JP2010060179A - Control device, air conditioner and refrigerating device - Google Patents

Control device, air conditioner and refrigerating device Download PDF

Info

Publication number
JP2010060179A
JP2010060179A JP2008224982A JP2008224982A JP2010060179A JP 2010060179 A JP2010060179 A JP 2010060179A JP 2008224982 A JP2008224982 A JP 2008224982A JP 2008224982 A JP2008224982 A JP 2008224982A JP 2010060179 A JP2010060179 A JP 2010060179A
Authority
JP
Japan
Prior art keywords
discharge gas
pressure
pressure discharge
intermediate injection
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008224982A
Other languages
Japanese (ja)
Inventor
Azuma Kondo
東 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008224982A priority Critical patent/JP2010060179A/en
Publication of JP2010060179A publication Critical patent/JP2010060179A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a wet operation by surely detecting a wet state. <P>SOLUTION: A controller 20 of a refrigerant circuit 3 constituted by connecting a two-stage compressor 31, a condenser 32, an economizer heat exchanger 33, an evaporator 35 and an intermediate injection circuit 4, controls a second expansion valve 41 in such a state that a high-pressure discharge gas superheat degree in intermediate saturation which is a superheat degree of a high-pressure discharge gas when a refrigerant of an intermediate injection section becomes a saturated gas, calculated on the basis of a pressure of the high-pressure discharge gas discharged from the compressor 31, measured by a high-pressure pressure sensor 21, a pressure of an intermediate-pressure discharge gas discharged from the economizer heat exchanger 33 to the intermediate injection circuit 4, measured by the intermediate-pressure pressure sensor 22, and a temperature of the intermediate injection section detected by the intermediate injection section temperature sensor 23, is a lower limit of the superheat degree of the high-pressure discharge gas. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷媒回路の構成要素を制御する制御装置、並びに該制御装置を用いた空気調和機及び冷凍装置に関する。   The present invention relates to a control device that controls components of a refrigerant circuit, and an air conditioner and a refrigeration apparatus using the control device.

冷媒回路を構成する圧縮機の吐出ガス温度が過上昇すると、保護回路が作動して該圧縮機の運転が不安定になることがある。このような事態を防止するために、前記吐出ガス温度を抑制する手段として、リキッドインジェクション方式が知られている(例えば特許文献1及び2参照)。リキッドインジェクション方式においては、冷媒回路の液側配管からリキッドインジェクション回路が分岐され、液冷媒の一部が圧縮機に戻されて蒸発することにより、該圧縮機が冷却され前記吐出ガス温度が抑制されている。   If the discharge gas temperature of the compressor constituting the refrigerant circuit is excessively increased, the protection circuit may be activated to make the operation of the compressor unstable. In order to prevent such a situation, a liquid injection method is known as means for suppressing the discharge gas temperature (see, for example, Patent Documents 1 and 2). In the liquid injection system, the liquid injection circuit is branched from the liquid side piping of the refrigerant circuit, and a part of the liquid refrigerant is returned to the compressor and evaporated, whereby the compressor is cooled and the discharge gas temperature is suppressed. ing.

リキッドインジェクション方式においては、冷媒の一部が蒸発器を通過することなく圧縮機に戻されるので冷凍能力が低下する。これを改善するため、液側配管から液冷媒の一部を分流して分流冷媒とし、エコノマイザー熱交換器で液冷媒と熱交換をさせた後、該分流冷媒を圧縮機にインジェクションする方式も知られている。   In the liquid injection method, a part of the refrigerant is returned to the compressor without passing through the evaporator, so that the refrigerating capacity is lowered. In order to improve this, there is also a method in which a part of the liquid refrigerant is diverted from the liquid side pipe to form a diverted refrigerant, heat exchange is performed with the liquid refrigerant in the economizer heat exchanger, and then the diverted refrigerant is injected into the compressor. Are known.

この方式では、冷媒回路において凝縮器と蒸発器との間にエコノマイザー熱交換器が設けられ、該エコノマイザー熱交換器を通過した液冷媒の一部が分流される。分流された分流冷媒は、膨張弁で減圧され、温度が低下した状態で前記エコノマイザー熱交換器に導かれる。前記エコノマイザー熱交換器において、前記分流冷媒が前記液冷媒と熱交換することにより、該液冷媒が冷却されて、その過冷却度が大きくなる。   In this system, an economizer heat exchanger is provided between the condenser and the evaporator in the refrigerant circuit, and a part of the liquid refrigerant that has passed through the economizer heat exchanger is diverted. The diverted refrigerant which has been diverted is decompressed by the expansion valve, and is led to the economizer heat exchanger in a state where the temperature is lowered. In the economizer heat exchanger, the liquid refrigerant is cooled by exchanging heat with the liquid refrigerant, and the degree of supercooling is increased.

そのため、蒸発器に流れる冷媒の比エンタルピが減少することにより冷凍能力が向上するため、冷媒の減少分による冷凍能力の低下を補うことができる。したがって、冷凍能力の低下を抑えて、しかも圧縮機の吐出ガス温度を抑制することができる。   Therefore, since the refrigeration capacity is improved by reducing the specific enthalpy of the refrigerant flowing through the evaporator, it is possible to compensate for the decrease in the refrigeration capacity due to the reduced amount of refrigerant. Therefore, it is possible to suppress a decrease in the refrigerating capacity and to suppress the discharge gas temperature of the compressor.

いずれにせよ、インジェクション回路を設けて圧縮機を冷却する場合は、該圧縮機が、内部に液冷媒が入った湿り状態で運転される湿り運転となるおそれがある。湿り運転が発生した場合、特に湿り状態と過熱状態とが繰り返されると、圧縮機がダメージを受けやすい。したがって、前記インジェクション量を制御することで湿り運転を回避する、いわゆる湿り制御を行う必要がある。   In any case, when the compressor is cooled by providing an injection circuit, the compressor may be in a wet operation in which the compressor is operated in a wet state with liquid refrigerant inside. When the wet operation occurs, the compressor is likely to be damaged particularly when the wet state and the overheated state are repeated. Therefore, it is necessary to perform so-called wetness control in which the wet operation is avoided by controlling the injection amount.

従来の冷媒回路の制御装置においては、圧縮機から吐出される高圧の吐出冷媒ガスの温度を測定し、その温度を用いて過熱度を算出することで湿り状態を検出し、湿り制御を行っている。すなわち、実際の吐出ガス温度と吐出ガスが飽和状態であるときの温度との差が過熱度であるから、吐出ガス過熱度が負となるときを湿り状態として、該過熱度が正となるように冷媒回路を運転制御することによって、湿り制御を行っている。そして、吐出ガス温度の測定は、該吐出ガスが通過する吐出管の温度を測定し、該吐出管温度を吐出ガス温度とすることで行っている。
特開平7−127925号公報 特開平8−200847号公報
In the conventional refrigerant circuit control device, the temperature of the high-pressure refrigerant gas discharged from the compressor is measured, and the wet state is detected by calculating the degree of superheat using the temperature, and the wetness control is performed. Yes. That is, since the difference between the actual discharge gas temperature and the temperature when the discharge gas is saturated is the superheat degree, when the discharge gas superheat degree becomes negative, the superheat degree becomes positive when the discharge gas superheat degree becomes negative. Wet control is performed by controlling the operation of the refrigerant circuit. The discharge gas temperature is measured by measuring the temperature of the discharge pipe through which the discharge gas passes and setting the discharge pipe temperature as the discharge gas temperature.
JP 7-127925 A Japanese Patent Laid-Open No. 8-200247

しかしながら、実際の吐出ガス温度に対して、吐出管の温度の測定値の応答性は悪い。したがって、従来の制御装置においては、実際の過熱度が負となっているにもかかわらず、吐出管の温度を測定することで得られた吐出ガス温度を用いて算出する過熱度は正であるために、湿り状態の検出が遅れることがあるという問題があった。   However, the responsiveness of the measured value of the discharge pipe temperature is poor with respect to the actual discharge gas temperature. Therefore, in the conventional control device, the degree of superheat calculated using the discharge gas temperature obtained by measuring the temperature of the discharge pipe is positive even though the actual degree of superheat is negative. Therefore, there is a problem that the detection of the wet state may be delayed.

本発明は、このような従来の技術的課題を解決するためになされたものであり、冷媒回路を構成する圧縮機の湿り状態の検出を確実に行い、該圧縮機の湿り運転を回避する制御装置を提供することを目的とする。   The present invention has been made in order to solve such a conventional technical problem, and performs control to reliably detect the wet state of the compressor constituting the refrigerant circuit and avoid the wet operation of the compressor. An object is to provide an apparatus.

本発明の一の局面に係る制御装置は、低圧側と高圧側との2段の圧縮機構を備えた圧縮機と、凝縮器と、エコノマイザー熱交換器と、蒸発器と、前記エコノマイザー熱交換器から吐出された冷媒の一部を前記圧縮機の低圧側と高圧側の中間である中間インジェクション部に戻す中間インジェクション回路と、が接続された冷媒回路の制御装置であって、前記圧縮機から吐出される高圧吐出ガスの圧力を測定する高圧圧力センサと、前記エコノマイザー熱交換器から中間インジェクション回路へ吐出される中間圧吐出ガスの圧力を測定する中間圧圧力センサと、前記中間インジェクション部の温度を検出する中間インジェクション部温度センサと、前記高圧吐出ガス圧力と、前記中間圧吐出ガス圧力と、前記中間インジェクション部温度とを用いて、前記中間インジェクション部の冷媒が飽和ガスとなるときの高圧吐出ガスの過熱度である中間飽和時高圧吐出ガス過熱度を算出し、該中間飽和時高圧吐出ガス過熱度を、高圧吐出ガスの過熱度の下限として前記中間インジェクション回路を制御する制御手段と、を備える(請求項1)。   A control device according to one aspect of the present invention includes a compressor having a two-stage compression mechanism of a low pressure side and a high pressure side, a condenser, an economizer heat exchanger, an evaporator, and the economizer heat. An intermediate injection circuit for returning a part of the refrigerant discharged from the exchanger to an intermediate injection portion that is intermediate between the low pressure side and the high pressure side of the compressor, the controller for the refrigerant circuit, A high pressure sensor for measuring the pressure of the high pressure discharge gas discharged from the intermediate pressure sensor, an intermediate pressure sensor for measuring the pressure of the intermediate pressure discharge gas discharged from the economizer heat exchanger to the intermediate injection circuit, and the intermediate injection section The intermediate injection part temperature sensor for detecting the temperature of the gas, the high pressure discharge gas pressure, the intermediate pressure discharge gas pressure, and the intermediate injection part temperature are used. Calculating the high pressure discharge gas superheat degree at the time of intermediate saturation, which is the superheat degree of the high pressure discharge gas when the refrigerant in the intermediate injection section becomes the saturated gas, and calculating the high pressure discharge gas superheat degree at the time of intermediate saturation of the high pressure discharge gas. Control means for controlling the intermediate injection circuit as a lower limit of the degree of superheat (Claim 1).

中間飽和時高圧吐出ガス過熱度は、前記中間インジェクション部の冷媒が乾き飽和蒸気線の外側すなわち過熱状態にあるときには、高圧吐出ガスの温度から算出される過熱度よりも小さくなる。すなわち、従来の制御装置よりも、湿り制御に用いる過熱度の検出点を吐出ガスが飽和状態であるときの温度に近づけることができる。   The high pressure discharge gas superheat degree at the time of intermediate saturation is smaller than the superheat degree calculated from the temperature of the high pressure discharge gas when the refrigerant in the intermediate injection section is dry and outside the saturated vapor line, that is, in the superheated state. That is, the detection point of the superheat degree used for wetness control can be made closer to the temperature when the discharge gas is saturated than the conventional control device.

しかも、中間飽和時高圧吐出ガス過熱度は、前記中間インジェクション部の冷媒が飽和ガスとなるときの高圧吐出ガスの過熱度であり、このときの中間インジェクション部の温度は等温ライン上にあるから、温度測定の応答性が悪く誤差の大きい高圧吐出部の吐出管温度を測定する場合と比較して、温度測定の誤差が少ない。   Moreover, the high pressure discharge gas superheat degree at the time of intermediate saturation is the superheat degree of the high pressure discharge gas when the refrigerant of the intermediate injection portion becomes a saturated gas, and the temperature of the intermediate injection portion at this time is on the isothermal line, The temperature measurement error is small compared to the case of measuring the discharge pipe temperature of the high-pressure discharge section with poor temperature response and large error.

したがって、高圧吐出部の吐出管温度を用いて高圧吐出ガスの過熱度を算出し、高圧吐出ガスの過熱度の下限とする場合と比較して、圧縮機の湿り状態の検出がより確実に行われ、前記圧縮機の湿り制御がより確実になされる。   Therefore, the superheat degree of the high pressure discharge gas is calculated using the discharge pipe temperature of the high pressure discharge section, and the wet state of the compressor is more reliably detected than when the lower limit of the superheat degree of the high pressure discharge gas is used. Therefore, the wetness control of the compressor is more reliably performed.

上記構成において、前記制御手段は、
前記高圧吐出ガス圧力:HP
前記中間圧吐出ガス圧力:MP
前記中間インジェクション部温度:Tms
圧縮過程をポリトロープ変化としたときのポリトロープ指数:n
前記高圧吐出ガスが飽和ガスとなるときの温度:Ths
としたときに、
Tpms=Tms×((HP)/(MP))^((n−1)/n)
SHps=Tpms―Ths
の式を用いて前記中間飽和時高圧吐出ガス過熱度を算出することができる(請求項2)。
In the above configuration, the control means includes
High pressure discharge gas pressure: HP
Intermediate pressure discharge gas pressure: MP
Intermediate injection part temperature: Tms
Polytropic index when the compression process is polytropic change: n
Temperature when the high-pressure discharge gas becomes saturated gas: Ths
And when
Tpms = Tms × ((HP) / (MP)) ^ ((n−1) / n)
SHps = Tpms-Ths
The degree of superheat of the high-pressure discharge gas at the time of intermediate saturation can be calculated using the equation (2).

この構成によれば、容易に算出可能な中間飽和時高圧吐出ガス温度を算出し、算出中間飽和時高圧吐出ガス過熱度の算出に用いる。したがって、中間飽和時高圧吐出ガス過熱度を容易に算出することができる。   According to this configuration, the intermediate saturation high-pressure discharge gas temperature that can be easily calculated is calculated, and used to calculate the calculated intermediate saturation high-pressure discharge gas superheat degree. Therefore, the degree of superheat of the high-pressure discharge gas during intermediate saturation can be easily calculated.

本発明の他の局面に係る空気調和機又は冷凍装置は、低圧側と高圧側との2段の圧縮機構を備えた圧縮機と、凝縮器と、エコノマイザー熱交換器と、蒸発器と、前記エコノマイザー熱交換器から吐出された冷媒の一部を前記圧縮機の低圧側と高圧側の中間である中間インジェクション部に戻す中間インジェクション回路と、が接続された冷媒回路と、前記圧縮機から吐出される高圧吐出ガスの圧力を測定する高圧圧力センサと、前記エコノマイザー熱交換器から中間インジェクション回路へ吐出される中間圧吐出ガスの圧力を測定する中間圧圧力センサと、前記中間インジェクション部の温度を検出する中間インジェクション部温度センサと、を備え、前記高圧吐出ガス圧力と、前記中間圧吐出ガス圧力と、前記中間インジェクション部温度とを用いて、前記中間インジェクション部の冷媒が飽和ガスとなるときの高圧吐出ガスの過熱度である中間飽和時高圧吐出ガス過熱度を算出し、該中間飽和時高圧吐出ガス過熱度を、高圧吐出ガスの過熱度の下限として前記中間インジェクション回路を制御する(請求項3及び4)。   An air conditioner or a refrigeration apparatus according to another aspect of the present invention includes a compressor having a two-stage compression mechanism of a low pressure side and a high pressure side, a condenser, an economizer heat exchanger, an evaporator, An intermediate injection circuit for returning a part of the refrigerant discharged from the economizer heat exchanger to an intermediate injection section that is intermediate between the low pressure side and the high pressure side of the compressor, and a refrigerant circuit connected to the compressor circuit A high pressure sensor for measuring the pressure of the discharged high pressure discharge gas, an intermediate pressure sensor for measuring the pressure of the intermediate pressure discharge gas discharged from the economizer heat exchanger to the intermediate injection circuit, and the intermediate injection section An intermediate injection part temperature sensor for detecting temperature, the high pressure discharge gas pressure, the intermediate pressure discharge gas pressure, and the intermediate injection part temperature Is used to calculate the high pressure discharge gas superheat degree during intermediate saturation, which is the superheat degree of the high pressure discharge gas when the refrigerant in the intermediate injection section becomes saturated gas, and the high pressure discharge gas superheat degree during intermediate saturation is calculated as high pressure discharge. The intermediate injection circuit is controlled as a lower limit of the degree of superheating of the gas (claims 3 and 4).

この構成によれば、湿り運転によって、空気調和機又は冷凍装置の冷媒回路を構成する圧縮機がダメージを受けることが回避される。   According to this structure, it is avoided that the compressor which comprises the refrigerant circuit of an air conditioner or a freezing apparatus receives damage by wet operation.

本発明の制御装置によれば、従来の制御装置よりも、圧縮機の湿り状態の検出が確実に行われ、前記圧縮機の湿り制御がより確実になされる。したがって、圧縮機の湿り運転が確実に回避され圧縮機の故障要因の一つを予防できるので、該圧縮機を備えた冷媒回路の、メンテナンス費用の低減と、長寿命化が可能となる。   According to the control device of the present invention, the detection of the wet state of the compressor is performed more reliably than in the conventional control device, and the wetness control of the compressor is more reliably performed. Therefore, the wet operation of the compressor is reliably avoided and one of the failure factors of the compressor can be prevented, so that the maintenance cost and the life of the refrigerant circuit including the compressor can be reduced.

以下、図面に基づいて本発明の実施形態につき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態に係る制御装置2を備えた冷凍装置1の模式図であり、図2は、冷凍装置1おける冷凍サイクルを示すモリエル線図(圧力−比エンタルピー線図、p−h線図)である。   FIG. 1 is a schematic diagram of a refrigeration apparatus 1 including a control device 2 according to an embodiment of the present invention. FIG. 2 is a Mollier diagram (pressure-specific enthalpy diagram) showing a refrigeration cycle in the refrigeration apparatus 1. (ph diagram).

冷凍装置1は、冷媒回路3を制御装置2が制御することで冷凍サイクルを実行する。冷媒回路3は、圧縮機31、凝縮器32、エコノマイザー熱交換器33、第1膨張弁34、蒸発器35、及び中間インジェクション回路4を備えている。   The refrigeration apparatus 1 executes the refrigeration cycle by the control device 2 controlling the refrigerant circuit 3. The refrigerant circuit 3 includes a compressor 31, a condenser 32, an economizer heat exchanger 33, a first expansion valve 34, an evaporator 35, and an intermediate injection circuit 4.

圧縮機31は、例えばスクロール型の圧縮機構を備え、圧縮効率を高めるために低圧側圧縮機構31aと高圧側圧縮機構31bとの2段の圧縮機構を備えた2段圧縮機である。圧縮機31は、蒸発器35から送られてきた低温・低圧の冷媒蒸気を圧縮して、高温・高圧の冷媒蒸気とする(図2の点Aから点D)。   The compressor 31 is, for example, a two-stage compressor that includes a scroll-type compression mechanism and includes a two-stage compression mechanism of a low-pressure side compression mechanism 31a and a high-pressure side compression mechanism 31b in order to increase compression efficiency. The compressor 31 compresses the low-temperature / low-pressure refrigerant vapor sent from the evaporator 35 into a high-temperature / high-pressure refrigerant vapor (from point A to point D in FIG. 2).

凝縮器32は、例えば、冷媒が流れる冷却管の外側にフィンを取付けたクロスフィン型の空冷式熱交換器であり、室外空気と冷媒とを熱交換させることによって、圧縮機31から吐出された高温・高圧の冷媒を冷却し、過冷却状態の高圧液冷媒とする(図2の点Dから点E)。   The condenser 32 is, for example, a cross-fin type air-cooled heat exchanger in which fins are attached to the outside of the cooling pipe through which the refrigerant flows, and is discharged from the compressor 31 by exchanging heat between the outdoor air and the refrigerant. The high-temperature and high-pressure refrigerant is cooled to obtain a supercooled high-pressure liquid refrigerant (from point D to point E in FIG. 2).

凝縮器32において液化された高圧液冷媒は、エコノマイザー熱交換器33を通過する。エコノマイザー熱交換器33を通過した高圧液冷媒の一部は、中間インジェクション配管4に分流される。   The high-pressure liquid refrigerant liquefied in the condenser 32 passes through the economizer heat exchanger 33. Part of the high-pressure liquid refrigerant that has passed through the economizer heat exchanger 33 is diverted to the intermediate injection pipe 4.

中間インジェクション配管4は、エコノマイザー熱交換機33と第1膨張弁34との間で冷媒回路3から分岐して、この分岐点を始点としてエコノマイザー熱交換器33を経由して圧縮機31の低圧側圧縮機構31aと高圧側圧縮機構31bとの中間である中間インジェクション部へと接続されている。中間インジェクション回路の分岐部とエコノマイザー熱交換器33との間には、第2膨張弁41が設けられている。   The intermediate injection pipe 4 is branched from the refrigerant circuit 3 between the economizer heat exchanger 33 and the first expansion valve 34, and the low pressure of the compressor 31 is passed through the economizer heat exchanger 33 with this branch point as a starting point. It is connected to an intermediate injection portion that is intermediate between the side compression mechanism 31a and the high-pressure side compression mechanism 31b. A second expansion valve 41 is provided between the branch portion of the intermediate injection circuit and the economizer heat exchanger 33.

第2膨張弁41は、例えばパルスモータ駆動方式の電子膨張弁であり、自在に開度が調整できる。中間インジェクション回路に分流された分流冷媒は、エコノマイザー熱交換器33に入る前に第2膨張弁41によって減圧され温度が低下する(図2の点Fから点G)。   The second expansion valve 41 is a pulse motor drive type electronic expansion valve, for example, and the opening degree can be freely adjusted. The diverted refrigerant divided into the intermediate injection circuit is decompressed by the second expansion valve 41 before entering the economizer heat exchanger 33, and the temperature is lowered (from point F to point G in FIG. 2).

エコノマイザー熱交換器33は、例えばプレート式の熱交換器であり、前記分流冷媒と前記高圧液冷媒との間で、熱交換を行わせる。その結果、前記分流冷媒が前記高圧液冷媒と熱交換して該高圧液冷媒から吸熱することによって(図2の点Gから点C)、該高圧液冷媒の過冷却度が大きくなり(図2の点Eから点F)、該高圧液冷媒の比エンタルピが減少する。したがって、冷凍装置1の冷凍能力が向上する。   The economizer heat exchanger 33 is, for example, a plate heat exchanger, and performs heat exchange between the branch refrigerant and the high-pressure liquid refrigerant. As a result, the shunt refrigerant exchanges heat with the high-pressure liquid refrigerant and absorbs heat from the high-pressure liquid refrigerant (point G to point C in FIG. 2), thereby increasing the degree of supercooling of the high-pressure liquid refrigerant (FIG. 2). From point E to point F), the specific enthalpy of the high-pressure liquid refrigerant decreases. Therefore, the refrigeration capacity of the refrigeration apparatus 1 is improved.

第1膨張弁34は、例えば電子膨張弁であり、自在に開度が調整できる。第1膨張弁34での絞り膨張によって、前記高圧液冷媒は低温・低圧の冷媒となり(図2の点Fから点H)、蒸発器35に送られる。第1膨張弁34は、蒸発器35の冷凍負荷に応じて蒸発器35に送る冷媒流量の調節も行う。   The first expansion valve 34 is, for example, an electronic expansion valve, and the opening degree can be freely adjusted. By the expansion of the first expansion valve 34, the high-pressure liquid refrigerant becomes a low-temperature and low-pressure refrigerant (from point F to point H in FIG. 2) and is sent to the evaporator 35. The first expansion valve 34 also adjusts the flow rate of the refrigerant sent to the evaporator 35 according to the refrigeration load of the evaporator 35.

蒸発器35は、例えばクロスフィン型の空冷式熱交換器であり、室内空気と冷媒とを熱交換させる。その結果、冷媒は室内空気から熱を奪って蒸発し、室内空気が冷却される。蒸発した冷媒は、飽和温度からわずかに過熱状態にある過熱蒸気となって(図2の点Hから点A)圧縮機31へと向かう。   The evaporator 35 is, for example, a cross-fin type air-cooled heat exchanger, and exchanges heat between indoor air and the refrigerant. As a result, the refrigerant takes heat from the room air and evaporates, and the room air is cooled. The evaporated refrigerant becomes superheated steam that is slightly overheated from the saturation temperature (from point H in FIG. 2 to point A) and travels to the compressor 31.

図3は、制御装置2の機能的な構成を示すブロック図である。制御装置2は、高圧圧力センサ21、中間圧圧力センサ22、中間インジェクション部温度センサ23、及びコントローラ20(制御手段)を備えている。   FIG. 3 is a block diagram illustrating a functional configuration of the control device 2. The control device 2 includes a high pressure sensor 21, an intermediate pressure sensor 22, an intermediate injection part temperature sensor 23, and a controller 20 (control means).

高圧圧力センサ21は、圧縮機31の高圧側圧縮機構31bの冷媒吐出部に設けられ、吐出された冷媒ガスの圧力である高圧吐出ガス圧力を測定する。   The high pressure sensor 21 is provided in the refrigerant discharge part of the high pressure side compression mechanism 31b of the compressor 31, and measures the high pressure discharge gas pressure which is the pressure of the discharged refrigerant gas.

中間圧圧力センサ22は、中間インジェクション部に設けられ、エコノマイザー熱交換器33から中間インジェクション回路4を経て該中間インジェクション部へと吐出される中間圧吐出ガスの圧力を測定する。   The intermediate pressure sensor 22 is provided in the intermediate injection part, and measures the pressure of the intermediate pressure discharge gas discharged from the economizer heat exchanger 33 to the intermediate injection part through the intermediate injection circuit 4.

中間インジェクション部温度センサ23は、中間インジェクション部に設けられ、該中間インジェクション部の温度を検出する。   The intermediate injection part temperature sensor 23 is provided in the intermediate injection part and detects the temperature of the intermediate injection part.

コントローラ20は、CPU(Central Processing Unit)等からなるマイコンを備え、システム制御部201、演算部202を具備するように機能する。   The controller 20 includes a microcomputer including a CPU (Central Processing Unit), and functions to include a system control unit 201 and a calculation unit 202.

システム制御部201は、冷凍装置1の全体的な制御を行う。さらに、システム制御部201は、演算部202が算出した中間飽和時高圧吐出ガス過熱度が、高圧吐出ガスの過熱度の下限となるように、第2膨張弁41を制御してインジェクション量を調節する。中間飽和時高圧吐出ガス過熱度とは、前記中間インジェクション部の冷媒が飽和ガスとなるときの高圧吐出ガスの過熱度のことである。   The system control unit 201 performs overall control of the refrigeration apparatus 1. Further, the system control unit 201 adjusts the injection amount by controlling the second expansion valve 41 so that the intermediate saturation high pressure discharge gas superheat degree calculated by the calculation unit 202 becomes the lower limit of the high pressure discharge gas superheat degree. To do. The high pressure discharge gas superheat degree at the time of intermediate saturation is the superheat degree of the high pressure discharge gas when the refrigerant in the intermediate injection section becomes a saturated gas.

演算部202は、前記高圧吐出ガス圧力と、前記中間圧吐出ガス圧力と、前記中間インジェクション部温度とを用いて、前記中間飽和時高圧吐出ガス過熱度を算出する。   The calculation unit 202 calculates the intermediate saturation high pressure discharge gas superheat degree using the high pressure discharge gas pressure, the intermediate pressure discharge gas pressure, and the intermediate injection portion temperature.

演算部202における中間飽和時高圧吐出ガス過熱度の算出方法を、図2に基づいて説明する。   A method of calculating the intermediate saturation high pressure discharge gas superheat degree in the calculation unit 202 will be described with reference to FIG.

従来の制御装置においては、圧縮機31から吐出される高圧の吐出冷媒ガスが通過する吐出管の温度を測定し、該吐出管温度を吐出ガス温度として過熱度を算出することで湿り状態を検出し、湿り制御を行っていた。   In the conventional control device, the wet state is detected by measuring the temperature of the discharge pipe through which the high-pressure discharge refrigerant gas discharged from the compressor 31 passes, and calculating the degree of superheat using the discharge pipe temperature as the discharge gas temperature. And wet control was performed.

過熱度とは、実際の吐出ガス温度(Thh)と吐出ガスが飽和状態であるときの温度(Ths)との差であるから、過熱度(SHp)は、次の式で定義される。
SHp=Thh―Ths
Since the degree of superheat is the difference between the actual discharge gas temperature (Thh) and the temperature (Ths) when the discharge gas is saturated, the degree of superheat (SHp) is defined by the following equation.
SHp = Thh-Ths

すなわち、SHp>0℃となるように冷媒回路を制御すれば、湿り制御を行うことができる。従来の制御装置においては、前記吐出管温度がThhとして用いられることになる。しかしながら、実際の吐出ガス温度に対して、吐出管の温度の測定値の応答性は悪い。したがって、従来の制御装置においては、実際はThh≦Thsであるにもかかわらず、吐出管の温度を測定することで得られたThh>Thsとなって、見かけ上はSHp>0℃となり、湿り状態の検出が遅れることがある。   That is, if the refrigerant circuit is controlled so that SHp> 0 ° C., wetting control can be performed. In the conventional control device, the discharge pipe temperature is used as Thh. However, the responsiveness of the measured value of the discharge pipe temperature is poor with respect to the actual discharge gas temperature. Therefore, in the conventional control device, although Thh ≦ Ths, in fact, Thh> Ths obtained by measuring the temperature of the discharge pipe, and apparently SHp> 0 ° C., and the wet state May be delayed.

ところで、湿り制御を行うために中間インジェクション部の過熱度を算出しようとしても、中間インジェクション部が飽和状態、つまり湿り状態にあるときは、中間インジェクション部の過熱度を正確に算出することができない。   By the way, even if an attempt is made to calculate the superheat degree of the intermediate injection part in order to perform wetness control, the superheat degree of the intermediate injection part cannot be accurately calculated when the intermediate injection part is in a saturated state, that is, in a wet state.

すなわち、中間インジェクション部が飽和状態にあるとき(図2の点Gから点Iの間)は、中間インジェクション部は等温かつ等圧の状態にあるから、中間インジェクション部の圧力と温度を測定したとしても、中間インジェクション部の過熱度を正確に算出することができない。よって、湿り制御を正確に行うことも困難となる。   That is, when the intermediate injection part is in a saturated state (between point G and point I in FIG. 2), the intermediate injection part is in an isothermal and equal pressure state, so that the pressure and temperature of the intermediate injection part are measured. However, the superheat degree of the intermediate injection part cannot be calculated accurately. Therefore, it becomes difficult to accurately control the wetness.

上記の問題点を解決するために、本実施形態に係る制御装置2においては、中間インジェクション部の冷媒が飽和ガスとなるときの高圧吐出ガスの過熱度である中間飽和時高圧吐出ガス過熱度を算出し、中間飽和時高圧吐出ガス過熱度が高圧吐出ガスの過熱度の下限となるように第2膨張弁41を制御することで、湿り制御を行う。   In order to solve the above problems, in the control device 2 according to the present embodiment, the intermediate saturation high pressure discharge gas superheat degree, which is the superheat degree of the high pressure discharge gas when the refrigerant in the intermediate injection section becomes the saturated gas, is set. Wet control is performed by calculating and controlling the second expansion valve 41 so that the high pressure discharge gas superheat degree at the time of intermediate saturation becomes the lower limit of the superheat degree of the high pressure discharge gas.

中間飽和時高圧吐出ガス過熱度(SHps)は、次の式で定義される。
SHps=Tpms―Ths
The high pressure discharge gas superheat degree (SHps) at the time of intermediate saturation is defined by the following equation.
SHps = Tpms-Ths

ここで、Tpmsは、中間インジェクション部の冷媒が飽和ガスとなるときの高圧吐出ガス温度(中間飽和時高圧吐出ガス温度)であり(図2の点Kにおける温度)、Thsは、高圧吐出ガスが飽和ガスとなるときの高圧吐出ガス温度である(図2の点Jにおける温度)。   Here, Tpms is the high-pressure discharge gas temperature (high-pressure discharge gas temperature during intermediate saturation) when the refrigerant in the intermediate injection section becomes a saturated gas (temperature at the point K in FIG. 2), and Ths is the high-pressure discharge gas This is the high-pressure discharge gas temperature when it becomes saturated gas (temperature at point J in FIG. 2).

圧縮機31における圧縮過程を、ポリトロープ変化と見なした場合のTpmsは、次の式から算出できる。
Tpms=Tms×((HP)/(MP))^((n−1)/n)
Tpms when the compression process in the compressor 31 is regarded as a polytropic change can be calculated from the following equation.
Tpms = Tms × ((HP) / (MP)) ^ ((n−1) / n)

ここで、Tmsは中間インジェクション部の温度(図2の点Iにおける温度)、HPは高圧吐出ガスの圧力、MPは中間インジェクション部の圧力、nは圧縮過程でのポリトロープ指数である。なお、上記に説明したとおり、中間インジェクション部が飽和状態にあるとき(図2の点Gから点Iの間)は、中間インジェクション部は等温かつ等圧の状態にあるから、Tmsは一定であり、測定誤差は少なくなる。しかもTpmsは、I点から圧縮過程がスタートしたものとして算出される。   Here, Tms is the temperature of the intermediate injection part (temperature at point I in FIG. 2), HP is the pressure of the high-pressure discharge gas, MP is the pressure of the intermediate injection part, and n is the polytropic index in the compression process. As described above, when the intermediate injection portion is in a saturated state (between point G and point I in FIG. 2), the intermediate injection portion is in an isothermal and equal pressure state, so Tms is constant. Measurement errors are reduced. Moreover, Tpms is calculated as the compression process starting from point I.

Thsは、圧力に対して一意に定まる値であるから、Tpmsを算出することによって、SHpsを算出することができる。   Since Ths is a value that is uniquely determined with respect to pressure, SHps can be calculated by calculating Tpms.

高圧吐出ガスの過熱度が、SHpsとなる場合の圧縮過程は、ポリトロープ変化と見なした場合、図2の点Iから点Kの間の破線で示す過程であるが、実際の圧縮過程は、ポリトロープ変化とはならないので、図2の点Cから点Dの間の実線で示す過程となる。点Dにおける高圧吐出ガス温度は、Thhであり、Thh>Tpmsであるから、中間インジェクション部の冷媒が過熱状態であるときの高圧吐出ガス過熱度(SHp)は必ずSHpsよりも過熱側になる。したがって、このSHpsを高圧吐出ガスの過熱度の下限とすれば、湿り運転を防止できる。   The compression process when the superheat degree of the high-pressure discharge gas is SHps is a process indicated by a broken line between points I and K in FIG. Since there is no polytropic change, the process is shown by the solid line between point C and point D in FIG. Since the high-pressure discharge gas temperature at the point D is Thh and Thh> Tpms, the high-pressure discharge gas superheat degree (SHp) when the refrigerant in the intermediate injection section is in an overheated state is always higher than SHps. Therefore, if this SHps is set as the lower limit of the superheat degree of the high-pressure discharge gas, the damp operation can be prevented.

図4は、本発明の一実施形態に係る冷凍装置1における湿り制御を説明するためのフローチャートである。   FIG. 4 is a flowchart for explaining wetness control in the refrigeration apparatus 1 according to the embodiment of the present invention.

冷凍装置1が起動されると、演算部202は、SHpsを算出する(ステップS1)。SHps>0℃であれば吐出ガスは過熱状態であり、SHps≦0であれば吐出ガスは飽和状態、すなわち圧縮機31は湿り運転ということになる。   When the refrigeration apparatus 1 is activated, the calculation unit 202 calculates SHps (step S1). If SHps> 0 ° C., the discharge gas is in an overheated state, and if SHps ≦ 0, the discharge gas is in a saturated state, that is, the compressor 31 is in a wet operation.

SHps>0℃であれば(ステップS2でYES)、ステップS4に進む。SHps≦0℃であれば(ステップS2でNO)、圧縮機31は湿り運転であるから、システム制御部201によって第2膨張弁41の開度が減じられ、インジェクション量が減じられる(ステップS3)。   If SHps> 0 ° C. (YES in step S2), the process proceeds to step S4. If SHps ≦ 0 ° C. (NO in step S2), since the compressor 31 is in a wet operation, the opening degree of the second expansion valve 41 is reduced by the system control unit 201, and the injection amount is reduced (step S3). .

ステップS4では、SHpsが所定の過熱度、例えば20℃に収まっているか否かが、演算部202によって判定される。   In step S <b> 4, the calculation unit 202 determines whether SHps is within a predetermined degree of superheat, for example, 20 ° C.

SHps≦20℃であれば(ステップS4でNO)、圧縮機の吐出ガス温度は適切であるから、システム制御部201によって第2膨張弁41の開度が維持され、インジェクション量が維持される(ステップS5)。   If SHps ≦ 20 ° C. (NO in step S4), since the discharge gas temperature of the compressor is appropriate, the opening degree of the second expansion valve 41 is maintained by the system control unit 201, and the injection amount is maintained ( Step S5).

SHps>20℃であれば(ステップS4でYES)、圧縮機の吐出ガス温度は過上昇しているので、システム制御部201によって第2膨張弁41の開度が大にされ、インジェクション量が増やされる(ステップS6)。   If SHps> 20 ° C. (YES in step S4), the discharge gas temperature of the compressor is excessively increased, so that the opening of the second expansion valve 41 is increased by the system control unit 201, and the injection amount is increased. (Step S6).

演算部202がSHpsを算出した(ステップS1)結果、ステップS3、ステップS5、ステップS6のいずれかに進むことになる。いずれの場合にも、再びステップS1に戻ってステップS1〜S6が繰り返され、インジェクション量の調節が随時なされることになる。   As a result of calculating SHps by the calculation unit 202 (step S1), the process proceeds to one of step S3, step S5, and step S6. In either case, returning to step S1 again, steps S1 to S6 are repeated, and the injection amount is adjusted at any time.

以上説明した本実施形態に係る制御装置2を備えた冷凍装置1によれば、演算部202がSHpsを算出し、SHpsに基づいてシステム制御部201は第2膨張弁41の開度調節を行い、インジェクション量を調節する。従来の制御装置よりも、湿り制御に用いる過熱度の検出点を吐出ガスが飽和状態であるときの温度に近づけることができ、しかも、温度測定の応答性が悪く誤差の大きい高圧吐出部の吐出管温度を測定する場合と比較して、温度測定の誤差が少ないTmsを過熱度の算出に用いるので、圧縮機31の湿り状態の検出が確実に行われ、圧縮機31の湿り制御がより確実になされる。   According to the refrigeration apparatus 1 including the control device 2 according to the present embodiment described above, the calculation unit 202 calculates SHps, and the system control unit 201 adjusts the opening of the second expansion valve 41 based on the SHps. Adjust the injection amount. Compared to conventional control devices, the superheat detection point used for wetness control can be brought closer to the temperature when the discharge gas is saturated, and the discharge of a high-pressure discharge section with poor temperature response and large error Compared with the case of measuring the tube temperature, Tms with a small temperature measurement error is used for calculating the degree of superheat, so that the wet state of the compressor 31 is reliably detected and the wetness control of the compressor 31 is more reliable. To be made.

以上、本発明の実施形態に係る冷凍装置1について説明したが、本発明はこれに限定されるものではなく、例えば次のような変形実施形態を取ることもできる。   The refrigeration apparatus 1 according to the embodiment of the present invention has been described above, but the present invention is not limited to this, and for example, the following modified embodiment can be taken.

(1)上記実施形態では、SHps>0℃であることを湿り制御の条件としたが、吐出管温度センサをさらに追加して高圧ガス吐出温度を測定し、SHp>SHpsであることを湿り制御の条件としても良い。   (1) In the above embodiment, SHps> 0 ° C. is used as the condition for wetness control. However, the discharge pipe temperature sensor is further added to measure the high-pressure gas discharge temperature, and the wetness control is performed so that SHp> SHps. It is good also as conditions.

中間インジェクション部が飽和状態にあるとき(図2の点Gから点Iの間)は、Thh≦Ths、すなわちSHp≦0℃の湿り運転となる可能性がある。従来の制御装置について説明したとおり、吐出管温度をThhとして用いる場合、湿り状態の検出が遅れることがある。しかしながら、従来の吐出管温度に加えて、上記実施形態にて測定するTms、HP、MPを用いる場合、図2に示すように、理論上はTpms>Thsであるから、SHp>SHpsであることを湿り制御の条件とすれば、より安全側で湿り状態を検出することができる。したがって、実際の吐出ガス温度に対して、測定値の応答性が悪い吐出管温度を用いたとしても、より過熱側で湿り制御の条件をとることができるから、SHp>SHpsを湿り制御の条件とすることができる。   When the intermediate injection part is in a saturated state (between point G and point I in FIG. 2), there is a possibility that the wet operation of Thh ≦ Ths, that is, SHp ≦ 0 ° C. As described for the conventional control device, when the discharge pipe temperature is used as Thh, detection of the wet state may be delayed. However, when Tms, HP, and MP measured in the above embodiment are used in addition to the conventional discharge pipe temperature, as shown in FIG. 2, since Tpms> Ths in theory, SHp> SHps. Is set as a condition for wet control, the wet state can be detected on the safer side. Therefore, even if a discharge pipe temperature having a poor responsiveness to a measured value is used with respect to the actual discharge gas temperature, the wet control condition can be set on the overheat side, so that SHp> SHps is satisfied. It can be.

(2)上記実施形態では、制御装置2を冷凍装置1に適用したが、制御装置2は冷凍装置を含む空気調和機全般に広く適用することができる。   (2) In the above-described embodiment, the control device 2 is applied to the refrigeration device 1, but the control device 2 can be widely applied to all air conditioners including the refrigeration device.

本発明の一実施形態に係る制御装置を備えた冷凍装置の模式図である。It is a schematic diagram of the freezing apparatus provided with the control apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る冷凍装置における冷凍サイクルを示すモリエル線図である。It is a Mollier diagram which shows the refrigerating cycle in the freezing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る制御装置の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the control apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る冷凍装置における湿り制御を説明するためのフローチャートである。It is a flowchart for demonstrating the wetness control in the freezing apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 冷凍装置
2 制御装置
20 コントローラ(制御手段)
201 システム制御部
202 演算部
3 冷媒回路
31 圧縮機
31a 低圧側圧縮機構
31b 高圧側圧縮機構
32 凝縮器
33 エコノマイザー熱交換器
35 蒸発器
4 中間インジェクション回路
41 第2膨張弁
DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus 2 Control apparatus 20 Controller (control means)
201 System Control Unit 202 Arithmetic Unit 3 Refrigerant Circuit 31 Compressor 31a Low Pressure Side Compression Mechanism 31b High Pressure Side Compression Mechanism 32 Condenser 33 Economizer Heat Exchanger 35 Evaporator 4 Intermediate Injection Circuit 41 Second Expansion Valve

Claims (4)

低圧側と高圧側との2段の圧縮機構を備えた圧縮機(31)と、凝縮器(32)と、エコノマイザー熱交換器(33)と、蒸発器(35)と、前記エコノマイザー熱交換器(33)から吐出された冷媒の一部を前記圧縮機(31)の低圧側と高圧側の中間である中間インジェクション部に戻す中間インジェクション回路(4)と、が接続された冷媒回路(3)の制御装置であって、
前記圧縮機(31)から吐出される高圧吐出ガスの圧力を測定する高圧圧力センサ(21)と、
前記エコノマイザー熱交換器(33)から中間インジェクション回路(4)へ吐出される中間圧吐出ガスの圧力を測定する中間圧圧力センサ(22)と、
前記中間インジェクション部の温度を検出する中間インジェクション部温度センサ(23)と、
前記高圧吐出ガス圧力と、前記中間圧吐出ガス圧力と、前記中間インジェクション部温度とを用いて、前記中間インジェクション部の冷媒が飽和ガスとなるときの高圧吐出ガスの過熱度である中間飽和時高圧吐出ガス過熱度を算出し、該中間飽和時高圧吐出ガス過熱度を、高圧吐出ガスの過熱度の下限として前記中間インジェクション回路(4)を制御する制御手段(20)と、を備える制御装置。
Compressor (31) having a two-stage compression mechanism of a low pressure side and a high pressure side, a condenser (32), an economizer heat exchanger (33), an evaporator (35), and the economizer heat A refrigerant circuit (4) connected to an intermediate injection circuit (4) for returning a part of the refrigerant discharged from the exchanger (33) to an intermediate injection section that is intermediate between the low pressure side and the high pressure side of the compressor (31). 3) a control device,
A high pressure sensor (21) for measuring the pressure of the high pressure discharge gas discharged from the compressor (31);
An intermediate pressure sensor (22) for measuring the pressure of the intermediate pressure discharge gas discharged from the economizer heat exchanger (33) to the intermediate injection circuit (4);
An intermediate injection part temperature sensor (23) for detecting the temperature of the intermediate injection part;
High pressure at intermediate saturation that is the degree of superheat of the high-pressure discharge gas when the refrigerant in the intermediate injection section becomes a saturated gas using the high-pressure discharge gas pressure, the intermediate pressure discharge gas pressure, and the intermediate injection section temperature And a control means (20) for calculating the discharge gas superheat degree and controlling the intermediate injection circuit (4) using the intermediate saturation high pressure discharge gas superheat degree as a lower limit of the superheat degree of the high pressure discharge gas.
前記高圧吐出ガス圧力:HP
前記中間圧吐出ガス圧力:MP
前記中間インジェクション部温度:Tms
圧縮過程をポリトロープ変化としたときのポリトロープ指数:n
前記高圧吐出ガスが飽和ガスとなるときの温度:Ths
としたときに、
前記制御手段は、
Tpms=Tms×((HP)/(MP))^((n−1)/n)
SHps=Tpms―Ths
の式を用いて前記中間飽和時高圧吐出ガス過熱度を算出する請求項1に記載の制御装置。
High pressure discharge gas pressure: HP
Intermediate pressure discharge gas pressure: MP
Intermediate injection part temperature: Tms
Polytropic index when the compression process is polytropic change: n
Temperature when the high-pressure discharge gas becomes saturated gas: Ths
And when
The control means includes
Tpms = Tms × ((HP) / (MP)) ^ ((n−1) / n)
SHps = Tpms-Ths
The control device according to claim 1, wherein the superheat degree of the high-pressure discharge gas at the time of intermediate saturation is calculated using the formula
低圧側と高圧側との2段の圧縮機構を備えた圧縮機(31)と、凝縮器(32)と、エコノマイザー熱交換器(33)と、蒸発器(35)と、前記エコノマイザー熱交換器(33)から吐出された冷媒の一部を前記圧縮機(31)の低圧側と高圧側の中間である中間インジェクション部に戻す中間インジェクション回路(4)と、が接続された冷媒回路(3)と、
前記圧縮機(31)から吐出される高圧吐出ガスの圧力を測定する高圧圧力センサ(21)と、
前記エコノマイザー熱交換器(33)から中間インジェクション回路(4)へ吐出される中間圧吐出ガスの圧力を測定する中間圧圧力センサ(22)と、
前記中間インジェクション部の温度を検出する中間インジェクション部温度センサ(23)と、を備え、
前記高圧吐出ガス圧力と、前記中間圧吐出ガス圧力と、前記中間インジェクション部温度とを用いて、前記中間インジェクション部の冷媒が飽和ガスとなるときの高圧吐出ガスの過熱度である中間飽和時高圧吐出ガス過熱度を算出し、該中間飽和時高圧吐出ガス過熱度を、高圧吐出ガスの過熱度の下限として前記中間インジェクション回路(4)を制御する空気調和機。
Compressor (31) having a two-stage compression mechanism of a low pressure side and a high pressure side, a condenser (32), an economizer heat exchanger (33), an evaporator (35), and the economizer heat A refrigerant circuit (4) connected to an intermediate injection circuit (4) for returning a part of the refrigerant discharged from the exchanger (33) to an intermediate injection section that is intermediate between the low pressure side and the high pressure side of the compressor (31). 3) and
A high pressure sensor (21) for measuring the pressure of the high pressure discharge gas discharged from the compressor (31);
An intermediate pressure sensor (22) for measuring the pressure of the intermediate pressure discharge gas discharged from the economizer heat exchanger (33) to the intermediate injection circuit (4);
An intermediate injection part temperature sensor (23) for detecting the temperature of the intermediate injection part,
High pressure at intermediate saturation that is the degree of superheat of the high-pressure discharge gas when the refrigerant in the intermediate injection section becomes a saturated gas using the high-pressure discharge gas pressure, the intermediate pressure discharge gas pressure, and the intermediate injection section temperature An air conditioner that calculates a discharge gas superheat degree and controls the intermediate injection circuit (4) with the high pressure discharge gas superheat degree during intermediate saturation as a lower limit of the superheat degree of the high pressure discharge gas.
低圧側と高圧側との2段の圧縮機構を備えた圧縮機(31)と、凝縮器(32)と、エコノマイザー熱交換器(33)と、蒸発器(35)と、前記エコノマイザー熱交換器(33)から吐出された冷媒の一部を前記圧縮機(31)の低圧側と高圧側の中間である中間インジェクション部に戻す中間インジェクション回路(4)と、が接続された冷媒回路(3)と、
前記圧縮機(31)から吐出される高圧吐出ガスの圧力を測定する高圧圧力センサ(21)と、
前記エコノマイザー熱交換器(33)から中間インジェクション回路(4)へ吐出される中間圧吐出ガスの圧力を測定する中間圧圧力センサ(22)と、
前記中間インジェクション部の温度を検出する中間インジェクション部温度センサ(23)と、を備え、
前記高圧吐出ガス圧力と、前記中間圧吐出ガス圧力と、前記中間インジェクション部温度とを用いて、前記中間インジェクション部の冷媒が飽和ガスとなるときの高圧吐出ガスの過熱度である中間飽和時高圧吐出ガス過熱度を算出し、該中間飽和時高圧吐出ガス過熱度を、高圧吐出ガスの過熱度の下限として前記中間インジェクション回路(4)を制御する冷凍装置。
Compressor (31) having a two-stage compression mechanism of a low pressure side and a high pressure side, a condenser (32), an economizer heat exchanger (33), an evaporator (35), and the economizer heat A refrigerant circuit (4) connected to an intermediate injection circuit (4) for returning a part of the refrigerant discharged from the exchanger (33) to an intermediate injection section that is intermediate between the low pressure side and the high pressure side of the compressor (31). 3) and
A high pressure sensor (21) for measuring the pressure of the high pressure discharge gas discharged from the compressor (31);
An intermediate pressure sensor (22) for measuring the pressure of the intermediate pressure discharge gas discharged from the economizer heat exchanger (33) to the intermediate injection circuit (4);
An intermediate injection part temperature sensor (23) for detecting the temperature of the intermediate injection part,
High pressure at intermediate saturation that is the degree of superheat of the high-pressure discharge gas when the refrigerant in the intermediate injection section becomes a saturated gas using the high-pressure discharge gas pressure, the intermediate pressure discharge gas pressure, and the intermediate injection section temperature A refrigeration apparatus that calculates a discharge gas superheat degree, and controls the intermediate injection circuit (4) with the high pressure discharge gas superheat degree during intermediate saturation as a lower limit of the superheat degree of the high pressure discharge gas.
JP2008224982A 2008-09-02 2008-09-02 Control device, air conditioner and refrigerating device Pending JP2010060179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224982A JP2010060179A (en) 2008-09-02 2008-09-02 Control device, air conditioner and refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224982A JP2010060179A (en) 2008-09-02 2008-09-02 Control device, air conditioner and refrigerating device

Publications (1)

Publication Number Publication Date
JP2010060179A true JP2010060179A (en) 2010-03-18

Family

ID=42187176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224982A Pending JP2010060179A (en) 2008-09-02 2008-09-02 Control device, air conditioner and refrigerating device

Country Status (1)

Country Link
JP (1) JP2010060179A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200362A (en) * 2011-04-22 2011-09-28 上海海事大学 Closed economizer adopting double-pressure cycle principle
CN102620459A (en) * 2011-01-27 2012-08-01 松下电器产业株式会社 Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus
KR101221718B1 (en) 2010-12-30 2013-01-11 롯데알미늄 주식회사 The cooling-cycle that can prevent compressor from over-heat
KR20130100552A (en) * 2012-03-02 2013-09-11 엘지전자 주식회사 Air conditioner
KR20140008677A (en) * 2012-07-11 2014-01-22 엘지전자 주식회사 Air conditioner
JP2014224649A (en) * 2013-05-16 2014-12-04 株式会社神戸製鋼所 Heat pump system
JP2015132422A (en) * 2014-01-14 2015-07-23 三菱電機株式会社 Freezer unit
US20160097568A1 (en) * 2014-10-03 2016-04-07 Mitsubishi Electric Corporation Air-conditioning apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221718B1 (en) 2010-12-30 2013-01-11 롯데알미늄 주식회사 The cooling-cycle that can prevent compressor from over-heat
CN102620459A (en) * 2011-01-27 2012-08-01 松下电器产业株式会社 Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus
CN102620459B (en) * 2011-01-27 2015-09-16 松下电器产业株式会社 The hot-water central heating system of refrigerating circulatory device and this refrigerating circulatory device of use
CN102200362A (en) * 2011-04-22 2011-09-28 上海海事大学 Closed economizer adopting double-pressure cycle principle
KR20130100552A (en) * 2012-03-02 2013-09-11 엘지전자 주식회사 Air conditioner
KR101917391B1 (en) * 2012-03-02 2019-01-24 엘지전자 주식회사 Air conditioner
KR20140008677A (en) * 2012-07-11 2014-01-22 엘지전자 주식회사 Air conditioner
KR101973202B1 (en) * 2012-07-11 2019-04-26 엘지전자 주식회사 Air conditioner
JP2014224649A (en) * 2013-05-16 2014-12-04 株式会社神戸製鋼所 Heat pump system
JP2015132422A (en) * 2014-01-14 2015-07-23 三菱電機株式会社 Freezer unit
US20160097568A1 (en) * 2014-10-03 2016-04-07 Mitsubishi Electric Corporation Air-conditioning apparatus
US10082320B2 (en) * 2014-10-03 2018-09-25 Mitsubishi Electric Corporation Air-conditioning apparatus

Similar Documents

Publication Publication Date Title
JP6341808B2 (en) Refrigeration air conditioner
JP2010060179A (en) Control device, air conditioner and refrigerating device
US9797639B2 (en) Method for operating a vapour compression system using a subcooling value
JP5147889B2 (en) Air conditioner
KR101445992B1 (en) Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
JP2011052884A (en) Refrigerating air conditioner
US20080223056A1 (en) Control of a Refrigeration Circuit with an Internal Heat Exchanger
CN102395842B (en) Heat source unit
US20150362238A1 (en) Refrigeration cycle apparatus and method of controlling refrigeration cycle apparatus
JP2010007975A (en) Economizer cycle refrigerating apparatus
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
US9851134B2 (en) Air-conditioning apparatus
JP5220045B2 (en) Cooling system
JP2019011899A (en) Air conditioning device
JP2007225140A (en) Turbo refrigerating machine, and control device and method of turbo refrigerating machine
EP2764303B1 (en) Method for controlling gas pressure in cooling plant
JP6987269B2 (en) Refrigeration cycle device
JP2010054094A (en) Air conditioning device
WO2017086343A1 (en) Refrigeration cycle for vehicular air-conditioning device, and vehicle equipped therewith
JP6410935B2 (en) Air conditioner
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JP6140065B2 (en) Turbo refrigerator
JP2013217602A (en) Heat source device, refrigeration air conditioner, and control device
CN101644502B (en) Refrigerating circuit and method for operating same