
JP5056688B2 (en) Group III nitride semiconductor crystal manufacturing method
JP4609207B2 (en) Periodic table group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method using the same
JP2007084422A (en) Method of producing group 13 metal nitride crystal, method for manufacturing semiconductor device, and solution and melt used in those methods
JP5522204B2 (en) Group III nitride semiconductor crystal manufacturing method
JP5640427B2 (en) Group III nitride semiconductor crystal manufacturing method
CN107794567B (en) Method for manufacturing group III nitride semiconductor
JP6848242B2 (en) Method for manufacturing group III nitride semiconductor
JP2010037155A (en) Method for producing group iii nitride compound semiconductor crystal
WO2007023699A1 (en) Method for producing group 13 metal nitride crystal, method for manufacturing semiconductor device, and solution and melt used in those methods
JP4779848B2 (en) Group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method using the same
JP7456849B2 (en) Method for manufacturing group 13 nitride crystal
JP6211087B2 (en) Method for producing group 13 element nitride and method for producing melt composition
JP2019189466A (en) Method for manufacturing group iii nitride crystal
JP5754391B2 (en) Group III nitride semiconductor crystal manufacturing method
JP4397422B2 (en) Method for producing gallium nitride
JP2011178594A (en) Method for producing group 13 metal nitride crystal, group 13 metal nitride crystal provided by the production method and method for manufacturing semiconductor device
CN110129887B (en) Bearing structure, system and method for growing nitride single crystal by flux method
JP6720888B2 (en) Method for manufacturing group III nitride semiconductor
JP2007284267A (en) Method for producing gan crystal
JP2013184875A (en) Method for producing nitride crystal of group 13 metal in periodic table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5056688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150