JP2010064441A - Structure using ring-opening photopolymerizable composition, and bonding method - Google Patents

Structure using ring-opening photopolymerizable composition, and bonding method Download PDF

Info

Publication number
JP2010064441A
JP2010064441A JP2008235113A JP2008235113A JP2010064441A JP 2010064441 A JP2010064441 A JP 2010064441A JP 2008235113 A JP2008235113 A JP 2008235113A JP 2008235113 A JP2008235113 A JP 2008235113A JP 2010064441 A JP2010064441 A JP 2010064441A
Authority
JP
Japan
Prior art keywords
ring
opening
photopolymerizable composition
bonding
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008235113A
Other languages
Japanese (ja)
Other versions
JP5178420B2 (en
Inventor
Keiichi Hishinuma
慶一 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008235113A priority Critical patent/JP5178420B2/en
Publication of JP2010064441A publication Critical patent/JP2010064441A/en
Application granted granted Critical
Publication of JP5178420B2 publication Critical patent/JP5178420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonded body controlling bonding strength, bonding failure, and deformation of a ring-opening photopolymerizable composition, a bonding method and device using the same, in bonding of a substrate using the ring-opening photopolymerizable composition. <P>SOLUTION: A structure is formed by bonding two or more members including a first member and second member using the ring-opening photopolymerizable composition. The structure, bonding method and device are configured, in which a difference between an epoxy group infrared absorption intensity ratio of all-reflective infrared absorption spectrophotometry (ATR-IR) of the ring-opening photopolymerizable composition in a bonded surface of the first member mutually bonded and the epoxy group infrared absorption intensity ratio of the all-reflective infrared absorption spectrophotometry (ATR-IR) of the ring-opening photopolymerizable composition in a bonded surface of the second member is ≥0.04, the members being bonded with each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、開環型光重合性組成物を用いた構造体、接合方法、およびデバイスに関する。   The present invention relates to a structure, a bonding method, and a device using a ring-opening photopolymerizable composition.

近年、MEMS(Micro-Electro-Mechanical Systems)作製に必要とされる微細加工技術を応用した、各種アクチュエータ、センサー、及びマイクロ流路等デバイスの研究開発が盛んに行われている。
特に、これらのデバイスの作製工程において、2つ以上のシリコン基板に加工を施した後、それらの基板を張り合わせることによって複雑な構造を有するデバイスを作製したり、デバイスを保護したり、また、湿度にさらさないために別基板をカバーとしてもう一つの基板に貼りつけ、密封空間を作製したりするといった工程が近年盛んに研究開発されている。
In recent years, research and development of devices such as various actuators, sensors, microchannels, and the like, to which microfabrication technology required for fabrication of MEMS (Micro-Electro-Mechanical Systems) is applied, has been actively conducted.
In particular, in the manufacturing process of these devices, after processing two or more silicon substrates, a device having a complicated structure is manufactured by bonding the substrates, the device is protected, In order to prevent exposure to humidity, a process of attaching a separate substrate to another substrate as a cover to create a sealed space has been actively researched and developed in recent years.

このような基板同士の接合方法には、シリコン同士を接合する拡散接合や、両基板間に電位差を印加し、接合する陽極接合や、パターン化されたAuやInなどの金属膜同士を接合する方法や、エポキシ樹脂を用いた接合方法などがある。
拡散接合や、陽極接合は、シリコン基板を高温にさらす必要があり、プロセスを安定化させることが難しい。また、さらに、接合前の基板の洗浄に要求されるレベルが厳しいという現状がある。
また、金属同士を接合する接合は、金属膜成膜とパターン化の工程が必要となることから、シリコン基板同士の接合時には、高い圧力を基板にかける必要がある。
Such a bonding method between substrates includes diffusion bonding for bonding silicon, anodic bonding for applying a potential difference between both substrates, and bonding metal films such as patterned Au and In. And a joining method using an epoxy resin.
Diffusion bonding and anodic bonding require that the silicon substrate be exposed to high temperatures, and it is difficult to stabilize the process. Furthermore, there is a current situation that the level required for cleaning the substrates before bonding is severe.
Moreover, since the process of metal film formation and patterning is required for joining metals, it is necessary to apply a high pressure to the substrates when joining silicon substrates.

一方、上記接合方法と比較して、エポキシ樹脂材料の中でも、感光性エポキシ樹脂を使った接合方法は、パターン化が一般のリソグラフィと同様に容易にでき、かつ接合時温度も150℃以下でよいといった効果があることから、近年、SU−8を始めとする感光性エポキシ樹脂を使った接合方法がウェハ接合に盛んに用いられている。
上記感光性エポキシ樹脂を用いた接合方法の具体例としては、シリコン基板に感光性エポキシ樹脂を塗布後、紫外線を照射せずにもう一つのシリコン基板を接合する場合があげられ、この方法によれば、接着不良率がかなり低くなる効果が得られる。
また、特許文献1に記載のシリコン基板に感光性エポキシ樹脂を塗布後、紫外線を照射してから、もう一つのシリコン基板を接合する方法の場合も挙げられ、その方法によれば、もう一つのシリコン基板を接合する時、すでに紫外線により重合が開始されているため、接合強度は高くなることから、エポキシ樹脂の変形が抑制できる。
On the other hand, compared with the above bonding method, among epoxy resin materials, the bonding method using a photosensitive epoxy resin can be easily patterned as in general lithography, and the bonding temperature may be 150 ° C. or less. In recent years, a bonding method using a photosensitive epoxy resin such as SU-8 has been actively used for wafer bonding.
As a specific example of the bonding method using the photosensitive epoxy resin, there is a case where another silicon substrate is bonded without irradiating ultraviolet rays after applying the photosensitive epoxy resin to the silicon substrate. In this case, the effect of significantly reducing the adhesion failure rate can be obtained.
In addition, there is a case where a silicon substrate described in Patent Document 1 is coated with a photosensitive epoxy resin and then irradiated with ultraviolet rays, and then another silicon substrate is bonded. When the silicon substrates are bonded, since the polymerization is already started by the ultraviolet rays, the bonding strength is increased, so that the deformation of the epoxy resin can be suppressed.

特開2007−112840号公報JP 2007-112840 A

しかしながら、シリコン基板に感光性エポキシ樹脂を塗布後、紫外線を照射せずにもう一つのシリコン基板を接合した場合は、加熱硬化時にエポキシ樹脂がリフローをおこすため変形してしまう。また、その構造体の接着強度は重合がなされていないため低い。
また、特許文献1に記載の接合方法は、第2部材を接合する前に、エポキシ樹脂の接合面が硬化をはじめるため、硬化された部分と柔軟性がある部分による凹凸が接着面表面にできてしまうことから、密着性が悪く、接着不良率が高くなる。
従って、感光性エポキシ樹脂を使用したとしても、接合強度、接合時の変形、接着不良などの課題を抱えている現状がある。
また、特に、接着するシリコン基板の面積に対して、小さな面積の基板を接着させたりするような場合、接着不良が発生する割合が高くなる。
そこで、本発明は、感光性エポキシ樹脂等の開環型光重合性組成物を使った基板接合において、接合強度が高く、接合不良率が低く、開環型光重合性組成物の変形が抑制される構造体、接合方法、およびデバイスを提供することを目的とする。
However, after another photosensitive epoxy resin is applied to a silicon substrate and another silicon substrate is bonded without irradiating ultraviolet rays, the epoxy resin undergoes reflow during heat curing and deforms. Further, the adhesive strength of the structure is low because no polymerization is performed.
Further, in the joining method described in Patent Document 1, since the joining surface of the epoxy resin starts to cure before joining the second member, the unevenness due to the cured portion and the flexible portion can be formed on the adhesive surface. Therefore, the adhesion is poor and the adhesion failure rate is increased.
Therefore, even if a photosensitive epoxy resin is used, there are current situations such as bonding strength, deformation during bonding, and poor adhesion.
In particular, when a substrate having a small area is bonded to the area of the silicon substrate to be bonded, the rate of occurrence of bonding failure increases.
Therefore, the present invention has a high bonding strength, a low bonding failure rate, and the deformation of the ring-opening photopolymerizable composition is suppressed in substrate bonding using a ring-opening photopolymerizable composition such as a photosensitive epoxy resin. It is an object to provide a structure, a bonding method, and a device.

上記課題を解決するために、開環型光重合性組成物を用いて、第1部材および第2部材を含む2以上の部材を接合してなる構造体であって、互いに接合された前記第1部材の接合面における前記開環型光重合性組成物の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比と前記第2部材の接合面における前記開環型光重合性組成物の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比との差が0.04以上あることを特徴とする構造体を提供する。   In order to solve the above-described problem, a ring-opening photopolymerizable composition is used to join two or more members including a first member and a second member. Epoxy group infrared absorption intensity ratio of total reflection infrared absorption method (ATR-IR) of the ring-opening photopolymerizable composition on the joint surface of one member and the ring-opening light on the joint surface of the second member Provided is a structure characterized in that the difference between the total reflection infrared absorption method (ATR-IR) of the polymerizable composition and the epoxy group infrared absorption intensity ratio is 0.04 or more.

また、上記課題を解決するために、開環型光重合性組成物を用いて、第1部材および第2部材を含む2以上の部材を接合するに際し、互いに接合される前記第1部材および前記第2部材の各接合面にそれぞれ1回以上、もしくは、前記第1部材の接合面または前記第2部材の接合面に2回以上、前記開環型光重合性組成物を塗布する塗布工程と、前記第1部材および前記第2部材の一方の部材の接合面に塗布された前記開環型光重合性組成物に紫外線を露光する露光工程と、前記第1部材および前記第2部材の他方の部材の接合面を前記一方の部材の接合面に接合する接合工程と、を含み、互いに接合された前記一方の部材の接合面と前記他方の部材の接合面との間には、前記紫外線で露光されていない前記開環型光重合性組成物の部分を含むことを特徴とする接合方法を提供する。
ここで、前記塗布工程は、前記一方の部材の前記接合面に前記開環型光重合性組成物を1回以上塗布する第1塗布工程と、前記紫外線が露光された前記一方の部材の接合面の前記開環型光重合性組成物上に、さらに前記開環型光重合性組成物を1回以上塗布する第2塗布工程とを有し、前記露光工程は、前記一方の部材の前記接合面に塗布された前記開環型光重合性組成物に前記紫外線を露光する工程であり、前記接合工程は、前記一方の部材の接合面の前記紫外線が露光された前記開環型光重合性組成物上に塗布され、かつ前記紫外線が露光されていない前記開環型光重合性組成物に前記他方の部材の接合面を接合する工程であることが好ましい。
また、前記第1部材の接合面に前記開環型光重合性組成物を1回目に塗布し、前記第1部材の接合面に1回目に塗布された前記開環型光重合性組成物に前記紫外線を露光した後、前記紫外線が露光された前記開環型光重合性組成物上に、さらに、前記開環型光重合性組成物を2回目に塗布し、前記第1部材の接合面に2回目に塗布された前記開環型光重合性組成物上に前記紫外線を露光せずに、前記第2部材の接合面を接合することが好ましい。
また、前記塗布工程は、前記一方の部材の前記接合面に前記開環型光重合性組成物を1回以上塗布する工程と、前記他方の部材の接合面に前記開環型光重合性組成物を1回以上塗布する工程とを有し、前記露光工程は、前記一方の部材の前記接合面に塗布された前記開環型光重合性組成物に前記紫外線を露光する工程であり、前記接合工程は、前記一方の部材の接合面に塗布された後に前記紫外線が露光された前記開環型光重合性組成物と、前記他方の部材の接合面に塗布された後に前記紫外線が露光されていない前記開環型光重合性組成物とを接着する工程であることが好ましい。
また、前記第1部材の接合面および前記第2部材の接合面にそれぞれ前記開環型光重合性組成物を塗布し、前記第1部材の接合面に塗布された前記開環型光重合性組成物に前記紫外線を露光した後、前記第1部材の接合面の前記紫外線が露光された前記開環型光重合性組成物と、前記第2部材の接合面に塗布されている、かつ前記紫外線を露光されていない前記開環型光重合性組成物とを接合することが好ましい。
また、互いに接合された前記第1部材の接合面および前記第2部材の接合面の間に存在する、前記紫外線が露光された前記開環型光重合性組成物の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比と前記紫外線が露光されていない前記開環型光重合性組成物の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比との差が0.04以上あることが好ましい。
Moreover, in order to solve the said subject, when joining two or more members including a 1st member and a 2nd member using a ring-opening type photopolymerizable composition, the said 1st member joined mutually and the said An application step of applying the ring-opening photopolymerizable composition one or more times to each bonding surface of the second member, or twice or more to the bonding surface of the first member or the bonding surface of the second member; , An exposure step of exposing the ring-opening photopolymerizable composition applied to the joint surface of one of the first member and the second member to the ultraviolet ray; and the other of the first member and the second member A bonding step of bonding the bonding surface of the member to the bonding surface of the one member, and the ultraviolet ray is interposed between the bonding surface of the one member bonded to the bonding surface of the other member and the bonding surface of the other member. A portion of the ring-opening photopolymerizable composition that has not been exposed to To provide a joining method which is characterized in that.
Here, the application step includes a first application step of applying the ring-opening photopolymerizable composition one or more times to the bonding surface of the one member, and bonding of the one member exposed to the ultraviolet rays. A second coating step of applying the ring-opening photopolymerizable composition one or more times on the ring-opening photopolymerizable composition of the surface, and the exposure step includes the step of the one member A step of exposing the ring-opening photopolymerizable composition applied to the bonding surface to the ultraviolet light, wherein the bonding step is the ring-opening photopolymerization in which the ultraviolet light of the bonding surface of the one member is exposed. It is preferable to be a step of bonding the bonding surface of the other member to the ring-opening photopolymerizable composition that is applied onto the photosensitive composition and is not exposed to the ultraviolet rays.
The ring-opening photopolymerizable composition is applied to the bonding surface of the first member for the first time, and the ring-opening photopolymerizable composition applied to the bonding surface of the first member for the first time. After exposing the ultraviolet light, the ring-opening photopolymerizable composition is further applied on the ring-opening photopolymerizable composition exposed to the ultraviolet light a second time, and the bonding surface of the first member It is preferable that the bonding surface of the second member is bonded to the ring-opening photopolymerizable composition applied for the second time without exposing the ultraviolet light.
Further, the application step includes a step of applying the ring-opening photopolymerizable composition one or more times to the joint surface of the one member, and the ring-opening photopolymerizable composition to the joint surface of the other member. A step of applying the product once or more, and the exposure step is a step of exposing the ring-opening photopolymerizable composition applied to the bonding surface of the one member to the ultraviolet ray, In the bonding step, the ring-opening photopolymerizable composition that has been applied to the bonding surface of the one member and then exposed to the ultraviolet light, and the ultraviolet light that has been applied to the bonding surface of the other member and then exposed to the ultraviolet light. It is preferable that it is the process of adhering the ring-opening photopolymerizable composition which is not.
Also, the ring-opening photopolymerizable composition applied to the joint surface of the first member by applying the ring-opening photopolymerizable composition to the joint surface of the first member and the joint surface of the second member, respectively. After the composition is exposed to the ultraviolet light, the ultraviolet light of the bonding surface of the first member is applied to the ring-opening photopolymerizable composition exposed to the ultraviolet light, and the bonding surface of the second member; and It is preferable to join the ring-opening photopolymerizable composition not exposed to ultraviolet rays.
Further, the total reflection infrared absorption method of the ring-opening photopolymerizable composition exposed to the ultraviolet ray, which is present between the bonding surface of the first member and the bonding surface of the second member bonded to each other Epoxy group infrared absorption intensity ratio of epoxy group infrared absorption intensity ratio of (ATR-IR) and total reflection infrared absorption method (ATR-IR) of the ring-opening photopolymerizable composition in which the ultraviolet ray is not exposed The difference from the ratio is preferably 0.04 or more.

また、上記課題を解決するために、前記構造体を用いたマイクロポンプを搭載するマイクロ流路デバイスを提供する。
ここで、前記接合方法を用いて作製されたマイクロポンプを搭載するマイクロ流路デバイスであることが好ましい。
また、上記課題を解決するために、前記構造体を用いたマイクロポンプを搭載する液滴吐出デバイスを提供する。
ここで、前記接合方法を用いて作製されたマイクロポンプを搭載する液滴吐出デバイスであることが好ましい。
Moreover, in order to solve the said subject, the microchannel device which mounts the micropump using the said structure is provided.
Here, it is preferable that it is a microchannel device carrying the micropump produced using the said joining method.
In order to solve the above problems, a droplet discharge device including a micropump using the structure is provided.
Here, it is preferable that the droplet discharge device is equipped with a micropump manufactured using the bonding method.

本発明により、開環型光重合性組成物を使った基板接合において、接合強度が高く、接着不良率が小さく、開環型光重合性組成物の変形が抑制される構造体、接合方法およびそれらを用いるデバイスを提供することができる。   According to the present invention, in the substrate bonding using the ring-opening photopolymerizable composition, the structure having a high bonding strength, a low adhesion failure rate, and the deformation of the ring-opening photopolymerizable composition being suppressed, a bonding method, and Devices using them can be provided.

以下、本発明に係る開環型光重合性組成物を用いた構造体、接合方法およびそれを用いるデバイスを、添付の図面に示す好適実施形態に基づいて詳細に説明する。   Hereinafter, a structure using the ring-opening photopolymerizable composition according to the present invention, a bonding method, and a device using the structure will be described in detail based on preferred embodiments shown in the accompanying drawings.

まず、図1(a)〜(e)を参照して、本発明の光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を用いた接合方法による構造体の作製方法を説明する。図1(a)〜(e)は、それぞれ、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を用いた接合方法による構造体の作製方法を工程順に示す図であり、それぞれ構造体の作製方法の各工程における中間体の一部を模式的に示す断面図である。
なお、上記開環型光重合性組成物とは、少なくとも主剤である、エポキシ基、グリシジル基、オキセタニル基等を含有する開環型光重合性樹脂と、硬化剤から構成される組成物を指す。
従って、本実施形態においては、少なくとも開環型光重合性樹脂である光カチオン重合型エポキシ樹脂と、硬化剤から構成される開環型光重合性組成物により説明するが、本発明はこれに限定されない。
First, with reference to FIG. 1 (a)-(e), the preparation method of the structure by the joining method using the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) of this invention is demonstrated. To do. 1 (a) to 1 (e) are diagrams showing a method for producing a structure by a joining method using a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) in order of steps, It is sectional drawing which shows typically a part of intermediate body in each process of the preparation methods of a structure, respectively.
The ring-opening photopolymerizable composition refers to a composition comprising a ring-opening photopolymerizable resin containing at least a main agent, such as an epoxy group, a glycidyl group, or an oxetanyl group, and a curing agent. .
Therefore, in the present embodiment, the description will be made with reference to a ring-opening photopolymerizable composition composed of at least a photocationic polymerization type epoxy resin that is a ring-opening photopolymerizable resin and a curing agent. It is not limited.

まず、図1(a)に示すように、第1部材12としてシリコン基板を用意する。
第1部材12の材料としては、シリコン基板に限定されず、ガラス、ステンレス(SUS)、イットリウム安定化ジルコニウム(YSZ)、アルミナ、サファイア、SiC、及びSrTiO等であってもよい。なお、シリコンハンドル層とシリコン活性層から成るSOI(Silicon-on-insulator)基板でもよい。
First, as shown in FIG. 1A, a silicon substrate is prepared as the first member 12.
The material of the first member 12 is not limited to a silicon substrate, and may be glass, stainless steel (SUS), yttrium-stabilized zirconium (YSZ), alumina, sapphire, SiC, SrTiO 3 or the like. An SOI (Silicon-on-insulator) substrate composed of a silicon handle layer and a silicon active layer may be used.

次に、光カチオン重合型エポキシ樹脂組成物を調製し、図1(b)に示すように、第1部材12上にスピンコートにより塗布し、エポキシ樹脂層14aを形成する。
ここで、上記光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)は、少なくとも主剤である光カチオン重合型エポキシ樹脂(開環型光重合性樹脂)と硬化剤から構成される。
Next, a cationic photopolymerization type epoxy resin composition is prepared and applied on the first member 12 by spin coating as shown in FIG. 1B to form an epoxy resin layer 14a.
Here, the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) is composed of at least a main component, a photocationic polymerization type epoxy resin (ring-opening type photopolymerizable resin), and a curing agent. .

光カチオン重合型エポキシ樹脂(開環型光重合性樹脂)としては、ビスフェノールA型ノボラックエポキシ樹脂であるEpon SU−8(シェル社製)のような多官能製ビスフェノールノボラックエポキシ樹脂やビスフェノールA型エポキシ樹脂、jER1001、1007、1010、1055(ジャパンエポキシレジン社製)、EPICLON 840,850,EXA−850CRP(DIC社製)等が挙げられる。   Examples of the cationic photopolymerization type epoxy resin (ring-opening type photopolymerizable resin) include polyfunctional bisphenol novolac epoxy resins and bisphenol A type epoxy such as Epon SU-8 (manufactured by Shell) which is a bisphenol A type novolak epoxy resin. Resin, jER1001, 1007, 1010, 1055 (made by Japan Epoxy Resin Co., Ltd.), EPICLON 840,850, EXA-850CRP (made by DIC Corporation) and the like.

硬化剤としては、光カチオン重合剤として、芳香剤ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルフォニウム塩、芳香族セレニウム塩等があげられる。   Examples of the curing agent include an aromatic diazonium salt, an aromatic iodonium salt, an aromatic sulfonium salt, and an aromatic selenium salt as a photocationic polymerization agent.

また、エポキシ樹脂(開環型光重合性樹脂)と光カチオン重合剤が既に混入している光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)も市販されている。例としてEpon SU−8レジン(シェル社製)をベースにした光硬化型ネガティブフォトレジストSU−8 2002、3005、3010(化薬マイクロケム社製)があげられる。   In addition, a cationic photopolymerizable epoxy resin composition (ring-opening photopolymerizable composition) in which an epoxy resin (ring-opening photopolymerizable resin) and a cationic photopolymerization agent are already mixed is also commercially available. Examples include photo-curable negative photoresists SU-8 2002, 3005, 3010 (made by Kayaku Microchem Co.) based on Epon SU-8 resin (made by Shell).

なお、耐アルカリ性や密着性などの向上のために、シランカップリング剤を添加してもよい。
シランカップリング剤としては、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン等が挙げられる。
A silane coupling agent may be added to improve alkali resistance and adhesion.
As silane coupling agents, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldisilane Ethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-mercapto And propyltrimethoxysilane.

次いで、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)の溶媒を揮発させるために、プリベークした後、エポキシ樹脂層14aの表面に波長400nm以下の紫外線を露光する。
上記紫外線照射により、図1(c)に示すように、エポキシ樹脂層14aの重合がはじまり、第1部材12とエポキシ樹脂層14aとの間には、高い接着強度が得られる。
なお、上記工程において、プリベーク後、再度、エポキシ樹脂層14a上に、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を塗布し、プリベークする工程を繰り返しても良い。
また、上記実施形態では、紫外線照射は、第1部材12の接合面に塗布されたエポキシ樹脂層14aに行っているが、これに限定されず、第1部材12の接合面に塗布された光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)、または、後述する第2部材16の接合面に塗布された光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)のいずれかを露光してもよい。
なお、第1部材12または第2部材16のいずれか一方の部材の接合面に塗布されたエポキシ樹脂層14aまたは14bに紫外線を照射することが好ましい。部材とエポキシ樹脂組成物(開環型光重合性組成物)との間に高い接着強度を得ることができるからである。
Next, in order to volatilize the solvent of the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition), the surface of the epoxy resin layer 14a is exposed to ultraviolet rays having a wavelength of 400 nm or less.
By the ultraviolet irradiation, as shown in FIG. 1C, polymerization of the epoxy resin layer 14a starts, and high adhesive strength is obtained between the first member 12 and the epoxy resin layer 14a.
In addition, in the said process, after prebaking, you may repeat the process of apply | coating a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) on the epoxy resin layer 14a, and prebaking again.
Moreover, in the said embodiment, although ultraviolet irradiation is performed to the epoxy resin layer 14a apply | coated to the joint surface of the 1st member 12, it is not limited to this, The light applied to the joint surface of the 1st member 12 Cationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) or photo cationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) applied to the joint surface of the second member 16 described later ) May be exposed.
In addition, it is preferable to irradiate an ultraviolet-ray to the epoxy resin layer 14a or 14b apply | coated to the joint surface of any one member of the 1st member 12 or the 2nd member 16. FIG. This is because high adhesive strength can be obtained between the member and the epoxy resin composition (ring-opening photopolymerizable composition).

次に、図1(d)に示すように、第2部材16としてシリコン基板を用意し、第1部材12と同様に、第2部材16上に光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)をスピンコートにより塗布し、プリベークして、エポキシ樹脂層14bを形成した基板を作製する。
なお、プリベーク後、再度、エポキシ樹脂層14b上に、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を塗布し、プリベークする工程を繰り返しても良い。
第2部材16の材料としては、シリコン基板に限定されず、ガラス、ステンレス(SUS)、イットリウム安定化ジルコニウム(YSZ)、アルミナ、サファイア、SiC、及びSrTiO等であってもよい。なお、シリコンハンドル層とシリコン活性層から成るSOI(Silicon-on-insulator)基板でもよい。
Next, as shown in FIG. 1 (d), a silicon substrate is prepared as the second member 16, and similarly to the first member 12, a photocationic polymerization type epoxy resin composition (ring-opening type) is formed on the second member 16. A photopolymerizable composition) is applied by spin coating and prebaked to prepare a substrate on which the epoxy resin layer 14b is formed.
In addition, after prebaking, you may repeat the process of apply | coating a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) on the epoxy resin layer 14b, and prebaking again.
The material of the second member 16 is not limited to a silicon substrate, and may be glass, stainless steel (SUS), yttrium stabilized zirconium (YSZ), alumina, sapphire, SiC, SrTiO 3, or the like. An SOI (Silicon-on-insulator) substrate composed of a silicon handle layer and a silicon active layer may be used.

第2部材16上にエポキシ樹脂層14bを形成した基板を作製後、図1(d)に示すように、重合が開始されているエポキシ樹脂層14a上にのせ、150℃、1時間ベークし、図1(e)に示すように、エポキシ樹脂層14全体をベークして重合させ、構造体10a作製する。
このように、第1部材12と第2部材16の接合時、互いに接合された一方の部材の接合面と他方の接合面との間には、紫外線で露光されていない光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を含む。
その結果、片面の部材に塗布された光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)の表面は、重合による硬化がまだ始まっていないため、柔軟性が高く、その結果、第1部材と第2部材との密着性を高めることができる。
以上により、本発明の開環型光重合性組成物を用いた接合方法による構造体10aを作製することができる。
After producing the substrate on which the epoxy resin layer 14b is formed on the second member 16, as shown in FIG. 1 (d), it is placed on the epoxy resin layer 14a where polymerization is started, and baked at 150 ° C. for 1 hour. As shown in FIG. 1E, the entire epoxy resin layer 14 is baked and polymerized to produce a structure 10a.
Thus, at the time of joining the first member 12 and the second member 16, a photocationic polymerization type epoxy resin that is not exposed to ultraviolet rays between the joining surface of one member joined to the other and the other joining surface. A composition (ring-opening type photopolymerizable composition) is included.
As a result, the surface of the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) applied to the single-sided member has not yet started curing by polymerization, and thus has high flexibility. Adhesion between the first member and the second member can be enhanced.
By the above, the structure 10a by the joining method using the ring-opening photopolymerizable composition of the present invention can be produced.

上記接合方法で作製された図1(e)に示す構造体10aは、互いに接合された第1部材の接合面におけるエポキシ樹脂組成物(開環型光重合性組成物)の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比と第2部材の接合面におけるエポキシ樹脂組成物(開環型光重合性組成物)の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比との差が0.04以上の構造体である。
全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比は、全反射型赤外吸収法(ATR-IR)により測定し、エポキシ基赤外吸収強度I912をベンゼン環C-C赤外吸収強度I1607で規格化した(I912/I1607)。I912/I1607値が低い程、全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比が高いことを示す。
上記全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比の差が0.04以上の構造体10aであれば、接合強度が高く、接着不良率が小さく、エポキシ樹脂組成物(開環型光重合性組成物)の変形が抑制される。
ここで、構造体10aにおける第1部材12および第2部材16の形状は、各部材同士の接合面が平面形状であれば、特に限定されない。
また、構造体10aは、第1部材12および第2部材16を含む2つ以上の部材を接合して作製されてもよい。具体例としては、第1部材上に、第1部材の面積に対して、小さな面積の第2部材を2つ以上接着(接合)した構造体があげられる。
The structure 10a shown in FIG. 1 (e) produced by the above bonding method has a total reflection infrared of the epoxy resin composition (ring-opening photopolymerizable composition) on the bonding surfaces of the first members bonded to each other. Absorption method (ATR-IR) epoxy group infrared absorption intensity ratio and total reflection infrared absorption method (ATR-IR) of epoxy resin composition (ring-opening photopolymerizable composition) on the joint surface of the second member This is a structure having a difference from the epoxy group infrared absorption intensity ratio of 0.04 or more.
The epoxy group infrared absorption intensity ratio of the total reflection infrared absorption method (ATR-IR) was measured by the total reflection infrared absorption method (ATR-IR), and the epoxy group infrared absorption intensity I 912 was converted to the benzene ring CC. It was standardized by infrared absorption intensity I 1607 (I 912 / I 1607 ). The lower the I 912 / I 1607 value, the higher the epoxy group infrared absorption intensity ratio of the total reflection infrared absorption method (ATR-IR).
If the structure 10a has a difference in epoxy group infrared absorption intensity ratio of 0.04 or more in the total reflection infrared absorption method (ATR-IR), the bonding strength is high, the adhesion failure rate is low, and the epoxy resin composition Deformation of the product (ring-opening photopolymerizable composition) is suppressed.
Here, the shape of the 1st member 12 and the 2nd member 16 in the structure 10a will not be specifically limited if the joint surface of each member is planar shape.
In addition, the structure 10 a may be manufactured by joining two or more members including the first member 12 and the second member 16. As a specific example, a structure in which two or more second members having a small area with respect to the area of the first member are bonded (joined) on the first member.

エポキシ樹脂層14は、紫外線で露光されるエポキシ樹脂層14aおよび紫外線で露光されないエポキシ樹脂層14bを含む2層以上で形成されれば、紫外線で露光されないエポキシ樹脂層14bが1層以上形成されていてもよい。
なお、紫外線が露光されるエポキシ樹脂層14aは、第1部材12または第2部材16の接合面に1回目に塗布されたいずれかのエポキシ樹脂層であることが好ましい。紫外線が露光される一方のエポキシ樹脂層では、各部材を接合する前に、重合がはじまり、第1部材12または第2部材16は、エポキシ樹脂層14aまたは14bとの間に、高い接着強度が得られ、エポキシ樹脂組成物(開環型光重合性組成物)の変形が抑制されるからである。
また、エポキシ樹脂組成物(開環型光重合性組成物)14aおよび14bの厚さは、特に限定されないが、具体例としては、0.5μm〜2mmである構造体10aが挙げられる。
また、図2(a)〜(f)を参照して、別の実施態様における本発明の光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を用いた接合方法による構造体の作製方法を説明する。図2(a)〜(f)は、それぞれ、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を用いた接合方法による構造体の作製方法を工程順に示す図であり、それぞれ構造体の作製方法の各工程における中間体の一部を模式的に示す断面図である。
なお、図2に示される工程で作製される構造体10bと図1に示される工程で作製される10aは、同じ構造を有する。従って、図2(a)〜(f)に記載の符号は、図1(a)〜(e)に記載の符号と同一の符号を付してあるため、図2に記載の符号の説明は省略する。
If the epoxy resin layer 14 is formed of two or more layers including the epoxy resin layer 14a exposed to ultraviolet rays and the epoxy resin layer 14b not exposed to ultraviolet rays, one or more epoxy resin layers 14b not exposed to ultraviolet rays are formed. May be.
In addition, it is preferable that the epoxy resin layer 14a to which ultraviolet rays are exposed is one of the epoxy resin layers applied to the bonding surface of the first member 12 or the second member 16 for the first time. In one epoxy resin layer exposed to ultraviolet rays, before the respective members are bonded, polymerization starts, and the first member 12 or the second member 16 has a high adhesive strength between the epoxy resin layer 14a or 14b. This is because the deformation of the epoxy resin composition (ring-opening photopolymerizable composition) obtained is suppressed.
Moreover, although the thickness of the epoxy resin composition (ring-opening type photopolymerizable composition) 14a and 14b is not specifically limited, As a specific example, the structure 10a which is 0.5 micrometer-2 mm is mentioned.
Moreover, with reference to FIG. 2 (a)-(f), the structure by the joining method using the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) of this invention in another embodiment A manufacturing method of will be described. 2 (a) to 2 (f) are diagrams showing a method for producing a structure by a joining method using a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) in order of steps, It is sectional drawing which shows typically a part of intermediate body in each process of the preparation methods of a structure, respectively.
Note that the structure 10b manufactured in the process shown in FIG. 2 and the structure 10a manufactured in the process shown in FIG. 1 have the same structure. Accordingly, the reference numerals shown in FIGS. 2A to 2F are assigned the same reference numerals as those shown in FIGS. 1A to 1E. Omitted.

まず、図2(a)に示すように、第1部材12としてシリコン基板を用意する。
次に、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を先述した同様の調製方法により作製し、図2(b)に示すように、第1部材12上にスピンコートにより塗布し、エポキシ樹脂層14aを形成する。
次いで、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)の溶媒を揮発させるために、プリベークした後、エポキシ樹脂層14aの表面に波長400nm以下の紫外線を露光する。
なお、ここで、プリベーク後、再度、エポキシ樹脂層14a上に、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を塗布し、プリベークする工程を繰り返しても良い。
また、紫外線照射は、部材とエポキシ樹脂組成物(開環型光重合性組成物)との間に高い接着強度を得ることができるように、第1部材12の接合面に塗布されたエポキシ樹脂層14aに行うことが好ましいが、これに限定されず、第2部材の接合面に接合されるエポキシ樹脂層を除く、第1部材の接合面上に塗布されたエポキシ樹脂層のいずれかに紫外線を照射してもよい。
First, as shown in FIG. 2A, a silicon substrate is prepared as the first member 12.
Next, a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) was prepared by the same preparation method as described above, and spin coated on the first member 12 as shown in FIG. To form an epoxy resin layer 14a.
Next, in order to volatilize the solvent of the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition), the surface of the epoxy resin layer 14a is exposed to ultraviolet rays having a wavelength of 400 nm or less.
Here, after pre-baking, the step of applying a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) on the epoxy resin layer 14a and pre-baking may be repeated.
In addition, the ultraviolet ray irradiation is an epoxy resin applied to the joint surface of the first member 12 so that high adhesive strength can be obtained between the member and the epoxy resin composition (ring-opening photopolymerizable composition). However, the present invention is not limited to this, and any one of the epoxy resin layers applied on the bonding surface of the first member except for the epoxy resin layer bonded to the bonding surface of the second member may be irradiated with ultraviolet rays. May be irradiated.

上記紫外線照射により、図2(c)に示すように、エポキシ樹脂層14aの重合がはじまるため、第1部材12とエポキシ樹脂層14aは、高い接着強度が得られる。
次いで、図2(d)に示すように、重合が開始されたエポキシ樹脂層14a上に、再度スピンコートにより、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を塗布後、プリベークして、エポキシ樹脂層14bを形成する。
なお、ここで、紫外線照射量と2回目塗布後のプリベーク時間の最適化を行うことにより、接着強度のバラツキを抑制することができ、安定した接着をすることができる。
As shown in FIG. 2C, the ultraviolet ray irradiation starts the polymerization of the epoxy resin layer 14a, so that the first member 12 and the epoxy resin layer 14a have high adhesive strength.
Next, as shown in FIG. 2 (d), after the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) is applied onto the epoxy resin layer 14 a which has been polymerized by spin coating again. And pre-baking to form the epoxy resin layer 14b.
Here, by optimizing the UV irradiation amount and the pre-bake time after the second application, variations in the adhesive strength can be suppressed, and stable adhesion can be achieved.

次いで、図2(e)に示すように、第2部材16をエポキシ樹脂層14b上にのせ、150℃、1時間ベークし、図2(f)に示すように、エポキシ樹脂層14全体をベークし、重合させ、構造体10b作製する。
ここで、第2部材16の接合時、第1部材12上に塗布された第2部材16と接合するエポキシ樹脂層14bにおける光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)の表面は硬化が始まっていないため、柔軟性が高く、その結果、第2部材との密着性を高めることができる。
Next, as shown in FIG. 2 (e), the second member 16 is placed on the epoxy resin layer 14b and baked at 150 ° C. for 1 hour. As shown in FIG. 2 (f), the entire epoxy resin layer 14 is baked. And polymerizing to produce the structure 10b.
Here, when the second member 16 is bonded, the photocationically polymerizable epoxy resin composition (ring-opening photopolymerizable composition) in the epoxy resin layer 14b bonded to the second member 16 applied on the first member 12 is used. Since the surface of the material has not yet been cured, the surface has high flexibility, and as a result, the adhesion to the second member can be enhanced.

以上により、本発明の開環型光重合性組成物を用いた接合方法による構造体10bを作製することができる。
上記接合方法であれば、1つの部材にのみエポキシ樹脂組成物(開環型光重合性組成物)を塗布すればよいため、図1に示す接合方法よりも、製造プロセスが容易である。
By the above, the structure 10b by the joining method using the ring-opening photopolymerizable composition of the present invention can be produced.
If it is the said joining method, since an epoxy resin composition (ring-opening type photopolymerizable composition) should just be apply | coated to only one member, a manufacturing process is easier than the joining method shown in FIG.

上記接合方法で作製された図2(f)に示す構造体10bは、図1(e)に示す構造体10aと同様に、互いに接合された第1部材12の接合面におけるエポキシ樹脂組成物(開環型光重合性組成物)の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比と第2部材16の接合面におけるエポキシ樹脂組成物(開環型光重合性組成物)の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比との差が0.04以上の構造体である。
また、上記全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比の差が0.04以上の構造体10bであれば、接合強度が高く、接着不良率が小さく、エポキシ樹脂組成物(開環型光重合性組成物)の変形が抑制される。
The structure 10b shown in FIG. 2 (f) produced by the above-described bonding method is similar to the structure 10a shown in FIG. 1 (e), in the epoxy resin composition ( Epoxy resin composition (ring-opening photopolymerizability) at the joint surface of the second member 16 and the epoxy group infrared absorption intensity ratio of the total reflection infrared absorption method (ATR-IR) of the ring-opening photopolymerizable composition) The composition is a structure having a difference of 0.04 or more from the epoxy group infrared absorption intensity ratio of the total reflection infrared absorption method (ATR-IR).
Further, if the structure 10b has a difference in epoxy group infrared absorption intensity ratio of 0.04 or more in the total reflection infrared absorption method (ATR-IR), the bonding strength is high, the adhesion failure rate is small, and the epoxy Deformation of the resin composition (ring-opening photopolymerizable composition) is suppressed.

ここで、図2(f)に示す構造体10bにおける第1基材12および第2基材16の形状は、各部材同士の接合面が平面状であれば、特に限定されない。
また、第1部材12および第2部材16を含む2つ以上の部材を接合して作製されてもよい。具体例としては、第1部材12上に、第1部材12の面積に対して、小さな面積の第2部材16を2つ以上接合した構造であってもよい。
Here, the shape of the 1st base material 12 and the 2nd base material 16 in the structure 10b shown in FIG.2 (f) will not be specifically limited if the joint surface of each member is planar shape.
Alternatively, two or more members including the first member 12 and the second member 16 may be joined. As a specific example, a structure in which two or more second members 16 having a small area with respect to the area of the first member 12 are joined on the first member 12 may be employed.

エポキシ樹脂層14は、紫外線で露光されるエポキシ樹脂層14aおよび紫外線で露光されないエポキシ樹脂層14bを含む2層以上で形成されれば、紫外線で露光されないエポキシ樹脂層14bが1層以上形成されていてもよい。
ここで、紫外線を露光されるエポキシ樹脂層14aは、第1部材12または第2部材16のどちらか一方の接合面に1回目に塗布された層であることが好ましい。紫外線が露光される一方のエポキシ樹脂層14aでは、各部材を接合する前に、重合がはじまり、第1部材12または第2部材16は、エポキシ樹脂層14aまたは14bとの間に、高い接着強度が得られ、エポキシ樹脂組成物(開環型光重合性組成物)の変形が抑制されるからである。
また、エポキシ樹脂層14aおよび14bの厚さは、特に限定されないが、具体例としては、0.5μm〜2mmである構造体10bが挙げられる。
If the epoxy resin layer 14 is formed of two or more layers including the epoxy resin layer 14a exposed to ultraviolet rays and the epoxy resin layer 14b not exposed to ultraviolet rays, one or more epoxy resin layers 14b not exposed to ultraviolet rays are formed. May be.
Here, it is preferable that the epoxy resin layer 14a exposed to ultraviolet rays is a layer applied to the bonding surface of either the first member 12 or the second member 16 for the first time. In one epoxy resin layer 14a exposed to ultraviolet rays, before the respective members are joined, polymerization starts, and the first member 12 or the second member 16 has a high adhesive strength between the epoxy resin layer 14a or 14b. This is because deformation of the epoxy resin composition (ring-opening photopolymerizable composition) is suppressed.
Moreover, although the thickness of the epoxy resin layers 14a and 14b is not specifically limited, As a specific example, the structure 10b which is 0.5 micrometer-2 mm is mentioned.

また、本発明における構造体、接合方法を用いて作製されたマイクロポンプの一実施例として、図3〜5を参照して、マイクロポンプの作製方法について説明する。
図3は、本発明のマイクロポンプを側面図であり、図4は、図3のIV−IVにおける側面断面図であり、図5(A)は、図5のV−Vにおける平面断面図であり、図5(B)は、図5(A)のB−Bにおける断面図である。
In addition, as an example of a micropump manufactured using the structure and bonding method according to the present invention, a method for manufacturing a micropump will be described with reference to FIGS.
3 is a side view of the micropump of the present invention, FIG. 4 is a side sectional view taken along line IV-IV in FIG. 3, and FIG. 5A is a plan sectional view taken along line V-V in FIG. FIG. 5B is a cross-sectional view taken along line BB in FIG.

マイクロポンプ20は、下記のように作製される。
まず、シリコンハンドル層22とシリコン活性層24から成るSOI(Silicon-on-insulator)基板に、下部電極26と、PZT膜28と、上部電極30とをスパッタ法により順次積層した基板36を作製する。
また、シリコン基板32に、流路34をドライエッチングして作製した基板38を作製する。
また、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)としてSU−8 3005 (化薬マイクロケム社製)を用意した。
The micropump 20 is manufactured as follows.
First, a substrate 36 in which a lower electrode 26, a PZT film 28, and an upper electrode 30 are sequentially laminated on an SOI (Silicon-on-insulator) substrate composed of a silicon handle layer 22 and a silicon active layer 24 by a sputtering method is manufactured. .
Further, a substrate 38 produced by dry etching the flow path 34 on the silicon substrate 32 is produced.
Moreover, SU-8 3005 (made by Kayaku Microchem Corporation) was prepared as a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition).

シリコンハンドル層22とシリコン活性層24からなるSOI(Silicon-on-insulator)基板に、下部電極26、PZT膜28、上部電極30を順次スパッタ法により形成した基板36を作製後、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)をシリコンハンドル層22の裏面にスピンコートし、溶媒を揮発させるためにプリベークした。
次に、i線365nmの紫外線を150mJ/cm2照射し、再度、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)をスピンコートした後、基板38を接合し、1時間、150℃でオーブンによりベークした。
After producing a substrate 36 in which a lower electrode 26, a PZT film 28, and an upper electrode 30 are sequentially formed on an SOI (Silicon-on-insulator) substrate comprising a silicon handle layer 22 and a silicon active layer 24, a photo-cationic polymerization type An epoxy resin composition (ring-opening photopolymerizable composition) was spin-coated on the back surface of the silicon handle layer 22 and pre-baked to volatilize the solvent.
Next, 150 mJ / cm 2 of ultraviolet rays having an i-line of 365 nm are irradiated, and a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) is spin-coated again. And baked in an oven at 150 ° C.

以上の接合方法により、マイクロポンプ20が作製される。
上記方法により、マイクロ流路を形成する構造体に、本発明の構造体、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)による接合方法を用いたマイクロポンプ20であれば、接着信頼性の高い、すなわち、接着不良性が低く、接着強度の高いマイクロポンプ20を得ることができる。
このような本発明の構造体および接合方法を用いて作製されたマイクロポンプ20は、マイクロ流路デバイスまたは液滴吐出デバイスに搭載することができる。
The micropump 20 is manufactured by the above joining method.
If it is the micropump 20 which used the joining method by the structure of this invention, and a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) for the structure which forms a microchannel by the said method. Therefore, the micropump 20 having high adhesion reliability, that is, low adhesion failure and high adhesion strength can be obtained.
The micropump 20 manufactured using such a structure and bonding method of the present invention can be mounted on a microchannel device or a droplet discharge device.

光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)(商品名 SU−8 2002 化薬マイクロケム社製)を用いて、下記3つの接合方法により、シリコン基板同士を接合した各サンプルを作製した。   Each of the silicon substrates bonded to each other by the following three bonding methods using a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) (trade name: SU-8 2002, manufactured by Kayaku Microchem Corporation). A sample was made.

〔比較例1〕
シリコン基板に光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を厚さ3μmになるようにスピンコートし、溶媒を揮発させるためにプリベーク後、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を塗布した3mm角のシリコンテストチップを乗せて25gの錘をのせ、150℃、1時間オーブンでベークする。
〔比較例2〕
シリコン基板に光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を厚さ3μmになるようにスピンコートし、溶媒を揮発させるためにプリベーク後、i線365nmの紫外線を100mJ/cm2照射し、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を塗布していない3mm角のシリコンテストチップを乗せて25gの錘をのせ、150℃、1時間オーブンでベークする。
〔実施例1〕
シリコン基板に、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を厚さ3μmになるようにスピンコートし、溶媒を揮発させるためにプリベーク後、i線365nmの紫外線を100mJ/cm2照射し、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を塗布しプリベークした3mm角のシリコンテストチップを乗せて25gの錘をのせ、150℃、1時間オーブンでベークする。
[Comparative Example 1]
A photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) is spin-coated on a silicon substrate to a thickness of 3 μm, pre-baked to volatilize the solvent, and then photocationic polymerization type epoxy resin composition A 3 mm square silicon test chip coated with the (ring-opening photopolymerizable composition) is placed on the 25 g weight, and baked in an oven at 150 ° C. for 1 hour.
[Comparative Example 2]
A silicon substrate is spin-coated with a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) to a thickness of 3 μm, pre-baked to evaporate the solvent, and then irradiated with ultraviolet rays of i-line 365 nm of 100 mJ / cm 2 was irradiated, light cationic polymerization type epoxy resin composition (a ring-opening type photopolymerizable composition) topped with silicon test chip of 3mm square not applied in placed a weight of 25 g, 0.99 ° C., at 1 hour oven Bake.
[Example 1]
A silicon substrate is spin-coated with a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) to a thickness of 3 μm, pre-baked to evaporate the solvent, and then irradiated with ultraviolet rays of i-line 365 nm at 100 mJ. / cm 2 irradiation, a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) is applied and a pre-baked 3 mm square silicon test chip is placed on a 25 g weight, oven at 150 ° C. for 1 hour Bake with.

(シェア強度測定、及び全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比測定)
上記サンプルを作製後、ダイシェア測定器(series 4000 dage社製)を用いて、シェア強度を測定した。結果を図6に示す。
紫外線を照射しなかった比較例1のサンプルは、接着不良はなかったが、全体的に強度が低かった。また、顕微ATR-IR装置(VARIAN製 FTS-7000(本体)/UMA600(顕微))を用いて、剥離した光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)のシリコン基板側とシリコンテストチップ側の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比をATR-IR測定すると共にI912/I1607値=0.60で差は殆ど無かった。
紫外線を照射した比較例2のサンプルは、高いシェア強度を得られる箇所もあったが、全く接着がなされていない接着不良が発生した。また、剥離した光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)のシリコン基板側とシリコンテストチップ側の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比をATR-IR測定するとテストチップ側はI912/I1607=0.22、シリコン基板側はI912/I1607=0.21でその差は0.01であった。
紫外線を照射し、かつシリコンテストチップにも光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を塗布した実施例1のサンプルは、シリコンテストチップを接合する前に、紫外線が照射され、重合が開始されているので、高い接着強度が得られている。また、剥離した光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)のシリコン基板側とシリコンテストチップ側の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比をATR-IR測定するとテストチップ側は、I912/I1607=0.25、シリコン基板側はI912/I1607=0.21で、その差は0.04であった。
シリコンテストチップ接合時、シリコンテストチップの光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)は硬化が始まっていないため、接合面における柔軟性および密着性が高められた。
以上の結果から、実施例1のサンプルは、比較例1および2のサンプルと比較して、接着不良の発生を抑制できることが確認された。
(Share intensity measurement and total reflection infrared absorption method (ATR-IR) epoxy group infrared absorption intensity ratio measurement)
After producing the sample, the shear strength was measured using a die shear measuring device (series 4000 dage). The results are shown in FIG.
The sample of Comparative Example 1 that was not irradiated with ultraviolet rays did not have poor adhesion, but the overall strength was low. Moreover, the silicon substrate side of the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) peeled off using a microscopic ATR-IR device (VARTS FTS-7000 (main body) / UMA600 (microscopic)) ATR-IR measurement of the epoxy group infrared absorption intensity ratio of the total reflection infrared absorption method (ATR-IR) on the silicon test chip side and I 912 / I 1607 value = 0.60 showed little difference.
In the sample of Comparative Example 2 irradiated with ultraviolet rays, there were places where high shear strength could be obtained, but adhesion failure occurred without any adhesion. Also, the epoxy group infrared absorption of the total reflection infrared absorption method (ATR-IR) on the silicon substrate side and the silicon test chip side of the peeled photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) When the intensity ratio was measured by ATR-IR, I 912 / I 1607 = 0.22 on the test chip side, I 912 / I 1607 = 0.21 on the silicon substrate side, and the difference was 0.01.
The sample of Example 1, which was irradiated with ultraviolet light and coated with a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) on a silicon test chip, was irradiated with ultraviolet light before bonding the silicon test chip. Since irradiation and polymerization have been started, high adhesive strength is obtained. Also, the epoxy group infrared absorption of the total reflection infrared absorption method (ATR-IR) on the silicon substrate side and the silicon test chip side of the peeled photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) When the intensity ratio was measured by ATR-IR, I 912 / I 1607 = 0.25 on the test chip side and I 912 / I 1607 = 0.21 on the silicon substrate side, and the difference was 0.04.
At the time of bonding the silicon test chip, the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) of the silicon test chip was not cured, so that the flexibility and adhesion at the bonding surface were improved.
From the above results, it was confirmed that the sample of Example 1 can suppress the occurrence of adhesion failure as compared with the samples of Comparative Examples 1 and 2.

次に、粘度、応力の異なる光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)(商品名 SU−8 化薬マイクロケム社製)を用いて、下記接合方法により、シリコン基板同士を接合した各サンプルを作製した。
〔実施例2〕
まず、シリコン基板上に光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を厚さ3μmになるようにスピンコートし、溶媒を揮発させるためにプリベークする。
次に、i線365nmの紫外線を100mJ/cm2照射し、プリベークされた光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)の上に再度、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を厚さ3μmになるようにスピンコートし、溶媒を揮発させるためにプリベークする。
その後、3mm角のシリコンテストチップを接合し、また、そのチップ上に、錘をのせ、150℃、1時間の条件でオーブンによりベークする。
ここで、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)は、商品名 SU−8 2002 化薬マイクロケム社製を使用した。
〔実施例3〕
光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)として、商品名 SU−8 3005 化薬マイクロケム社製を使用し、実施例2と同様の方法で、シリコン基板を接合した。
〔実施例4〕
光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)として、商品名 SU−8 3010 化薬マイクロケム社製を使用し、実施例2と同様の方法で、シリコン基板を接合した。
〔比較例3〕
まず、シリコン基板上に光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)を厚さ3μmになるようにスピンコートし、溶媒を揮発させるためにプリベークする。
その後、紫外線を照射せずに、3mm角のシリコンテストチップを接合し、また、そのチップ上に、錘をのせ、150℃、1時間の条件でオーブンによりベークする。
ここで、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)は、商品名 SU−8 2002 化薬マイクロケム社製を使用した。
Next, using a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) (trade name: SU-8, manufactured by Kayaku Microchem Co., Ltd.) having different viscosities and stresses, a silicon substrate is formed by the following bonding method Each sample which joined each other was produced.
[Example 2]
First, a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) is spin-coated on a silicon substrate so as to have a thickness of 3 μm, and prebaked to volatilize the solvent.
Next, the photocationic polymerization type epoxy resin composition is irradiated again on the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) pre-baked by irradiation with ultraviolet rays of i-line 365 nm at 100 mJ / cm 2 . The (ring-opening photopolymerizable composition) is spin-coated so as to have a thickness of 3 μm, and pre-baked to volatilize the solvent.
Thereafter, a 3 mm square silicon test chip is bonded, and a weight is placed on the chip and baked in an oven at 150 ° C. for 1 hour.
Here, the product name SU-82002 made by Kayaku Microchem Co., Ltd. was used for the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition).
Example 3
As a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition), a product name SU-8 3005 manufactured by Kayaku Microchem Co., Ltd. was used, and a silicon substrate was bonded in the same manner as in Example 2. .
Example 4
As a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition), a product name SU-8 3010 manufactured by Kayaku Microchem Co., Ltd. was used, and a silicon substrate was bonded in the same manner as in Example 2. .
[Comparative Example 3]
First, a photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) is spin-coated on a silicon substrate so as to have a thickness of 3 μm, and prebaked to volatilize the solvent.
Thereafter, a silicon test chip of 3 mm square is bonded without irradiating ultraviolet rays, and a weight is placed on the chip and baked in an oven at 150 ° C. for 1 hour.
Here, the product name SU-82002 made by Kayaku Microchem Co., Ltd. was used for the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition).

(シェア強度測定、及び全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比測定)
上記サンプルを作製後、ダイシェア測定器(series 4000 dage社製)を用いて、シェア強度を測定した。結果を図7に示す。
図7より、実施例2〜4は、比較例3と比較すると、接着不良をゼロに抑え、また飛躍的に高い接合強度を得ることができた。
実施例2〜4のサンプルは、実施例1のサンプルと同様に、シリコンテストチップを接合する前に、紫外線が照射され、重合が開始されているので、高い接着強度が得られている。
また、顕微ATR-IR装置(VARIAN製 FTS-7000(本体)/UMA600(顕微))を用いて、各サンプルの剥離した光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)のシリコン基板側とシリコンテストチップ側の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比をATR-IR測定するとテストチップ側とシリコン基板側のI912/I1607=0.21の差は比較例3で0.03、実施例2で0.04、実施例3で0.04、実施例4で0.05であった。
また、シリコンテストチップ接合時、その接合面の光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)は硬化が始まっていないため、柔軟性および密着性が高められている。
また、光カチオン重合型エポキシ樹脂組成物(開環型光重合性組成物)内部(1回目塗布層)は、紫外線を照射し重合を開始しているので、高い接着強度が得られている。
また、紫外線照射量と2回目塗布後のプリベーク時間の最適化を行うことにより、接着強度のバラツキを抑制することができ、安定した接着をすることができる。
(Share intensity measurement and total reflection infrared absorption method (ATR-IR) epoxy group infrared absorption intensity ratio measurement)
After producing the sample, the shear strength was measured using a die shear measuring device (series 4000 dage). The results are shown in FIG.
From FIG. 7, compared with Comparative Example 3, Examples 2-4 suppressed the adhesion failure to zero, and were able to obtain remarkably high joint strength.
Like the sample of Example 1, the samples of Examples 2 to 4 are irradiated with ultraviolet rays before polymerization of the silicon test chip and the polymerization is started, so that high adhesive strength is obtained.
In addition, using a microscopic ATR-IR apparatus (VARIAN FTS-7000 (main body) / UMA600 (microscopic)), the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) from which each sample was peeled off. When the ATR-IR measurement of the ratio of epoxy group infrared absorption of the total reflection infrared absorption method (ATR-IR) between the silicon substrate side and the silicon test chip side is I 912 / I 1607 = 0.21 between the test chip side and the silicon substrate side The difference was 0.03 in Comparative Example 3, 0.04 in Example 2, 0.04 in Example 3, and 0.05 in Example 4.
Further, at the time of bonding the silicon test chip, since the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) on the bonding surface has not started to be cured, flexibility and adhesion are improved.
In addition, since the inside of the photocationic polymerization type epoxy resin composition (ring-opening type photopolymerizable composition) (first coating layer) is irradiated with ultraviolet rays to initiate polymerization, high adhesive strength is obtained.
Further, by optimizing the ultraviolet irradiation amount and the pre-bake time after the second application, variations in the adhesive strength can be suppressed, and stable adhesion can be achieved.

本発明の接合方法を用いた構造体の作製方法を示す図である。It is a figure which shows the preparation methods of the structure using the joining method of this invention. 本発明の接合方法を用いた構造体の作製方法を示す図である。It is a figure which shows the preparation methods of the structure using the joining method of this invention. 本発明における接合方法を用いたマイクロポンプを示す図である。It is a figure which shows the micropump using the joining method in this invention. 本発明における接合方法を用いたマイクロポンプを示す図である。It is a figure which shows the micropump using the joining method in this invention. 本発明における接合方法を用いたマイクロポンプを示す図である。It is a figure which shows the micropump using the joining method in this invention. 各サンプルにおけるシェア強度測定の結果を示す図である。It is a figure which shows the result of the shear strength measurement in each sample. 各サンプルにおけるシェア強度測定の結果を示す図である。It is a figure which shows the result of the shear strength measurement in each sample.

符号の説明Explanation of symbols

10a,10b 構造体
12 第1部材
14 エポキシ樹脂層
14a エポキシ樹脂層(紫外線照射有)
14b エポキシ樹脂層(紫外線照射無)
16 第2部材
20 液体吐出デバイス
22、シリコンハンドル層
24 シリコン活性層
26 下部電極
28 PZT膜
30 上部電極
32 シリコン基板
34 流路
36、38 基板
10a, 10b Structure 12 First member 14 Epoxy resin layer 14a Epoxy resin layer (with UV irradiation)
14b Epoxy resin layer (no UV irradiation)
16 Second member 20 Liquid ejection device 22, Silicon handle layer 24 Silicon active layer 26 Lower electrode 28 PZT film 30 Upper electrode 32 Silicon substrate 34 Channel 36, 38 Substrate

Claims (11)

開環型光重合性組成物を用いて、第1部材および第2部材を含む2以上の部材を接合してなる構造体であって、
互いに接合された前記第1部材の接合面における前記開環型光重合性組成物の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比と前記第2部材の接合面における前記開環型光重合性組成物の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比との差が0.04以上あることを特徴とする構造体。
A structure formed by bonding two or more members including a first member and a second member using a ring-opening photopolymerizable composition,
Epoxy group infrared absorption intensity ratio of the total reflection infrared absorption method (ATR-IR) of the ring-opening photopolymerizable composition on the bonding surface of the first member bonded to each other and the bonding surface of the second member A structure having a difference of 0.04 or more from an epoxy group infrared absorption intensity ratio of the total reflection infrared absorption method (ATR-IR) of the ring-opening photopolymerizable composition in the above.
開環型光重合性組成物を用いて、第1部材および第2部材を含む2以上の部材を接合するに際し、
互いに接合される前記第1部材および前記第2部材の各接合面にそれぞれ1回以上、もしくは、前記第1部材の接合面または前記第2部材の接合面に2回以上、前記開環型光重合性組成物を塗布する塗布工程と、
前記第1部材および前記第2部材の一方の部材の接合面に塗布された前記開環型光重合性組成物に紫外線を露光する露光工程と、
前記第1部材および前記第2部材の他方の部材の接合面を前記一方の部材の接合面に接合する接合工程と、を含み、
互いに接合された前記一方の部材の接合面と前記他方の部材の接合面との間には、前記紫外線で露光されていない前記開環型光重合性組成物の部分を含むことを特徴とする接合方法。
When joining two or more members including the first member and the second member using the ring-opening photopolymerizable composition,
The ring-opening light is used once or more on each joining surface of the first member and the second member joined to each other, or twice or more on the joining surface of the first member or the joining surface of the second member. An application step of applying the polymerizable composition;
An exposure step of exposing the ring-opening photopolymerizable composition applied to the bonding surface of one of the first member and the second member to ultraviolet rays;
Joining a joining surface of the other member of the first member and the second member to a joining surface of the one member,
A portion of the ring-opening photopolymerizable composition that has not been exposed to the ultraviolet rays is included between the bonding surface of the one member bonded to each other and the bonding surface of the other member. Joining method.
前記塗布工程は、前記一方の部材の前記接合面に前記開環型光重合性組成物を1回以上塗布する第1塗布工程と、前記紫外線が露光された前記一方の部材の接合面の前記開環型光重合性組成物上に、さらに前記開環型光重合性組成物を1回以上塗布する第2塗布工程とを有し、
前記露光工程は、前記一方の部材の前記接合面に塗布された前記開環型光重合性組成物に前記紫外線を露光する工程であり、
前記接合工程は、前記一方の部材の接合面の前記紫外線が露光された前記開環型光重合性組成物上に塗布されている、かつ前記紫外線が露光されていない前記開環型光重合性組成物に前記他方の部材の接合面を接合する工程である請求項2に記載の接合方法。
The application step includes a first application step of applying the ring-opening photopolymerizable composition one or more times to the joint surface of the one member, and the joint surface of the one member exposed to the ultraviolet light. A second coating step of applying the ring-opening photopolymerizable composition one or more times on the ring-opening photopolymerizable composition;
The exposure step is a step of exposing the ultraviolet light to the ring-opening photopolymerizable composition applied to the joint surface of the one member,
In the bonding step, the ring-opening photopolymerizability is applied on the ring-opening photopolymerizable composition exposed to the ultraviolet ray on the bonding surface of the one member, and the ultraviolet ray is not exposed. The joining method according to claim 2, which is a step of joining the joining surface of the other member to the composition.
前記第1部材の接合面に前記開環型光重合性組成物を1回目に塗布し、前記第1部材の接合面に1回目に塗布された前記開環型光重合性組成物に前記紫外線を露光した後、前記紫外線が露光された前記開環型光重合性組成物上に、さらに、前記開環型光重合性組成物を2回目に塗布し、前記第1部材の接合面に2回目に塗布された前記開環型光重合性組成物上に前記紫外線を露光せずに、前記第2部材の接合面を接合する請求項3に記載の接合方法。   The ring-opening photopolymerizable composition is applied to the bonding surface of the first member for the first time, and the ultraviolet light is applied to the ring-opening photopolymerizable composition applied to the bonding surface of the first member for the first time. Then, the ring-opening photopolymerizable composition is further applied on the ring-opening photopolymerizable composition exposed to the ultraviolet rays for the second time, and 2 is applied to the bonding surface of the first member. The bonding method according to claim 3, wherein the bonding surface of the second member is bonded to the ring-opening photopolymerizable composition applied for the second time without exposing the ultraviolet light. 前記塗布工程は、前記一方の部材の前記接合面に前記開環型光重合性組成物を1回以上塗布する工程と、前記他方の部材の接合面に前記開環型光重合性組成物を1回以上塗布する工程とを有し、
前記露光工程は、前記一方の部材の前記接合面に塗布された前記開環型光重合性組成物に前記紫外線を露光する工程であり、
前記接合工程は、前記一方の部材の接合面に塗布された後に前記紫外線が露光された前記開環型光重合性組成物と、前記他方の部材の接合面に塗布された後に前記紫外線が露光されていない前記開環型光重合性組成物とを接着する工程である請求項2に記載の接合方法。
The application step includes applying the ring-opening photopolymerizable composition to the joint surface of the one member at least once, and applying the ring-opening photopolymerizable composition to the joint surface of the other member. And a step of applying at least once,
The exposure step is a step of exposing the ultraviolet light to the ring-opening photopolymerizable composition applied to the joint surface of the one member,
The bonding step includes the ring-opening photopolymerizable composition that has been exposed to the ultraviolet light after being applied to the bonding surface of the one member, and the ultraviolet light that has been applied to the bonding surface of the other member. The bonding method according to claim 2, which is a step of bonding the ring-opening photopolymerizable composition that has not been performed.
前記第1部材の接合面および前記第2部材の接合面にそれぞれ前記開環型光重合性組成物を塗布し、前記第1部材の接合面に塗布された前記開環型光重合性組成物に前記紫外線を露光した後、前記第1部材の接合面の前記紫外線が露光された前記開環型光重合性組成物と、前記第2部材の接合面に塗布されている、かつ前記紫外線を露光されていない前記開環型光重合性組成物とを接合する請求項5に記載の接合方法。   The ring-opening photopolymerizable composition applied to the bonding surface of the first member by applying the ring-opening photopolymerizable composition to the bonding surface of the first member and the bonding surface of the second member, respectively. After the exposure to the ultraviolet light, the ring-opening photopolymerizable composition exposed to the ultraviolet light of the bonding surface of the first member, and the ultraviolet light applied to the bonding surface of the second member The joining method according to claim 5, wherein the ring-opening photopolymerizable composition that has not been exposed is joined. 互いに接合された前記第1部材の接合面および前記第2部材の接合面の間に存在する、前記紫外線が露光された前記開環型光重合性組成物の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比と前記紫外線が露光されていない前記開環型光重合性組成物の全反射型赤外吸収法(ATR−IR)のエポキシ基赤外吸収強度比との差が0.04以上ある請求項2〜6のいずれかに記載の接合方法。   The total reflection infrared absorption method (ATR) of the ring-opening photopolymerizable composition exposed to the ultraviolet ray, which is present between the bonding surface of the first member and the bonding surface of the second member bonded to each other. -IR) epoxy group infrared absorption intensity ratio and epoxy group infrared absorption intensity ratio of the total reflection infrared absorption method (ATR-IR) of the ring-opening photopolymerizable composition not exposed to ultraviolet light The bonding method according to claim 2, wherein the difference is 0.04 or more. 請求項1に記載の構造体を用いたマイクロポンプを搭載するマイクロ流路デバイス。   A microchannel device equipped with a micropump using the structure according to claim 1. 請求項2〜7のいずれかに記載の接合方法を用いて作製されたマイクロポンプを搭載するマイクロ流路デバイス。   A microchannel device equipped with a micropump manufactured using the bonding method according to claim 2. 請求項1に記載の構造体を用いたマイクロポンプを搭載する液滴吐出デバイス。   A droplet discharge device equipped with a micropump using the structure according to claim 1. 請求項2〜7のいずれかに記載の接合方法を用いて作製されたマイクロポンプを搭載する液滴吐出デバイス。   A droplet discharge device equipped with a micropump manufactured using the bonding method according to claim 2.
JP2008235113A 2008-09-12 2008-09-12 Structure using ring-opening photopolymerizable composition, and bonding method Expired - Fee Related JP5178420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235113A JP5178420B2 (en) 2008-09-12 2008-09-12 Structure using ring-opening photopolymerizable composition, and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235113A JP5178420B2 (en) 2008-09-12 2008-09-12 Structure using ring-opening photopolymerizable composition, and bonding method

Publications (2)

Publication Number Publication Date
JP2010064441A true JP2010064441A (en) 2010-03-25
JP5178420B2 JP5178420B2 (en) 2013-04-10

Family

ID=42190439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235113A Expired - Fee Related JP5178420B2 (en) 2008-09-12 2008-09-12 Structure using ring-opening photopolymerizable composition, and bonding method

Country Status (1)

Country Link
JP (1) JP5178420B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366660B2 (en) * 1982-12-24 1988-12-21 Asahi Glass Co Ltd
JPH0243048A (en) * 1988-08-03 1990-02-13 Mitsui Toatsu Chem Inc Manufacture of multi-layer laminated board
JP2000001660A (en) * 1998-06-16 2000-01-07 Kansai Paint Co Ltd Electron beam-curable adhesive and polyester film- laminated metal plate using the same
JP2008149521A (en) * 2006-12-15 2008-07-03 Canon Inc Liquid ejection head and its manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366660B2 (en) * 1982-12-24 1988-12-21 Asahi Glass Co Ltd
JPH0243048A (en) * 1988-08-03 1990-02-13 Mitsui Toatsu Chem Inc Manufacture of multi-layer laminated board
JP2000001660A (en) * 1998-06-16 2000-01-07 Kansai Paint Co Ltd Electron beam-curable adhesive and polyester film- laminated metal plate using the same
JP2008149521A (en) * 2006-12-15 2008-07-03 Canon Inc Liquid ejection head and its manufacturing process

Also Published As

Publication number Publication date
JP5178420B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
EP2904636B1 (en) Method and system for providing a releasable substrate on a carrier
JP5028486B2 (en) Manufacturing method of semiconductor device
TW200800791A (en) Packaging of mems devices
US9023669B2 (en) Processing method of silicon substrate and liquid ejection head manufacturing method
WO2013135066A1 (en) Method for preparing flexible display device
JP2011233711A (en) Method of manufacturing semiconductor device
JP2013153084A (en) Production method of pattern structure and base material for patterning used therein
WO2013054792A1 (en) Method for manufacturing electronic device with adherent resin layer
JP2009029043A (en) Manufacturing method for ink jet recording head
JP2018202826A (en) Method for manufacturing substrate joint, method for manufacturing liquid discharge head, substrate joint, and liquid discharge head
Gutierrez-Rivera et al. Multilayer bonding using a conformal adsorbate film (CAF) for the fabrication of 3D monolithic microfluidic devices in photopolymer
JP5178420B2 (en) Structure using ring-opening photopolymerizable composition, and bonding method
US20070148588A1 (en) Methods of releasing photoresist film from substrate and bonding photoresist film with second substrate
CN101421826A (en) Packaging of mems devices
JP6699903B2 (en) Pattern forming method, semiconductor device and manufacturing method thereof
US20070072330A1 (en) Wafer bonding compatible with bulk micro-machining
Forsberg et al. A comparative study of the bonding energy in adhesive wafer bonding
JP2019155550A (en) Method for manufacturing micro-flow passage
JP2015099864A (en) Method for manufacturing thin film piezoelectric actuator
EP3447578A1 (en) Three-dimensional structure, method for making three-dimensional structure, and fluid ejection device
JP6977089B2 (en) Manufacturing method of structure and manufacturing method of liquid discharge head
JP2006224193A (en) Electronic device and manufacturing method of electronic device
Zoschke et al. Evolution of structured adhesive wafer to wafer bonding enabled by laser direct patterning of polymer resins
JPH0698773B2 (en) Inkjet head manufacturing method
US20230055886A1 (en) Flow path member and liquid discharge head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R150 Certificate of patent or registration of utility model

Ref document number: 5178420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees