JP2010062192A - Liquefaction and storage of natural energy utilizing dimethylether (dme) - Google Patents

Liquefaction and storage of natural energy utilizing dimethylether (dme) Download PDF

Info

Publication number
JP2010062192A
JP2010062192A JP2008223452A JP2008223452A JP2010062192A JP 2010062192 A JP2010062192 A JP 2010062192A JP 2008223452 A JP2008223452 A JP 2008223452A JP 2008223452 A JP2008223452 A JP 2008223452A JP 2010062192 A JP2010062192 A JP 2010062192A
Authority
JP
Japan
Prior art keywords
hydrogen
dme
natural energy
power generation
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008223452A
Other languages
Japanese (ja)
Inventor
Kaoru Takeishi
薫 武石
Yoshinori Tawara
義則 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisan Co Ltd
Original Assignee
Meisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisan Co Ltd filed Critical Meisan Co Ltd
Priority to JP2008223452A priority Critical patent/JP2010062192A/en
Publication of JP2010062192A publication Critical patent/JP2010062192A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To convert power based on largely varying natural energy obtained by solar power generation or wind power generation to easy-to-use power. <P>SOLUTION: Water is electrolyzed using the power obtained by a natural energy recovery means to generate hydrogen and oxygen, the generated hydrogen is made to react with carbon monoxide or carbon dioxide using a catalyst to synthesize dimethylether (DME), and the synthesized DME is liquefied and stored. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は太陽光発電或いは風力発電等によって得られる変動の大きい電力を液化することによって電力の貯蔵を行い、変動の少ない使いやすい電力に変換する技術に関するものである。   The present invention relates to a technique for storing electric power by liquefying electric power with a large fluctuation obtained by solar power generation or wind power generation, and converting the electric power into electric power with little fluctuation and easy to use.

太陽光発電、風力発電等によって得られる電力は変動が大きく、そのままでは通常の電力として利用することが極めて困難である。そのために現在はこの電力を一旦電力会社に供給し、電力会社の大容量の電力に混入して変動を吸収させる方法がとられている。そのために電力会社のバックアップなしには利用は不可能な状況下にある。   Electric power obtained by solar power generation, wind power generation, and the like varies greatly, and as it is, it is extremely difficult to use it as normal power. For this reason, a method is currently used in which this electric power is once supplied to the electric power company and mixed into the electric power company's large-capacity electric power to absorb fluctuations. For this reason, it cannot be used without backup from the power company.

しかしながら太陽光発電、風力発電等の発電容量が大きくなるにしたがって電力会社の受け入れ容量にも限界があり、受け入れを拒否されことになり、必然的に自己完結型のシステムとせざるを得ない状況になりつつある。   However, as the power generation capacity of solar power generation, wind power generation, etc. increases, there is a limit to the capacity that can be accepted by electric power companies, and acceptance will be refused, inevitably becoming a self-contained system. It is becoming.

電力の変動をなくするには、何らかの方法で一旦電力を貯蔵することが最善の方法であり、これが出来れば総てが解決する。しかし小容量の電力であれば二次電池、キャパシター等を利用して電力をそのままのかたちで貯蔵出来るが、大容量の電力となればそのままでの貯蔵は技術的にも経済的にも極めて困難であり、実際問題として不可能なことである。従って電力をそのまま貯蔵するのではなく,元の電力に戻し易い別の物質に一旦替え、しかも多量に貯蔵出来る方法として、電気水分解法等によって水素を発生させ、水素で貯蔵し、その貯蔵した水素から、ふたたび電力を再生させる方法を提供するものである。   In order to eliminate fluctuations in power, it is best to store the power once in some way, and if this can be done, all will be solved. However, if it has a small capacity, it can be stored as it is using secondary batteries, capacitors, etc., but if it has a large capacity, it is extremely difficult to store as it is technically and economically. It is impossible as a matter of fact. Therefore, instead of storing electric power as it is, it is possible to replace it with another substance that can be easily restored to the original electric power and to store it in large quantities. Therefore, a method for regenerating power again is provided.

水素そのものはエネルギーと水があれば比較的容易に製造出来る物質である。エネルギーとして太陽光発電あるいは風力発電等自然エネルギーを利用して発電した電力を使用して水を電気分解し、水素と酸素を生成し、水素を利用してエネルギーの貯蔵即ち、かたちを替えた電力の貯蔵を行なう。   Hydrogen itself is a substance that can be produced relatively easily with energy and water. Electricity is generated by using electricity generated by using natural energy such as solar power generation or wind power generation as energy, and water is electrolyzed to generate hydrogen and oxygen, and energy is stored using hydrogen. Storage.

しかし水素は非常に扱い難い物質であるから、そのままでは利用できないので下記の何れかの方法をとる必要がある。
1、気体のまま高圧ボンベに圧縮し貯蔵する方法。
2、メタルハイドライドとして金属に吸収させる方法。
3、液体水素として貯蔵する方法。
4、ケミカルハイドライドとし、液化して貯蔵する方法。
However, since hydrogen is a very difficult material to handle, it cannot be used as it is, so one of the following methods must be taken.
1. A method of compressing and storing in a high-pressure cylinder as a gas.
2. Method of absorbing metal as metal hydride.
3. A method of storing as liquid hydrogen.
4. Chemical hydride, liquefied and stored.

気体のまま高圧ボンベに詰めるとすれば、わが国の安全基準に沿って最高25MPaまで圧縮し、1/250にすることは可能である。しかしガス体のままでの高圧縮は肉厚の高圧縮容器が必要となり、容器の重量が増すので、現在はその対策としてアルミ製タンクの回りをカーボン繊維で補強する等の工夫が施されている。しかしそれでも水素の貯蔵量はタンク重量の数パーセントにしかならない。従って大容量の水素の貯蔵には向かず、せいぜい燃料電池車の燃料タンク程度である。   If it is packed in a high-pressure cylinder as it is in a gas state, it can be compressed to a maximum of 25 MPa in accordance with Japanese safety standards and reduced to 1/250. However, high compression with a gas body requires a thick high-compression container, which increases the weight of the container. Currently, measures such as reinforcing the periphery of an aluminum tank with carbon fiber are being taken as a countermeasure. Yes. However, hydrogen storage is still only a few percent of the tank weight. Therefore, it is not suitable for storing large-capacity hydrogen and is at most about the fuel tank of a fuel cell vehicle.

メタルハイドライドとすれば体積は約1/1000に縮小することが出来るが、この場合も金属の重量が増し、水素の含蔵比率を含蔵金属の5.5パーセントとすることが目標であるが、今のところ3.5パーセント止まりであり、また、水素を取り出す事が容易でなく、大容量の水素の貯蔵には適さない。   If the metal hydride is used, the volume can be reduced to about 1/1000. In this case, however, the weight of the metal is increased, and the target is to set the hydrogen content to 5.5 percent of the metal content. At present, it is only 3.5%, and it is not easy to take out hydrogen, which is not suitable for storing a large volume of hydrogen.

液体水素にすれば高圧縮水素の数倍のエネルギー密度を持たせることが出来るが、マイナス253℃という極低温にする必要があり、さらに液化の工程で水素の有するエネルギーの約30〜40パーセントが消費され、また非常にリークし易いために供給時のロスが10〜20パーセントと大きく、現在はロケット燃料などの特殊用途にしか用いられていない。   If liquid hydrogen is used, the energy density can be several times higher than that of highly compressed hydrogen. However, it is necessary to use an extremely low temperature of minus 253 ° C., and about 30 to 40 percent of the energy of hydrogen in the liquefaction process. Since it is consumed and leaks very easily, the loss during supply is as large as 10 to 20 percent, and it is currently used only for special purposes such as rocket fuel.

多量の貯蔵と扱い易さの点からすれば、ケミカルハイドライドとし、液化するのが最も実用的で優れた方法である。即ち、メタノール或いはDME(ジメチールエーテル)を合成し貯蔵する方法である。   From the viewpoint of a large amount of storage and ease of handling, the most practical and excellent method is to use chemical hydride and liquefy. That is, it is a method of synthesizing and storing methanol or DME (dimethyl ether).

本件発明により、自然エネルギーを有効に回収することによって総合エネルギー効率を飛躍的に向上させることができるとともに、極めて有効なエコロジー対策として活用することが可能となる。さらに、都市分散型発電システムを形成すれば、効率のよい自然エネルギー利用社会を構築することが可能となる。   According to the present invention, it is possible to dramatically improve the total energy efficiency by effectively recovering natural energy, and it can be used as an extremely effective ecological measure. Furthermore, if an urban distributed generation system is formed, an efficient natural energy utilization society can be constructed.

水素の貯蔵体として利用するDMEの化学式は次式で示される。
CH3−O−CH3
The chemical formula of DME used as a hydrogen reservoir is represented by the following formula.
CH 3 —O—CH 3

物性については沸点が−25・1℃の無色の気体で化学的に安定しており、25℃に於ける飽和蒸気圧が0.6MPaと低く、加圧すると容易に液化し、LPGに類似している。気体状態の低発熱量は14,200Kcal/Nm3でメタン8600Kcal/Nm3より高く、プロパン21,800Kcal/Nm3より低い。 As for the physical properties, it is a colorless gas with a boiling point of -25 · 1 ° C and is chemically stable. The saturated vapor pressure at 25 ° C is as low as 0.6 MPa. ing. Low calorific value gaseous higher than methane 8600Kcal / Nm 3 in 14,200Kcal / Nm 3, less than propane 21,800Kcal / Nm 3.

環境に優しい燃料として最近にわかに注目され、脱石油燃料としても期待されている。毒性が極めて低く、最近はフロンの代替品として噴射剤としても使用され、自然界には存在しない人工合成燃料である。   Recently, it has attracted attention as an environmentally friendly fuel and is expected to be a non-petroleum fuel. It is an artificial synthetic fuel that is extremely low in toxicity and has recently been used as a propellant as a substitute for Freon and does not exist in nature.

DMEの製造法は「メタノール脱水法」と、一酸化炭素から直接合成する「直接合成法」がある。「直接合成法」は水素と炭素があれば合成出来るので天然ガス、石炭から合成する。また触媒を利用して二酸化炭素(CO2)からも合成できるので、現在問題となっているCO2の吸収手段、および有効利用方法として将来おおいに期待されている。 There are two methods for producing DME: a “methanol dehydration method” and a “direct synthesis method” in which carbon monoxide is directly synthesized. The “direct synthesis method” can be synthesized with hydrogen and carbon, so it is synthesized from natural gas and coal. Also the catalyst can be synthesized from the utilizing carbon dioxide (CO 2), and is greatly expected future absorption means of CO 2 is currently a problem, and as active usage.

またDMEは改質して水素を取り出し易いために、水素の貯蔵体、キャリヤーとして貴重な燃料であり、水素を液化して液体水素とすることに比べれば、はるかにハンドリングし易く、コストもかからない。   Since DME is easily reformed to extract hydrogen, it is a valuable fuel as a hydrogen storage body and carrier. Compared to liquefying hydrogen into liquid hydrogen, it is much easier to handle and costs less. .

このように自然エネルギーと水から水素を作り、更にDME等の液体燃料を合成することは、自然エネルギーを液化することであり、これは恰も地球が数千万年、数億年かけて太陽エネルギーを石油等液体燃料に再生した事と同じことである。このように自然エネルギーが液化出来れば,大変なメリットが期待出来る。例えばサハラ砂漠に水素およびDME製造工場を併設した太陽光発電所を建設し、またヒマラヤには水力発電所を建設し、DMEを合成し、石油同様にタンクローリー、タンカーで輸送出来るようになる。   Making hydrogen from natural energy and water and synthesizing liquid fuels such as DME in this way means liquefying natural energy, which means that the earth will spend solar energy over tens of millions of years and hundreds of millions of years. Is the same as having been recycled into liquid fuel such as oil. If natural energy can be liquefied in this way, great benefits can be expected. For example, a solar power plant with a hydrogen and DME manufacturing plant will be built in the Sahara Desert, and a hydroelectric power plant will be built in the Himalayas, where DME will be synthesized and transported by tank trucks and tankers like oil.

自然エネルギー利用発電所はとかく人里離れた砂漠や山岳地帯などの僻地に設置されるケースが多いので、発電電力をDMEに変換することのメリットは計り知れない。送電線が要らないので、消費地から遥かに離れた遠隔地にも設置できる。   Natural energy power plants are often installed in remote areas such as deserts and mountainous areas, so the benefits of converting generated power to DME are immeasurable. Since no transmission line is required, it can be installed in a remote location far away from the consumption area.

因みに、世界の砂漠の5パーセントに太陽電池をひき詰めれば、またヒマラヤから流れ出る水を水力発電に有効利用出来たとすれば、いずれの場合も世界の必要とする全エネルギーを賄うことが可能との試算もある。   By the way, if solar cells are packed in 5% of the world's deserts, and if the water flowing from the Himalayas can be used effectively for hydroelectric power generation, it is possible to cover all the energy required by the world in any case. There is also a trial calculation.

また別の利用法として負荷の変動を嫌う原子力発電所とか、水力発電所に水素およびDME製造工場を併設すれば、負荷変動の調節機構として利用することも可能であり、揚水発電所と同様の効果が期待できる。   As another use method, it is possible to use it as a load fluctuation adjustment mechanism if a nuclear power plant that dislikes load fluctuations, or if a hydrogen and DME manufacturing plant is installed in a hydroelectric power station, the same as for a pumped storage power plant. The effect can be expected.

更にまた、新しいエネルギー社会の構築が見えてくる。即ち分散型コーゼネ発電によるエネルギー対策である。   Furthermore, the construction of a new energy society will be visible. In other words, it is an energy measure by distributed cogeneration power generation.

現在の大型火力発電所とか原子力発電所は何れも需要地から遠く離れているために、発電に伴って発生する膨大な量の廃熱が有効利用出来ず、徒に海中に放棄され、海洋の生態系を乱している。しかもこの放棄されている「熱」は低圧とはいえ、蒸気としては最も価値のある「潜熱」であるから、膨大なエネルギーを無駄にしていることになる。そのために人工衛星から赤外線撮影すると発電所周辺の海の色が変化しているのがはつきりと確認出来るほどである。それ故に最新の火力発電所ですら総合エネルギー効率は40パーセントをやっと超えた程度に過ぎない。燃料の有するエネルギーの過半数は、海中にあるいは空中に無為に放棄されているのである。   The current large-scale thermal power plants and nuclear power plants are far away from the demand areas, so the enormous amount of waste heat generated by power generation cannot be used effectively. Disrupting the ecosystem. Moreover, although this abandoned “heat” is low pressure, it is the most valuable “latent heat” as steam, and therefore, enormous energy is wasted. For that reason, when the infrared image is taken from the artificial satellite, it can be confirmed that the color of the sea around the power plant has changed. Therefore, even the latest thermal power plants have only exceeded 40 percent overall energy efficiency. The majority of the energy that fuel has is abandoned involuntarily in the sea or in the air.

例えば、図1に示すように各家庭の屋根1を太陽電池で葺いて太陽電池で葺いた屋根1を構成し、発電した電力はそのまま、その地区のエネルギーセンターへ送電し、水電気分解水素発生装置2を用いてまとめて水を電気分解することにより水素を生成する。つぎに、この電気分解によって発生した水素を用いて、DME合成装置3内において触媒を用いて一酸化炭素または二酸化酸素と反応させて、DMEを合成する。合成されたDMEはDME貯蔵タンクに貯蔵する。この後、合成されたDMEはパイプラインで各家庭、事業所に再配送され、分解されることによって水素を発生し、該水素は定置型燃料電池6の燃料とされる。なお、再び生成した一酸化炭素または二酸化酸素は次のサイクルにおけるDME合成の原料として再使用に供される。また、生成したDMEはたとえば、タンクローリー(DME輸送用)を用いて生成したDME所定の貯蔵場所に移送し、任意の適当な場所においてマイクロタービン方式でコージェネ発電を行なうことにより、発電にともなって発生する熱の有効利用が可能となる。発生した電力はたとえば、一般の家庭に供給されて、エアコン8、テレビ9、冷蔵庫10等の電気設備を稼働させるのに使用することができる。また、DMEによるコージェネ発電を各家庭において行うように構成すれば、発電に伴って発生する熱はたとえば、家庭の流し11、シャワー12、風呂13等に直接利用することができ、総合エネルギー効率は飛躍的に向上する。なお、図1において、実線ラインは電力ライン、点線は温水ライン、破線はDME移送ライン、二重実線は水素移送ラインを示す。   For example, as shown in FIG. 1, the roof 1 of each household is covered with solar cells to form a roof 1 that is covered with solar cells, and the generated power is transmitted as it is to the energy center in the area to generate water electrolysis hydrogen. Hydrogen is generated by electrolyzing water collectively using the apparatus 2. Next, DME is synthesized by reacting with carbon monoxide or oxygen dioxide using a catalyst in the DME synthesizer 3 using hydrogen generated by this electrolysis. The synthesized DME is stored in a DME storage tank. Thereafter, the synthesized DME is re-delivered to each home and office through a pipeline and decomposed to generate hydrogen, which is used as fuel for the stationary fuel cell 6. The carbon monoxide or oxygen dioxide produced again is reused as a raw material for DME synthesis in the next cycle. In addition, the generated DME is generated along with power generation by, for example, transferring to a predetermined storage location of the generated DME using a tank lorry (for transporting DME), and performing cogeneration with a microturbine system at any appropriate location. Heat can be effectively used. The generated electric power can be supplied to a general household and used to operate electric equipment such as an air conditioner 8, a television 9, and a refrigerator 10, for example. Further, if the cogeneration power generation by DME is performed in each home, the heat generated by the power generation can be directly used for, for example, the home sink 11, shower 12, bath 13, etc., and the total energy efficiency is Improve dramatically. In FIG. 1, a solid line indicates a power line, a dotted line indicates a hot water line, a broken line indicates a DME transfer line, and a double solid line indicates a hydrogen transfer line.

自然エネルギーを液化する工程(DMEの合成)およびDMEから電力を再生するダイヤグラム。Diagram of natural energy liquefaction process (DME synthesis) and power regeneration from DME. 都市分散型コーゼネ発電システムを図示したものである。1 is a diagram illustrating an urban distributed cogeneration power generation system.

符号の説明Explanation of symbols

1、太陽電池で葺いた屋根
2、水電気分解水素発生装置
3、DME 合成装置
4、DME 貯蔵タンク
5、水素改質装置
6、燃料電池
7、タンクローリー(DME 輸送用)
8、エヤコン
9、テレビ
10、冷蔵庫
11、流し
12、シャワー
13、風呂
1. Solar cell-fired roof 2, water electrolysis hydrogen generator 3, DME synthesizer 4, DME storage tank 5, hydrogen reformer 6, fuel cell 7, tank truck (for DME transportation)
8, Aircon 9, TV 10, Refrigerator 11, Sink 12, Shower 13, Bath

Claims (3)

太陽光発電及び風力発電の少なくとも1つの発電装置を含む自然エネルギー回収手段によって得られた電力を用いて水を電気分解して、水素と酸素を発生させる段階と、
発生した前記水素を、触媒を用いて一酸化炭素または二酸化炭素と反応させ(DME)を合成する段階と、
該合成されたジメチルエーテルを液化して貯蔵する段階とを有する、
前記電気分解によって発生した水素の貯蔵体としてジメチルエーテルを利用することを特徴とする自然エネルギー貯蔵方法。
Electrolyzing water using power obtained by natural energy recovery means including at least one power generation device of solar power generation and wind power generation to generate hydrogen and oxygen;
Reacting the generated hydrogen with carbon monoxide or carbon dioxide using a catalyst to synthesize (DME);
Liquefying and storing the synthesized dimethyl ether.
A natural energy storage method using dimethyl ether as a storage body of hydrogen generated by the electrolysis.
さらに、前記ジメチルエーテルから触媒を利用して水素を取り出し、燃料電池の燃料として前記水素を使用することによって電力を再生する段階を有することを特徴とする請求項1に記載の方法。   The method of claim 1, further comprising: removing hydrogen from the dimethyl ether using a catalyst and regenerating power by using the hydrogen as fuel for a fuel cell. さらに、前記ジメチルエーテルを直接燃料として用いてジーゼルエンジン及びマイクロタービンの少なくともいずれかを含む駆動手段を駆動することによって前記自然エネルギーを回収する段階とを備えたことを特徴とする請求項1に記載の方法。   The method further comprises the step of recovering the natural energy by driving driving means including at least one of a diesel engine and a micro turbine using the dimethyl ether as a direct fuel. Method.
JP2008223452A 2008-09-01 2008-09-01 Liquefaction and storage of natural energy utilizing dimethylether (dme) Pending JP2010062192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223452A JP2010062192A (en) 2008-09-01 2008-09-01 Liquefaction and storage of natural energy utilizing dimethylether (dme)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223452A JP2010062192A (en) 2008-09-01 2008-09-01 Liquefaction and storage of natural energy utilizing dimethylether (dme)

Publications (1)

Publication Number Publication Date
JP2010062192A true JP2010062192A (en) 2010-03-18

Family

ID=42188714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223452A Pending JP2010062192A (en) 2008-09-01 2008-09-01 Liquefaction and storage of natural energy utilizing dimethylether (dme)

Country Status (1)

Country Link
JP (1) JP2010062192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257061A1 (en) * 2010-12-24 2013-10-03 Toyota Jidosha Kabushiki Kaisha Fuel production system
WO2021002184A1 (en) 2019-07-02 2021-01-07 株式会社デンソー Energy management system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050887A (en) * 2004-07-02 2006-02-16 Jfe Holdings Inc Method and system of supplying energy
JP2008189704A (en) * 2007-01-31 2008-08-21 National Institute Of Advanced Industrial & Technology Apparatus for producing liquid fuel from biomass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050887A (en) * 2004-07-02 2006-02-16 Jfe Holdings Inc Method and system of supplying energy
JP2008189704A (en) * 2007-01-31 2008-08-21 National Institute Of Advanced Industrial & Technology Apparatus for producing liquid fuel from biomass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257061A1 (en) * 2010-12-24 2013-10-03 Toyota Jidosha Kabushiki Kaisha Fuel production system
US8741493B2 (en) * 2010-12-24 2014-06-03 Toyota Jidosha Kabushiki Kaisha Fuel production system
WO2021002184A1 (en) 2019-07-02 2021-01-07 株式会社デンソー Energy management system

Similar Documents

Publication Publication Date Title
Ishaq et al. A review on hydrogen production and utilization: Challenges and opportunities
Bartels A feasibility study of implementing an Ammonia Economy
Li et al. Renewable energy carriers: Hydrogen or liquid air/nitrogen?
Aziz et al. Comparison of liquid hydrogen, methylcyclohexane and ammonia on energy efficiency and economy
US9771822B2 (en) Carbon-dioxide-neutral compensation for current level fluctuations in an electrical power supply system
JP5012559B2 (en) Solar thermal energy storage and transfer method
US6907735B2 (en) Hydrogen fueled electrical generator system and method thereof
Judkins et al. The dilemma of fossil fuel use and global climate change
JP2005145218A (en) Hydrogen manufacturing facility and hydrogen manufacturing transportation system on ocean
JP2009197734A (en) Method of converting solar heat energy
RU2273742C1 (en) Energy-accumulating plant
Andriani et al. A review of hydrogen production from onboard ammonia decomposition: Maritime applications of concentrated solar energy and boil-off gas recovery
JP7439368B2 (en) Green energy transportation system and energy transportation method
US20040204503A1 (en) Method and apparatus for storage and transportation of hydrogen
Wanner Transformation of electrical energy into hydrogen and its storage
JP2010062192A (en) Liquefaction and storage of natural energy utilizing dimethylether (dme)
KR102252653B1 (en) Hydrogen Fuel Cell Complex Power Plant Equipped with the Floating LNG Power Plant and Hydrogen Generation System and Method for Thereof
Aziz Production, transportation, and utilization of carbon-free hydrogen
WO2012069636A2 (en) Sanner cycle energy system and converter
US20110064647A1 (en) Method for storage and transportation of hydrogen
US20140001767A1 (en) Sanner cycle energy system
Cacciola et al. Chemical processes for energy storage and transmission
Hord Selected Topics on hydrogen fuel
Chatterjee et al. Hydrogen storage in metal powder
US20230287583A1 (en) Small modular nuclear reactor integrated energy systems for energy production and green industrial applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225