JP2010064039A - Apparatus and method for treating wastewater - Google Patents

Apparatus and method for treating wastewater Download PDF

Info

Publication number
JP2010064039A
JP2010064039A JP2008234992A JP2008234992A JP2010064039A JP 2010064039 A JP2010064039 A JP 2010064039A JP 2008234992 A JP2008234992 A JP 2008234992A JP 2008234992 A JP2008234992 A JP 2008234992A JP 2010064039 A JP2010064039 A JP 2010064039A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
liquid
membrane module
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008234992A
Other languages
Japanese (ja)
Other versions
JP5797874B2 (en
Inventor
Noritaka Shibata
規孝 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Engineering Co Ltd filed Critical Mitsubishi Rayon Engineering Co Ltd
Priority to JP2008234992A priority Critical patent/JP5797874B2/en
Publication of JP2010064039A publication Critical patent/JP2010064039A/en
Application granted granted Critical
Publication of JP5797874B2 publication Critical patent/JP5797874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for treating wastewater capable of appropriately suppressing tangling and warping of hollow fiber membranes, clogging on a hollow fiber membrane surface, and clogging between the hollow fiber membranes, and capable of thereby treating the wastewater stably. <P>SOLUTION: The apparatus for treating the wastewater includes: an anaerobic treatment tank 2 and an aerobic treatment tank 3, both for purifying raw wastewater; a hollow fiber membrane module 4 for solid-liquid separation treatment; a conveying pump 5 for delivering a first treated water in the aerobic treatment tank 3 into the hollow fiber membrane module 4; and a minute bubble generator for mixing minute bubbles having a diameter of 100 μm or below into a water flow coming into contact with a hollow fiber membrane bundle. The hollow fiber membrane module 4 includes a hollow fiber membrane bundle comprising a plurality of hollow fiber membranes, one end of which is a fixed end and the other end a free end. At the fixed end of the membrane, the inside of the membranes 23 communicates with a water collecting portion which collects filtrate having filtered through the hollow fiber membrane. The length direction of the hollow fiber membrane is almost horizontal. The direction of the water flowing into the hollow fiber membrane module 4 is the one from the fixed end to the free end of the hollow fiber membrane. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、下排水処理や産業排水処理など、汚濁性の高い液体を処理するのに好適な排水処理装置、および排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method suitable for treating highly pollutant liquids such as sewage wastewater treatment and industrial wastewater treatment.

従来より、膜分離の技術は、無菌水、飲料水、高度純水の製造や、空気の浄化等に数多く使用されてきたが、これらの用途に加えて、近年では、下水処理場における2次処理、3次処理や、浄化槽における固液分離、産業排水中の懸濁物質の固液分離など、高汚濁性水の処理用途にも用いられるようになっている。
中でも、活性汚泥中に分離膜を浸漬させ、その下方よりバブリングを行い、微生物による好気的処理と分離膜の洗浄を同時に行う方法は、汚泥の沈降性にかかわらず良好な分離が可能であることや、MLSS(Mixed liquor suspended solids)濃度を高めて容積あたりの処理効率を高めることができるといった利点があるため、近年注目を集めており、実用化が進みつつある。
中空糸膜モジュールを実際のし尿処理などの排水処理用途に使用する際の問題点として、排水中の非常に細かい繊維状屑(し渣)の中空糸膜への絡み付きがあげられる。このし渣は、大きなものは前処理などで除去されるが、前処理で除去しきれないような非常に小さなし渣が中空糸膜に絡むことで粗大化していく。中空糸膜にし渣が一旦絡むと除去が困難であり、し渣の絡みが徐々に蓄積していき、そこを核として汚泥が付着堆積していく。そして堆積した汚泥が塊となり中空糸膜間を閉塞し、ろ過差圧が上昇してしまう現象が起こるため、排水中での中空糸膜モジュールの使用は困難であった。
Conventionally, many membrane separation techniques have been used in the production of aseptic water, drinking water, highly pure water, air purification, etc. In addition to these applications, in recent years, secondary technologies in sewage treatment plants have been used. It is also used for the treatment of highly polluted water such as treatment, tertiary treatment, solid-liquid separation in septic tanks, and solid-liquid separation of suspended solids in industrial wastewater.
Above all, the method of immersing the separation membrane in activated sludge, bubbling from below, and simultaneously performing the aerobic treatment with microorganisms and washing the separation membrane can achieve good separation regardless of the sedimentation property of the sludge. In addition, since there is an advantage that the processing efficiency per volume can be increased by increasing the concentration of MLSS (Mixed liquor suspended solids), it has attracted attention in recent years and is being put into practical use.
As a problem when the hollow fiber membrane module is used for wastewater treatment such as actual human waste treatment, entanglement of very fine fibrous debris in the wastewater with the hollow fiber membrane can be mentioned. Large residue is removed by pretreatment or the like, but it becomes coarse by enveloping very small residue that cannot be removed by pretreatment in the hollow fiber membrane. Once the residue is entangled with the hollow fiber membrane, it is difficult to remove, and the entanglement of the residue gradually accumulates, and sludge adheres and accumulates using the residue as a core. The accumulated sludge becomes a lump and closes the space between the hollow fiber membranes, resulting in an increase in the differential pressure of filtration, which makes it difficult to use the hollow fiber membrane module in the waste water.

かかるし渣の中空糸膜への絡み付きを防止する対策として、下記特許文献1および特許文献2では、活性汚泥処理槽内または膜分離槽内に中空糸膜モジュールを、中空糸膜の長さ方向が縦方向となるように配し、中空糸膜の上端を自由端とするととともに、中空糸膜の下方に曝気装置または散気装置を設けて旋回流を発生させるように構成した装置が提案されている。中空糸膜に絡み付いたし渣は中空糸膜の長さ方向に沿っては移動可能であるため、旋回流の上昇流部分を利用して中空糸膜の下部から上端の自由端に向かう上昇流を付与することにより、し渣の絡みを防止しようとするものである。また中空糸膜の上端が自由端となっており、水流によって自在に揺動するため、中空糸膜間に汚泥が堆積し難く、し渣の絡みも起こり難い。
特許第3918304号公報 特開2006−142303号公報
As countermeasures for preventing the stagnation of the residue on the hollow fiber membrane, in Patent Document 1 and Patent Document 2 below, the hollow fiber membrane module is placed in the activated sludge treatment tank or the membrane separation tank, and the length direction of the hollow fiber membrane is Is arranged in such a manner that the upper end of the hollow fiber membrane is a free end, and an aeration device or an aeration device is provided below the hollow fiber membrane to generate a swirling flow. ing. Since the residue entangled with the hollow fiber membrane can move along the length of the hollow fiber membrane, the upward flow from the lower part of the hollow fiber membrane toward the free end at the upper end is utilized using the upward flow portion of the swirl flow. By adding the above, it is intended to prevent tangling of the residue. Further, since the upper end of the hollow fiber membrane is a free end and freely swings by the water flow, sludge is unlikely to accumulate between the hollow fiber membranes, and entanglement of the residue hardly occurs.
Japanese Patent No. 3918304 JP 2006-142303 A

しかしながら特許文献1,2に記載されている構成では、中空糸膜の長さ方向が縦方向であり、中空糸膜の上端が自由端となっているため、自立性の不足により中空糸膜が反り返りやすいという問題がある。また中空糸膜の下端側から上端側へ向かう水流が付与されている状態では中空糸膜同士の絡みは生じ難いが、例えばモジュールの設置やメンテナンスの際などに、運転が停止されてモジュール内の水位が下がると、中空糸膜が自重によって下方に沈み込み、再度水位が上昇したときに、中空糸膜が乱れて互いに絡み合うという問題もある。   However, in the configuration described in Patent Documents 1 and 2, since the length direction of the hollow fiber membrane is the longitudinal direction and the upper end of the hollow fiber membrane is a free end, the hollow fiber membrane is not sufficiently self-supporting. There is a problem that it tends to warp. In addition, in the state where the water flow from the lower end side to the upper end side of the hollow fiber membrane is applied, the entanglement between the hollow fiber membranes is difficult to occur. When the water level drops, the hollow fiber membrane sinks downward due to its own weight, and when the water level rises again, the hollow fiber membranes are disturbed and entangled with each other.

また特許文献1,2に記載されているような、気泡を含む旋回流の上昇流部分に中空糸膜モジュールを配置する方法では、気泡と中空糸膜との接触が不均一、不充分になりやすい。このため、気泡と上昇流によって中空糸膜に付着しているし渣や汚泥がかきとられる効果にムラが生じやすく、中空糸膜表面の閉塞や中空糸膜間の閉塞の防止が充分でない、という問題がある。   Moreover, in the method of disposing the hollow fiber membrane module in the upward flow portion of the swirling flow including bubbles as described in Patent Documents 1 and 2, the contact between the bubbles and the hollow fiber membrane is uneven and insufficient. Cheap. For this reason, unevenness tends to occur in the effect of scraping off residue and sludge attached to the hollow fiber membrane by bubbles and upward flow, and the prevention of blockage of the hollow fiber membrane surface and between the hollow fiber membranes is not sufficient, There is a problem.

本発明は前記事情に鑑みてなされたもので、中空糸膜モジュールを備えた排水処理装置およびこれを用いた排水処理方法において、中空糸膜どうしの絡み、中空糸膜の反り返り、中空糸膜表面の閉塞、および中空糸膜間の閉塞を良好に防止し、安定した排水処理を行うことができるようにすることを目的とする。   The present invention has been made in view of the above circumstances, and in a wastewater treatment apparatus equipped with a hollow fiber membrane module and a wastewater treatment method using the same, the entanglement of the hollow fiber membranes, the warp of the hollow fiber membranes, the surface of the hollow fiber membranes It is an object of the present invention to satisfactorily prevent clogging and blocking between hollow fiber membranes so that stable wastewater treatment can be performed.

前記課題を解決するために、本発明の排水処理装置は、原水の浄化処理を行う原水処理槽と、固液分離を行う中空糸膜モジュールと、前記原水処理槽で処理された液を前記中空糸膜モジュールへ流入させる送液ポンプを備えた排水処理装置であって、前記中空糸膜モジュールは、複数の中空糸膜の一端が互いに接着固定された固定端となっており、他端が自由端となっている中空糸膜束を備えており、前記中空糸膜の固定端で、中空糸膜の内部と該中空糸膜を透過した透過水を集水する集水部とが連通しており、前記中空糸膜の長さ方向が略水平方向であり、前記中空糸膜モジュールへの液の流入方向が、中空糸膜の固定端から自由端に向かう方向であり、前記中空糸膜束に接触する液流中に直径100μm以下の気泡を含有させる、微細気泡発生装置が設けられていることを特徴とする。
前記微細気泡発生装置が、前記送液ポンプから前記中空糸膜モジュールへ至る流路に設けられていることが好ましい。
前記中空糸膜の内部の圧力を、該中空糸膜の外部の圧力よりも低くする吸引手段を備えていることが好ましい。
In order to solve the above problems, a wastewater treatment apparatus of the present invention includes a raw water treatment tank for purifying raw water, a hollow fiber membrane module for performing solid-liquid separation, and a liquid treated in the raw water treatment tank. A wastewater treatment apparatus having a liquid feed pump for flowing into a yarn membrane module, wherein the hollow fiber membrane module is a fixed end in which one end of a plurality of hollow fiber membranes is bonded and fixed to each other, and the other end is free A hollow fiber membrane bundle at the end, and at the fixed end of the hollow fiber membrane, the interior of the hollow fiber membrane communicates with a water collecting portion for collecting permeated water that has permeated through the hollow fiber membrane. The length direction of the hollow fiber membrane is a substantially horizontal direction, and the inflow direction of the liquid into the hollow fiber membrane module is a direction from the fixed end to the free end of the hollow fiber membrane, and the hollow fiber membrane bundle A fine gas containing bubbles of 100 μm or less in the liquid flow in contact with Wherein the generating device is provided.
It is preferable that the fine bubble generating device is provided in a flow path from the liquid feeding pump to the hollow fiber membrane module.
It is preferable that a suction means for lowering the pressure inside the hollow fiber membrane to be lower than the pressure outside the hollow fiber membrane is provided.

本発明の排水処理方法は、原水を浄化処理した液を中空糸膜モジュールへ流入させ、該中空糸膜モジュールで固液分離を行う工程を有する排水処理方法であって、前記中空糸膜モジュールは、複数の中空糸膜の一端が互いに接着固定された固定端となっており、他端が自由端となっている中空糸膜束を備えており、前記中空糸膜の固定端で、中空糸膜の内部と該中空糸膜を透過した透過水を集水する集水部とが連通しており、前記中空糸膜の長さ方向が略水平方向であり、前記中空糸膜モジュールへの液の流入方向が、中空糸膜の固定端から自由端に向かう方向であり、前記中空糸膜束に接触する液流中に直径100μm以下の気泡を含有させることを特徴とする。   The wastewater treatment method of the present invention is a wastewater treatment method comprising a step of causing a liquid obtained by purifying raw water to flow into a hollow fiber membrane module and performing solid-liquid separation with the hollow fiber membrane module, wherein the hollow fiber membrane module includes: And a hollow fiber membrane bundle in which one end of each of the plurality of hollow fiber membranes is bonded and fixed to each other, and the other end is a free end. The inside of the membrane communicates with a water collecting portion for collecting the permeated water that has passed through the hollow fiber membrane, and the length direction of the hollow fiber membrane is a substantially horizontal direction, and the liquid to the hollow fiber membrane module Is a direction from the fixed end of the hollow fiber membrane toward the free end, and bubbles having a diameter of 100 μm or less are contained in the liquid flow contacting the hollow fiber membrane bundle.

本発明によれば、中空糸膜どうしの絡み、中空糸膜の反り返り、中空糸膜表面の閉塞、および中空糸膜間の閉塞を良好に防止して、安定した排水処理を行うことができる排水処理装置および排水処理方法が得られる。   According to the present invention, it is possible to satisfactorily perform wastewater treatment by satisfactorily preventing entanglement of hollow fiber membranes, warping of the hollow fiber membranes, blockage of the surface of the hollow fiber membranes, and blockage between the hollow fiber membranes. A treatment device and a wastewater treatment method are obtained.

以下に図面を用いて本発明を具体的に説明する。なお、本発明は以下の実施態様に限定されるものではない。
図1は、本発明の排水処理装置の一実施形態を示す概略構成図であり、図2は中空糸膜モジュール4の例を模式的に示す断面図である。
本実施形態の排水処理装置は、浄化処理の対象である原水が第1の送液ポンプ10aによって原水流量調整槽1に送液され、ここから第2の送液ポンプ10bにより原水処理槽に送液されるように構成されている。
本実施形態における原水処理槽は嫌気槽2と好気槽3とからなる。原水流量調整槽1内の原水は、まず第2の送液ポンプ10bによって嫌気槽2に送液され、さらに嫌気槽2内の液が第1の循環ポンプ8によって好気槽3に送液される。好気槽3の底部には嫌気槽2と連通する配管が設けられおり、第2の循環ポンプ9により該配管を介して、好気槽3内の液を嫌気槽2へ送液できるようになっている。つまり嫌気槽2と好気槽3は循環可能に構成されている。
原水は、嫌気槽2および好気槽3に保持されている活性汚泥により生物化学的に浄化処理されて第1の処理液となる。該第1の処理液は、生物化学的に浄化された処理水のほかに、活性汚泥、およびし渣等の夾雑物を含む懸濁液である。好気槽3内の下部には活性汚泥に酸素を含む気体を供給するための散気装置11が配されている。
The present invention will be specifically described below with reference to the drawings. In addition, this invention is not limited to the following embodiments.
FIG. 1 is a schematic configuration diagram showing an embodiment of a wastewater treatment apparatus of the present invention, and FIG. 2 is a cross-sectional view schematically showing an example of a hollow fiber membrane module 4.
In the wastewater treatment apparatus of this embodiment, raw water to be purified is fed to the raw water flow rate adjustment tank 1 by the first liquid feed pump 10a, and from here to the raw water treatment tank by the second liquid feed pump 10b. It is configured to be liquid.
The raw water treatment tank in this embodiment includes an anaerobic tank 2 and an aerobic tank 3. The raw water in the raw water flow rate adjusting tank 1 is first sent to the anaerobic tank 2 by the second liquid feed pump 10 b, and further the liquid in the anaerobic tank 2 is sent to the aerobic tank 3 by the first circulation pump 8. The A pipe communicating with the anaerobic tank 2 is provided at the bottom of the aerobic tank 3 so that the liquid in the aerobic tank 3 can be sent to the anaerobic tank 2 via the pipe by the second circulation pump 9. It has become. That is, the anaerobic tank 2 and the aerobic tank 3 are configured to be circulated.
The raw water is biochemically purified by the activated sludge retained in the anaerobic tank 2 and the aerobic tank 3 to become a first treatment liquid. The first treatment liquid is a suspension containing activated sludge and impurities such as residue in addition to biochemically purified treated water. In the lower part of the aerobic tank 3, an air diffuser 11 for supplying a gas containing oxygen to the activated sludge is disposed.

本実施形態では、好気槽3内の第1の処理液の一部を、送液ポンプ5により、微細気泡発生装置6を介して中空糸膜モジュール4に流入させ、中空糸膜23を透過しなかった液を再び好気槽3に戻す循環流路が設けられている。中空糸膜23を透過した透過液(第2の処理液)は、中空糸膜モジュール4の集水管22から取り出される。符号7は中空糸膜モジュール4の集水管22に接続されている吸引ポンプ(吸引手段)を示す。
微細気泡発生装置6は、気体供給手段12から供給される気体を用いて第1の処理液中に微細な気泡を発生させる。これにより、該微細気泡を含む気液混合流が中空糸膜モジュール4に流入される。
In the present embodiment, a part of the first processing liquid in the aerobic tank 3 is caused to flow into the hollow fiber membrane module 4 via the fine bubble generator 6 by the liquid feed pump 5 and permeate the hollow fiber membrane 23. A circulation channel for returning the liquid that has not been returned to the aerobic tank 3 is provided. The permeated liquid (second processing liquid) that has permeated through the hollow fiber membrane 23 is taken out from the water collection pipe 22 of the hollow fiber membrane module 4. Reference numeral 7 denotes a suction pump (suction means) connected to the water collecting pipe 22 of the hollow fiber membrane module 4.
The fine bubble generator 6 generates fine bubbles in the first processing liquid using the gas supplied from the gas supply means 12. Thereby, the gas-liquid mixed flow containing the fine bubbles flows into the hollow fiber membrane module 4.

本実施形態では、散気装置11及び微細気泡発生装置6に、共通の気体供給手段12から、酸素を含む気体が送られるようになっている。該気体は例えば空気である。気体供給手段12としてブロワーを用いることが好ましいが、その他コンプレッサー、ガスボンベ、圧縮タンク等を用いることもできる。   In the present embodiment, a gas containing oxygen is sent from the common gas supply means 12 to the air diffuser 11 and the fine bubble generator 6. The gas is, for example, air. Although it is preferable to use a blower as the gas supply means 12, other compressors, gas cylinders, compression tanks, and the like can also be used.

(微細気泡発生装置)
微細気泡発生装置6は、気泡径100μm以下の気泡を発生させることができる装置であれば特に限定されず、公知のものを適宜使用できる。
微細気泡発生装置6として、例えば以下の方法で微細気泡を発生させる装置を用いることができる。
(1)細孔のフィルタを用いる方法(細孔型、フィルタ型):得ようとする微細気泡の径と同一径のフィルタを介して、液中に加圧気体を吹き込み微細気泡を発生させる方式。
(2)加圧溶解法:まず液中に、径が100μmよりも大きい気泡を含有させ、その液に圧力をかけて気体を過溶解させ、次いで圧力を開放させることにより液中に微細気泡を発生させる方式。
(3)衝撃波法:液流の途中に、流路径が急に細くなる狭窄部を設け、該狭窄部に気体を供給し、その狭窄部に衝撃波(キャビテーション)を与えることにより、微細気泡を発生させる方式。
(4)揃断法:水ジェット等の機械的揃断力を与えることにより、微細気泡を発生させる方式。
(5)旋回法:液体と気体の高速旋回流により空洞を発生させ、その空洞前後の旋回流差で微細気泡を発生させる方式。
(6)超音波法:液中に超音波場を発生させ、その中に細い針先から気体を供給することにより、微細気泡を発生させる方式。
(Microbubble generator)
The fine bubble generating device 6 is not particularly limited as long as it is a device that can generate bubbles having a bubble diameter of 100 μm or less, and a known device can be used as appropriate.
As the fine bubble generating device 6, for example, a device that generates fine bubbles by the following method can be used.
(1) Method using pore filter (pore type, filter type): A method of generating fine bubbles by blowing pressurized gas into the liquid through a filter having the same diameter as the fine bubbles to be obtained. .
(2) Pressure dissolution method: First, bubbles having a diameter larger than 100 μm are contained in the liquid, the gas is over-dissolved by applying pressure to the liquid, and then the pressure is released to form fine bubbles in the liquid. Generate method.
(3) Shock wave method: In the middle of the liquid flow, a narrowed part whose flow path diameter suddenly narrows is provided, gas is supplied to the narrowed part, and a shock wave (cavitation) is given to the narrowed part to generate fine bubbles. Method to make.
(4) Sorting method: A method of generating fine bubbles by applying a mechanical sorting force such as a water jet.
(5) Swirl method: A method in which a cavity is generated by a high-speed swirling flow of liquid and gas, and fine bubbles are generated by a swirling flow difference before and after the cavity.
(6) Ultrasonic method: A method of generating fine bubbles by generating an ultrasonic field in a liquid and supplying gas from a thin needle tip.

例えば、本実施形態における微細気泡発生装置6は、管内に整流板を有する流入部を備えるとともに、管内に突起物を有するエゼクター部を備えた管状部材と、吸気手段とを備えてなり、ポンプで送水されると、高速流や乱流により吸気した気体を微細化して気液混合流を噴出する装置であってもよい。流入部の整流板は、板状、螺旋状等の形状であり、エゼクター部の突起物は、円筒状、円錐状、角柱状、角錐状、キノコ状等の形状である。例えば、西田鉄工社製のマイクロバブル発生装置を用いることができる。
微細気泡発生装置6への吸気方法は、自然吸気、あるいは加圧エアーのいずれを用いてもよい。特に、中空糸膜モジュール4の長さが2mを越えるような大型モジュールの場合には、より微細な気泡の方が、滞留時間が長くなるため加圧エアーを用いる方がより好ましい。
For example, the microbubble generator 6 in the present embodiment includes an inflow portion having a rectifying plate in a tube, a tubular member having an ejector portion having a protrusion in the tube, and an intake means. When water is supplied, the apparatus may be a device that atomizes gas sucked by high-speed flow or turbulent flow and ejects a gas-liquid mixed flow. The rectifying plate at the inflow portion has a plate shape, a spiral shape, or the like, and the protrusions at the ejector portion have a cylindrical shape, a conical shape, a prism shape, a pyramid shape, a mushroom shape, or the like. For example, a microbubble generator manufactured by Nishida Iron Works can be used.
As a suction method for the fine bubble generating device 6, either natural suction or pressurized air may be used. In particular, in the case of a large module in which the length of the hollow fiber membrane module 4 exceeds 2 m, it is more preferable to use pressurized air because finer bubbles have a longer residence time.

気泡径(気泡の直径)を測定する方法として、光学顕微鏡とビデオカメラを用いた画像処理により測定する方法や、レーザ回折・散乱法が用いられる。例えば、ナノ粒子径分布測定装置SALD-7100(島津製作所)などを用いることができる。
微細気泡発生装置6で発生させる気泡径は0.1μm以上100μm以下であることが好ましく、0.1μm以上50μm以下であることがより好ましく、0.1μm以上10μm以下であることがさらにより好ましい。
As a method of measuring the bubble diameter (bubble diameter), a method of measuring by image processing using an optical microscope and a video camera, or a laser diffraction / scattering method is used. For example, a nanoparticle size distribution measuring device SALD-7100 (Shimadzu Corporation) can be used.
The bubble diameter generated by the fine bubble generator 6 is preferably 0.1 μm or more and 100 μm or less, more preferably 0.1 μm or more and 50 μm or less, and even more preferably 0.1 μm or more and 10 μm or less.

微細気泡発生装置6に流入される第1の処理液は、予めスクリーン等により大きな固形物を除いておくことが好ましい。また大きな固形物を除いた場合であっても、なお目詰まりの懸念が残ることから、必要に応じて、微細気泡発生装置6に清澄な液体を供給して洗浄できるように構成するのが好ましい。該清澄な液体としては、水道水、井戸水、濾液等を用いることができる。また、酸、アルカリ、酸化剤、洗剤等の薬剤を併用することもできる。洗浄は、タイマー等を用いて定期的に自動で行ってもよいし、必要に応じて手動でおこなってもよい。   It is preferable that the first treatment liquid flowing into the fine bubble generating device 6 removes a large solid in advance with a screen or the like. Further, even when a large solid is removed, there is still a concern about clogging, so that it is preferable that a fine liquid can be supplied to the fine bubble generator 6 for cleaning as necessary. . As the clear liquid, tap water, well water, filtrate and the like can be used. In addition, agents such as acids, alkalis, oxidizing agents and detergents can be used in combination. The cleaning may be automatically performed periodically using a timer or the like, or may be performed manually as necessary.

(中空糸膜モジュール)
本実施形態における中空糸膜モジュール4として、例えば図2に示すような容器一体型の中空糸膜モジュールを用いることができる。
本実施形態の中空糸膜モジュール4は、長さ方向Xの一端に流入口20、他端に流出口21を有する略管状のモジュールケース26を備えており、該モジュールケース26の内部は、実質的に循環流路の一部を構成している。
本実施形態において、中空糸膜モジュール4は、長さ方向Xが略水平方向となるように設けられている。
(Hollow fiber membrane module)
As the hollow fiber membrane module 4 in the present embodiment, for example, a container-integrated hollow fiber membrane module as shown in FIG. 2 can be used.
The hollow fiber membrane module 4 of the present embodiment includes a substantially tubular module case 26 having an inflow port 20 at one end in the length direction X and an outflow port 21 at the other end. Part of the circulation channel.
In this embodiment, the hollow fiber membrane module 4 is provided so that the length direction X becomes a substantially horizontal direction.

モジュールケース26としては、ABS樹脂、ポリプロプレン樹脂、ポリカーボネート樹脂などの樹脂製の容器;エポキシ樹脂、ウレンタン樹脂などにガラス繊維、炭素繊維などの強化繊維で補強された繊維強化樹脂製の容器;ステンレスなどの金属製の容器が例示される。   As the module case 26, a container made of a resin such as ABS resin, polypropylene resin, polycarbonate resin, or the like; a container made of fiber reinforced resin reinforced with epoxy fiber, urethane resin, or the like with glass fiber, carbon fiber, or the like; stainless steel A metal container such as is exemplified.

モジュールケース26内には、複数の中空糸膜23を束ねてなる中空糸膜束が、中空糸膜23の長さ方向と、モジュールケース26の長さ方向Xとが平行となるように収容されている。すなわち中空糸膜23の長さ方向Xは略水平方向である。
中空糸膜23は、中空糸膜モジュール4に流入される気液混合流中の微細気泡が強い酸化力を有するため、安定運転のためには、膜強度が強くて耐酸化性および耐久性に優れた材質を用いることが好ましい。たとえば、有機膜としては、ポリフッ化ビニリデン(PVDF)膜、ポリ4フッ化エチレン(PTFE)膜、エチレン−テトラフルオロエチレン共重合体(ETFE)膜、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)膜等のフッ素系樹脂膜が好ましい。特にポリフッ化ビニリデン(PVDF)膜が好ましい。セラミック等の無機膜も好ましい。
A hollow fiber membrane bundle formed by bundling a plurality of hollow fiber membranes 23 is accommodated in the module case 26 so that the length direction of the hollow fiber membranes 23 and the length direction X of the module case 26 are parallel to each other. ing. That is, the length direction X of the hollow fiber membrane 23 is a substantially horizontal direction.
In the hollow fiber membrane 23, since the fine bubbles in the gas-liquid mixed flow flowing into the hollow fiber membrane module 4 have a strong oxidizing power, the membrane strength is strong and the oxidation resistance and durability are stable for stable operation. It is preferable to use an excellent material. For example, as an organic film, a polyvinylidene fluoride (PVDF) film, a polytetrafluoroethylene (PTFE) film, an ethylene-tetrafluoroethylene copolymer (ETFE) film, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer ( A fluorine-based resin film such as a (PFA) film is preferable. A polyvinylidene fluoride (PVDF) film is particularly preferable. An inorganic film such as ceramic is also preferable.

中空糸膜23は、孔径領域がナノ濾過(NF)膜から精密濾過(MF)膜であるものが好ましい。特に分画分子量が100程度のNF膜から、平均孔径が10μm以下のMF膜が好ましい。具体的には固液分離の対象となる物質の粒径に応じて選択される。活性汚泥の固液分離に用いる場合、平均孔径が0.5μm以下が好ましい。   The hollow fiber membrane 23 preferably has a pore size region from a nanofiltration (NF) membrane to a microfiltration (MF) membrane. In particular, an MF membrane having an average pore size of 10 μm or less is preferred from an NF membrane having a fractional molecular weight of about 100. Specifically, it is selected according to the particle size of the substance to be subjected to solid-liquid separation. When used for solid-liquid separation of activated sludge, the average pore size is preferably 0.5 μm or less.

中空糸膜束において、複数の中空糸膜23の一端は公知のポッティング法により、接着剤(ポッティング材)で互いに接着固定され、ポッティング固定部24を形成している。すなわち中空糸膜23の一端は固定端となっている。
ポッティング固定部24の端面は、ポッティング材の硬化後に中空糸膜23の長さ方向に垂直な面で切断することによって、中空糸膜23の固定端を開口させた開口面27となっている。
In the hollow fiber membrane bundle, one ends of the plurality of hollow fiber membranes 23 are bonded and fixed to each other with an adhesive (potting material) by a known potting method to form a potting fixing portion 24. That is, one end of the hollow fiber membrane 23 is a fixed end.
The end surface of the potting fixing portion 24 is an opening surface 27 in which the fixing end of the hollow fiber membrane 23 is opened by cutting along a surface perpendicular to the length direction of the hollow fiber membrane 23 after the potting material is cured.

中空糸膜23のポッティングを行う際に、接着剤を中空糸膜23端部の間および内部に浸透させる方法として、静置した状態で行う「静置法」、または遠心力を用いて浸透させる「遠心法」を用いることができる。接着剤(ポッティング材)としては、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂などの熱硬化性接着剤が好ましい。接着剤の溶液粘度や発熱反応温度を調整するために無機微粒子などを添加してもよい。   When potting the hollow fiber membrane 23, as a method of allowing the adhesive to permeate between and inside the ends of the hollow fiber membrane 23, the “standing method” performed in a standing state or the penetration using centrifugal force A “centrifugation method” can be used. The adhesive (potting material) is preferably a thermosetting adhesive such as an epoxy resin, an unsaturated polyester resin, or a polyurethane resin. In order to adjust the solution viscosity of the adhesive and the exothermic reaction temperature, inorganic fine particles may be added.

ポッティング固定部24は集水器28に液密に取り付けられ、中空糸膜23の固定端の開口面27を介して、中空糸膜23の内部と、集水器28の内部(集水部28a)とが連通している。符号22は、集水部28aと中空糸膜モジュール4の外部とを連通する集水管22である。集水管22には吸引ポンプ7(吸引手段)が接続されている。   The potting fixing part 24 is attached to the water collector 28 in a liquid-tight manner, and the inside of the hollow fiber membrane 23 and the inside of the water collector 28 (the water collecting part 28a) via the opening surface 27 at the fixed end of the hollow fiber membrane 23. ). Reference numeral 22 denotes a water collection pipe 22 that communicates the water collection section 28 a with the outside of the hollow fiber membrane module 4. A suction pump 7 (suction means) is connected to the water collecting pipe 22.

中空糸膜23の他方の端部(先端)は自由端25であり、封止されている。先端の封止方法としては、中空糸膜23の先端を膜自身の熱融着により封止する方法;あるいは先端に熱可塑性樹脂からなるホットメルト樹脂を塗布して封止する方法、または先端に熱硬化性樹脂を塗布して封止する方法が挙げられる。尚、自由端とは中空糸膜の先端部が自在に揺動可能な状態をいう。   The other end (tip) of the hollow fiber membrane 23 is a free end 25 and is sealed. As a method of sealing the tip, a method of sealing the tip of the hollow fiber membrane 23 by heat fusion of the membrane itself; or a method of applying a hot melt resin made of a thermoplastic resin to the tip and sealing, or a tip The method of apply | coating and sealing a thermosetting resin is mentioned. The free end means a state in which the tip of the hollow fiber membrane can swing freely.

本実施形態において、ポッティング固定部24および集水器28の、中空糸膜23の長さ方向Xに垂直な断面は、モジュールケース26の内径よりも小さい外径を有するドーナツ状であり、貫通孔29を有している。ポッティング固定部24および集水器28は、該貫通孔29が、モジュールケース26の流入口20および流出口21と同軸となるように、かつ中空糸膜23の固定端(ポッティング固定部24)が流入口20側で、先端(自由端25)が流出口21側となるように配されている。
したがって、モジュールケース26の流入口20から流入した気液混合流は、集水器28の貫通孔29の内方、およびモジュールケース26の内壁と集水器28の外周面との隙間を通り、モジュールケース26内を満たしながら、中空糸膜23の固定端側から先端側へ向かって流れ、流出口21から流出する。
In the present embodiment, the cross section perpendicular to the length direction X of the hollow fiber membrane 23 of the potting fixing portion 24 and the water collector 28 is a donut shape having an outer diameter smaller than the inner diameter of the module case 26, and the through hole 29. The potting fixing part 24 and the water collector 28 are arranged so that the through hole 29 is coaxial with the inlet 20 and outlet 21 of the module case 26 and the fixing end (potting fixing part 24) of the hollow fiber membrane 23 is On the inlet 20 side, the tip (free end 25) is arranged so as to be on the outlet 21 side.
Therefore, the gas-liquid mixed flow flowing in from the inlet 20 of the module case 26 passes through the inside of the through hole 29 of the water collector 28 and the gap between the inner wall of the module case 26 and the outer peripheral surface of the water collector 28, While filling the inside of the module case 26, the hollow fiber membrane 23 flows from the fixed end side toward the tip end side and flows out from the outflow port 21.

次に、本実施形態の装置を用いて排水処理を行う方法について説明する。
原水を嫌気槽2と好気槽3で公知の手法により浄化処理しつつ、好気槽3内の第1の処理水を送液ポンプ5で微細気泡発生装置6へ送液し、ここで微細気泡を発生させて気液混合流とし、中空糸膜モジュール4に流入させる。
中空糸膜モジュール4の集水管22に接続している吸引ポンプ7を作動させると、集水部28aおよび中空糸膜23の内部の圧力が、中空糸膜23の外部の圧力よりも低くなるため、中空糸膜23の膜面に圧力差が生じ、吸引濾過方式による固液分離が行われる。
したがって、気液混合流として中空糸膜モジュール4内に流入した第1の処理水の一部は、中空糸膜23の膜面でろ過され、中空糸膜23を透過する透過水(第2の処理水)と活性汚泥等とが固液分離される。透過水は中空糸膜23の内部を流れ、中空糸膜の開口面27、集水部28a、および集水管22を経て外部へ取り出される。中空糸膜23を透過しなかった残りの液は流出口21から流出して、好気槽3に戻る。
Next, a method for performing wastewater treatment using the apparatus of the present embodiment will be described.
While purifying the raw water in the anaerobic tank 2 and the aerobic tank 3 by a known method, the first treated water in the aerobic tank 3 is fed to the fine bubble generating device 6 by the liquid feed pump 5, where Bubbles are generated to form a gas-liquid mixed flow and flow into the hollow fiber membrane module 4.
When the suction pump 7 connected to the water collecting pipe 22 of the hollow fiber membrane module 4 is operated, the pressure inside the water collecting portion 28a and the hollow fiber membrane 23 becomes lower than the pressure outside the hollow fiber membrane 23. A pressure difference is generated on the membrane surface of the hollow fiber membrane 23, and solid-liquid separation is performed by a suction filtration method.
Accordingly, a part of the first treated water that has flowed into the hollow fiber membrane module 4 as a gas-liquid mixed flow is filtered on the membrane surface of the hollow fiber membrane 23 and passes through the hollow fiber membrane 23 (second water). Treated water) and activated sludge are separated into solid and liquid. The permeated water flows inside the hollow fiber membrane 23 and is taken out to the outside through the opening surface 27 of the hollow fiber membrane, the water collecting portion 28a, and the water collecting pipe 22. The remaining liquid that has not permeated the hollow fiber membrane 23 flows out from the outlet 21 and returns to the aerobic tank 3.

吸引ポンプ7の作動は間欠的に行ってもよい。運転中、必要に応じて、集水管22から清浄な洗浄水を中空糸膜23の内部に供給して逆洗浄を行うことが好ましい。該洗浄水として中空糸膜23を透過した透過水(第2の処理水)を用いてもよい。
また必要に応じて、送液ポンプ5での送液を停止し、中空糸膜モジュール4内の液を排出して、中空糸膜23のメンテナンス等を行ってもよい。
The operation of the suction pump 7 may be performed intermittently. During operation, it is preferable to carry out reverse washing by supplying clean washing water from the water collecting pipe 22 into the hollow fiber membrane 23 as necessary. Permeated water that has passed through the hollow fiber membrane 23 (second treated water) may be used as the washing water.
In addition, if necessary, the liquid feeding pump 5 may stop feeding the liquid in the hollow fiber membrane module 4 and the hollow fiber membrane 23 may be maintained.

本実施形態においては、原水処理槽(嫌気槽2および好気槽3)で処理された第1の処理液を、送液ポンプ5で中空糸膜モジュール4へ流入させる流路の途中で、直径100μm以下の微細気泡を発生させる。これにより直径100μm以下の微細気泡を含有する液流(気液混合流)が、中空糸膜モジュール4へ流入し、該液流は中空糸膜束に接触する。
このような微細気泡は、通常サイズの直径が1mm以上の気泡(マクロバブル)に比較して、周囲の水との総接触表面積をきわめて大きくすることができるのみならず、表面張力により気泡内部の圧力が極度に高まり、崩壊したときの衝撃により活性酸素を生じて強い酸化力を発揮する。その効果を最大限に活用するにはその滞在時間(中空糸膜束との接触時間)が大きい方が好ましい。
本実施形態において、中空糸膜モジュール4に流入する気液混合流中の気泡が微細であるため、該気泡の液中における上昇速度が小さい。また、中空糸膜モジュール4は中空糸膜23の長さ方向が略水平方向となるように配置されているため、気泡の上昇が中空糸膜23によって妨げられて、気泡と中空糸膜23との接触時間が大きくなりやすい。したがって、微細気泡が中空糸膜モジュール4内の上部に偏り難く、気泡と中空糸膜23との接触が中空糸膜束の全体において均一になりやすい。よって、気泡の接触によって中空糸膜23に付着しているし渣や汚泥をかきとる効果や、微細有機物を酸化分解する効果を充分に得ることができ、中空糸膜23表面の閉塞や中空糸膜23間の閉塞を良好に防止できる。
また中空糸膜23の長さ方向が略水平方向であるため、中空糸膜23どうしの絡みや反り返りが生じ難く、安定した濾過処理を行うことができる。
かかる効果を良好に得るために、中空糸膜23の長さ方向と水平方向とがなす角度は30°以下が好ましく、20°以下がより好ましく、10°以下がさらに好ましい。
In the present embodiment, the diameter of the first treatment liquid treated in the raw water treatment tank (anaerobic tank 2 and aerobic tank 3) is in the middle of the flow path through which the liquid feed pump 5 flows into the hollow fiber membrane module 4. Fine bubbles of 100 μm or less are generated. As a result, a liquid flow (gas-liquid mixed flow) containing fine bubbles having a diameter of 100 μm or less flows into the hollow fiber membrane module 4, and the liquid flow contacts the hollow fiber membrane bundle.
Such fine bubbles can not only greatly increase the total contact surface area with the surrounding water compared to bubbles (macrobubbles) having a normal size diameter of 1 mm or more, but also the inside of the bubbles due to surface tension. The pressure rises extremely, and active oxygen is generated by the impact when it breaks down and exerts strong oxidizing power. In order to make the most of the effect, it is preferable that the residence time (contact time with the hollow fiber membrane bundle) is long.
In this embodiment, since the bubbles in the gas-liquid mixed flow flowing into the hollow fiber membrane module 4 are fine, the rising speed of the bubbles in the liquid is small. Further, since the hollow fiber membrane module 4 is arranged so that the length direction of the hollow fiber membrane 23 is substantially horizontal, the rise of the bubbles is hindered by the hollow fiber membrane 23, and the bubbles, the hollow fiber membranes 23, The contact time tends to increase. Therefore, the fine bubbles are not easily biased upward in the hollow fiber membrane module 4, and the contact between the bubbles and the hollow fiber membranes 23 tends to be uniform in the entire hollow fiber membrane bundle. Therefore, the effect of scraping off residue and sludge adhering to the hollow fiber membrane 23 due to the contact of bubbles and the effect of oxidizing and decomposing fine organic matter can be sufficiently obtained. Blockage between the membranes 23 can be prevented well.
Moreover, since the length direction of the hollow fiber membrane 23 is a substantially horizontal direction, the hollow fiber membrane 23 cannot be easily entangled or warped, and stable filtration can be performed.
In order to obtain such effects satisfactorily, the angle formed by the length direction of the hollow fiber membrane 23 and the horizontal direction is preferably 30 ° or less, more preferably 20 ° or less, and even more preferably 10 ° or less.

また、本実施形態の装置は、中空糸膜23の一端が固定端であり、他端が独立した自由端25であるため、水流によって中空糸膜23が自在に揺動できる。したがって、微細気泡を含む気液混合流によって中空糸膜23に付着しているし渣や汚泥をかきとる効果が、より良好に得られる。
さらに、中空糸膜モジュール4に流入された気液混合流が、中空糸膜23の固定端側から自由端25側へ向かう方向へ流れるように構成されているため、中空糸膜に絡み付いたし渣を中空糸膜の長さ方向に沿って移動させて除去することができる。
また、本実施形態ではポッティング固定部24がドーナツ状に形成されており、中空糸膜束内にも流路が形成されるため、気液混合流と中空糸膜23との接触がより均一になりやすい。
In the apparatus of this embodiment, one end of the hollow fiber membrane 23 is a fixed end, and the other end is an independent free end 25. Therefore, the hollow fiber membrane 23 can freely swing by a water flow. Therefore, the effect of scraping off residue and sludge adhering to the hollow fiber membrane 23 by the gas-liquid mixed flow containing fine bubbles can be obtained more favorably.
Furthermore, since the gas-liquid mixed flow that has flowed into the hollow fiber membrane module 4 is configured to flow in the direction from the fixed end side to the free end 25 side of the hollow fiber membrane 23, it is entangled with the hollow fiber membrane. The residue can be removed by moving along the length of the hollow fiber membrane.
Further, in the present embodiment, the potting fixing portion 24 is formed in a donut shape, and a flow path is also formed in the hollow fiber membrane bundle, so that the contact between the gas-liquid mixed flow and the hollow fiber membrane 23 is made more uniform. Prone.

なお、本実施形態では、第1の処理液を、送液ポンプ5により中空糸膜モジュール4に流入させる流路の途中に微細気泡発生装置6を設けたが、これに限らず、微細気泡発生装置6を設ける位置は、中空糸膜束に接触する液流中に微細気泡を含有させることができる位置であればよい。また必要に応じて複数の微細気泡発生装置を組み合わせて用いてもよい。図3は微細気泡発生装置6を設ける位置の変形例を模式的に示した要部構成図である。図3において図1と同じ構成要素には同じ符号を付している。
例えば図3(a)は、中空糸膜モジュール4のモジュールケース内であって、モジュールケースの流入口と中空糸膜束との間に微細泡発生装置6を設けた例である。
図3(b)は、送液ポンプ5と中空糸膜モジュール4との間の流路から分岐して、中空糸膜モジュール4のモジュールケース26内であって、中空糸膜束よりも上流側に液を流入させるバイパス流路31を設け、該バイパス流路31の途中に微細気泡発生装置6を設けた例である。
図3(c)は、送液ポンプ5と中空糸膜モジュール4との間の流路から分岐し、同じ流路に液を再び戻すバイパス流路32を設け、該バイパス流路32の途中に微細気泡発生装置6を設けた例である。
図3(d)は、送液ポンプ5と中空糸膜モジュール4との間の流路から分岐して、中空糸膜モジュール4のモジュールケース26内であって、中空糸膜束よりも上流側に液を流入させるバイパス流路33を設け、該バイパス流路33から中空糸膜モジュール4へ流入する流入口と中空糸膜束との間に微細気泡発生装置6を設けた例である。
図3(e)は、送液ポンプ5から中空糸膜モジュール4へ流入する液流とは別に、送液ポンプ5を通らずに、モジュールケース26内であって、中空糸膜束よりも上流側に液を流入させる他の流路34を設け、該他の流路34の途中に微細気泡発生装置6を設けた例である。該他の流路34から中空糸膜モジュール4へ流入する液は、第1の処理液でなくてもよく、例えば中空糸膜23を透過しなかった残りの液が好ましい。
In the present embodiment, the fine bubble generator 6 is provided in the middle of the flow path for allowing the first processing liquid to flow into the hollow fiber membrane module 4 by the liquid feed pump 5, but the present invention is not limited to this, and fine bubble generation is performed. The position where the device 6 is provided may be a position where fine bubbles can be contained in the liquid flow contacting the hollow fiber membrane bundle. Moreover, you may use it combining a some fine bubble generator as needed. FIG. 3 is a main part configuration diagram schematically showing a modification of the position where the fine bubble generating device 6 is provided. In FIG. 3, the same components as those in FIG.
For example, FIG. 3A is an example in which the fine bubble generating device 6 is provided in the module case of the hollow fiber membrane module 4 between the inlet of the module case and the hollow fiber membrane bundle.
FIG. 3 (b) shows a branch from the flow path between the liquid feed pump 5 and the hollow fiber membrane module 4 in the module case 26 of the hollow fiber membrane module 4 and upstream of the hollow fiber membrane bundle. This is an example in which a bypass channel 31 through which liquid flows is provided, and a microbubble generator 6 is provided in the middle of the bypass channel 31.
FIG. 3C shows a bypass channel 32 that branches off from the channel between the liquid feed pump 5 and the hollow fiber membrane module 4 and returns the liquid to the same channel again. This is an example in which a microbubble generator 6 is provided.
FIG. 3 (d) shows a branch from the flow path between the liquid feed pump 5 and the hollow fiber membrane module 4, and is inside the module case 26 of the hollow fiber membrane module 4 and upstream of the hollow fiber membrane bundle. This is an example in which a bypass channel 33 through which liquid flows is provided, and a microbubble generator 6 is provided between an inlet port that flows into the hollow fiber membrane module 4 from the bypass channel 33 and the hollow fiber membrane bundle.
FIG. 3 (e) shows the inside of the module case 26, upstream of the hollow fiber membrane bundle, without passing through the liquid feed pump 5, separately from the liquid flow flowing into the hollow fiber membrane module 4 from the liquid feed pump 5. This is an example in which another flow channel 34 through which liquid flows is provided on the side, and the fine bubble generating device 6 is provided in the middle of the other flow channel 34. The liquid flowing into the hollow fiber membrane module 4 from the other flow path 34 may not be the first treatment liquid, and for example, the remaining liquid that has not permeated the hollow fiber membrane 23 is preferable.

特に、中空糸膜モジュール4の構成が複雑化しない点では、図1に示すように送液ポンプ5から中空糸膜モジュール4へ至る流路に微細気泡発生装置6を設けるか、または図3(b)、(c)に示すように、送液ポンプ5と中空糸膜モジュール4との間の流路から分岐したバイパス流路31,32に微細気泡発生装置6を設けることが好ましい。さらに、装置の設計容易性および省スペース化の点で、送液ポンプ5から中空糸膜モジュール4へ至る流路に微細気泡発生装置6を設けることがより好ましい。   In particular, in the point that the configuration of the hollow fiber membrane module 4 is not complicated, a fine bubble generator 6 is provided in the flow path from the liquid feed pump 5 to the hollow fiber membrane module 4 as shown in FIG. As shown in b) and (c), it is preferable to provide the fine bubble generator 6 in the bypass flow paths 31 and 32 branched from the flow path between the liquid feed pump 5 and the hollow fiber membrane module 4. Furthermore, it is more preferable to provide the fine bubble generating device 6 in the flow path from the liquid feed pump 5 to the hollow fiber membrane module 4 in terms of design ease of the device and space saving.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
図1に示す構成の排水処理装置を用いて排水処理を行った。中空糸膜23としては、ポリエステル製組紐を支持体とするPVDF膜(三菱レイヨン・エンジニアリング社製、孔径0.4μm、外径2.8mm)を用いた。中空糸膜束において、中空糸膜23の数は330本、中空糸膜23の有効長さは1500mmであり、中空糸膜23の長さ方向に垂直な断面形状は外径80mm、内径40mmのドーナツ状である。またモジュールケース26の内径は最も大径の円筒部分で100mmである。中空糸膜23の長さ方向と水平方向とがなす角度は0°である。
微細気泡発生装置6としては、西田鉄工社製のマイクロバブル発生装置15−A型を平均気泡径50μmとなる条件で用いた。微細気泡発生装置6から発生した気泡の直径は20〜80μmの範囲内であった。微細気泡発生装置6への空気の供給は、好気槽3の散気装置11へ供給する空気の一部を使用した。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Waste water treatment was performed using the waste water treatment apparatus having the configuration shown in FIG. As the hollow fiber membrane 23, a PVDF membrane (Mitsubishi Rayon Engineering Co., Ltd., pore diameter 0.4 μm, outer diameter 2.8 mm) using a polyester braid as a support was used. In the hollow fiber membrane bundle, the number of the hollow fiber membranes 23 is 330, the effective length of the hollow fiber membranes 23 is 1500 mm, and the cross-sectional shape perpendicular to the length direction of the hollow fiber membranes 23 is an outer diameter of 80 mm and an inner diameter of 40 mm. It is a donut shape. The module case 26 has an inner diameter of 100 mm at the largest cylindrical portion. The angle formed by the length direction of the hollow fiber membrane 23 and the horizontal direction is 0 °.
As the microbubble generator 6, a microbubble generator 15-A type manufactured by Nishida Tekko Co., Ltd. was used under the condition that the average bubble diameter was 50 μm. The diameter of the bubbles generated from the fine bubble generator 6 was in the range of 20 to 80 μm. A part of the air supplied to the air diffuser 11 of the aerobic tank 3 was used to supply the air to the fine bubble generator 6.

好気槽3内の液を送液ポンプ5により300リットル/hrの流量で微細気泡発生装置6へ送液し、ここで平均気泡径50μmの気泡を発生させ、得られた気液混合流を中空糸膜モジュール4に流入させた。
吸引ポンプ7を、46.2リットル/hrの流量で7分間作動させて吸引ろ過を行った後、2分停止する操作を繰り返した。集水管22から透過水100リットルを中空糸膜23の内部に供給して逆洗浄を行う操作を1日1回の頻度で行った。これらの操作を繰り返して運転を行い、透過水を得た。
運転中、中空糸膜23とポッティング固定部24付近における懸濁物質等の堆積や、膜の詰まりが抑制され、ろ過差圧が20kPaに上昇するまでに約100日間を要した。
なお、ろ過差圧とは、ろ過時の吸引圧力―吸引濾過停止時の圧力の差により得られる値である。
この100日の間、中空糸膜23の反り返りは生じなかった。また排水操作を行って中空糸膜モジュール4内の水位を一旦下げた後、再び水位を上げる操作を行っても、中空糸膜23どうしの絡みは生じなかった。中空糸膜23の先端が自由端となっているために中空糸膜23へのし渣の絡みつきも見られなかった。
The liquid in the aerobic tank 3 is sent to the fine bubble generator 6 at a flow rate of 300 liters / hr by the liquid feed pump 5, where bubbles with an average bubble diameter of 50 μm are generated, and the obtained gas-liquid mixed flow is It was made to flow into the hollow fiber membrane module 4.
The suction pump 7 was operated at a flow rate of 46.2 liters / hr for 7 minutes to perform suction filtration, and then the operation of stopping for 2 minutes was repeated. An operation of supplying 100 liters of permeated water from the water collecting pipe 22 to the inside of the hollow fiber membrane 23 and performing back washing was performed once a day. These operations were repeated for operation to obtain permeated water.
During operation, it took about 100 days for the accumulation of suspended substances and the like in the vicinity of the hollow fiber membrane 23 and the potting fixing part 24 and the clogging of the membrane to be suppressed, and for the filtration differential pressure to rise to 20 kPa.
The filtration differential pressure is a value obtained from the difference between the suction pressure during filtration and the pressure when suction filtration is stopped.
During the 100 days, the hollow fiber membrane 23 did not warp. Moreover, even if the water level in the hollow fiber membrane module 4 was once lowered by performing the drainage operation and then the water level was raised again, the hollow fiber membranes 23 were not entangled. Since the tip of the hollow fiber membrane 23 is a free end, no tangling of residue on the hollow fiber membrane 23 was observed.

(実施例2)
実施例1の1/2の膜面積を有する中空糸膜モジュール4を実施例1記載と同様の向き(中空糸膜23の長さ方向と水平方向とがなす角度は0°である)で用い、微細気泡発生装置6としては、送液ポンプ5を内蔵した大日工業製のマイクロバブル発生装置D−2型を平均気泡径3μmとなる条件で用いた。送液量180リットル/hrの流量で送液し、ここで平均気泡径3μmとなる条件で気泡を発生させ、得られた気液混合流を中空糸膜モジュール4に流入させた。微細気泡発生装置6から発生した気泡の直径は1.0〜10μmの範囲内であった。
吸引ポンプ7を、23.1リットル/hrの流量で7分間作動させて吸引ろ過を行った後、2分停止する操作を繰り返した。集水管22から透過水100リットルを中空糸膜23の内部に供給して逆洗浄を行う操作を1日1回の頻度で行った。これらの操作を繰り返して運転を行い、透過水を得た。
運転中、中空糸膜23とポッティング固定部24付近における懸濁物質等の堆積や、膜の詰まりが抑制され、ろ過差圧が20kPaに上昇するまでに約120日間を要した。
なお、ろ過差圧とは、ろ過時の吸引圧力―吸引濾過停止時の圧力の差により得られる値である。
この100日の間、中空糸膜23の反り返りは生じなかった。また排水操作を行って中空糸膜モジュール4内の水位を一旦下げた後、再び水位を上げる操作を行っても、中空糸膜23どうしの絡みは生じなかった。中空糸膜23の先端が自由端となっているために中空糸膜23へのし渣の絡みつきも見られなかった。
(Example 2)
The hollow fiber membrane module 4 having a membrane area 1/2 that of Example 1 is used in the same direction as described in Example 1 (the angle between the length direction of the hollow fiber membrane 23 and the horizontal direction is 0 °). As the microbubble generator 6, a microbubble generator D-2 manufactured by Dainichi Kogyo Co., Ltd. with a built-in liquid feed pump 5 was used under the condition that the average bubble diameter was 3 μm. The liquid was fed at a flow rate of 180 liters / hr, where bubbles were generated under the condition of an average bubble diameter of 3 μm, and the obtained gas-liquid mixed flow was allowed to flow into the hollow fiber membrane module 4. The diameter of the bubbles generated from the fine bubble generator 6 was in the range of 1.0 to 10 μm.
The suction pump 7 was operated at a flow rate of 23.1 liters / hr for 7 minutes to perform suction filtration, and then the operation of stopping for 2 minutes was repeated. An operation of supplying 100 liters of permeated water from the water collecting pipe 22 to the inside of the hollow fiber membrane 23 and performing back washing was performed once a day. These operations were repeated for operation to obtain permeated water.
During operation, it took about 120 days for accumulation of suspended substances and the like in the vicinity of the hollow fiber membrane 23 and the potting fixing portion 24 and clogging of the membrane to be suppressed, and for the filtration differential pressure to rise to 20 kPa.
The filtration differential pressure is a value obtained from the difference between the suction pressure during filtration and the pressure when suction filtration is stopped.
During the 100 days, the hollow fiber membrane 23 did not warp. Moreover, even if the water level in the hollow fiber membrane module 4 was once lowered by performing the drainage operation and then the water level was raised again, the hollow fiber membranes 23 were not entangled. Since the tip of the hollow fiber membrane 23 is a free end, no tangling of residue on the hollow fiber membrane 23 was observed.

(比較例1:マクロバブル)
実施例1において、微細気泡発生装置6を、マクロバブルを発生する散気装置に変更した他は、実施例1と同様にした。散気装置は、直径2mmの気泡を生ずる穴あき管(穴径2mm)を用いた。
運転中、特に気泡がモジュールケース26の上部に主として流れてしまい、上部のみが気泡により洗浄されるだけで中空糸膜束の下側にひどい閉塞を生じ、約10日間でろ過差圧が20kPaに達した。
(Comparative Example 1: Macro Bubble)
In Example 1, it was made the same as Example 1 except having changed the fine bubble generator 6 into the diffuser which generate | occur | produces a macro bubble. As the air diffuser, a perforated tube (hole diameter: 2 mm) that generates bubbles having a diameter of 2 mm was used.
During operation, in particular, air bubbles mainly flow to the upper part of the module case 26, and only the upper part is washed with air bubbles, resulting in a severe blockage on the lower side of the hollow fiber membrane bundle, and the filtration differential pressure becomes 20 kPa in about 10 days. Reached.

(比較例2:中空糸膜23の長さ方向が略鉛直方向+微細気泡)
実施例1において、中空糸膜モジュール4の長さ方向が略鉛直方向で、流入口20が下方となるように配置した他は、実施例1と同様にした。中空糸膜23の長さ方向と水平方向とがなす角度は90°である。 中空糸膜モジュール4内での液の流れ方向(下側から上側へ)と、中空糸膜モジュール4内における気泡の上昇方向が一致するために、中空糸膜モジュール4内での微細気泡の滞在時間が低下した。このため洗浄効果が低下し、約70日間でろ過差圧が20kPaに達した。
(Comparative example 2: the length direction of the hollow fiber membrane 23 is a substantially vertical direction + fine bubbles)
Example 1 was the same as Example 1, except that the hollow fiber membrane module 4 was arranged so that the length direction was substantially vertical and the inlet 20 was downward. The angle formed by the length direction of the hollow fiber membrane 23 and the horizontal direction is 90 °. Since the flow direction of the liquid in the hollow fiber membrane module 4 (from the lower side to the upper side) coincides with the rising direction of the bubbles in the hollow fiber membrane module 4, the stay of fine bubbles in the hollow fiber membrane module 4 Time has dropped. For this reason, the cleaning effect was reduced, and the filtration differential pressure reached 20 kPa in about 70 days.

(比較例3:中空糸膜23の長さ方向が略鉛直方向+マクロバブル)
比較例2において、微細気泡発生装置6を、比較例1と同じ散気装置に変更した他は、比較例2と同様にした。
運転中、中空糸膜23とポッティング固定部24付近における懸濁物質等の堆積が一部に見られた。また、中空糸膜モジュール4に流入される液とマクロバブルとの混相流により中空糸膜23同士が絡みついていた。ろ過差圧は、約40日間で20kPaに達した。
(Comparative example 3: The length direction of the hollow fiber membrane 23 is a substantially vertical direction + macro bubble)
Comparative Example 2 was the same as Comparative Example 2 except that the fine bubble generator 6 was changed to the same air diffuser as in Comparative Example 1.
During operation, some accumulation of suspended solids and the like was observed in the vicinity of the hollow fiber membrane 23 and the potting fixing portion 24. Moreover, the hollow fiber membranes 23 were entangled with each other by the mixed phase flow of the liquid flowing into the hollow fiber membrane module 4 and the macro bubbles. The filtration pressure difference reached 20 kPa in about 40 days.

本発明の排水処理装置は、下水処理、排水処理など各種の汚濁物質が含まれた原水を、固液分離工程を経て処理する水処理に好適である。   The wastewater treatment apparatus of the present invention is suitable for water treatment in which raw water containing various pollutants such as sewage treatment and wastewater treatment is treated through a solid-liquid separation process.

本発明の排水処理装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the waste water treatment equipment of this invention. 本発明で用いられる中空糸膜モジュールの例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the hollow fiber membrane module used by this invention. 微細気泡発生装置を設ける位置の変形例を模式的に示す要部構成図である。It is a principal part block diagram which shows typically the modification of the position which provides a microbubble generator.

符号の説明Explanation of symbols

1 原水流入調整槽、
2 嫌気槽(原水処理槽)、
3 好気槽(原水処理槽)、
4 中空糸膜モジュール、
5 送液ポンプ、
6 微細気泡発生装置、
7 吸引ポンプ(吸引手段)、
8 第1の循環ポンプ、
9 第2の循環ポンプ、
10a 第1の送液ポンプ、
10b 第2の送液ポンプ、
11 散気装置、
12 気体供給手段、
20 流入口、
21 流出口、
22 集水管
23 中空糸膜、
24 ポッティング固定部、
25 自由端、
26 モジュールケース、
27 開口面、
28 集水器、
28a 集水部、
29 貫通孔。
1 Raw water inflow adjustment tank,
2 Anaerobic tank (raw water treatment tank),
3 Aerobic tank (raw water treatment tank),
4 hollow fiber membrane module,
5 Liquid feed pump,
6 Fine bubble generator,
7 Suction pump (suction means),
8 first circulation pump,
9 Second circulation pump,
10a 1st liquid feeding pump,
10b Second liquid feed pump,
11 Air diffuser,
12 gas supply means,
20 Inlet,
21 Outlet,
22 water collecting tube 23 hollow fiber membrane,
24 Potting fixing part,
25 Free end,
26 module case,
27 opening surface,
28 Water collector,
28a Water collection part,
29 Through-hole.

Claims (4)

原水の浄化処理を行う原水処理槽と、固液分離を行う中空糸膜モジュールと、前記原水処理槽で処理された液を前記中空糸膜モジュールへ流入させる送液ポンプを備えた排水処理装置であって、
前記中空糸膜モジュールは、複数の中空糸膜の一端が互いに接着固定された固定端となっており、他端が自由端となっている中空糸膜束を備えており、
前記中空糸膜の固定端で、中空糸膜の内部と該中空糸膜を透過した透過水を集水する集水部とが連通しており、
前記中空糸膜の長さ方向が略水平方向であり、前記中空糸膜モジュールへの液の流入方向が、中空糸膜の固定端から自由端に向かう方向であり、
前記中空糸膜束に接触する液流中に直径100μm以下の気泡を含有させる、微細気泡発生装置が設けられていることを特徴とする排水処理装置。
A wastewater treatment apparatus equipped with a raw water treatment tank for purifying raw water, a hollow fiber membrane module for performing solid-liquid separation, and a liquid feed pump for allowing the liquid treated in the raw water treatment tank to flow into the hollow fiber membrane module There,
The hollow fiber membrane module includes a hollow fiber membrane bundle in which one end of a plurality of hollow fiber membranes is a fixed end bonded and fixed to each other, and the other end is a free end,
At the fixed end of the hollow fiber membrane, the interior of the hollow fiber membrane communicates with a water collecting portion that collects permeated water that has passed through the hollow fiber membrane,
The length direction of the hollow fiber membrane is a substantially horizontal direction, and the inflow direction of the liquid into the hollow fiber membrane module is a direction from the fixed end to the free end of the hollow fiber membrane,
A waste water treatment apparatus, wherein a fine bubble generating device is provided in which bubbles having a diameter of 100 μm or less are contained in a liquid flow contacting the hollow fiber membrane bundle.
前記微細気泡発生装置が、前記送液ポンプから前記中空糸膜モジュールへ至る流路に設けられていることを特徴とする請求項1に記載の排水処理装置。   The waste water treatment apparatus according to claim 1, wherein the fine bubble generating device is provided in a flow path from the liquid feeding pump to the hollow fiber membrane module. 前記中空糸膜の内部の圧力を、該中空糸膜の外部の圧力よりも低くする吸引手段を備えていることを特徴とする請求項1または2に記載の排水処理装置。   The wastewater treatment apparatus according to claim 1 or 2, further comprising suction means for lowering the pressure inside the hollow fiber membrane than the pressure outside the hollow fiber membrane. 原水を浄化処理した液を中空糸膜モジュールへ流入させ、該中空糸膜モジュールで固液分離を行う工程を有する排水処理方法であって、
前記中空糸膜モジュールは、複数の中空糸膜の一端が互いに接着固定された固定端となっており、他端が自由端となっている中空糸膜束を備えており、前記中空糸膜の固定端で、中空糸膜の内部と該中空糸膜を透過した透過水を集水する集水部とが連通しており、
前記中空糸膜の長さ方向が略水平方向であり、前記中空糸膜モジュールへの液の流入方向が、中空糸膜の固定端から自由端に向かう方向であり、
前記中空糸膜束に接触する液流中に直径100μm以下の気泡を含有させることを特徴とする排水処理方法。
A wastewater treatment method comprising a step of flowing raw liquid into a hollow fiber membrane module and performing solid-liquid separation with the hollow fiber membrane module,
The hollow fiber membrane module includes a hollow fiber membrane bundle in which one end of a plurality of hollow fiber membranes is bonded and fixed to each other, and the other end is a free end. At the fixed end, the inside of the hollow fiber membrane communicates with the water collecting portion that collects the permeated water that has permeated through the hollow fiber membrane,
The length direction of the hollow fiber membrane is a substantially horizontal direction, and the inflow direction of the liquid into the hollow fiber membrane module is a direction from the fixed end to the free end of the hollow fiber membrane,
A wastewater treatment method, wherein bubbles having a diameter of 100 μm or less are contained in a liquid flow in contact with the hollow fiber membrane bundle.
JP2008234992A 2008-09-12 2008-09-12 Waste water treatment apparatus and waste water treatment method Expired - Fee Related JP5797874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234992A JP5797874B2 (en) 2008-09-12 2008-09-12 Waste water treatment apparatus and waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234992A JP5797874B2 (en) 2008-09-12 2008-09-12 Waste water treatment apparatus and waste water treatment method

Publications (2)

Publication Number Publication Date
JP2010064039A true JP2010064039A (en) 2010-03-25
JP5797874B2 JP5797874B2 (en) 2015-10-21

Family

ID=42190097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234992A Expired - Fee Related JP5797874B2 (en) 2008-09-12 2008-09-12 Waste water treatment apparatus and waste water treatment method

Country Status (1)

Country Link
JP (1) JP5797874B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104902A (en) * 2008-10-30 2010-05-13 Daicen Membrane Systems Ltd Operation method of water purification system, and water purification system
WO2016017335A1 (en) * 2014-08-01 2016-02-04 住友電気工業株式会社 Water treatment system
JP2016533894A (en) * 2013-09-11 2016-11-04 メンビオン ゲゼルシャフト ミット ベシュレンクテル ハフツングMEMBION GmbH Membrane filter and filtration method
EP3639912A4 (en) * 2017-06-14 2020-09-16 Mitsubishi Chemical Cleansui Corporation External circulation-type hollow fiber membrane module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149587A (en) * 1974-05-23 1975-11-29
JPS6287206A (en) * 1985-10-09 1987-04-21 Sharp Kogyo Kk Method for washing pipe material for precision filtration
JPS62155906A (en) * 1985-12-28 1987-07-10 Mitsubishi Rayon Eng Co Ltd Method for washing hollow yarn filter module
JPS62109701U (en) * 1985-12-27 1987-07-13
JPS62160105A (en) * 1986-01-08 1987-07-16 Mitsubishi Rayon Eng Co Ltd Cleaning method for hollow yarn filter module
JPS62241595A (en) * 1986-04-11 1987-10-22 Mitsubishi Rayon Eng Co Ltd Treatment of organic waste water
JPH01155907A (en) * 1987-12-10 1989-06-19 Kubota Ltd Ultrafiltration process
JPH1028846A (en) * 1996-07-17 1998-02-03 Toray Ind Inc Hollow fiber membrane module and its manufacture
JP2007245003A (en) * 2006-03-16 2007-09-27 Ngk Insulators Ltd Seawater desalination method
WO2008053700A1 (en) * 2006-10-30 2008-05-08 Sekisui Chemical Co., Ltd. Method of desalting, apparatus for desalting, and bubble generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149587A (en) * 1974-05-23 1975-11-29
JPS6287206A (en) * 1985-10-09 1987-04-21 Sharp Kogyo Kk Method for washing pipe material for precision filtration
JPS62109701U (en) * 1985-12-27 1987-07-13
JPS62155906A (en) * 1985-12-28 1987-07-10 Mitsubishi Rayon Eng Co Ltd Method for washing hollow yarn filter module
JPS62160105A (en) * 1986-01-08 1987-07-16 Mitsubishi Rayon Eng Co Ltd Cleaning method for hollow yarn filter module
JPS62241595A (en) * 1986-04-11 1987-10-22 Mitsubishi Rayon Eng Co Ltd Treatment of organic waste water
JPH01155907A (en) * 1987-12-10 1989-06-19 Kubota Ltd Ultrafiltration process
JPH1028846A (en) * 1996-07-17 1998-02-03 Toray Ind Inc Hollow fiber membrane module and its manufacture
JP2007245003A (en) * 2006-03-16 2007-09-27 Ngk Insulators Ltd Seawater desalination method
WO2008053700A1 (en) * 2006-10-30 2008-05-08 Sekisui Chemical Co., Ltd. Method of desalting, apparatus for desalting, and bubble generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104902A (en) * 2008-10-30 2010-05-13 Daicen Membrane Systems Ltd Operation method of water purification system, and water purification system
JP2016533894A (en) * 2013-09-11 2016-11-04 メンビオン ゲゼルシャフト ミット ベシュレンクテル ハフツングMEMBION GmbH Membrane filter and filtration method
WO2016017335A1 (en) * 2014-08-01 2016-02-04 住友電気工業株式会社 Water treatment system
US10065153B2 (en) 2014-08-01 2018-09-04 Sumitomo Electric Industries, Ltd. Water treatment system
EP3639912A4 (en) * 2017-06-14 2020-09-16 Mitsubishi Chemical Cleansui Corporation External circulation-type hollow fiber membrane module
US11701620B2 (en) 2017-06-14 2023-07-18 Mitsubishi Chemical Cleansui Corporation External circulation-type hollow fiber membrane module

Also Published As

Publication number Publication date
JP5797874B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5564021B2 (en) Oil-containing wastewater treatment system
JP5844196B2 (en) Desalination apparatus and desalination method
JP2001205055A (en) Method for operating membrane separation apparatus and apparatus therefor
JP2004008981A (en) Membrane separation apparatus
JPWO2012002427A1 (en) Immersion type membrane module unit and membrane separation activated sludge treatment device
JP5850793B2 (en) Suspended water filtration apparatus and method
JPH07155758A (en) Waste water treating device
JPH11128692A (en) Hollow fiber membrane module
JP5795459B2 (en) Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using the same, immersion filtration device, and immersion filtration method
KR101448709B1 (en) Membrane module, membrane unit, and membrane separation device
JP5797874B2 (en) Waste water treatment apparatus and waste water treatment method
KR101798551B1 (en) Filtration Memebrane Module and Filtration System Having The Same
CA2742251A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP5464836B2 (en) Cleaning device and cleaning method
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP5748338B2 (en) Suspended water filtration apparatus and method
JP4591678B2 (en) Biological treatment equipment
JP2010089079A (en) Method for operating immersed membrane separator and immersed membrane separator
JP5135267B2 (en) Air diffuser, submerged membrane separation apparatus equipped with the air diffuser, and method of operating the air diffuser
JP2007152302A (en) Solid/liquid separator of solid/liquid mixture
JP3918304B2 (en) Hollow fiber membrane processing equipment
KR101484952B1 (en) Air diffuser with micro bubbles generating functions
KR20120044594A (en) Air diffuser forming separated diffuser frame and air chamber
JP5149223B2 (en) Separation membrane cleaning device, membrane separation device and cleaning method
JP7284545B1 (en) MEMBRANE FILTRATION DEVICE AND WATER PURIFICATION SYSTEM USING THE SAME

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R150 Certificate of patent or registration of utility model

Ref document number: 5797874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees