JP2010059513A - Insulated film agent for electromagnetic steel sheet - Google Patents

Insulated film agent for electromagnetic steel sheet Download PDF

Info

Publication number
JP2010059513A
JP2010059513A JP2008227998A JP2008227998A JP2010059513A JP 2010059513 A JP2010059513 A JP 2010059513A JP 2008227998 A JP2008227998 A JP 2008227998A JP 2008227998 A JP2008227998 A JP 2008227998A JP 2010059513 A JP2010059513 A JP 2010059513A
Authority
JP
Japan
Prior art keywords
coating agent
insulating coating
metal
formula
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008227998A
Other languages
Japanese (ja)
Inventor
Shigeo Miyata
宮田茂男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAISUI KAGAKU KENKYUSHO KK
Sea Water Chemical Institute Inc
Original Assignee
KAISUI KAGAKU KENKYUSHO KK
Sea Water Chemical Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAISUI KAGAKU KENKYUSHO KK, Sea Water Chemical Institute Inc filed Critical KAISUI KAGAKU KENKYUSHO KK
Priority to JP2008227998A priority Critical patent/JP2010059513A/en
Publication of JP2010059513A publication Critical patent/JP2010059513A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve moisture absorption resistance and film formability when an insulated film is formed on a grain oriented silicon steel sheet using a chromium-free phosphate treatment liquid. <P>SOLUTION: An insulated film agent comprising hydrotalcites and/or the basic salt of a trivalent metal by 0.1 to 50 pts.wt. to 100 pts.wt. of at least one kind selected from the primary phosphates of Al, Mg, Ca or the like expressed in terms of solid contents and 35 to 70 pts.wt. of colloidal silica is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、方向性電磁鋼板の絶縁被膜形成剤に関する。更に詳しくは、有毒の6価のクロムを無毒な化合物で代替できる絶縁被膜形成剤に関する。   The present invention relates to an insulating film forming agent for grain-oriented electrical steel sheets. More specifically, the present invention relates to an insulating film forming agent capable of replacing toxic hexavalent chromium with a nontoxic compound.

方向性電磁鋼板は、FeにSiを2〜4%含有する珪素鋼板スラグを熱延と冷延を施して最終板厚として後、脱炭焼鈍し、MgOを主成分とする焼鈍分離剤を塗布して仕上げ焼鈍を行い、グラス被膜を形成させる。次いで絶縁被膜剤を塗布し、焼き付けとヒートフラットニング処理して最終製品となる。電磁鋼板は、トランス等の鉄心材料、電気機器に使用され、高い磁束密度と低い鉄損が要求される。   The grain-oriented electrical steel sheet is obtained by subjecting a silicon steel sheet slag containing 2 to 4% Si to Fe to hot and cold rolling to obtain a final thickness, followed by decarburization annealing and applying an annealing separator mainly composed of MgO. Then, finish annealing is performed to form a glass film. Next, an insulating coating agent is applied, and baking and heat flattening are performed to obtain a final product. Electrical steel sheets are used for iron core materials such as transformers and electrical equipment, and require high magnetic flux density and low iron loss.

トランス鉄心の製造は、方向性電磁鋼板を所定の長さと幅に裁断後、積み重ねて積み鉄心、または巻き加工されて巻き鉄心とされる。巻き鉄心の場合は、さらに圧縮成型、歪み取り焼鈍を経て、巻き線作業を行いトランスとされる。   In the manufacture of the transformer core, the grain-oriented electrical steel sheet is cut into a predetermined length and width, and then stacked and stacked, or wound into a wound core. In the case of a wound iron core, it is further subjected to compression molding and strain relief annealing, and then the winding work is performed to form a transformer.

このトランス製造の作業性とトランスの性能に絶縁被膜が深くかかわっている。絶縁被膜の密着力が弱いと被膜の一部が剥離して、粉塵を発生して、作業環境の悪化と電気特性を低下させ、また、絶縁被膜に部分的に欠落部があると電気特性を悪くする。さらに、低融点不純物が絶縁被膜にあると、圧縮成型後の歪み取り焼鈍時に板同士が融着して剥離しがたくなる(被膜焼き付き)。   The insulation coating is deeply related to the workability of transformer production and the performance of the transformer. If the adhesion of the insulating coating is weak, part of the coating will peel off and dust will be generated, deteriorating the working environment and reducing the electrical characteristics.If the insulating coating is partially missing, the electrical characteristics will be reduced. Make it worse. Furthermore, when the low melting point impurities are present in the insulating coating, the plates are fused to each other and are difficult to peel off during strain relief annealing after compression molding (film seizure).

以上の問題を生じさせることなく良好な絶縁被膜を与えるため、Al,Mg等の第一リン酸塩とコロイダルシリカに6価のクロム化合物(クロム酸またはクロム酸塩)を混合して使用することが行われている。   To provide a good insulating film without causing the above problems, use a mixture of primary phosphates such as Al and Mg and colloidal silica with a hexavalent chromium compound (chromic acid or chromate). Has been done.

欠落部分の無い均一な絶縁被膜形成と、リン酸塩の過剰なフリーのリン酸による吸湿性(電気絶縁性低下)および歪み取り焼鈍時の被膜焼き付き性を防止するために、6価のクロム化合物は必須である。しかし、6価のクロムは毒性が強く、そのために使用禁止の方向にある。   Hexavalent chromium compound to prevent formation of uniform insulation film without missing parts, hygroscopicity due to excessive free phosphoric acid phosphate (electrical insulation degradation) and film seizure during strain relief annealing Is essential. However, hexavalent chromium is highly toxic and is therefore banned.

そのため、この問題の解決のために6価クロムを代替する技術がいくつか提案されている。それらは、クロム化合物の代わりに、Mg,Al,Fe,Co,NiおよびZnの硫酸塩を使用する[特公昭57−9631]。
Fe,Ni,Co,Cu,Sr,Moの無機化合物、特に好ましくは水酸化物[特開2005−200705]を用いるものである。
Therefore, several techniques for replacing hexavalent chromium have been proposed to solve this problem. They use sulfates of Mg, Al, Fe, Co, Ni and Zn instead of chromium compounds [Japanese Examined Patent Publication No. 57-9963].
An inorganic compound of Fe, Ni, Co, Cu, Sr, and Mo, particularly preferably a hydroxide [Japanese Patent Laid-Open No. 2005-200705] is used.

上記、金属の硫酸塩は、それ等が中性〜弱酸性化合物であるため、フリーのリン酸との反応性が弱い。金属の有機酸塩は、硫酸塩に比べるとフリーのリン酸との反応性が良いが、第一リン酸塩とコロイダルシリカをゲル化させる問題があり、また、炭素が残存し電気絶縁性等に悪影響を与える。金属水酸化物はゲル化の問題も無く、フリーのリン酸との反応性も硫酸塩より改善されているが、依然としてクロム化合物の性能には及ばない。   Since the metal sulfates described above are neutral to weakly acidic compounds, the reactivity with free phosphoric acid is weak. Metal organic acid salt has better reactivity with free phosphoric acid than sulfate, but there is a problem of gelation of primary phosphate and colloidal silica. Adversely affects. Metal hydroxides are free from gelation problems and have improved reactivity with free phosphoric acid over sulfates, but still do not reach the performance of chromium compounds.

前記技術以外に、非第一リン酸塩系の新被膜剤として、下記式(4)   In addition to the above technique, as a non-primary phosphate-based new coating agent, the following formula (4)

Figure 2010059513
の一般式で表わされる平均1μm の固溶型の複合金属水酸化物を用いる提案が出されている。[特開平7−180064]
しかし、この新被膜剤は、従来の第一リン酸塩、コロイダイルシリカおよびクロム化合物から成る被膜剤に比べ被膜形成性がかなり劣る。
Figure 2010059513
A proposal has been made to use an average 1 μm solid solution type composite metal hydroxide represented by the general formula: [JP-A-7-180064]
However, this new coating agent is considerably inferior in film forming properties as compared with a conventional coating agent comprising primary phosphate, colloidal silica and a chromium compound.

本発明は、第一リン酸塩化合物を必須とし、これにコロイダイルシリカとクロム化合物を添加する従来の絶縁被膜剤にあって、有毒なクロム化合物のみを無毒であって、且つクロム化合物の持つ、優れたフリーのリン酸捕捉性と緻密な被膜形成性を充分に代替できる新規な被膜形成剤を提供する。   The present invention is a conventional insulating coating agent in which a primary phosphate compound is essential, and colloidal silica and a chromium compound are added thereto. Only a toxic chromium compound is nontoxic, and the chromium compound has The present invention provides a novel film forming agent capable of sufficiently replacing excellent free phosphate capturing property and dense film forming property.

本発明は下記式(1) The present invention provides the following formula (1)

Figure 2010059513
(但し、式中、M2+はFe,Ni,Co,Mnの少なくとも1種の2価金属、好ましくはFeおよび/またはNiを示し、M3+はFe,Co,Mnの少なくとも1種の3価金属、好ましくはFeを示し、An−はn価のアニオン、好ましくはOHおよび/またはCO 2−を示し、xとmはそれぞれ次の範囲、0<x<0.5、好ましくは0.2<x<0.4,0≦m<4)で表わされるM2+(OH)のM2+の一部をM3+置換した固溶体であるハイドロタルサイト類、および/または、下記式(2)
Figure 2010059513
(Wherein M 2+ represents at least one divalent metal of Fe, Ni, Co, and Mn, preferably Fe and / or Ni, and M 3+ represents at least one trivalent of Fe, Co, and Mn. metal, preferably an Fe, a n-n-valent anion, preferably OH - and / or CO 3 2- are shown, x and m each following range, 0 <x <0.5, preferably Hydrotalcite that is a solid solution obtained by substituting a part of M 2+ of M 2+ (OH) 2 represented by 0.2 <x <0.4, 0 ≦ m <4) with M 3+ and / or the following formula (2)

Figure 2010059513
(但し、式中、M3+は式(2)と同じ3価金属を示し、An−は1価または2価の陰イオンを示し、M3+およびAn−の最も好ましいのはそれぞれFe3+,CO 2−であり、zは次の範囲、0<z<2にある)で表わされる3価金属の塩基性塩をクロム化合物の代わりにリン酸塩とコロイダルシリカの系に添加する電磁鋼板用低毒性絶縁被膜剤である。更に詳しくは、本発明は[1]第一リン酸塩100重量部に対し、コロイダルシリカをSiO換算で35〜100重量部及び式(1)および/または式(2)のハイドロタルサイト類および/または3価金属の塩基性塩を固形物換算で0.1〜50重量部含有する、有毒なクロムを含有しない電磁鋼板用絶縁被膜剤である。ここで、固形物とは乾燥(110℃で3時間)して水分を除いた残りのものをいう。
Figure 2010059513
(Wherein, M 3+ represents a same trivalent metal and Equation (2), A n- represents a monovalent or divalent anion, M 3+ and A n- most preferably each Fe 3+ of the , CO 3 2- , z is in the following range, 0 <z <2), and a basic salt of a trivalent metal is added to a phosphate and colloidal silica system instead of a chromium compound. It is a low toxicity insulating coating agent for steel sheets. More specifically, the present invention is [1] 35 to 100 parts by weight of colloidal silica in terms of SiO 2 and hydrotalcites of formula (1) and / or formula (2) with respect to 100 parts by weight of the primary phosphate. And / or an insulating coating agent for electrical steel sheets that contains 0.1 to 50 parts by weight of a basic salt of a trivalent metal in terms of solid matter and does not contain toxic chromium. Here, the solid matter means the remaining product after drying (at 110 ° C. for 3 hours) to remove moisture.

本発明により、クロムを含まないリン酸塩系絶縁被膜で生じる耐蝕性および被膜の不完全性の問題が解決されるとともに、クロム添加系による毒性(環境汚染)の問題を解消できる。   According to the present invention, the problems of corrosion resistance and film imperfection caused by a phosphate-based insulating film not containing chromium can be solved, and the problem of toxicity (environmental contamination) due to the chromium-added system can be solved.

本発明の式(2)のハイドロタルサイト類は、2価の金属水酸化物に3価の金属が置換した固溶体(0<x<0.5)であり、ハイドロタルサイトと同じ結晶構造を示す。したがって、前述の特開平7−180064が3価の金属水酸化物を主成分とする(そのことは実施例でxの範囲が0.8≦x≦0.9であることから説明できる。)固溶体である点およびこの固溶体自体が絶縁被膜剤であって、リン酸塩とコロイダルシリカを併用しない点で、本発明とは全く異なる。結晶構造も本発明がハイドロタルサイト類(例えば、ハイドロタルサイト類の性質と応用,宮田,ゼオライト,vol.8,No.4,1991)に属するのに対し、特開平7−180064が3価金属水酸化物であり、両者は全く異なる組成および結晶構造である。   The hydrotalcite of the formula (2) of the present invention is a solid solution (0 <x <0.5) in which a trivalent metal is substituted for a divalent metal hydroxide, and has the same crystal structure as that of hydrotalcite. Show. Therefore, the above-mentioned JP-A-7-180064 mainly comprises a trivalent metal hydroxide (this can be explained by the fact that the range of x is 0.8 ≦ x ≦ 0.9 in the embodiment). The present invention is completely different from the present invention in that it is a solid solution and the solid solution itself is an insulating coating agent and does not use phosphate and colloidal silica in combination. The crystal structure of the present invention belongs to hydrotalcites (for example, properties and applications of hydrotalcites, Miyata, zeolite, vol. 8, No. 4, 1991), while JP-A-7-180064 is trivalent. They are metal hydroxides, both of which have completely different compositions and crystal structures.

本発明は、3価の金属水酸化物の性能を更に高めることにより実現した技術である。2価金属のリン酸塩に比べ3価金属のリン酸塩は、反応してしまえば優れた耐湿性(絶縁性)と緻密な被膜を形成する。しかし、3価の金属水酸化物は、いくら微粒子にしてもフリーのリン酸との反応性が2価の金属水酸化物に比べて貧弱である。この3価金属、特にはFe3+の水酸化物のフリーのリン酸との反応性を改善できれば、目的とするクロム化合物の性能を十分に代替できると考え、鋭意研究を行った結果、本発明を完成するに至った。 The present invention is a technique realized by further improving the performance of a trivalent metal hydroxide. Compared with divalent metal phosphates, trivalent metal phosphates, when reacted, form excellent moisture resistance (insulating properties) and a dense film. However, trivalent metal hydroxides have poorer reactivity with free phosphoric acid than divalent metal hydroxides, no matter how fine. As a result of diligent research, it was considered that the performance of the target chromium compound could be sufficiently replaced if the reactivity of the trivalent metal, particularly Fe 3+ hydroxide, with free phosphoric acid could be improved. It came to complete.

以上の目的を実現することができたのが式(1)または式(2)、特に好ましくは式(1)の化合物である。式(1)のハイドロタルサイト類はNi2+とかFe2+の2価金属水酸化物にFe3+等の3価金属水酸化物が原子状に分散(固溶)しているため、M2+(OH)に近いリン酸との反応性を示すことを発見した。また、式(2)のM3+の塩基性塩、例えば塩基性炭酸塩;Fe3+(OH)3−2z(CO・aHO,とすることによりリン酸との反応性が水酸化物に比べ著しく向上することも発見した。 It is the compound of the formula (1) or the formula (2), particularly preferably the compound of the formula (1) that has achieved the above object. Since the trivalent metal hydroxides Fe 3+ such as divalent metal hydroxide hydrotalcite of formula (1) is Ni 2+ Toka Fe 2+ are dispersed (dissolved) into atomic, M 2+ ( It was found to show reactivity with phosphoric acid close to OH) 2 . In addition, the basic salt of M 3+ of formula (2), for example, basic carbonate; Fe 3+ (OH) 3-2z (CO 3 ) z · aH 2 O, makes the reactivity with phosphoric acid water. It has also been found that there is a marked improvement over oxide.

本発明で用いる式(1)および/または式(2)の化合物は、リン酸との反応性およびコロイダルシリカとの反応性を良好にするために、より微粒子であることが好ましい。平均2次粒子径で1μm以下、より好ましくは0.5μm以下、特に好ましくは0.2μm以下である。   The compound of formula (1) and / or formula (2) used in the present invention is preferably finer in order to improve the reactivity with phosphoric acid and the reactivity with colloidal silica. The average secondary particle diameter is 1 μm or less, more preferably 0.5 μm or less, and particularly preferably 0.2 μm or less.

以上の如き微粒子は、例えば、ビーズミルによる湿式粉砕により実施できる。ビーズ径としては、0.05〜0.5mm、特に好ましくは0.05〜0.2mmで行うことができる。処理時間は適宜選択すればよく、通常1〜20時間である。   The fine particles as described above can be carried out, for example, by wet pulverization using a bead mill. The bead diameter can be 0.05 to 0.5 mm, particularly preferably 0.05 to 0.2 mm. What is necessary is just to select processing time suitably, and it is 1 to 20 hours normally.

本発明で用いる式(1)のハイドロタルサイト類の製造は公知であり、例えば、2価と3価の金属の水溶性塩水溶液にアルカリを加えて共沈させる方法により行うことができる。   Production of hydrotalcites of the formula (1) used in the present invention is known, and can be carried out, for example, by a method of coprecipitation by adding an alkali to a water-soluble salt solution of divalent and trivalent metals.

式(2)の金属の塩基性塩は、3価金属の水溶性塩の水溶液とアルカリ成分とアニオン成分、例えば、その両者を含む炭酸ナトリウムと反応させることにより製造できる。   The basic salt of the metal of the formula (2) can be produced by reacting an aqueous solution of a water-soluble salt of a trivalent metal, an alkali component and an anion component such as sodium carbonate containing both.

本発明で用いるリン酸塩として好ましくは、AlまたはMgの第一リン酸塩である。リン酸塩100重量部に対し、コロイダルシリカの添加量が前記範囲より少ないと張力効果が小さくなり、耐食性、絶縁性、密着性、焼き付き性が低下する。逆に多すぎると、被膜にクラックが発生して耐食性が悪くなる。   The phosphate used in the present invention is preferably a primary phosphate of Al or Mg. When the amount of colloidal silica added is less than the above range with respect to 100 parts by weight of phosphate, the tension effect is reduced, and the corrosion resistance, insulation, adhesion, and seizure properties are reduced. On the other hand, if the amount is too large, cracks occur in the coating and the corrosion resistance deteriorates.

本発明で用いる式(1)または式(2)の化合物の添加量が前記範囲より少ないと、フリーのリン酸の捕捉性が不十分であり、逆に多すぎると、リン酸捕捉性は頭打ちとなり、被膜張力を低下させる恐れがある。   When the amount of the compound of the formula (1) or formula (2) used in the present invention is less than the above range, the scavenging ability of free phosphoric acid is insufficient. Thus, the film tension may be reduced.

本発明の絶縁被膜剤は、適当な濃度のコーティング処理液として準備し、これを電磁鋼板(無機質被膜付き)にロールコーター等の適当な塗布手段よって塗布し、これを連炉等の適当な炉によって100℃以上の温度、好ましくは150〜350℃で焼き付け処理する。   The insulating coating agent of the present invention is prepared as a coating treatment solution having an appropriate concentration, and this is applied to a magnetic steel sheet (with an inorganic coating) by an appropriate application means such as a roll coater, and this is applied to an appropriate furnace such as a continuous furnace. Is baked at a temperature of 100 ° C. or higher, preferably 150 to 350 ° C.

上記コーティング液の乾燥工程に続いて、N或いはN+Hの還元雰囲気で、750〜900℃で2〜120秒焼鈍することが好ましい。 Following the drying step of the coating solution, it is preferable to anneal at 750 to 900 ° C. for 2 to 120 seconds in a reducing atmosphere of N 2 or N 2 + H 2 .

本発明の絶縁被膜剤は、仕上げ焼鈍でフォルステライトが主成分のグラス被膜を形成した材料だけでなく、グラス被膜を取り除いた材料にも適用できる。   The insulating coating agent of the present invention can be applied not only to a material in which a glass film mainly composed of forsterite is formed by final annealing but also to a material from which the glass film has been removed.

絶縁被膜の付着量は特に指定しないが、両面あたり好ましくは1〜15g/m(乾燥後)、特に好ましくは5〜10g/mである。 Adhesion amount of the insulating coating is not particularly specified, preferably per both surfaces 1 to 15 g / m 2 (after drying), particularly preferably from 5 to 10 g / m 2.

本発明の絶縁被膜剤は、前記成分以外に耐蝕性の改良として樹脂成分を添加することができる。樹脂としては、例えば、アクリル、アルキッド、オレフィン、スチレン、酢酸ビニル、エポキシ、フェノール、ポリエステル、ウレタン、メラミン等の樹脂を挙げることができ、これらのサスペンションまたは水溶液として使用する。これら樹脂の添加量は、第一リン酸塩100重量部に対し、5〜50重量部である。   In addition to the above components, the insulating coating agent of the present invention may contain a resin component as an improvement in corrosion resistance. Examples of the resin include resins such as acrylic, alkyd, olefin, styrene, vinyl acetate, epoxy, phenol, polyester, urethane, and melamine, and these are used as a suspension or an aqueous solution. The addition amount of these resin is 5-50 weight part with respect to 100 weight part of primary phosphates.

以下、実施例に基づいて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

[クロム代替物の製造]塩化ニッケルと硫酸第二鉄の混合水溶液(Ni2+=1.0M/L,Fe3+=0.4M/L)と水酸化ナトリウム水溶液(NaOH=4M/L)を、計量ポンプを用いそれぞれ、200ml/分、約140ml/分の流速でオーバーフロー付き容量2リットルの反応槽に攪拌下に供給し、pHをアルカリ水溶液の流量で調整しつつ約7.0に、温度を約40℃に保って共沈反応させた。得られた黄緑色沈殿を減圧ろ過後、0.5M/Lの炭酸ナトリウム水溶液で、ろ液がBaCl水溶液を添加して白濁しなくなるまで洗浄した。この後、水洗し、水に分散後、φ=0.1mmのZrOビーズと混合し、15時間ボールミルで湿式粉砕した。粉砕処理物をレーザー回析法で粒度分布を測定した結果、累積50%の平均2次粒子径が0.2μmであった。粉砕処理物の一部をろ過、乾燥し、X線回析を行った結果、d003=7.7Åのハイドロタルサイト類に属する結晶であることが判った。ICPで元素分析、AGK式法でCO、TG−DTAで結晶水をそれぞれ測定した結果、化学組成は次の通りであった。
Ni0.72Fe3+ 0.28(OH)(CO0.14・0.4H
[Production of chromium substitute] A mixed aqueous solution of nickel chloride and ferric sulfate (Ni 2+ = 1.0 M / L, Fe 3+ = 0.4 M / L) and an aqueous sodium hydroxide solution (NaOH = 4 M / L) Using a metering pump, feed the reaction tank with a capacity of 2 liters with overflow at a flow rate of 200 ml / min and 140 ml / min, respectively, with stirring, and adjust the pH to about 7.0 while adjusting the pH with the flow rate of the alkaline aqueous solution. The coprecipitation reaction was maintained at about 40 ° C. After the resulting yellow-green precipitate filtered under reduced pressure, at 0.5M / L aqueous sodium carbonate solution, the filtrate was washed until no white turbidity by adding BaCl 2 aqueous solution. Thereafter, washing with water, after dispersion in water and mixed with ZrO 2 beads phi = 0.1 mm, were wet-ground for 15 hours a ball mill. As a result of measuring the particle size distribution of the pulverized product by a laser diffraction method, the average secondary particle size with a cumulative 50% was 0.2 μm. A part of the pulverized product was filtered, dried, and subjected to X-ray diffraction. As a result, it was found that it was a crystal belonging to hydrotalcite having d 003 = 7.7 kg. As a result of elemental analysis by ICP and measurement of water of crystallization by CO 3 and AG-DTA by the AGK method, the chemical composition was as follows.
Ni 0.72 Fe 3+ 0.28 (OH) 2 (CO 3 ) 0.14 · 0.4H 2 O

実施例1において、混合金属水溶液を硫酸第一鉄と塩化第二鉄の混合水溶液(Fe2+=1.0M/L,Fe3+=0.4M/L)に、反応pHを8.5に、代えて用いる以外は同様に行った。得られた物の粒度分布は累積50%の平均2次粒子径が0.16μmであり、X線回析によりハイドロタルサイト類と同定され、そのd003は7.9Åであった。化学組成は次の通りであった。
Fe2+ 0.25Fe3+ 0.75(OH)(CO0.38・0.45H
In Example 1, the mixed metal aqueous solution was changed to a mixed aqueous solution of ferrous sulfate and ferric chloride (Fe 2+ = 1.0 M / L, Fe 3+ = 0.4 M / L), and the reaction pH was set to 8.5. The procedure was the same except that it was used instead. The particle size distribution of the obtained product was 50% in cumulative average secondary particle size of 0.16 μm, identified as hydrotalcites by X-ray diffraction, and d 003 was 7.9 mm. The chemical composition was as follows:
Fe 2+ 0.25 Fe 3+ 0.75 (OH ) 2 (CO 3) 0.38 · 0.45H 2 O

1.0M/Lの炭酸ソーダ(NaCO)水溶液3.6リットル(約30℃)を10リットルの反応槽に入れ、ケミスターラーで攪拌下に、硫酸第二鉄水溶液(1.0M/L,約30℃)1リットルを加え反応させた。得られた沈殿をろ過、水洗後、水に分散させ、実施例1と同様に湿式粉砕した。この物の累積50%の平均2次粒子径は0.12μm、結晶構造はX線回析により無定形(非晶質)であり、化学組成は次の通りであった。
Fe3+(CO0.42(SO0.02(OH)2.12・aHO[但し、a=0.4〜0.8]
3.6 L (about 30 ° C.) of a 1.0 M / L sodium carbonate (Na 2 CO 3 ) aqueous solution was placed in a 10 liter reaction vessel, and a ferric sulfate aqueous solution (1.0 M / L) was stirred with a chemi stirrer. (L, about 30 ° C.) 1 liter was added and reacted. The obtained precipitate was filtered, washed with water, dispersed in water, and wet-ground as in Example 1. The 50% cumulative average secondary particle size of this product was 0.12 μm, the crystal structure was amorphous (amorphous) by X-ray diffraction, and the chemical composition was as follows.
Fe 3+ (CO 3 ) 0.42 (SO 4 ) 0.02 (OH) 2.12 · aH 2 O [where a = 0.4 to 0.8]

最終仕上げ焼鈍を行い、鋼板表面にフォルステライトを主成分とするグラス被膜を形成させた板厚0.23mmの高磁束密度方向性電磁鋼板コイルから巾150mm、長さ300mmの大きさに試験片を切り取り、水洗後850℃で4時間歪み取り焼鈍を行った。その後、2%HSO水溶液中で、85℃で15秒酸洗を行い、試験用板を準備した。この鋼板表面に、50%濃度第一リン酸アルミニウム50ml(固形分換算35g)(フリーのリン酸7%)と20%濃度コロイダルシリカ100ml(固形分換算23g)に8%濃度の本発明添加剤を表1に示す量(固形分換算)の割合で添加混合したスラリーを両面で9g/m(乾燥後)の割合で塗布し、乾N雰囲気炉中で、850℃で30秒間焼き付けし、絶縁被膜を成形させた。得られた電磁鋼板の評価結果を表1に示す。各性能評価法は以下の通りである。
<表面外観>目視および手触りで評価。
<耐蝕性>50℃、湿度98%の雰囲気で3日間保持し、表面の錆び発生面積率を目視で求め、耐蝕性を下記の判定基準にしたがって評価した。
<判定基準>◎:錆び発生率=0〜5%,○:錆び発生率=5〜20%,△:錆び発生率=20〜50%,×:錆び発生率=50%以上。
<耐剥離性>直径10〜70mmの円筒に巻きつけて、剥離が生じる時の最小円筒直径を剥離径として評価した。○:50mm以下,×:50mm超
[実施例5および6]
A final finish annealing is performed, and a test piece is formed to a width of 150 mm and a length of 300 mm from a 0.23 mm thick high magnetic flux density directional electrical steel sheet coil on which a glass film mainly composed of forsterite is formed on the steel sheet surface. After cutting and washing with water, strain relief annealing was performed at 850 ° C. for 4 hours. Thereafter, 2% H 2 SO 4 aqueous solution, subjected to 15 Byosan'arai at 85 ° C., was prepared a test plate. On this steel sheet surface, 50% concentrated aluminum phosphate 50 ml (solid content 35 g) (free phosphoric acid 7%) and 20% colloidal silica 100 ml (solid content 23 g) 8% concentration of the additive of the present invention Was applied at a rate of 9 g / m 2 (after drying) on both sides and baked at 850 ° C. for 30 seconds in a dry N 2 atmosphere furnace. An insulating coating was formed. Table 1 shows the evaluation results of the obtained electrical steel sheet. Each performance evaluation method is as follows.
<Surface appearance> Evaluated by visual observation and touch.
<Corrosion resistance> It was kept for 3 days in an atmosphere of 50 ° C. and humidity of 98%, the surface rust generation area ratio was obtained visually, and the corrosion resistance was evaluated according to the following criteria.
<Criteria> A: Rust occurrence rate = 0 to 5%, O: Rust occurrence rate = 5-20%, Δ: Rust occurrence rate = 20-50%, X: Rust occurrence rate = 50% or more.
<Peeling resistance> The sample was wound around a cylinder having a diameter of 10 to 70 mm, and the minimum cylindrical diameter when peeling occurred was evaluated as the peeling diameter. ○: 50 mm or less, ×: more than 50 mm [Examples 5 and 6]

実施例4において、第一リン酸塩として第一リン酸マグネシウム[実施例5]、第一リン酸アルミニウと第一リン酸マグネシウムの混合物[実施例6]をそれぞれ用い、実施例1で得られたハイドルタルサイト類(HT)を用いた以外は、実施例4と同様に行った結果を表1に示す。
[比較例1および2]
In Example 4, the primary phosphate was obtained in Example 1, using primary magnesium phosphate [Example 5] and a mixture of primary aluminum phosphate and primary magnesium phosphate [Example 6]. Table 1 shows the results obtained in the same manner as in Example 4 except for using hydoltalsites (HT).
[Comparative Examples 1 and 2]

実施例4において、添加剤としてクロム酸CrOを用いた場合(比較例1)と、添加剤を用いなかった場合(比較例2)の評価結果を表1に示す。表1から明らかな如く、本発明のハイドロタルサイト系またはFe3+の塩基性塩は、クロム化合物を添加した場合と同等以上の性能を示すことが判る。 In Example 4, the evaluation results in the case of using CrO 3 chromate as an additive (Comparative Example 1) and in the case of using no additive (Comparative Example 2) are shown in Table 1. As is apparent from Table 1, it can be seen that the hydrotalcite-based or Fe 3+ basic salt of the present invention exhibits a performance equal to or higher than that obtained when a chromium compound is added.

Figure 2010059513
Figure 2010059513

本発明に使用するNi−Fe−CO型ハイドロタルサイト類のX線回析図を示す。The X-ray diffraction pattern of Ni-Fe-CO 3 type hydrotalcite used for the present invention is shown.

Claims (5)

下記3成分全てを含有することを特徴とするクロムを含有しない電磁鋼板用絶縁被膜剤。
[1]金属第一リン酸塩100重量部、
[2]コロイダルシリカをSiO換算で35〜100重量部、
[3]下記式(1)
Figure 2010059513
(但し、式中、M2+はFe,Ni,Co,Mnの少なくとも1種の2価金属、好ましくはFeおよび/またはNiを示し、M3+はFe,Co,Mnの少なくとも1種の3価金属、好ましくはFeを示し、An−はn価のアニオン、好ましくはOHおよび/またはCO 2−を示し、xとmはそれぞれ次の範囲、0<x<0.5、好ましくは0.2<x<0.4,0≦m<4)で表わされるM2+(OH)のM2+の一部をM3+置換した固溶体であるハイドロタルサイト類、および/または、下記式(2)
Figure 2010059513
(但し、式中、M3+は式(2)と同じ3価金属を示し、An−は1価または2価の陰イオンを示し、M3+およびAn−の最も好ましいのはそれぞれFe3+,CO 2−であり、zは次の範囲、0<z<2にある)で表わされる3価金属の塩基性塩を固形物換算で0.1〜50重量部。
An insulating coating agent for electrical steel sheets that does not contain chromium, comprising all of the following three components.
[1] 100 parts by weight of a metal primary phosphate,
[2] 35 to 100 parts by weight of colloidal silica in terms of SiO 2,
[3] The following formula (1)
Figure 2010059513
(Wherein M 2+ represents at least one divalent metal of Fe, Ni, Co, and Mn, preferably Fe and / or Ni, and M 3+ represents at least one trivalent of Fe, Co, and Mn. metal, preferably an Fe, a n-n-valent anion, preferably OH - and / or CO 3 2- are shown, x and m each following range, 0 <x <0.5, preferably Hydrotalcite that is a solid solution obtained by substituting a part of M 2+ of M 2+ (OH) 2 represented by 0.2 <x <0.4, 0 ≦ m <4) with M 3+ and / or the following formula (2)
Figure 2010059513
(Wherein, M 3+ represents a same trivalent metal and Equation (2), A n- represents a monovalent or divalent anion, M 3+ and A n- most preferably each Fe 3+ of the , CO 3 2- , and z is in the following range, 0 <z <2) 0.1 to 50 parts by weight in terms of solid matter of a basic salt of a trivalent metal.
請求項1の成分[3]の平均2次粒子径が0.5μm以下である請求項1記載の絶縁被膜剤。 The insulating coating agent according to claim 1, wherein the average secondary particle size of component [3] of claim 1 is 0.5 µm or less. 請求項1の成分[3]のM3+がFeである請求項1記載の絶縁被膜剤。 The insulating coating agent according to claim 1, wherein M 3+ of component [3] of claim 1 is Fe. 請求項1の成分[3]が式(1)で表わされるハイドロタルサイト類である請求項1記載の絶縁被膜剤。 The insulating coating agent according to claim 1, wherein component [3] of claim 1 is a hydrotalcite represented by formula (1). 請求項4のハイドロタルサイト類が、下記式(3)
Figure 2010059513
(但し、式中、xとmはそれぞれ次の範囲、0.2<x<0.4,0<m<4にある)で表わされる特定組成のハイドロタルサイト類である請求項1の絶縁被膜剤。
The hydrotalcite of claim 4 is represented by the following formula (3)
Figure 2010059513
(Wherein x and m are hydrotalcites having a specific composition represented by the following ranges, 0.2 <x <0.4 and 0 <m <4), respectively. Coating agent.
JP2008227998A 2008-09-05 2008-09-05 Insulated film agent for electromagnetic steel sheet Pending JP2010059513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008227998A JP2010059513A (en) 2008-09-05 2008-09-05 Insulated film agent for electromagnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227998A JP2010059513A (en) 2008-09-05 2008-09-05 Insulated film agent for electromagnetic steel sheet

Publications (1)

Publication Number Publication Date
JP2010059513A true JP2010059513A (en) 2010-03-18

Family

ID=42186626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227998A Pending JP2010059513A (en) 2008-09-05 2008-09-05 Insulated film agent for electromagnetic steel sheet

Country Status (1)

Country Link
JP (1) JP2010059513A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011005570A1 (en) 2010-03-16 2011-09-22 Hitachi Automotive Systems, Ltd. Electronic device
KR20140138628A (en) * 2012-03-26 2014-12-04 교와 가가꾸고교 가부시키가이샤 Fine hydrotalcite particles
US9175414B2 (en) 2010-09-29 2015-11-03 Jfe Steel Corporation Cold rolled steel sheet
US9321246B2 (en) 2010-09-29 2016-04-26 Jfe Steel Corporation Cold rolled steel sheet
JP2016138333A (en) * 2015-01-26 2016-08-04 新日鐵住金株式会社 Electromagnetic steel sheet
JP2016526093A (en) * 2013-05-10 2016-09-01 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Chromium-free coating for electrical insulation of grain oriented electrical steel strip
WO2018051902A1 (en) * 2016-09-13 2018-03-22 Jfeスチール株式会社 Grain-oriented electrical steel sheet with chrome-free insulation/tension coating, and production method thereof
CN110832117A (en) * 2017-07-13 2020-02-21 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011005570A1 (en) 2010-03-16 2011-09-22 Hitachi Automotive Systems, Ltd. Electronic device
US9175414B2 (en) 2010-09-29 2015-11-03 Jfe Steel Corporation Cold rolled steel sheet
US9321246B2 (en) 2010-09-29 2016-04-26 Jfe Steel Corporation Cold rolled steel sheet
EP2623645B1 (en) * 2010-09-29 2020-11-18 JFE Steel Corporation Cold-rolled steel sheet
KR101975628B1 (en) * 2012-03-26 2019-05-07 교와 가가꾸고교 가부시키가이샤 Fine hydrotalcite particles
KR20140138628A (en) * 2012-03-26 2014-12-04 교와 가가꾸고교 가부시키가이샤 Fine hydrotalcite particles
EP2832695A4 (en) * 2012-03-26 2015-08-26 Kyowa Chem Ind Co Ltd Fine hydrotalcite particles
JP2016526093A (en) * 2013-05-10 2016-09-01 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Chromium-free coating for electrical insulation of grain oriented electrical steel strip
US10597539B2 (en) 2013-05-10 2020-03-24 Henkel Ag & Co. Kgaa Chromium-free coating for the electrical insulation of grain-oriented electrical steel strip
JP2016138333A (en) * 2015-01-26 2016-08-04 新日鐵住金株式会社 Electromagnetic steel sheet
JP6299938B1 (en) * 2016-09-13 2018-03-28 Jfeスチール株式会社 Directional electrical steel sheet with chromium-free insulating tension coating and method for producing the same
RU2698234C1 (en) * 2016-09-13 2019-08-23 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet from textured electrical steel having a chromium-free insulating coating creating a tension, and methods of making such a steel sheet
CN109563626A (en) * 2016-09-13 2019-04-02 杰富意钢铁株式会社 Orientation electromagnetic steel plate and its manufacturing method with chrome-free insulating tension envelope
WO2018051902A1 (en) * 2016-09-13 2018-03-22 Jfeスチール株式会社 Grain-oriented electrical steel sheet with chrome-free insulation/tension coating, and production method thereof
US11756713B2 (en) 2016-09-13 2023-09-12 Jfe Steel Corporation Grain-oriented magnetic steel sheets having chromium-free insulating tension coating, and methods for producing such steel sheets
CN110832117A (en) * 2017-07-13 2020-02-21 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
CN110832117B (en) * 2017-07-13 2022-01-07 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
KR100973071B1 (en) Grain-oriented electromagnetic steel sheet having chromium-free insulation coating and insulation coating agent therefor
JP2010059513A (en) Insulated film agent for electromagnetic steel sheet
JP5026414B2 (en) Grain-oriented electrical steel sheet having high-tensile insulation coating and method for treating the insulation coating
JP5194641B2 (en) Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film
KR101422426B1 (en) Insulating coating treatment liquid for grain oriented electromagnetic steel sheet and process for manufacturing grain oriented electromagnetic steel sheet with insulating coating
JP4878788B2 (en) Insulating coating agent for electrical steel sheet containing no chromium
CN102433055B (en) Chromium-free insulation coating material for non-oriented silicon steel
JP2000169972A (en) Chromium-free surface treating agent for grain oriented silicon steel sheet, and manufacture of grain oriented silicon steel sheet using same
KR102515004B1 (en) Electromagnetic Steel Sheet
JP2009057591A (en) Treatment liquid for forming chromium-free insulation film on grain-oriented electromagnetic steel sheet, and method for manufacturing grain-oriented electromagnetic steel sheet provided with insulation film
JP2000178760A (en) Surface treating agent containing no chromium and grain oriented magnetic steel sheet using the same
JP2000169973A (en) Chromium-free surface treating agent for grain oriented silicon steel sheet, and manufacture of grain oriented silicon steel sheet using same
JP6682888B2 (en) Insulating coating agent for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for treating grain-oriented electrical steel sheet
JP6299938B1 (en) Directional electrical steel sheet with chromium-free insulating tension coating and method for producing the same
JP2005200705A (en) Grain oriented silicon steel sheet having insulating film containing no chromium, and insulating film agent therefor
JP7014231B2 (en) A coating liquid for forming an insulating film for grain-oriented electrical steel sheets, and a method for manufacturing grain-oriented electrical steel sheets.
JP2005240096A (en) Chromic acid-based insulating film treating liquid for electrical steel sheet and electrical steel sheet with chromic acid-based insulating film treating liquid