JP2010061941A - Coin type lithium secondary battery - Google Patents

Coin type lithium secondary battery Download PDF

Info

Publication number
JP2010061941A
JP2010061941A JP2008225526A JP2008225526A JP2010061941A JP 2010061941 A JP2010061941 A JP 2010061941A JP 2008225526 A JP2008225526 A JP 2008225526A JP 2008225526 A JP2008225526 A JP 2008225526A JP 2010061941 A JP2010061941 A JP 2010061941A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
battery
type lithium
coin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008225526A
Other languages
Japanese (ja)
Inventor
Akira Kakinuma
彰 柿沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008225526A priority Critical patent/JP2010061941A/en
Publication of JP2010061941A publication Critical patent/JP2010061941A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coin type lithium secondary battery which eliminates the need for a high level processing control in manufacturing a battery and is superior in safety. <P>SOLUTION: The coin type lithium secondary battery houses a power generating element having a separator 3 interposed between a positive electrode 4 and a negative electrode 2 in a battery case 5 and a sealing plate 1 together with an electrolyte, and seals the battery case 5 and the sealing plate 1 by a gasket 6. The positive electrode 4 and the negative electrode 2 are conducted to the battery case 5 and the sealing plate 1 through a conductive layer 7 which is made of a conductive material having a resin melting at a low temperature as a nucleus and covering its surface with a conductive material. Thereby, when the temperature has risen, the resin melts and forms an insulating layer to suppress a thermorunaway reaction of the coin type lithium secondary battery. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はコイン型リチウム二次電池に関するものであり、特にその安全性を高めたコイン型リチウム二次電池を提供するものである。   The present invention relates to a coin-type lithium secondary battery, and particularly provides a coin-type lithium secondary battery with improved safety.

近年、移動体通信に代表されるような、コードレス化、ポータブル化された電子機器では、小型化、軽量化にともない、高エネルギー密度を有するリチウム電池が広く使用されており、その中でもリチウム二次電池は、携帯電話用の電源として広く使用されるようになった。また、その普及に伴い、更にエネルギー密度を高めることが市場から要望され、激しい開発競争が行われている。そのような中、電池のエネルギー密度が高まるにつれて、その危険性も高くなっており、電子機器とのマッチングの不和や誤動作などにより、発火や破裂を生じることが報告されている。   In recent years, in cordless and portable electronic devices typified by mobile communication, lithium batteries having high energy density are widely used as the size and weight are reduced. Batteries have become widely used as power sources for mobile phones. In addition, with the spread, there is a demand from the market to further increase the energy density, and intense development competition is taking place. Under such circumstances, as the energy density of the battery increases, the risk increases, and it has been reported that the battery is ignited or ruptured due to a discrepancy in matching with an electronic device or a malfunction.

そのためリチウム二次電池に安全機構を付加することが様々検討されており、想定外の使用がされてもリチウム二次電池が発火や破裂を起こさないように改善がなされている。とくに角形状や円筒形状のリチウム二次電池では、設計上の自由度が比較的高く、安全回路を取り付けるなど様々な取組みがなされているが、コイン型形状では電池構造が簡便なため付加的な機能を備える自由度が低く、あまり検討されていない。   Therefore, various studies have been made to add a safety mechanism to the lithium secondary battery, and improvements have been made so that the lithium secondary battery does not ignite or rupture even if it is used unexpectedly. In particular, rectangular and cylindrical lithium secondary batteries have a relatively high degree of freedom in design, and various efforts have been made, such as attaching a safety circuit. The degree of freedom to provide functions is low and has not been studied much.

コイン型形状において検討されている安全性向上の先行例としては、特許文献1に見られるように系内に添加物を加え、リチウム二次電池が過充電された時に率先して反応し、その反応生成物が電極上に抵抗皮膜を形成して活物質の過酸化反応や電解液の分解反応など、過充電時にリチウム二次電池に生じる発熱やガス発生を伴う副反応を抑制して電池の発火、破裂を防止する例や、特許文献2に見られるように、外装缶の一部をエッチングなどによって薄く加工し、過充電などによってガス発生が生じて電池内部の圧力が上昇した時、その内圧が極端に大きくなって危険な破裂を起こす前に加工した外装缶の薄部が破断して圧力を逃がす例が挙げられる。
特許第3344424号公報 特開2002−134072号公報
As a precedent example of safety improvement being studied in the coin-type shape, as shown in Patent Document 1, an additive is added to the system, and when the lithium secondary battery is overcharged, it reacts proactively, The reaction product forms a resistive film on the electrode and suppresses side reactions that accompany heat generation and gas generation that occur in the lithium secondary battery during overcharging, such as active material peroxidation and electrolyte decomposition. Examples of preventing ignition and rupture, and as seen in Patent Document 2, when a part of the outer can is processed thinly by etching or the like, gas generation occurs due to overcharge or the like, and the pressure inside the battery rises. An example is an example in which the thin part of the outer can processed before the internal pressure becomes extremely large and causes dangerous rupture breaks to release the pressure.
Japanese Patent No. 3344424 JP 2002-134072 A

しかしながら、特許文献1の技術での問題点は、添加物の反応が異常時だけではなく、通常の使用環境においても生じてしまうところにあり、そのため電池特性の低下に繋がってしまう点にある。また、特許文献2の技術では加工の制御が非常に難しいため精度を保つことが出来ず、破断に至る電池内圧の再現性を得ることが難しい。また、リチウム二次電池の作製についても外装缶の強度などの問題から製造条件に制限が発生するなど、量産上の問題を生じる。   However, the problem with the technique of Patent Document 1 is that the reaction of the additive occurs not only in an abnormal state but also in a normal use environment, which leads to deterioration of battery characteristics. Further, in the technique of Patent Document 2, since it is very difficult to control the processing, the accuracy cannot be maintained, and it is difficult to obtain the reproducibility of the battery internal pressure leading to the rupture. In addition, the production of lithium secondary batteries also causes problems in mass production, such as the production conditions being limited due to problems such as the strength of the outer can.

そこで、本発明は、上記の先行例のような従来の手法とは異なり、電池特性へ影響することなく、また、電池の製造において高度な加工制御を必要とせずに、安全性に優れるコイン型リチウム二次電池を提供することを目的とする。   Therefore, the present invention is different from the conventional methods such as the above-described prior examples, and does not affect battery characteristics, and does not require advanced processing control in battery manufacture, and is a coin type that is excellent in safety. An object is to provide a lithium secondary battery.

上記課題を解決するために本発明は、正極と負極との間にセパレータを介在させて構成した発電要素を電解液とともに電池ケースと封口板の中に収納し、この電池ケースと封口板とをガスケットで封口してなるコイン型リチウム二次電池において、上記正極および負
極を、低温で溶融する樹脂を核とし、その表面に導電性物質を被覆した導電材からなる導電層を介して、上記電池ケースおよび封口板に導通させていることを特徴としたものである。
In order to solve the above problems, the present invention stores a power generation element configured by interposing a separator between a positive electrode and a negative electrode together with an electrolytic solution in a battery case and a sealing plate. In a coin-type lithium secondary battery sealed with a gasket, the positive electrode and the negative electrode are placed through a conductive layer made of a conductive material having a resin melted at a low temperature as a core and a surface coated with a conductive material. It is characterized by being electrically connected to the case and the sealing plate.

本発明によると、一般的な簡便なコイン型形状においても安全性が向上したリチウム二次電池を容易に作製することができる。   According to the present invention, it is possible to easily produce a lithium secondary battery with improved safety even in a general simple coin-type shape.

本発明は、正極と負極との間にセパレータを介在させて構成した発電要素を電解液とともに電池ケースと封口板の中に収納し、この電池ケースと封口板とをガスケットで封口してなるコイン型リチウム二次電池において、上記正極および負極を、低温で溶融する樹脂を核とし、その表面に導電性物質を被覆した導電材からなる導電層を介して、上記電池ケースおよび封口板に導通させていることを特徴としている。   The present invention relates to a coin formed by storing a power generation element configured by interposing a separator between a positive electrode and a negative electrode together with an electrolyte in a battery case and a sealing plate, and sealing the battery case and the sealing plate with a gasket. In a lithium secondary battery, the positive electrode and the negative electrode are electrically connected to the battery case and the sealing plate through a conductive layer made of a conductive material having a resin melted at a low temperature as a core and a surface coated with a conductive material. It is characterized by having.

一般的に、コイン形状の電池では、ペレット状の正極および負極と外装缶を構成する電池ケースおよび封口板との電気的接触を取るために、その間に導電層を介在させるが、その導電層には黒鉛と黒鉛を定着させる接着剤によって構成される。本発明では、その黒鉛の替わりに低温で溶融する樹脂の表面を黒鉛などの導電性材料でコーティングしたものを使用することにある。   Generally, in a coin-shaped battery, a conductive layer is interposed between the positive electrode and negative electrode in the form of pellets and the battery case and sealing plate constituting the outer can. Is composed of graphite and an adhesive that fixes the graphite. In the present invention, instead of graphite, the surface of a resin that melts at a low temperature is coated with a conductive material such as graphite.

電池の発火、破裂は副反応と温度が大きく寄与している。外部からの過充電や内部短絡などによって大電流が流れたりすると、電池反応以外の副反応を生じ、その時、温度上昇が起こる。温度が上昇するとさらに反応は加速され、その加速された反応によってまたさらに温度上昇を起こす。このような熱暴走的な反応のサイクルが繰り返され、電池は発火、破裂を起こす。   The side reaction and temperature greatly contribute to the ignition and rupture of the battery. When a large current flows due to external overcharge or internal short circuit, a side reaction other than the battery reaction occurs, and the temperature rises at that time. As the temperature rises, the reaction is further accelerated, and the accelerated reaction causes a further increase in temperature. Such a thermal runaway reaction cycle is repeated, causing the battery to ignite and rupture.

電池の発火、破裂を抑制するためには、熱暴走反応のサイクルを止めることが重要であり、副反応が生じないように電流を流れなくしてしまうことが有効である。   In order to suppress the ignition and rupture of the battery, it is important to stop the cycle of the thermal runaway reaction, and it is effective to prevent the current from flowing so as not to cause a side reaction.

本発明では、導電層中の樹脂が、温度上昇によって溶融して絶縁層を形成するため、電池の内部抵抗が上昇して電流が流れない状態にすることができる。このようにして熱暴走反応を抑制することで、電池の発火、破裂を抑制することができる。   In the present invention, since the resin in the conductive layer is melted by the temperature rise to form the insulating layer, the internal resistance of the battery is increased and no current flows. By suppressing the thermal runaway reaction in this way, battery ignition and rupture can be suppressed.

ここで、導電層に単純に低温で溶融する樹脂を含有させれば良いわけではない。導電層はペレット状の正極および負極と外装缶を構成する電池ケースおよび封口板との間の電気的な接触を保つ重要な機能があり、これが機能しないと電池の内部抵抗が高くなり、電池特性の低下を生じさせてしまう。単に樹脂と導電性物質を混合しただけでは、樹脂が抵抗成分になってしまい、電気的な接点が減少するため、電池の内部抵抗が上昇して電池の特性が低下してしまう。   Here, it is not necessary to simply include a resin that melts at a low temperature in the conductive layer. The conductive layer has an important function of maintaining electrical contact between the positive electrode and negative electrode in the form of pellets and the battery case and sealing plate constituting the outer can. If this function does not work, the internal resistance of the battery increases and the battery characteristics Cause a drop in Simply mixing the resin and the conductive material causes the resin to become a resistance component, reducing the number of electrical contacts, and thus increasing the internal resistance of the battery and degrading the battery characteristics.

上記のような問題点を解決する方法として、樹脂の表面に導電性物質をコーティングする方法が挙げられる。絶縁性の樹脂の表面を導電性物質でコーティングすることで、樹脂は黒鉛などの導電性物質と同じような機能を有し、ペレット状の正極および負極との電気的接点を保ちつつ、その導電性物質を媒体として電子移動をスムーズにすることができる。   As a method for solving the above problems, there is a method of coating a conductive material on the surface of a resin. By coating the surface of the insulating resin with a conductive material, the resin has the same function as that of a conductive material such as graphite, while maintaining the electrical contact between the pellet-like positive electrode and negative electrode, Electron transfer can be made smooth using a sex substance as a medium.

樹脂表面に導電性物質をコーティングする手法としては、オングミルのようなメカノケミカル的な方法や樹脂表面のみを溶かして導電性物質を融着させる熱処理的な方法がある。   As a method for coating the surface of the resin with a conductive material, there are a mechanochemical method such as Ongmill and a heat treatment method in which only the resin surface is melted to fuse the conductive material.

樹脂材料の選択としては融点が低く、また、耐薬品性にも優れている材料が良く、例えばポリエチレン、ポリプロピレン、スチレン系共重合体、ポリエステル系樹脂などが挙げられる。樹脂の融点の一例を(表1)に示す。ポリエチレンは分子量によって融点が異なり、低分子量のものほど融点が低く、本発明には望ましい。ただし、電池の使用用途によっては高温環境下にさらされる場合もあり、その際には適切な融点をもつ材料を選択する必要がある。   As a selection of the resin material, a material having a low melting point and excellent chemical resistance is preferable, and examples thereof include polyethylene, polypropylene, a styrene copolymer, and a polyester resin. An example of the melting point of the resin is shown in (Table 1). The melting point of polyethylene varies depending on the molecular weight, and the lower the molecular weight, the lower the melting point, which is desirable for the present invention. However, depending on the intended use of the battery, it may be exposed to a high temperature environment, and in that case, it is necessary to select a material having an appropriate melting point.

Figure 2010061941
Figure 2010061941

樹脂の形状としては、溶融しやすい形状が望ましく、粒子形状の場合は粒度が細かいものが良い。また、径の小さい繊維形状のものを使用するのも良い。これは、導電層中の樹脂が三次元構造を取りやすく、高温下で樹脂が溶融した時、三次元構造が破壊されることによって樹脂が絶縁層を容易に形成できることによる。   The shape of the resin is preferably a shape that is easily melted, and in the case of a particle shape, a fine particle size is preferable. It is also possible to use a fiber having a small diameter. This is because the resin in the conductive layer easily takes a three-dimensional structure, and when the resin melts at a high temperature, the resin can easily form an insulating layer by breaking the three-dimensional structure.

導電性物質としては、導電性を有し、かつ、樹脂と接着しやすい材料が望ましく、人造黒鉛、天然黒鉛やアセチレンブラック、ケッチェンブラック、貴金属などが挙げられる。樹脂表面を高被覆率でコーティングしやすいように樹脂の粒径よりも細かいものが良い。   As the conductive substance, a material that is conductive and easily adheres to a resin is desirable, and examples thereof include artificial graphite, natural graphite, acetylene black, ketjen black, and noble metals. Finer particles than the resin particle size are preferred so that the resin surface can be easily coated with a high coverage.

以下、本発明に関しコイン型リチウム二次電池の形状について図1を参照にして詳細に説明する。図1において、ステンレスからなる封口板1側に負極2を配し、ステンレスからなる電池ケース5側に正極4を配する。負極2と正極4の間にポリプロピレンの不織布からなるセパレータ3を介在する。封口板1と負極2および電池ケース5と正極4の間には導電層7を介して圧接により電気的な導通をとっている。封口板1と電池ケース5の間にガスケット6を配し、電池ケース5を内方にかしめて封口されている。   Hereinafter, the shape of the coin-type lithium secondary battery according to the present invention will be described in detail with reference to FIG. In FIG. 1, a negative electrode 2 is arranged on the sealing plate 1 side made of stainless steel, and a positive electrode 4 is arranged on the battery case 5 side made of stainless steel. A separator 3 made of a polypropylene nonwoven fabric is interposed between the negative electrode 2 and the positive electrode 4. Electrical connection is established between the sealing plate 1 and the negative electrode 2 and between the battery case 5 and the positive electrode 4 through a conductive layer 7 by pressure contact. A gasket 6 is disposed between the sealing plate 1 and the battery case 5, and the battery case 5 is crimped inward to be sealed.

図2に、本発明に関し導電層の構造を説明する。導電層7は図2(a)に示すように黒鉛などの導電性物質8で表面を被覆した樹脂9によって層を形成している。通常はその導電性物質8によって負極2−封口板1間および正極4−電池ケース5間の電子移動が媒介され、スムーズに電池反応を促進できる。しかしコイン型リチウム二次電池が高温環境に至ると、図2(b)に示すように樹脂9が溶融して導電性物質8の繋がりを分断する絶縁層10を形成するため、負極2−封口板1間および正極4−電池ケース5間の電子移動は阻害され、電池反応を含めた全ての反応をストップすることが出来、コイン型リチウム二次電池の破裂や発火を抑制することが出来る。   FIG. 2 illustrates the structure of the conductive layer in the present invention. As shown in FIG. 2A, the conductive layer 7 is formed of a resin 9 whose surface is covered with a conductive material 8 such as graphite. Usually, the electroconductive substance 8 mediates the electron transfer between the negative electrode 2 and the sealing plate 1 and between the positive electrode 4 and the battery case 5, so that the battery reaction can be smoothly promoted. However, when the coin-type lithium secondary battery reaches a high temperature environment, as shown in FIG. 2B, the resin 9 melts to form the insulating layer 10 that breaks the connection of the conductive material 8, so that the negative electrode 2-sealing Electron transfer between the plates 1 and between the positive electrode 4 and the battery case 5 is inhibited, all reactions including the battery reaction can be stopped, and rupture and ignition of the coin-type lithium secondary battery can be suppressed.

以下に本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
導電層を形成するためのペーストを作製した。
Example 1
A paste for forming a conductive layer was prepared.

平均粒径20μmの粉末ポリエチレン粉35gと平均粒径4μmの人造黒鉛45gをミキサーで混合し、その混合物をオングミルのチャンバー(2l)に投入して、回転数1500rpmで5分間メカノケミカル処理を行った。その処理した粉末とカルボキシメチルセルロース(CMC)のナトリウム塩粉末とイオン交換水を質量比で26:1:73で混合、攪拌しペーストを作製した。   35 g of powdered polyethylene powder having an average particle diameter of 20 μm and 45 g of artificial graphite having an average particle diameter of 4 μm were mixed with a mixer, and the mixture was put into an ong mill chamber (2 l) and subjected to mechanochemical treatment at a rotation speed of 1500 rpm for 5 minutes. . The treated powder, sodium salt powder of carboxymethylcellulose (CMC) and ion-exchanged water were mixed at a mass ratio of 26: 1: 73 and stirred to prepare a paste.

そのペースト5μlを電池ケースの中心へΦ約8mmになるように塗布し、80℃で3分間乾燥して水分を除去し、カーボン層を形成した。カーボン層を形成した電池ケースは電池を作製する前に400mmHg以下の減圧下に12時間保管し、水分をさらに除去した。   5 μl of the paste was applied to the center of the battery case so as to have a diameter of about 8 mm, and dried at 80 ° C. for 3 minutes to remove moisture, thereby forming a carbon layer. The battery case in which the carbon layer was formed was stored for 12 hours under a reduced pressure of 400 mmHg or less before the battery was produced, and water was further removed.

コイン型リチウム二次電池の作製については次のようにして行った。   The coin-type lithium secondary battery was manufactured as follows.

上記にて作製した電池ケースを用い、正極に活物質としてのコバルト酸リチウム、導電剤としてケッチェンブラック、結着剤としてフッ素系樹脂のPTFE(ポリテトラフルオロエチレン)を質量比で90:5:5となるように混合し、加圧成型して直径10mm、厚み0.5mmのペレットを、負極には活物質としてのチタン酸リチウム、導電剤としてケッチェンブラック、結着剤としてスチレン−ブタジエン共重合体を質量比で90:5:5となるように混合し、加圧成型して直径11mm、厚み0.5mmのペレットにして用い、電解液にはプロピレンカーボネイト(PC)とジエチルカーボネート(DEC)を体積比45:55で混合し、LiPF6を1mol/l溶解させたものを使用し、また、ガスケット材にはPPSを用いて図1に示すような構造を有する直径16mm、厚み1.6mmサイズのコイン型リチウム二次電池を作製した。これを実施例1とする。 Using the battery case prepared above, lithium cobaltate as an active material for the positive electrode, ketjen black as a conductive agent, and PTFE (polytetrafluoroethylene) as a fluororesin as a binder in a mass ratio of 90: 5: 5 and mixed with pressure to form pellets having a diameter of 10 mm and a thickness of 0.5 mm. The negative electrode is lithium titanate as an active material, ketjen black as a conductive agent, and styrene-butadiene as a binder. The polymer was mixed at a mass ratio of 90: 5: 5, pressure-molded and used as pellets with a diameter of 11 mm and a thickness of 0.5 mm. Propylene carbonate (PC) and diethyl carbonate (DEC) were used as the electrolyte. ) were mixed at a volume ratio of 45:55, and the LiPF 6 was used after dissolving 1 mol / l, also, the gasket material with PPS 16mm diameter having a structure as shown in 1, to prepare a coin-type lithium secondary battery having a thickness of 1.6mm size. This is Example 1.

(実施例2)
低温で溶融する樹脂としてポリプロピレンを使用した以外は実施例1と同様に作製したコイン型リチウム二次電池を実施例2とする。
(Example 2)
A coin-type lithium secondary battery manufactured in the same manner as in Example 1 except that polypropylene is used as a resin that melts at a low temperature is referred to as Example 2.

(実施例3)
低温で溶融する樹脂としてスチレン系共重合体を使用した以外は実施例1と同様に作製したコイン型リチウム二次電池を実施例3とする。
(Example 3)
A coin-type lithium secondary battery manufactured in the same manner as in Example 1 except that a styrene copolymer is used as a resin that melts at a low temperature is referred to as Example 3.

(比較例1)
導電層を形成するためのペーストを作製する時、単に粉末ポリエチレンと人造黒鉛を混ぜ合わせてペーストを作製した以外は実施例1と同様に作製したコイン型リチウム二次電池を比較例1とする。
(Comparative Example 1)
A coin-type lithium secondary battery manufactured in the same manner as in Example 1 is used as Comparative Example 1 except that when a paste for forming a conductive layer is prepared, a paste is prepared by simply mixing powdered polyethylene and artificial graphite.

(比較例2)
導電層を形成するためのペーストを作製する時、人造黒鉛のみでペーストを作製した以外は実施例1と同様に作製したコイン型リチウム二次電池を比較例2とする。
(Comparative Example 2)
A coin-type lithium secondary battery produced in the same manner as in Example 1 except that the paste was produced only with artificial graphite when producing the paste for forming the conductive layer is referred to as Comparative Example 2.

上記の実施例1〜3および比較例1〜2のコイン型リチウム二次電池に対して、2.6Vの定電圧を48時間印可する初期化を行った。   The coin type lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2 were initialized by applying a constant voltage of 2.6 V for 48 hours.

初期化後、コイン型リチウム二次電池の内部抵抗を測定した。次いでそれぞれのコイン型リチウム二次電池を120℃雰囲気に1時間保存し、その後室温で1日保管してから再度コイン型リチウム二次電池の内部抵抗を測定した。その結果を(表2)に示す。   After initialization, the internal resistance of the coin-type lithium secondary battery was measured. Next, each coin-type lithium secondary battery was stored in an atmosphere of 120 ° C. for 1 hour, then stored at room temperature for 1 day, and then the internal resistance of the coin-type lithium secondary battery was measured again. The results are shown in (Table 2).

実施例1では初期の内部抵抗は比較例2と変わらないが、120℃保存後においては内部抵抗値が大きくなっている。これは、導電層に含まれるポリエチレンの粒子が溶解して絶縁皮膜を形成したことによる。   In Example 1, the initial internal resistance is not different from that in Comparative Example 2, but the internal resistance value is increased after storage at 120 ° C. This is because the polyethylene particles contained in the conductive layer were dissolved to form an insulating film.

実施例2では実施例1と同様の傾向が見られたが、内部抵抗の増加量は実施例1より小さかった。これは導電層に含まれる樹脂のポリエチレンとポリプロピレンとの融点に差があるためで、ポリプロピレンの方が融点が高いため溶融度が低いことによる。   In Example 2, the same tendency as in Example 1 was observed, but the amount of increase in internal resistance was smaller than in Example 1. This is because there is a difference in melting point between polyethylene and polypropylene of the resin contained in the conductive layer, and the melting point is low because polypropylene has a higher melting point.

実施例3では実施例1と大きな差はなかった。   Example 3 was not significantly different from Example 1.

比較例1では初期化後のコイン型リチウム二次電池の内部抵抗が高くなっている。これは、樹脂の絶縁性部分が粒子表面に存在するため、電極であるペレットとの電気的な接触を取る面積が減少していることによる。120℃の保存後においては、実施例1と同じく、導電層中の樹脂が溶融し絶縁層を形成するため、内部抵抗値が大きくなった。   In Comparative Example 1, the internal resistance of the coin-type lithium secondary battery after initialization is high. This is because the insulating portion of the resin is present on the particle surface, so that the area that is in electrical contact with the pellets as electrodes is reduced. After storage at 120 ° C., as in Example 1, the resin in the conductive layer melted to form an insulating layer, so that the internal resistance value increased.

比較例2ではコイン型リチウム二次電池の初期の内部抵抗も低く、また、120℃保存後においても顕著な内部抵抗の上昇が見られなかった。   In Comparative Example 2, the initial internal resistance of the coin-type lithium secondary battery was low, and no significant increase in internal resistance was observed even after storage at 120 ° C.

Figure 2010061941
Figure 2010061941

このように実施例において、初期の電池特性を低下させることなく、温度上昇時には電池抵抗が大きくなって電流が流れない状態にすることができた。これにより、コイン型リチウム二次電池の発火、破裂を抑制することができる。   As described above, in the examples, without deteriorating the initial battery characteristics, when the temperature rose, the battery resistance increased and no current flowed. Thereby, the ignition and rupture of the coin-type lithium secondary battery can be suppressed.

本発明にかかるコイン型リチウム二次電池は、コイン型リチウム二次電池の安全性向上おいて特に有用である。   The coin-type lithium secondary battery according to the present invention is particularly useful in improving the safety of the coin-type lithium secondary battery.

本発明の実施例に係わるコイン型リチウム二次電池の断面図Sectional drawing of the coin-type lithium secondary battery concerning the Example of this invention (a)本発明の実施例に係わる導電層の模式図(高温温度負荷なしの状態)、(b)本発明の実施例に係わる導電層の模式図(高温温度負荷ありの状態)(A) Schematic diagram of a conductive layer according to an embodiment of the present invention (state without high temperature load), (b) Schematic diagram of a conductive layer according to an embodiment of the present invention (state with high temperature load)

符号の説明Explanation of symbols

1 封口板
2 負極
3 セパレータ
4 正極
5 電池ケース
6 ガスケット
7 導電層
8 導電性物質
9 樹脂
10 絶縁層
DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Negative electrode 3 Separator 4 Positive electrode 5 Battery case 6 Gasket 7 Conductive layer 8 Conductive substance 9 Resin 10 Insulating layer

Claims (3)

正極と負極との間にセパレータを介在させて構成した発電要素を電解液とともに電池ケースと封口板の中に収納し、前記電池ケースと封口板とをガスケットで封口してなるコイン型リチウム二次電池において、前記正極および負極を、低温で溶融する樹脂を核とし、その表面に導電性物質を被覆した導電材からなる導電層を介して、前記電池ケースおよび封口板に導通させたことを特徴とするコイン型リチウム二次電池。 A coin-type lithium secondary battery in which a power generation element configured by interposing a separator between a positive electrode and a negative electrode is housed in a battery case and a sealing plate together with an electrolyte, and the battery case and the sealing plate are sealed with a gasket. In the battery, the positive electrode and the negative electrode are electrically connected to the battery case and the sealing plate through a conductive layer made of a conductive material having a resin melted at a low temperature as a core and a surface coated with a conductive material. A coin-type lithium secondary battery. 前記低温で溶融する樹脂として、ポリエチレン、ポリプロピレン、スチレン系共重合体、ポリエステル系樹脂のいずれか1種類、またはそれらの混合物を用いたことを特徴とする請求項1記載のコイン型リチウム二次電池。 The coin-type lithium secondary battery according to claim 1, wherein the resin that melts at a low temperature is one of polyethylene, polypropylene, styrene copolymer, polyester resin, or a mixture thereof. . 前記導電性物質として、人造黒鉛、天然黒鉛、アセチレンブラック、ケッチェンブラックのいずれか1種類、またはそれらの混合物を用いたことを特徴とする請求項1記載のコイン型リチウム二次電池。 2. The coin-type lithium secondary battery according to claim 1, wherein any one of artificial graphite, natural graphite, acetylene black, ketjen black, or a mixture thereof is used as the conductive material.
JP2008225526A 2008-09-03 2008-09-03 Coin type lithium secondary battery Pending JP2010061941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225526A JP2010061941A (en) 2008-09-03 2008-09-03 Coin type lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225526A JP2010061941A (en) 2008-09-03 2008-09-03 Coin type lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2010061941A true JP2010061941A (en) 2010-03-18

Family

ID=42188528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225526A Pending JP2010061941A (en) 2008-09-03 2008-09-03 Coin type lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2010061941A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050653A1 (en) 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
JP2020095867A (en) * 2018-12-13 2020-06-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN111656570A (en) * 2017-12-13 2020-09-11 三星Sdi株式会社 Secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050653A1 (en) 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
EP2903063A4 (en) * 2012-09-28 2016-04-27 Furukawa Electric Co Ltd Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
CN111656570A (en) * 2017-12-13 2020-09-11 三星Sdi株式会社 Secondary battery
CN111656570B (en) * 2017-12-13 2023-06-13 三星Sdi株式会社 Secondary battery
JP2020095867A (en) * 2018-12-13 2020-06-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR101268989B1 (en) Lithium ion secondary cell
TWI591889B (en) Current Collector, Electrode Structure, Nonaqueous Electrolyte Battery, Conductivity Packing and storage components
CA2196493C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
CN108232099B (en) Lithium ion secondary battery
JP5656521B2 (en) Non-aqueous electrolyte battery
WO2002031904A1 (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
JP2009193745A (en) Method for manufacturing positive electrode active material
JPH10154532A (en) Organic electrolyte secondary battery
JP4240078B2 (en) Lithium secondary battery
TW201703337A (en) Non-aqueous electrolyte secondary battery
JP2012059404A5 (en)
JP2015088370A (en) Positive electrode, and lithium ion secondary battery
JP2008251480A (en) Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous secondary battery using it
JP2008041504A (en) Nonaqueous electrolyte battery
JPH09320568A (en) Nonaqueous electrolyte secondary battery
JP2016062872A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2008210686A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP2009176597A (en) Nonaqueous electrolyte secondary battery
JP2010061941A (en) Coin type lithium secondary battery
JPH113710A (en) Lithium secondary battery
JPH113709A (en) Manufacture of lithium secondary battery
JP2008204839A (en) Sealing plate for cylindrical battery cell
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP6587929B2 (en) Nonaqueous electrolyte secondary battery
JP3258678B2 (en) Non-aqueous electrolyte battery