JP2010061917A - Method for manufacturing catalytic electrode of fuel cell - Google Patents

Method for manufacturing catalytic electrode of fuel cell Download PDF

Info

Publication number
JP2010061917A
JP2010061917A JP2008224994A JP2008224994A JP2010061917A JP 2010061917 A JP2010061917 A JP 2010061917A JP 2008224994 A JP2008224994 A JP 2008224994A JP 2008224994 A JP2008224994 A JP 2008224994A JP 2010061917 A JP2010061917 A JP 2010061917A
Authority
JP
Japan
Prior art keywords
powder
electrolyte membrane
catalyst electrode
electrolyte
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008224994A
Other languages
Japanese (ja)
Inventor
Nobuo Yoshitoshi
信雄 吉年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008224994A priority Critical patent/JP2010061917A/en
Publication of JP2010061917A publication Critical patent/JP2010061917A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To fix a catalytic electrode layer on an electrolyte membrane in a short time without giving a thermal and physical damage on the catalytic electrode layer and the electrolyte membrane at the manufacturing of the catalytic electrode of a solid polymer fuel cell. <P>SOLUTION: In the method for manufacturing the catalytic electrode 3 of a polymer electrolyte fuel cell, a catalytic electrode powder 2 containing catalyst carrying conductive particles and a binder is prepared and the catalytic electrode powder 2 is coated on the electrolyte membrane 1 by a xerography method, and by light energy emitted from a flash lamp 10, the binder is melted on the electrolyte membrane 1 in a very short time, and the catalytic electrode powder 2 coated on the electrolyte membrane 1 is fixed to the electrolyte membrane 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の触媒電極(適宜、「触媒電極層」という)の製造方法に関する。さらに詳細には、本発明は、固体高分子型燃料電池(PEFC)を作製するに当たり、電解質膜に触媒電極層を形成する製造方法に関する。   The present invention relates to a method for producing a catalyst electrode (referred to as a “catalyst electrode layer” as appropriate) of a fuel cell. More specifically, the present invention relates to a production method for forming a catalyst electrode layer on an electrolyte membrane in producing a polymer electrolyte fuel cell (PEFC).

近年、固体高分子型燃料電池が、自動車用、家庭用、携帯電話用等の電力として普及しつつある。
この固体高分子型燃料電池は、一般に、電解質膜と、電解質膜を両側から担持する2つの触媒電極層とからなる膜電極接合体(MEA)と、このMEAを両側から担持する2つの拡散層を有している。
In recent years, polymer electrolyte fuel cells have been widely used as electric power for automobiles, homes, mobile phones and the like.
This polymer electrolyte fuel cell generally includes a membrane electrode assembly (MEA) comprising an electrolyte membrane and two catalyst electrode layers that carry the electrolyte membrane from both sides, and two diffusion layers that carry the MEA from both sides. have.

ところで、当該固体高分子型燃料電池の製造中、電解質膜に触媒電極層を担持して、MEAを形成する従来技術の方法がある。
それは、特許文献1及び2に示されている方法であって、触媒担持炭素粒子を含む粉体を、静電複写方式で電解質膜へ触媒電極層として転写し、次に、その転写された触媒電極層を、ヒートロールで加熱かつ加圧(すなわちホットプレス)し、触媒電極層を電解質膜上に形成している(以下、この方式を「ヒートロール方式」という)。
By the way, there is a prior art method for forming a MEA by supporting a catalyst electrode layer on an electrolyte membrane during the production of the polymer electrolyte fuel cell.
It is a method disclosed in Patent Documents 1 and 2, in which a powder containing catalyst-supporting carbon particles is transferred to an electrolyte membrane as a catalyst electrode layer by an electrostatic copying method, and then the transferred catalyst The electrode layer is heated and pressed with a heat roll (that is, hot pressing) to form a catalyst electrode layer on the electrolyte membrane (hereinafter, this method is referred to as “heat roll method”).

しかるに、このヒートロール方式では、一定時間の加熱・加圧が不可避のため、以下の不具合が発生する。
第1に、同方式によれば、加熱時間が、4分、5分と比較的長いため、この間の加熱・加圧により電解質膜や触媒電極層中の電解質樹脂を劣化させ、又は電解質膜にシワやよじれが発生し、水素イオン(プロトン)を好適に通過させる能力が低下し、ひいては燃料電池の発電性能や耐久性が低下する。
第2に、同方式によれば、加熱温度が、例えば、約140℃から約160℃に設定されて、電解質膜や触媒電極層へ輻射熱としてでなく直接的に熱として付与されるため、この加熱温度が上記加熱時間と相まって、電解質膜や触媒電極層中の電解質樹脂を劣化させる。
第3に、同方式によれば、加圧が、例えば、30kgf/cmと比較的高い値でなされる。このような圧力下では、触媒担持導電性粒子(例えば、白金担持炭素粒子)が、電解質膜に対し強く当接するため、該粒子によって、電解質膜にダメージを与え、機械的損傷をもたらす。そのため、触媒電極層と電解質膜との接着性(接合性)が低下し、不要な電気抵抗が発生し、電圧を降下させる。
However, in this heat roll method, heating and pressurization for a certain time is inevitable, and the following problems occur.
First, according to the same method, the heating time is relatively long as 4 minutes and 5 minutes, so that the electrolyte resin in the electrolyte membrane and the catalyst electrode layer is deteriorated by heating and pressurization during this time, or the electrolyte membrane Wrinkles and kinks are generated, the ability of hydrogen ions (protons) to pass through is reduced, and the power generation performance and durability of the fuel cell are reduced.
Second, according to the same method, the heating temperature is set to, for example, about 140 ° C. to about 160 ° C., and is directly applied as heat to the electrolyte membrane and the catalyst electrode layer, not as radiant heat. The heating temperature combined with the heating time deteriorates the electrolyte resin in the electrolyte membrane and the catalyst electrode layer.
Thirdly, according to the same method, pressurization is performed at a relatively high value, for example, 30 kgf / cm 2 . Under such a pressure, the catalyst-carrying conductive particles (for example, platinum-carrying carbon particles) strongly contact the electrolyte membrane, so that the particles damage the electrolyte membrane and cause mechanical damage. Therefore, the adhesiveness (bonding property) between the catalyst electrode layer and the electrolyte membrane is lowered, unnecessary electric resistance is generated, and the voltage is lowered.

このように、ヒートロール方式を採用している限り、第1、第2及び第3の不具合が発生するが、これらを解決するのは、以下の理由から難しいと判断される。
第1の不具合に対しては、熱伝導で触媒電極層を加熱させるため、熱がヒートロールから触媒電極層や電解質膜に伝導する時間が長く採らざるをえない。
第2の不具合に対しては、触媒電極層を電解質膜に定着する際に、電解質膜の軟化温度にできるだけ近い温度(例えば、電解質膜としてデュポン社のナフィオン(製品名)をした場合にあっては140℃から160℃)にせざるをえない。
第3の不具合に対しては、ヒートロールによる加圧・加熱の始動時に電解質膜や触媒電極層中の電解質樹脂が固形状態(固体)のため、電解質膜と触媒電極層との接着(接合)が難しい。そこで、例えば、両者の接着境界で、接着安定性を向上させる必要がある。そ
の際、機械的接着性を向上させた突起状の接着が要求されるため、当該加圧の圧力値を高くせざるをえない。
特開平8−329962号公報 特開2004−281221号公報
As described above, as long as the heat roll method is employed, the first, second, and third problems occur, but it is determined that it is difficult to solve these problems for the following reason.
For the first problem, since the catalyst electrode layer is heated by heat conduction, it takes a long time for heat to be conducted from the heat roll to the catalyst electrode layer or the electrolyte membrane.
The second problem is that when the catalyst electrode layer is fixed to the electrolyte membrane, the temperature is as close as possible to the softening temperature of the electrolyte membrane (for example, DuPont Nafion (product name) is used as the electrolyte membrane). Must be 140 to 160 ° C.).
For the third problem, since the electrolyte resin in the electrolyte membrane and the catalyst electrode layer is in a solid state (solid) at the start of pressurization and heating by a heat roll, the adhesion between the electrolyte membrane and the catalyst electrode layer (bonding) Is difficult. Therefore, for example, it is necessary to improve the adhesion stability at the adhesion boundary between the two. In that case, since the protrusion-like adhesion | attachment which improved mechanical adhesiveness is requested | required, the pressure value of the said pressurization must be made high.
JP-A-8-329962 JP 2004-281221 A

そこで、本発明は、上記の不具合に鑑み、触媒電極層を電解質膜に転写するときには静電複写方式を採用するが、その後、触媒電極層を電解質膜が損傷することのない、固体高分子型燃料電池の触媒電極層(触媒電極)の製造方法を提供することを目的とする。
なお、本発明に係る燃料電池の製造方法の各種態様、並びに、それらの作用および効果については、以下の、発明の態様の項において詳しく説明する。
Therefore, in view of the above problems, the present invention adopts an electrostatic copying method when transferring the catalyst electrode layer to the electrolyte membrane, and thereafter, the catalyst membrane is not damaged by the electrolyte membrane. It aims at providing the manufacturing method of the catalyst electrode layer (catalyst electrode) of a fuel cell.
Various aspects of the method of manufacturing a fuel cell according to the present invention, and their operations and effects will be described in detail in the section of the aspect of the invention below.

(発明の態様)
以下、発明の態様を示し、それらについて説明する。(1)、(2)、及び(3)の項の各々が、請求項1、2、及び3の各々に相当する。
(Aspect of the Invention)
Hereinafter, embodiments of the invention will be shown and described. Each of the items (1), (2), and (3) corresponds to each of claims 1, 2, and 3.

(1) 固体高分子型燃料電池の触媒電極の製造方法であって、触媒担持カーボン粒子と結着剤とを含む触媒電極用の粉体を作製する粉体作製工程と、該触媒電極用の粉体を、静電複写法により電解質膜に塗布する静電複写工程と、フラッシュランプの光エネルギーにより前記結着剤を溶融させ、該電解質膜に塗布された該触媒電極用の粉体を、該電解質膜に定着させる光定着工程とを含むことを特徴とする製造方法。 (1) A method for producing a catalyst electrode for a polymer electrolyte fuel cell, comprising: a powder production step for producing a powder for a catalyst electrode containing catalyst-supporting carbon particles and a binder; An electrostatic copying process in which the powder is applied to the electrolyte membrane by an electrostatic copying method, and the binder electrode is melted by the light energy of a flash lamp, and the powder for the catalyst electrode applied to the electrolyte membrane is And a light fixing step for fixing the electrolyte film.

本項の態様によれば、フラッシュランプから出射される光エネルギーによって、電解質膜に塗布された該触媒電極用の粉体を該電解質膜に定着させる光定着は、ヒートロール方式のように直接接触ではなく非接触かつ非加圧のものであり、もって、触媒電極層や電解質膜への加圧が全くないので、触媒電極用粒子が電解質膜に当接することによる機械的損傷は事実上存在しない。   According to the aspect of this section, the light fixing for fixing the powder for the catalyst electrode applied to the electrolyte membrane to the electrolyte membrane by the light energy emitted from the flash lamp is directly contacted as in the heat roll method. It is non-contact and non-pressurized, and therefore there is no pressurization to the catalyst electrode layer or the electrolyte membrane, so there is virtually no mechanical damage due to the catalyst electrode particles coming into contact with the electrolyte membrane. .

また、本項の態様によれば、フラッシュランプから出射される光エネルギーによって、結着剤を電解質膜上で溶融可能とした。また、電解質膜の光吸収率は、約35%と低いため、該光エネルギーによる電解質膜に対する熱影響はヒートロール方式に比べ格段に少なくなる。
また、本項の態様によれば、瞬間的に放たれるフラッシュランプから出射される光エネルギーによって、5μmから13μm程度の範囲のシャープな粒度分布の結着剤を溶融させ触媒電極層と前記電解質膜とを結着させる。その結果、結着剤が微粉ゆえ、熱容量が小さいため、光エネルギーが微粉の各粒子に熱伝達し易い。また、微粉の粒度がある程度揃っているため、光エネルギーを均一に結着剤に照射すれば、微粉の各粒子の溶融もまた均一になされる。このような特徴により、例えば、1ミリ秒以下とごく短時間に、結着剤の電解質膜への加熱処理が完了するため、本項の態様によれば、電解質膜の劣化が、触媒電極層の加熱時間が4分間から5分間と長いヒートロール方式に比べ、格段に少なくなる。
また、本項の態様によれば、フラッシュランプが出射する光による触媒電極層への加熱温度は瞬間的に約500℃に達するが、瞬間的なもの(例えば、約0.3ミリ秒)であり、該加熱温度は、即100℃以下と低温度となる。そのために、加熱による電解質膜の損傷が、ヒートロール方式に比べ、格段に少なくなる。
Further, according to the aspect of this section, the binder can be melted on the electrolyte membrane by the light energy emitted from the flash lamp. Further, since the light absorption rate of the electrolyte membrane is as low as about 35%, the heat effect on the electrolyte membrane due to the light energy is remarkably reduced as compared with the heat roll method.
Further, according to the aspect of this section, the catalyst electrode layer and the electrolyte are obtained by melting a binder having a sharp particle size distribution in a range of about 5 μm to 13 μm by light energy emitted from a flash lamp that is instantaneously emitted. Bond the membrane. As a result, since the binder is fine powder, the heat capacity is small, so that light energy is easily transferred to each particle of fine powder. In addition, since the particle size of the fine powder is uniform to some extent, if the binder is irradiated with light energy uniformly, the particles of the fine powder are also melted uniformly. With such a feature, for example, since the heat treatment of the binder electrolyte membrane is completed in a very short time of 1 millisecond or less, according to the aspect of this section, the deterioration of the electrolyte membrane is caused by the catalyst electrode layer. Compared to the heat roll method in which the heating time of 4 to 5 minutes is long, the time is significantly reduced.
Further, according to the aspect of this section, the heating temperature of the catalyst electrode layer by light emitted from the flash lamp instantaneously reaches about 500 ° C., but is instantaneous (for example, about 0.3 milliseconds). Yes, the heating temperature immediately becomes a low temperature of 100 ° C. or lower. For this reason, damage to the electrolyte membrane due to heating is remarkably reduced as compared with the heat roll method.

さらに、結着剤を有機溶剤を含まず、PTFEのようにフッ素系樹脂を主に含む溶液により作製すれば、有機溶剤と比較してフッ素樹脂は難燃性のため、フラッシュランプから出射される光エネルギーで燃えること防ぐために、特許文献1で示されているような周りの雰囲気を不活性または真空雰囲気(不燃性雰囲気)にする必要はなく、設備コストがその分かからない。   Furthermore, if the binder is made of a solution that does not contain an organic solvent and is mainly made of a fluororesin such as PTFE, the fluororesin is emitted from a flash lamp because of its flame retardancy compared to an organic solvent. In order to prevent burning with light energy, it is not necessary to make the surrounding atmosphere inactive or vacuum atmosphere (non-flammable atmosphere) as shown in Patent Document 1, and the equipment cost is not so much.

(2) (1)に記載の製造方法であって、前記粉体作製工程において、前記触媒電極用の粉体は、さらに造孔剤を含み、該造孔剤を用いて、多孔性の触媒電極用の粉体を作製することを特徴とする製造方法。
本項によれば、(1)の光定着工程で、すでに触媒電極層に一定程度、電解質膜からの電解質樹脂分が含浸されるが、さらに、例えば、炭酸カルシウムのようなアルカリ塩を含む造孔剤を、当初より触媒電極用の粉体に加える。そして、例えば、硝酸のような酸を含む溶液を、炭酸カルシウムに反応させ、反応生成物を除去し、多くの孔を造る。この多孔部は、次の(3)で電解質樹脂溶液の含浸時に有効に機能することになる(下記参照)。
(2) The manufacturing method according to (1), wherein, in the powder production step, the powder for the catalyst electrode further includes a pore forming agent, and the porous catalyst is formed using the pore forming agent. A method for producing a powder for an electrode.
According to this section, in the photofixing step of (1), the catalyst electrode layer is already impregnated with a certain amount of the electrolyte resin from the electrolyte membrane, and further, for example, a structure containing an alkali salt such as calcium carbonate. From the beginning, the pore agent is added to the powder for the catalyst electrode. Then, for example, a solution containing an acid such as nitric acid is reacted with calcium carbonate, the reaction product is removed, and many pores are formed. This porous portion functions effectively at the time of impregnation with the electrolyte resin solution in the following (3) (see below).

(3)(2)に記載の製造方法であって、前記静電複写工程及び光定着工程の後、該光定着工程により該電解質膜に定着された前記多孔性の触媒電極用の粉体に、電解質樹脂溶液を含浸させる電解質溶液塗布工程を含むことを特徴とする製造方法。
本項によれば、(2)項で造られた触媒電極用の粉体の多くの孔に流し込むようにして電解質樹脂溶液を含浸させることができるため、触媒電極層に含まれる電解質樹脂と電解質膜とが好適に接合すると共に、水素イオンを電解質膜のアノード側からもう一方のカソード側へさらに円滑に移動させることができ、一方、反応ガスと電解質と触媒電極との三相反応を好適に行わせることができる。
(3) The manufacturing method according to (2), wherein after the electrostatic copying step and the photofixing step, the porous catalyst electrode powder fixed on the electrolyte membrane by the photofixing step The manufacturing method characterized by including the electrolyte solution application | coating process which impregnates an electrolyte resin solution.
According to this section, since the electrolyte resin solution can be impregnated so as to be poured into many pores of the catalyst electrode powder produced in the section (2), the electrolyte resin and electrolyte contained in the catalyst electrode layer The membrane can be suitably bonded, and hydrogen ions can be moved more smoothly from the anode side of the electrolyte membrane to the other cathode side, while the three-phase reaction between the reaction gas, the electrolyte, and the catalyst electrode is preferably performed. Can be done.

以上のように、フラッシュランプで電解質膜に触媒電極層を光定着させる処理は、瞬間的な光による、非接触かつ実質上低温の加熱方式となる。そのため、総じて、従来のヒートロール方式と比べると電解質膜の熱的及び機械的損傷が格段に少なくなり、ひいては燃料電池の電極の耐久性を向上させる。また、当該光定着は、瞬間的であり大変短時間な処理のため、生産性を向上させる。   As described above, the process of photofixing the catalyst electrode layer on the electrolyte membrane with a flash lamp is a non-contact and substantially low-temperature heating method using instantaneous light. Therefore, as a whole, the thermal and mechanical damage of the electrolyte membrane is remarkably reduced as compared with the conventional heat roll method, and as a result, the durability of the electrode of the fuel cell is improved. Further, the light fixing is instantaneous and is a very short processing time, so that productivity is improved.

本発明によれば、触媒電極層及び電解質膜に熱的及び物理的に損傷を与えることなく、かつ、短時間に触媒電極層を電解質膜に定着させることができ、燃料電池の耐久性を向上させることができる。また、本発明によれば、電解質成分が、電解質膜から触媒電極層に至る領域全体に十分に行き渡らせることができ、燃料電池の発電性能を向上させることができる。   According to the present invention, the catalyst electrode layer can be fixed to the electrolyte membrane in a short time without thermally and physically damaging the catalyst electrode layer and the electrolyte membrane, thereby improving the durability of the fuel cell. Can be made. Further, according to the present invention, the electrolyte component can be sufficiently spread over the entire region from the electrolyte membrane to the catalyst electrode layer, and the power generation performance of the fuel cell can be improved.

以下、本発明の実施の形態を、添付図面を参照して説明する。
図1は、本発明に係る燃料電池の製造方法を実施する形態を示すための図である。図中、同一の符号を付した部分は同一物を表わし、基本的な構成は図に示す従来のものと同様である。当該製造方法は、下記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram for illustrating a mode for carrying out a method of manufacturing a fuel cell according to the present invention. In the figure, the same reference numerals denote the same components, and the basic configuration is the same as the conventional one shown in the figure. The manufacturing method is not limited to the following embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

図1は、本発明の実施形態に係る固体高分子型の燃料電池の触媒電極(触媒電極層)の製造方法を説明するための概念図である。
この図1を参照しながら、当該製造方法について、第1実施形態と第2実施形態に分けて以下説明する。
FIG. 1 is a conceptual diagram for explaining a method for producing a catalyst electrode (catalyst electrode layer) of a polymer electrolyte fuel cell according to an embodiment of the present invention.
The manufacturing method will be described separately for the first embodiment and the second embodiment with reference to FIG.

第1実施形態:第1実施形態は、触媒担持カーボン粒子と結着剤とを含む触媒電極用の粉体を作製する粉体作製工程と、該触媒電極用の粉体を、静電複写法により電解質膜に塗布する静電複写工程と、フラッシュランプにより前記結着剤を溶融させ、該電解質膜に塗布された該触媒電極用の粉体を該電解質膜に定着させる光定着工程とを主工程とするものである。 First Embodiment : In the first embodiment, a powder production process for producing a powder for a catalyst electrode containing catalyst-carrying carbon particles and a binder, and an electrostatic copying method for producing the powder for the catalyst electrode An electrostatic copying process for applying to the electrolyte film by the above method, and a photofixing process for melting the binder by a flash lamp and fixing the powder for the catalyst electrode applied to the electrolyte film to the electrolyte film. It is a process.

粉体作製工程(不図示);当該触媒電極用の粉体は、混練粉砕方法によって製造される。この混練粉砕方法は、材料の計量、混合、混練、粉砕、分級および篩分けのプロセスから構成され、触媒電極用の粉体材料の電解質膜への定着状態の制御と、当該粉体を構成する粒子の大きさや形状の基本特性を制御とを行い、分級および篩分けにより、当該粉体の電解質膜上への塗布面の品質の一定化を目的とする。
触媒電極用の粉体材料の組成物は、フラッシュランプからの光エネルギーにより溶融し、電解質膜に定着する、PTFE、PFA、FEP、ETFE等の結着剤と、白金担持カーボン、ニッケル担持カーボン、ニッケル−ルテニウム担持カーボン等の触媒担持導電性材料(触媒担持導電性粉体)とを含む。
Powder preparation step (not shown); The powder for the catalyst electrode is produced by a kneading and pulverizing method. This kneading and pulverizing method is composed of a process of measuring, mixing, kneading, pulverizing, classifying and sieving the material, and controls the fixing state of the powder material for the catalyst electrode to the electrolyte membrane and constitutes the powder. The basic characteristics of the size and shape of the particles are controlled, and the purpose is to make the quality of the coated surface of the powder on the electrolyte membrane constant by classification and sieving.
The composition of the powder material for the catalyst electrode is composed of a binder such as PTFE, PFA, FEP, and ETFE, which is melted by light energy from the flash lamp and fixed to the electrolyte membrane, platinum-supported carbon, nickel-supported carbon, And a catalyst-supporting conductive material (catalyst-supporting conductive powder) such as nickel-ruthenium-supported carbon.

まず、これらの材料を、所定の処方に従って計量し、ヘンシェルミキサーのような混合機で混合する。粗混合された当該材料は、さらに混練機で、330℃から350℃で加熱溶融しながら混練され、各組成物が十分にミクロ分散される。この混練された触媒担持導電性材料を冷却し、冷却されたまま粗粉砕した後、乾式ジェットミルで、5μmから13μmに微粉砕する。微粉砕された触媒担持導電性粉体は、粒度分布をシャープにするため、サイクロンのような遠心力分級機によって、粒度分布の裾野に位置する微粉と粗粉とが除去される。このようにして、第1実施形態に係る粉体作製工程により触媒担持導電性粉体2が作製される。   First, these materials are weighed according to a predetermined recipe and mixed with a mixer such as a Henschel mixer. The roughly mixed material is further kneaded in a kneader while being heated and melted at 330 ° C. to 350 ° C., and each composition is sufficiently micro-dispersed. The kneaded catalyst-carrying conductive material is cooled, coarsely pulverized while being cooled, and then finely pulverized from 5 μm to 13 μm by a dry jet mill. In order to sharpen the particle size distribution of the finely pulverized catalyst-supporting conductive powder, fine powder and coarse powder located at the bottom of the particle size distribution are removed by a centrifugal force classifier such as a cyclone. In this way, the catalyst-carrying conductive powder 2 is produced by the powder production process according to the first embodiment.

静電複写工程(図1(1)): 図1の(1)に示されるように、上記粉体作製工程で作製された触媒担持導電性粉体2を、現像ローラ6の周りを囲むように、収納カートリッジ15に収納する。そして、収納カートリッジ15の鉛直部16が感光ドラム5の接線に沿うように、収納カートリッジ15を配置する。
さらに収納カートリッジ15の触媒担持導電性粉体2の中に、帯電電極(不図示)が備えられている。帯電電極は電源(不図示)に接続され、電源から供給される電荷によって触媒担持導電性粉体2を負に帯電させる。そして、負に帯電させられた触媒担持導電性粉体2は、現像ローラ6に物理的に付着し、現像ローラ6の回転によって感光ドラム5の表面へ送られる。
An electrostatic copying process (FIG. 1 (1)): As shown in (1) in FIG. 1, the catalyst carrying conductive powder 2 prepared by the above powder manufacturing process, so as to surround the periphery of the developing roller 6 Then, it is stored in the storage cartridge 15. Then, the storage cartridge 15 is arranged so that the vertical portion 16 of the storage cartridge 15 is along the tangent line of the photosensitive drum 5.
Further, a charging electrode (not shown) is provided in the catalyst-carrying conductive powder 2 of the storage cartridge 15. The charging electrode is connected to a power source (not shown), and negatively charges the catalyst-carrying conductive powder 2 by the charge supplied from the power source. Then, the negatively charged catalyst-carrying conductive powder 2 physically adheres to the developing roller 6 and is sent to the surface of the photosensitive drum 5 by the rotation of the developing roller 6.

このとき、感光ドラム5は、静電ローラ7により、正に帯電させられている。しかし、感光ドラム5の露光部14に曝された箇所は除電されている。したがって、感光ドラム5へと運搬された負に帯電させられた触媒担持導電性粉体2は、除電されていない箇所において、静電力で感光ドラム5に付着する。感光ドラム5に付着した触媒担持導電性粉体2は、感光ドラム5の回転により電解質膜1側へと印刷される。ここで、電解質膜1の表面に触媒担持導電性粉体2を印刷したいパターンの形状(単セル分3の電解質膜の形状)に応じて適宜マスクを用いて露光部14により露光を行えばよい。
この工程は、単位セル分3毎、間欠的に行われ、単位セル分3の露光および印刷が終わったら、矢印A方向(上流方向)にテープ状電解質膜1が単位セル分3について移動され、次の光定着工程へ進む。
At this time, the photosensitive drum 5 is positively charged by the electrostatic roller 7. However, the portions exposed to the exposure unit 14 of the photosensitive drum 5 are neutralized. Accordingly, the negatively charged catalyst-carrying conductive powder 2 transported to the photosensitive drum 5 adheres to the photosensitive drum 5 with an electrostatic force at a portion where the charge is not removed. The catalyst-carrying conductive powder 2 attached to the photosensitive drum 5 is printed on the electrolyte membrane 1 side by the rotation of the photosensitive drum 5. Here, exposure may be performed by the exposure unit 14 using an appropriate mask according to the shape of the pattern on which the catalyst-carrying conductive powder 2 is to be printed on the surface of the electrolyte membrane 1 (the shape of the electrolyte membrane of the single cell 3). .
This process is intermittently performed every 3 unit cell portions, and after the exposure and printing of the unit cell portion 3 is finished, the tape-shaped electrolyte membrane 1 is moved in the direction of arrow A (upstream direction) with respect to the unit cell portion 3. Proceed to the next light fixing step.

光定着工程(図1(2)):静電複写工程から送られた光定着工程では、電解質膜1上の触媒担持導電性粉体2を、加熱定着手段であるフラッシュランプ10から出射される光によって、電解質膜1に加熱定着し、触媒電極(触媒電極層)3を形成する(なお、図1では、単なる例示のため粉体粒子は3個のみを描く)。
より具体的には、触媒担持導電性粉体2が電解質膜1に光定着される場合には、当該粉体2に含まれる結着剤が、フラッシュランプ10から出射される光(光エネルギー)により、0.3ミリ秒程度の短時間で、約500℃程度の高温度で加熱され、結着剤が溶融して、該触媒担持導電性粉体2を電解質膜1に結着させて、触媒電極(触媒電極層)3が形成される。結着剤の融点は約500℃よりも低いことが必要である。ここでは、PTFEのように、その融点が約327℃であるような材料を結着剤に用いることが好適である。
Photofixing step (FIG. 1 (2)) : In the photofixing step sent from the electrostatic copying step, the catalyst-carrying conductive powder 2 on the electrolyte membrane 1 is emitted from a flash lamp 10 which is a heating fixing unit. The catalyst film (catalyst electrode layer) 3 is formed by heating and fixing to the electrolyte membrane 1 with light (in FIG. 1, only three powder particles are drawn for the sake of illustration only).
More specifically, when the catalyst-carrying conductive powder 2 is photofixed on the electrolyte membrane 1, the binder contained in the powder 2 is emitted from the flash lamp 10 (light energy). By heating at a high temperature of about 500 ° C. in a short time of about 0.3 milliseconds, the binder is melted, and the catalyst-carrying conductive powder 2 is bound to the electrolyte membrane 1, A catalyst electrode (catalyst electrode layer) 3 is formed. The melting point of the binder needs to be lower than about 500 ° C. Here, a material having a melting point of about 327 ° C., such as PTFE, is preferably used for the binder.

以下、このときのフラッシュランプ10の条件(能力)を表1に示す。なお、当該フラッシュランプ10は、図1の参照番号9の断面が放物線状のリフレクタの焦点に配置するようにしてもよい。フラッシュランプの前方光に、フリフレクタ内壁(反射板)により反射するラッシュランプの平行光の後方光を加えて、電解質膜1上に静電複写された触媒電極用の粉体に照射することによって、効率良く光を粉体に向けて出射することができる。

Figure 2010061917
The conditions (capabilities) of the flash lamp 10 at this time are shown in Table 1. In addition, you may make it the said flash lamp 10 arrange | position to the focus of the reflector of the reference number 9 of FIG. By adding the back light of the parallel light of the lash lamp reflected by the inner wall (reflector) of the reflector to the front light of the flash lamp and irradiating the powder for the catalyst electrode electrostatically copied on the electrolyte membrane 1, Light can be emitted toward the powder efficiently.
Figure 2010061917

第2実施形態:第2実施形態は、触媒担持カーボン粒子と結着剤とを含む触媒電極用の粉体を作製する粉体作製工程において,該粉体中にさらに造孔剤を含ませ、それを酸洗、水洗で除去して、多孔部を触媒電極用の粉体に形成する点と、光定着工程の直後に、電解質溶液塗布工程を加え、上記の多孔部に電解質溶液を流し込みながら、電解質膜にすでに光定着している触媒電極層に対して、さらに電解質溶液点に含浸させる。この点において、第1実施形態と相違する。第1実施形態との相違点を中心に、第2実施形態について以下説明する。 Second Embodiment : The second embodiment is a powder production step of producing a powder for a catalyst electrode containing catalyst-carrying carbon particles and a binder, and a pore forming agent is further included in the powder. It is removed by pickling and rinsing, and the porous part is formed into a powder for the catalyst electrode. Immediately after the photofixing process, an electrolyte solution coating step is added, and the electrolyte solution is poured into the porous part. Further, the catalyst electrode layer already photofixed on the electrolyte membrane is further impregnated in the electrolyte solution spot. This point is different from the first embodiment. The second embodiment will be described below with a focus on differences from the first embodiment.

(1)粉体作製工程(不図示);以下、第2の実施形態の触媒電極用の粉体を作製する出発材料の一例について、表2に挙げた。

Figure 2010061917
これらの材料に対して、第1実施形態と同様な処理を行った後、触媒担持導電性材料中の造孔剤の炭酸カルシウムを、硝酸で洗浄後、水で洗浄し、乾燥し、除去する。これにより、除去された炭酸カルシウムに代わり、触媒担持導電性材料中に、多数の孔が造られる。これら孔を含む触媒担持導電性材料に、表2の追加する電解質樹脂のナフィオン(5%溶液)が含浸されるため、表2で、炭酸カルシウムとナフィオン(5%溶液)が同じ重量割合(22wt%)となっている。
なお、造孔剤は、炭酸カルシウムに限られず、アルカリ塩、各種アルカリ微粉末等のアルカリ塩でもよい。この際は、それぞれについて適切な酸を用いるようにする。また、造孔剤としてPVAを用いた場合には、水溶性なので水で溶解・除去が可能である。
(2)静電複写工程及び光定着工程(図1の(1));実施例1と同様のためこの説明を省略する。 (1) Powder preparation step (not shown); Table 2 shows examples of starting materials for preparing the catalyst electrode powder of the second embodiment.
Figure 2010061917
After these materials are treated in the same way as in the first embodiment, the pore-forming calcium carbonate in the catalyst-carrying conductive material is washed with nitric acid, then with water, dried and removed. . Thereby, instead of the removed calcium carbonate, a large number of pores are formed in the catalyst-carrying conductive material. Since the catalyst-supporting conductive material containing these pores is impregnated with Nafion (5% solution) of the electrolyte resin added in Table 2, in Table 2, calcium carbonate and Nafion (5% solution) have the same weight ratio (22 wt. %).
The pore-forming agent is not limited to calcium carbonate, and may be an alkali salt or an alkali salt such as various alkali fine powders. In this case, an appropriate acid is used for each. Further, when PVA is used as a pore-forming agent, it can be dissolved and removed with water because it is water-soluble.
(2) Electrostatic copying process and light fixing process ((1) in FIG. 1) ;

(3)電解質溶液塗布工程(図1の(3));光定着工程で結着された触媒電極材料に電
解質樹脂溶液を塗布・含浸させる。この工程で、準備する電解質溶液は、デュポン社のナフィオン(商品名)の5%溶液である。表2に示されている、造孔剤「炭酸カルシウム」を硝酸と水洗によって除去すると、多数の孔ができる。電解質溶液塗布手段12から、この電解質溶液をこれら多数の孔へ注ぎ込みながら、触媒電極層全体に行き渡るように含浸させる。以上により、触媒電極(触媒電極層)が形成される。
この第2実施形態の触媒電極は、第1実施形態のものに比較して、触媒電極用の粉体の多くの孔に流し込むようにして電解質樹脂溶液を含浸させるため、電解質成分を、触媒電極により多く含ませることができる。触媒電極層に含まれる電解質樹脂と電解質膜とが好適に接合され、水素イオン(プロトン)を、さらに好適に電解質膜のアノード側からもう一方のカソード側へ円滑に移動させることができることに加えて、さらに好適に反応ガスと電解質と触媒電極との三相反応を行わせることができる。
(3) Electrolyte solution application step ((3) in FIG. 1); The catalyst electrode material bound in the photofixing step is applied and impregnated with the electrolyte resin solution. In this step, the electrolyte solution to be prepared is a 5% solution of DuPont's Nafion (trade name). When the pore-forming agent “calcium carbonate” shown in Table 2 is removed by washing with nitric acid and water, a large number of pores are formed. The electrolyte solution is impregnated from the electrolyte solution application means 12 so as to spread over the entire catalyst electrode layer while being poured into the numerous holes. Thus, a catalyst electrode (catalyst electrode layer) is formed.
The catalyst electrode of the second embodiment is impregnated with the electrolyte resin solution so as to flow into many pores of the powder for the catalyst electrode as compared with that of the first embodiment. Can be included more. In addition to the fact that the electrolyte resin and the electrolyte membrane contained in the catalyst electrode layer are suitably joined, and hydrogen ions (protons) can be more preferably smoothly moved from the anode side to the other cathode side of the electrolyte membrane. Further preferably, a three-phase reaction of the reaction gas, the electrolyte, and the catalyst electrode can be performed.

本発明に係る固体高分子型燃料電池(PEFC)の触媒電極の製造方法は、上述の実施形態に記載された態様に制限されることはなく、当業者により種々の変形例が採用されうる。例えば、直接メタノール型燃料電池(DMFC)の触媒電極の製造方法にも適用できる。   The manufacturing method of the catalyst electrode of the polymer electrolyte fuel cell (PEFC) according to the present invention is not limited to the aspect described in the above-described embodiment, and various modifications may be adopted by those skilled in the art. For example, the present invention can be applied to a method for manufacturing a catalyst electrode of a direct methanol fuel cell (DMFC).

本発明は、燃料電池の触媒電極を製造するときに利用できる。   The present invention can be utilized when manufacturing a catalyst electrode of a fuel cell.

本発明に係る実施形態を説明するための概念図(製造フロー)である。It is a conceptual diagram (manufacturing flow) for demonstrating embodiment which concerns on this invention.

符号の説明Explanation of symbols

1:電解質膜、2:触媒電極用の粉体、3:触媒電極、10:フラッシュランプ 1: electrolyte membrane, 2: powder for catalyst electrode, 3: catalyst electrode, 10: flash lamp

Claims (3)

固体高分子型燃料電池の触媒電極の製造方法であって、
触媒担持カーボン粒子と結着剤とを含む触媒電極用の粉体を作製する粉体作製工程と、
該触媒電極用の粉体を、静電複写法により電解質膜に塗布する静電複写工程と、
フラッシュランプの光エネルギーにより前記結着剤を溶融させ、該電解質膜に塗布された該触媒電極用の粉体を、該電解質膜に定着させる光定着工程と、
を含むことを特徴とする製造方法。
A method for producing a catalyst electrode of a polymer electrolyte fuel cell, comprising:
A powder production process for producing a powder for a catalyst electrode containing catalyst-supporting carbon particles and a binder;
An electrostatic copying process in which the powder for the catalyst electrode is applied to the electrolyte membrane by an electrostatic copying method;
A photofixing step of melting the binder by light energy of a flash lamp and fixing the powder for the catalyst electrode applied to the electrolyte membrane to the electrolyte membrane;
The manufacturing method characterized by including.
請求項1に記載の製造方法であって、前記粉体作製工程において、
前記触媒電極用の粉体は、さらに造孔剤を含み、該造孔剤を用いて、多孔性の触媒電極用の粉体を作製することを特徴とする製造方法。
It is a manufacturing method of Claim 1, Comprising: In the said powder preparation process,
The catalyst electrode powder further comprises a pore-forming agent, and a porous catalyst electrode powder is produced using the pore-forming agent.
請求項2に記載の製造方法であって、
前記静電複写工程及び光定着工程の後、該光定着工程により該電解質膜に定着された前記多孔性の触媒電極用の粉体に、電解質樹脂溶液を含浸させる電解質溶液塗布工程を含むことを特徴とする製造方法。
It is a manufacturing method of Claim 2, Comprising:
After the electrostatic copying step and the photofixing step, an electrolyte solution coating step of impregnating an electrolyte resin solution into the porous catalyst electrode powder fixed to the electrolyte film by the photofixing step is included. A featured manufacturing method.
JP2008224994A 2008-09-02 2008-09-02 Method for manufacturing catalytic electrode of fuel cell Pending JP2010061917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224994A JP2010061917A (en) 2008-09-02 2008-09-02 Method for manufacturing catalytic electrode of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224994A JP2010061917A (en) 2008-09-02 2008-09-02 Method for manufacturing catalytic electrode of fuel cell

Publications (1)

Publication Number Publication Date
JP2010061917A true JP2010061917A (en) 2010-03-18

Family

ID=42188509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224994A Pending JP2010061917A (en) 2008-09-02 2008-09-02 Method for manufacturing catalytic electrode of fuel cell

Country Status (1)

Country Link
JP (1) JP2010061917A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169311A (en) * 2011-02-09 2012-09-06 Mitsubishi Materials Corp Collector for electric double layer capacitor, electrode for electric double layer capacitor and manufacturing method therefor
WO2015053362A1 (en) * 2013-10-09 2015-04-16 株式会社キャタラー Fuel-cell electrode catalyst, and production method therefor
JP2015217611A (en) * 2014-05-19 2015-12-07 凸版印刷株式会社 Apparatus for manufacturing porous base material having resin layer and method for manufacturing porous base material having resin layer
WO2023217000A1 (en) * 2022-05-13 2023-11-16 宁德时代新能源科技股份有限公司 Coating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169311A (en) * 2011-02-09 2012-09-06 Mitsubishi Materials Corp Collector for electric double layer capacitor, electrode for electric double layer capacitor and manufacturing method therefor
WO2015053362A1 (en) * 2013-10-09 2015-04-16 株式会社キャタラー Fuel-cell electrode catalyst, and production method therefor
JP2015076277A (en) * 2013-10-09 2015-04-20 株式会社キャタラー Electrode catalyst for fuel batteries, and method for manufacturing the same
CN105612644A (en) * 2013-10-09 2016-05-25 株式会社科特拉 Fuel-cell electrode catalyst, and production method therefor
CN105612644B (en) * 2013-10-09 2017-12-19 株式会社科特拉 Electrode catalyst for fuel cell and its manufacture method
JP2015217611A (en) * 2014-05-19 2015-12-07 凸版印刷株式会社 Apparatus for manufacturing porous base material having resin layer and method for manufacturing porous base material having resin layer
WO2023217000A1 (en) * 2022-05-13 2023-11-16 宁德时代新能源科技股份有限公司 Coating device

Similar Documents

Publication Publication Date Title
JP4327732B2 (en) Solid polymer fuel cell and manufacturing method thereof
KR101138670B1 (en) Process for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
JP3714930B2 (en) Fuel cell electrode and fuel cell using the same
JP3888233B2 (en) Method and apparatus for manufacturing fuel cell electrode
JP4879372B2 (en) Method and apparatus for manufacturing membrane-catalyst layer assembly
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP6381528B2 (en) Microporous layer with hydrophilic additive
WO2005099002A1 (en) Powder catalyst material, method for producing same and electrode for solid polymer fuel cell using same
JP2010061917A (en) Method for manufacturing catalytic electrode of fuel cell
JP2007066597A (en) Transfer sheet, catalyst layer-electrolyte membrane stack, electrode-electrolyte membrane assembly, and manufacturing methods of them
JP2008300347A (en) Method of manufacturing five-layer mea with electrical conductivity improved
JP5669201B2 (en) Composition for forming catalyst layer and method for producing catalyst layer
JP2007066805A (en) Gas diffusion layer, gas diffusion electrode, and membrane electrode assembly
JP5958597B2 (en) Method for producing membrane electrode assembly for polymer electrolyte fuel cell, method for producing polymer electrolyte fuel cell unit cell, and method for producing polymer electrolyte fuel cell stack
JP2018022663A (en) Device for manufacturing catalyst layer-attached substrate, device for manufacturing membrane-electrode assembly, method for manufacturing catalyst layer-attached resin substrate, and method for manufacturing membrane-electrode assembly
JP2006147278A (en) Electrolyte membrane-electrode assembly for solid fuel cell, and its manufacturing method
JP2012169104A (en) Electrolyte membrane-electrode assembly, manufacturing method of the same, and solid polymer fuel cell equipped with the same
JP2013020753A (en) Method for correcting catalyst layer sheet
JP2010257739A (en) Method for manufacturing electrode for fuel cell
JP2016072014A (en) Mold release member and catalyst layer transfer member arranged by use thereof, and method for manufacturing fuel cell catalyst layer-electrolyte film laminate arranged by use of catalyst layer transfer member
JP5838688B2 (en) Manufacturing method of membrane electrode assembly
JP2008147031A (en) Manufacturing method of membrane-electrode assembly
JP2005248041A (en) Carbon material with ion-exchange capacity, its manufacturing method, composition for fuel cell catalyst, and fuel cell
JP2004185900A (en) Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them
JP2007273138A (en) Gas diffusion electrode, method of manufacturing gas diffusion electrode, and membrane-electrode assembly