JP2010058146A - Drawing apparatus - Google Patents

Drawing apparatus Download PDF

Info

Publication number
JP2010058146A
JP2010058146A JP2008226210A JP2008226210A JP2010058146A JP 2010058146 A JP2010058146 A JP 2010058146A JP 2008226210 A JP2008226210 A JP 2008226210A JP 2008226210 A JP2008226210 A JP 2008226210A JP 2010058146 A JP2010058146 A JP 2010058146A
Authority
JP
Japan
Prior art keywords
main shaft
phase difference
shaft
rotational phase
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008226210A
Other languages
Japanese (ja)
Inventor
Shinobu Omi
忍 大見
Hiroshi Kojima
宏 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
Original Assignee
Nihon Spindle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2008226210A priority Critical patent/JP2010058146A/en
Publication of JP2010058146A publication Critical patent/JP2010058146A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drawing apparatus including a mechanism for controlling rotational phase difference of a spindle and a camshaft, which has a simple structure and causes few breakages and troubles. <P>SOLUTION: The drawing apparatus 1 includes: a drawing roller mount 15 movably supporting a drawing roller R in a radial direction at the tip of the spindle 10; and a cam plate 22 moving the drawing roller R in the radial direction by the relative rotational phase difference of the spindle 10 and the camshaft 24 at the tip of the camshaft 24 arranged to be coaxial with the spindle 10 in the spindle 10. In the drawing apparatus, at least one of the drive mechanisms of the spindle 10 and the camshaft 24 is configured of a numerically controlled motor SM, the rotation of the spindle 10 and the camshaft 24 is transmitted to a planetary gear mechanism 50, the rotational phase difference of the spindle 10 and the camshaft 24 is detected using a rotational phase difference detection means E arranged at the planetary gear mechanism 50, and drawing is carried out by controlling the numerically controlled motor SM based on a detected detection value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、絞り加工装置に関し、特に、回転する主軸の先端に取り付けた絞りローラを半径方向に移動させて絞り加工を施す絞り加工装置に関するものである。   The present invention relates to a drawing apparatus, and more particularly to a drawing apparatus that performs drawing by moving a drawing roller attached to the tip of a rotating main shaft in a radial direction.

従来、絞り加工を行う絞り加工装置として、回転する主軸の先端に取り付けた絞りローラ取付台に、絞りローラを半径方向に移動可能に支持し、この絞りローラにより被加工用のパイプ等の円筒部材に絞り加工を施すようにした絞り加工装置が提案されている(例えば、特許文献1参照)。   Conventionally, as a drawing device for drawing, a drawing roller is supported on a drawing roller mounting base attached to the tip of a rotating spindle so that the drawing roller can be moved in the radial direction, and a cylindrical member such as a pipe to be processed by the drawing roller. There has been proposed a drawing apparatus in which a drawing process is performed (see, for example, Patent Document 1).

この絞り加工装置1’は、図4〜図7に示すように、主軸機構2’と、この主軸機構2’に対向して被加工用のパイプPを支持する支持機構3とを備え、主軸機構2’の主軸筐体11を、基台4上に形成した案内レール5上を駆動モータ6及び駆動螺子7によって、図4に示すL方向に移動可能に構成している。   As shown in FIGS. 4 to 7, the drawing device 1 ′ includes a main shaft mechanism 2 ′ and a support mechanism 3 that supports the pipe P to be processed so as to face the main shaft mechanism 2 ′. The spindle housing 11 of the mechanism 2 ′ is configured to be movable in the L direction shown in FIG. 4 by a drive motor 6 and a drive screw 7 on a guide rail 5 formed on the base 4.

主軸機構2’は、適宜の駆動モータ(図示省略)に連結される駆動プーリ13により駆動され、主軸筐体11にベアリング12を介して支持される主軸10と、この主軸10の先端に設けられる絞りローラ取付台15とを備える。   The main shaft mechanism 2 ′ is driven by a driving pulley 13 connected to a suitable driving motor (not shown), and is provided at a main shaft 10 supported by a main shaft housing 11 via a bearing 12 and at the tip of the main shaft 10. And a squeeze roller mounting base 15.

この絞りローラ取付台15は、主軸10の先端にフランジ16を介して取り付けられ、絞りローラRの支持部材17を半径方向に案内する案内溝18を備えた主取付台20と、絞りローラRを半径方向に移動するための渦巻き状溝21を備えたカム板22とを主体として構成される。
工具の支持部材17には、渦巻き状溝21内に突入する案内ピン23を備えることによって絞りローラRを半径方向に移動させる。
The squeezing roller mounting base 15 is attached to the tip of the main shaft 10 via a flange 16 and includes a main mounting base 20 having a guide groove 18 for guiding the support member 17 of the squeezing roller R in the radial direction, and the squeezing roller R. A cam plate 22 having a spiral groove 21 for moving in the radial direction is mainly used.
The support member 17 of the tool is provided with a guide pin 23 that enters into the spiral groove 21 to move the squeeze roller R in the radial direction.

主軸10は、中空構造とし、カム板22を先端に取り付けたカム軸24を主軸10内に配設し、主軸10とカム軸24とは、変速機構30を介して係合され、初期位置では図6に示す位置にある絞りローラRを、主取付台20に対して相対的にカム板22を回転することによって、図7に示す位置まで半径方向に移動させ、被加工用のパイプPの先端に所定の絞り加工(例えば、縮径加工)を施すようにする。   The main shaft 10 has a hollow structure, and a cam shaft 24 having a cam plate 22 attached to the tip thereof is disposed in the main shaft 10. The main shaft 10 and the cam shaft 24 are engaged via a speed change mechanism 30, and at an initial position. The squeezing roller R located at the position shown in FIG. 6 is moved in the radial direction to the position shown in FIG. A predetermined drawing process (for example, a diameter reduction process) is applied to the tip.

被加工用のパイプPに挿入されるマンドレル40は、カム軸24内に配設される軸41の先端に配設され、進退用シリンダ(図示省略)によって、主軸10の軸方向に進退可能に取り付けられる。   The mandrel 40 inserted into the pipe P to be processed is disposed at the tip of a shaft 41 disposed in the cam shaft 24, and can be advanced and retracted in the axial direction of the main shaft 10 by an advancing / retreating cylinder (not shown). It is attached.

ところで、従来の絞り加工装置1’は、変速機構30に、撓み噛み合い式駆動伝達装置を用いるようにしている。
変速機構30に用いられている撓み噛み合い式駆動伝達装置は、図5及び図8に示すように、主軸10とカム軸24とにそれぞれ係合される対をなす外輪31、32と、それぞれの外輪内面に形成された歯溝(両者同一歯数とする)に噛合し、かつ、歯数の異なる歯形を形成した可撓性の歯車輪33と、この歯車輪33を楕円形に、かつ、回転可能に支持し、歯溝とは相対する2か所において噛合させるウエーブ形成輪34とより構成されている。
By the way, the conventional drawing apparatus 1 ′ uses a flexure-meshing type drive transmission device for the speed change mechanism 30.
As shown in FIGS. 5 and 8, the flexure mesh drive transmission device used in the speed change mechanism 30 includes a pair of outer rings 31, 32 engaged with the main shaft 10 and the cam shaft 24, respectively. A flexible tooth wheel 33 that meshes with a tooth groove formed on the inner surface of the outer ring (both have the same number of teeth) and has a tooth shape with a different number of teeth, the tooth wheel 33 in an elliptical shape, and It comprises a wave forming ring 34 that is rotatably supported and meshes at two locations facing the tooth gap.

この変速機構30は、ウエーブ形成輪34を固定し、一方の外輪31を駆動したとき、歯車輪33は追随して回転され、これに伴い、他方の外輪32も歯車輪33を介して回転される。このとき、両外輪31、32の歯数が同一であり、したがって、同一の回転数で回転される。   In the speed change mechanism 30, when the wave forming wheel 34 is fixed and one outer ring 31 is driven, the tooth wheel 33 is rotated following the rotation, and the other outer ring 32 is also rotated via the tooth wheel 33. The At this time, the number of teeth of both the outer rings 31 and 32 is the same, and therefore, they are rotated at the same number of rotations.

一方、歯車輪33の歯数は、通常、外輪31、32より少なく(例えば、2個少なく)形成する。
そして、外輪31を固定し、ウエーブ形成輪34を回転する。35はその駆動用減速モータを示す。
これにより、外輪31を回転しながらウエーブ形成輪34を回転することによって、他方の外輪32は、外輪31に対して相対回転速度が変動する。その変動回転数は、ウエーブ形成輪34の回転数に比例する。
このようにして、撓み噛み合い式駆動伝達装置による差動回転がなされる。
On the other hand, the number of teeth of the tooth wheel 33 is usually smaller than that of the outer rings 31 and 32 (for example, two fewer).
Then, the outer ring 31 is fixed and the wave forming ring 34 is rotated. Reference numeral 35 denotes a drive reduction motor.
Accordingly, by rotating the wave forming ring 34 while rotating the outer ring 31, the relative rotational speed of the other outer ring 32 with respect to the outer ring 31 varies. The variable rotational speed is proportional to the rotational speed of the wave forming wheel 34.
In this way, differential rotation is performed by the flexibly meshing drive transmission device.

図8において、36は外輪31の支持歯車、37は外輪32の支持歯車、38は主軸10に取り付けられ支持歯車36と噛合する駆動歯車、39は支持歯車37と噛合する従動歯車を示す。
これにより、外輪32の外輪31に対する相対回転速度差、より具体的には、主軸10とカム軸24との間に回転位相差が生じ、カム軸24を介してカム板22が絞りローラ取付台15に対して回転し、絞りローラRを半径方向に移動させることができ、支持機構3に固定された被加工用のパイプPの先端に絞り加工を施すことができる。
In FIG. 8, 36 is a support gear for the outer ring 31, 37 is a support gear for the outer ring 32, 38 is a drive gear that is attached to the main shaft 10 and meshes with the support gear 36, and 39 is a driven gear that meshes with the support gear 37.
As a result, a relative rotational speed difference between the outer ring 32 and the outer ring 31, more specifically, a rotational phase difference occurs between the main shaft 10 and the cam shaft 24, and the cam plate 22 is connected to the squeeze roller mounting base via the cam shaft 24. 15, the squeezing roller R can be moved in the radial direction, and the tip of the pipe P for processing fixed to the support mechanism 3 can be drawn.

特許第3514730号公報Japanese Patent No. 3514730

ところで、上記変速機構30は、両外輪31、32に内歯車を形成し、歯車輪33に楕円状の外歯車を形成せねばならず、機構が複雑であるとともに、変速機構30を介して動力を伝達させるため、その構造上破損や故障を起こしやすいという問題があった。   By the way, the transmission mechanism 30 has to form internal gears on both the outer rings 31 and 32 and to form an elliptical external gear on the toothed wheels 33, and the mechanism is complicated and power is transmitted via the transmission mechanism 30. Therefore, there is a problem that it is easy to cause damage or failure due to its structure.

本発明は、上記従来の絞り加工装置の有する問題点に鑑み、主軸とカム軸の回転位相差を制御するための機構が、構造が簡単で、かつ、破損や故障を起こすことが少ない機構からなる絞り加工装置を提供することを目的とする。   In view of the problems of the above-described conventional drawing device, the present invention is a mechanism for controlling the rotational phase difference between the main shaft and the camshaft, which has a simple structure and is less likely to cause damage or failure. It aims at providing the drawing processing apparatus which becomes.

上記目的を達成するため、本発明の絞り加工装置は、主軸の先端に、絞りローラを半径方向に移動可能に支持する絞りローラ取付台を備えるとともに、主軸に該主軸に対して同軸心に配設したカム軸の先端に、主軸とカム軸の相対的な回転位相差によって絞りローラを半径方向に移動させるカム板を備えた絞り加工装置において、主軸及びカム軸の駆動機構の少なくとも一方を数値制御式モータで構成し、主軸及びカム軸の回転を、遊星歯車機構に伝達し、主軸とカム軸の回転位相差を遊星歯車機構に配備した回転位相差検出手段を用いて検出し、検出した検出値に基づいて数値制御式モータを制御して絞り加工を行うようにしたことを特徴とする。   In order to achieve the above object, the drawing apparatus of the present invention is provided with a drawing roller mounting base that supports the drawing roller so as to be movable in the radial direction at the tip of the main shaft, and is arranged coaxially with respect to the main shaft. In a drawing apparatus equipped with a cam plate that moves the squeezing roller in the radial direction by the relative rotational phase difference between the main shaft and the cam shaft at the tip of the cam shaft provided, at least one of the drive mechanism of the main shaft and the cam shaft is a numerical value Consists of a controlled motor that transmits the rotation of the main shaft and cam shaft to the planetary gear mechanism, and detects and detects the rotational phase difference between the main shaft and the cam shaft using the rotational phase difference detection means provided in the planetary gear mechanism. It is characterized in that the numerical control type motor is controlled based on the detected value to perform the drawing process.

この場合において、主軸及びカム軸の駆動機構を、数値制御式モータで構成することができる。   In this case, the drive mechanism for the main shaft and the cam shaft can be constituted by a numerically controlled motor.

また、主軸及びカム軸の駆動機構を構成するモータの回転軸の回転位相差を、回転位相差検出手段によって検出することができる。   Further, the rotational phase difference of the rotating shaft of the motor constituting the drive mechanism for the main shaft and the cam shaft can be detected by the rotational phase difference detecting means.

本発明の絞り加工装置によれば、主軸及びカム軸の駆動機構の少なくとも一方を数値制御式モータで構成し、主軸及びカム軸の回転を、遊星歯車機構に伝達し、主軸とカム軸の回転位相差を遊星歯車機構に配備した回転位相差検出手段を用いて検出し、検出した検出値に基づいて数値制御式モータを制御して絞り加工を行うようにすることにより、主軸とカム軸の回転位相差を制御するために用いる遊星歯車機構は、回転位相差を検出するだけで動力を伝達する必要がないため破損や故障を起こしにくく、耐久性のある装置とすることができる。
この場合、主軸及びカム軸の回転を、遊星歯車機構の2軸に伝達する際に、主軸及びカム軸の回転数が同一のときに遊星歯車機構の残りの1軸が停止するように変速して伝達することによって、回転位相差の検出を容易、かつ、簡便に行える絞り加工装置を提供することができる。
According to the drawing apparatus of the present invention, at least one of the drive mechanism of the main shaft and the cam shaft is constituted by a numerically controlled motor, the rotation of the main shaft and the cam shaft is transmitted to the planetary gear mechanism, and the rotation of the main shaft and the cam shaft is performed. By detecting the phase difference using the rotational phase difference detection means provided in the planetary gear mechanism and controlling the numerically controlled motor based on the detected value to perform the drawing process, the spindle and the camshaft Since the planetary gear mechanism used for controlling the rotational phase difference does not need to transmit power only by detecting the rotational phase difference, the planetary gear mechanism is unlikely to be damaged or broken down and can be a durable device.
In this case, when transmitting the rotation of the main shaft and the cam shaft to the two shafts of the planetary gear mechanism, the speed is changed so that the remaining one shaft of the planetary gear mechanism stops when the rotation speeds of the main shaft and the cam shaft are the same. Therefore, it is possible to provide a drawing device that can easily and easily detect the rotational phase difference.

また、主軸及びカム軸の駆動機構を、数値制御式モータで構成することにより、主軸及びカム軸の両方の回転数制御を正確に行うことができる。   Further, by configuring the drive mechanism of the main shaft and the cam shaft with a numerical control type motor, it is possible to accurately control the rotational speeds of both the main shaft and the cam shaft.

また、主軸及びカム軸の駆動機構を構成するモータの回転軸の回転位相差を、回転位相差検出手段によって検出することにより、モータの回転軸と主軸及びカム軸との間に必要に応じて介在される減速機による減速前の主軸及びカム軸を駆動するモータの回転位相差を用いて数値制御式モータを制御することができるから、絞り加工を高精度に行うことができる。   Further, by detecting the rotational phase difference of the rotating shaft of the motor constituting the driving mechanism of the main shaft and the cam shaft by the rotational phase difference detecting means, as required between the rotating shaft of the motor and the main shaft and the cam shaft. Since the numerically controlled motor can be controlled using the rotational phase difference of the motor that drives the main shaft and the camshaft before being decelerated by the interposed reducer, the drawing can be performed with high accuracy.

以下、本発明の絞り加工装置の実施の形態を、図面に基づいて説明する。   Embodiments of a drawing apparatus according to the present invention will be described below with reference to the drawings.

図1〜図3に、本発明の絞り加工装置の一実施例を示す。   1 to 3 show an embodiment of the drawing apparatus of the present invention.

この絞り加工装置1は、従来例と同様、主軸10の先端に、絞りローラRを半径方向に移動可能に支持する絞りローラ取付台15を備えるとともに、主軸10に該主軸10に対して同軸心に配設したカム軸24の先端に、主軸10とカム軸24の相対的な回転位相差によって絞りローラRを半径方向に移動させるカム板22を備え、主軸10及びカム軸24の駆動機構の少なくとも一方を数値制御式モータSMで構成し、主軸10及びカム軸24の回転を、遊星歯車機構50に伝達し、主軸10とカム軸24の回転位相差を遊星歯車機構50に配備した回転位相差検出手段Eを用いて検出し、検出した検出値に基づいて数値制御式モータSMを制御することによって、主軸10とカム軸24の回転位相差を所定値になるようにして絞り加工を行うようにしている。   The drawing apparatus 1 includes a drawing roller mounting base 15 that supports the drawing roller R so as to be movable in the radial direction at the tip of the main shaft 10 as in the conventional example, and the main shaft 10 is coaxial with the main shaft 10. And a cam plate 22 for moving the squeezing roller R in the radial direction by the relative rotational phase difference between the main shaft 10 and the cam shaft 24. A rotational position in which at least one is constituted by a numerically controlled motor SM, the rotation of the main shaft 10 and the cam shaft 24 is transmitted to the planetary gear mechanism 50, and the rotational phase difference between the main shaft 10 and the cam shaft 24 is arranged in the planetary gear mechanism 50. By performing detection using the phase difference detection means E and controlling the numerically controlled motor SM based on the detected value, the rotational phase difference between the main shaft 10 and the camshaft 24 is set to a predetermined value to perform drawing processing. It is to Migihitsuji.

主軸10及びカム軸24の駆動機構は、少なくとも一方を数値制御式モータSMとすればよい。
ところで、カム軸24の駆動機構に比べ、主軸10の駆動機構が大型となるため、カム軸24の駆動機構を数値制御式モータSMとすることが、コストの点で好ましい。
この場合、主軸10の駆動機構は、特に限定されるものではなく、インバータモータ等の各種モータを用いることができる。
At least one of the drive mechanisms for the main shaft 10 and the cam shaft 24 may be a numerically controlled motor SM.
By the way, since the drive mechanism of the main shaft 10 is larger than the drive mechanism of the cam shaft 24, it is preferable in terms of cost that the drive mechanism of the cam shaft 24 is a numerically controlled motor SM.
In this case, the drive mechanism of the main shaft 10 is not particularly limited, and various motors such as an inverter motor can be used.

そして、主軸10及びカム軸24は、それぞれタイミングプーリ9a、9bを介して、モータIM及び数値制御式モータSMのタイミングプーリ8a、8bと連結されている。   The main shaft 10 and the cam shaft 24 are connected to the timing pulleys 8a and 8b of the motor IM and the numerically controlled motor SM via timing pulleys 9a and 9b, respectively.

数値制御式モータSMは、特に限定されるものではないが、本実施例においては、サーボモータを用いるようにしている。  The numerically controlled motor SM is not particularly limited, but in the present embodiment, a servo motor is used.

サーボモータは、モータの回転速度が制御機構Sから発信される指令パルスの周波数に比例するとともに、モータの回転角度が指令パルスの出力パルス数に比例して作動するモータで、1パルスあたりの回転量を規定することによって、パルス列のパルス数に比例した位置まで回転させることができ、また、パルス周波数はモータの回転数(回転速度)となるため、他方のモータIMに対して、容易に所定の回転位相差をもたせ、これにより、主軸10とカム軸24との間に所定の回転位相差をもたせることができる。   The servo motor is a motor whose rotation speed is proportional to the frequency of the command pulse transmitted from the control mechanism S and whose motor rotation angle is proportional to the number of output pulses of the command pulse. By defining the amount, it can be rotated to a position proportional to the number of pulses of the pulse train, and the pulse frequency becomes the number of rotations (rotational speed) of the motor, so that it can be easily determined for the other motor IM Thus, a predetermined rotational phase difference can be provided between the main shaft 10 and the camshaft 24.

また、主軸10及びカム軸24の駆動機構を、共に数値制御式モータSMで構成することもでき、これにより、主軸10及びカム軸24の両方の回転数制御を正確に行うことができる。   In addition, both the drive mechanism of the main shaft 10 and the cam shaft 24 can be configured by a numerically controlled motor SM, whereby the rotational speed control of both the main shaft 10 and the cam shaft 24 can be accurately performed.

そして、この絞り加工装置1では、制御機構Sによって、この制御機構Sに予め設定した絞りローラRのX軸方向(図2参照)の送り速度及び送り量に応じた主軸10とカム軸24の回転位相差(本明細書において、「回転位相差」には、送り量に対応する回転位相差のほか、送り速度に対応した回転位相差速度を含むものとする。)となるように、カム軸24の駆動機構である数値制御式モータSMの回転数を制御し、回転位相差検出手段Eによって検出した主軸10とカム軸24の回転位相差の検出値を制御機構Sに送信し、フィードバック制御を行いながら、主軸10とカム軸24の回転位相差が所定の設定値になるようにしている。
なお、本実施例においては、主軸10の駆動機構であるモータIMは、制御機構Sによって一定回転で駆動するように制御されている。
In the drawing apparatus 1, the control mechanism S causes the main shaft 10 and the camshaft 24 to correspond to the feed speed and feed amount in the X-axis direction (see FIG. 2) of the drawing roller R preset in the control mechanism S. The cam shaft 24 has a rotational phase difference (in this specification, the “rotational phase difference” includes a rotational phase difference corresponding to the feed amount and a rotational phase difference speed corresponding to the feed rate). The rotational speed of the numerically controlled motor SM, which is the drive mechanism of the motor, is controlled, the detected value of the rotational phase difference between the main shaft 10 and the camshaft 24 detected by the rotational phase difference detecting means E is transmitted to the control mechanism S, and feedback control is performed. While performing, the rotational phase difference between the main shaft 10 and the cam shaft 24 is set to a predetermined set value.
In the present embodiment, the motor IM that is a drive mechanism of the main shaft 10 is controlled by the control mechanism S so as to be driven at a constant rotation.

また、制御機構Sは、主軸10とカム軸24の回転位相差を制御するほか、主軸機構2を、図1に示すL方向に移動させるための駆動モータ6の制御を併せて行うようにしている。   The control mechanism S controls the rotational phase difference between the main shaft 10 and the cam shaft 24 and also controls the drive motor 6 for moving the main shaft mechanism 2 in the L direction shown in FIG. Yes.

遊星歯車機構50は、図3に示すように、太陽歯車51、外輪歯車52及び遊星歯車53からなる周知の構造のもので、太陽歯車51を回転可能に支持する太陽軸51a、外輪歯車52を回転可能に支持する外輪軸52a及び遊星歯車53を複数回転可能に配設するキャリア54を回転可能に支持するキャリア軸54aの3軸のうち2軸に、主軸10及びカム軸24の回転を伝達し、主軸10及びカム軸24の回転数が同一のときに残りの1軸が停止するように変速して伝達するようにしている。
これによって、回転位相差の検出を容易、かつ、簡便に行うことができる。
なお、主軸10及びカム軸24の回転を変速することなく遊星歯車機構50の2軸に伝達し、主軸10及びカム軸24の回転数が同一のときに残りの1軸が回転するようにし、この回転速度を検出値として用いるようにすることもできる。
As shown in FIG. 3, the planetary gear mechanism 50 has a known structure including a sun gear 51, an outer ring gear 52, and a planetary gear 53, and includes a sun shaft 51 a that rotatably supports the sun gear 51 and an outer ring gear 52. The rotation of the main shaft 10 and the camshaft 24 is transmitted to two of the three shafts of the outer shaft 52a that is rotatably supported and the carrier shaft 54a that rotatably supports the carrier 54 in which the planetary gear 53 is rotatably disposed. Then, when the rotational speeds of the main shaft 10 and the camshaft 24 are the same, the remaining one shaft is shifted and transmitted.
As a result, the rotational phase difference can be detected easily and simply.
The rotation of the main shaft 10 and the cam shaft 24 is transmitted to the two shafts of the planetary gear mechanism 50 without changing the speed so that the remaining one shaft rotates when the rotation speed of the main shaft 10 and the cam shaft 24 is the same. This rotational speed can also be used as a detection value.

また、主軸10及びカム軸24の回転を遊星歯車機構50のいずれの軸に伝達するかは、特に限定されず、本実施例においては、キャリア軸54aにカム軸24の駆動機構である数値制御式モータSMの駆動軸から直接回転を伝達するとともに、外輪軸52aに形成したタイミングプーリ52bと主軸10の駆動機構であるモータIMの駆動軸に嵌入したタイミングプーリ8cとをタイミングベルトで連結するようにしている。
この場合、例えば、太陽歯車51、外輪歯車52、遊星歯車53の歯数がそれぞれa、b、cの場合、キャリア軸54aの回転数/外輪軸52aの回転数=b/(a+b)にすると、太陽軸51aが停止することとなることから、タイミングプーリ52bとタイミングプーリ8cとの比をb:(a+b)として、モータIMの駆動軸の回転を伝達するようにしている。
外輪軸52aとモータIMの駆動軸との連結は、タイミングプーリ及びタイミングベルトを利用するほか、例えば、歯車機構を介して連結することもできる。
In addition, it is not particularly limited to which axis of the planetary gear mechanism 50 the rotation of the main shaft 10 and the cam shaft 24 is transmitted. In this embodiment, the numerical control that is the drive mechanism of the cam shaft 24 is performed on the carrier shaft 54a. In addition to transmitting the rotation directly from the drive shaft of the motor SM, the timing pulley 52b formed on the outer ring shaft 52a and the timing pulley 8c fitted to the drive shaft of the motor IM which is the drive mechanism of the main shaft 10 are connected by a timing belt. I have to.
In this case, for example, when the number of teeth of the sun gear 51, the outer ring gear 52, and the planetary gear 53 is a, b, and c, respectively, the rotation number of the carrier shaft 54a / the rotation number of the outer ring shaft 52a = b / (a + b). Since the sun shaft 51a is stopped, the ratio of the timing pulley 52b and the timing pulley 8c is set to b: (a + b) to transmit the rotation of the drive shaft of the motor IM.
The connection between the outer ring shaft 52a and the drive shaft of the motor IM can be performed through a gear mechanism, for example, in addition to using a timing pulley and a timing belt.

回転位相差検出手段Eは、遊星歯車機構50の主軸10及びカム軸24の回転を伝達しない残りの1軸(本実施例においては、太陽歯車51)の回転角度を検出する機能を有するものであれば、特に限定されるものではないが、本実施例においては、当該軸の回転角度及び回転位置を測定することができるロータリエンコーダを用いるようにしている。
なお、上記のとおり、本実施例においては、キャリア軸54aにカム軸24の回転を、外輪軸52aに主軸10の回転を伝達し、太陽歯車51の回転角度を回転位相差検出手段Eにより検出するようにしたが、主軸10及びカム軸24の回転を伝達する遊星歯車機構50の軸は、回転を伝達する際の変速比及び回転方向を適宜選択することによって、任意に選択することができ、そして、遊星歯車機構50の主軸10及びカム軸24の回転を伝達しない残りの1軸に回転位相差検出手段Eを配設するようにする。
The rotation phase difference detection means E has a function of detecting the rotation angle of the remaining one shaft (the sun gear 51 in this embodiment) that does not transmit the rotation of the main shaft 10 and the cam shaft 24 of the planetary gear mechanism 50. However, in this embodiment, a rotary encoder capable of measuring the rotation angle and rotation position of the shaft is used.
As described above, in this embodiment, the rotation of the cam shaft 24 is transmitted to the carrier shaft 54a, the rotation of the main shaft 10 is transmitted to the outer ring shaft 52a, and the rotation angle of the sun gear 51 is detected by the rotation phase difference detection means E. However, the shaft of the planetary gear mechanism 50 that transmits the rotation of the main shaft 10 and the camshaft 24 can be arbitrarily selected by appropriately selecting the gear ratio and the rotation direction when transmitting the rotation. Then, the rotational phase difference detecting means E is arranged on the remaining one shaft that does not transmit the rotation of the main shaft 10 and the cam shaft 24 of the planetary gear mechanism 50.

上記構成において、支持機構3に支持された被加工用のパイプPの先端に絞り加工を施す方法を説明する。
まず、主軸10とカム軸24とは、絞りローラRを絞りローラ取付台15の半径方向に移動させない状態で回転させる初期状態においては、同一の回転数、例えば、500〜700rpmで同期回転するように、制御機構Sによって、主軸10の駆動機構であるモータIM及びカム軸24の駆動機構である数値制御式モータSMを制御しながら、駆動モータ6を回転させ駆動螺子7を介して主軸機構2を図1に示すL方向(右方向)に移動させる。
A description will be given of a method of drawing the tip of the workpiece pipe P supported by the support mechanism 3 in the above configuration.
First, in the initial state where the main shaft 10 and the cam shaft 24 are rotated without moving the squeezing roller R in the radial direction of the squeezing roller mounting base 15, the main shaft 10 and the cam shaft 24 are synchronously rotated at the same rotational speed, for example, 500 to 700 rpm. In addition, the control mechanism S controls the motor IM that is the drive mechanism of the main shaft 10 and the numerically controlled motor SM that is the drive mechanism of the cam shaft 24, while rotating the drive motor 6 via the drive screw 7. Is moved in the L direction (right direction) shown in FIG.

そして、絞りローラRが被加工用のパイプPの周面に対して適宜位置に到達したとき、絞りローラRを絞りローラ取付台15の半径方向に移動させるため、カム板22を主取付台20に対して所定角度(例えば、−90度〜+90度の範囲)回転するように、制御機構Sから発信される指令パルスにより、カム軸24の駆動機構である数値制御式モータSMの回転数を加減し、絞りローラRを絞りローラ取付台15の半径方向の所定の位置に移動させる。
この際、回転位相差検出手段Eによって、主軸10とカム軸24の回転位相差を検出し、検出値を制御機構Sにフィードバックすることにより、絞りローラRを絞りローラ取付台15の半径方向の所定位置に正確に位置させることができる。
そして、絞りローラRを絞りローラ取付台15の半径方向に移動させて被加工用のパイプPの周面に当接させながら主軸機構2を図1に示すL方向(左方向)に移動することによって、被加工用のパイプPの先端に所定の絞り加工(例えば、縮径加工)を施すようにする。
When the squeezing roller R reaches an appropriate position with respect to the peripheral surface of the pipe P to be processed, the cam plate 22 is moved to the main mounting base 20 in order to move the squeezing roller R in the radial direction of the squeezing roller mounting base 15. The rotation speed of the numerically controlled motor SM, which is the drive mechanism of the camshaft 24, is determined by a command pulse transmitted from the control mechanism S so as to rotate at a predetermined angle (for example, in a range of −90 degrees to +90 degrees). The squeezing roller R is moved to a predetermined position in the radial direction of the squeezing roller mounting base 15.
At this time, the rotational phase difference detecting means E detects the rotational phase difference between the main shaft 10 and the camshaft 24 and feeds back the detected value to the control mechanism S, whereby the squeezing roller R is moved in the radial direction of the squeezing roller mounting base 15. It can be accurately positioned at a predetermined position.
Then, the main shaft mechanism 2 is moved in the L direction (left direction) shown in FIG. 1 while the squeezing roller R is moved in the radial direction of the squeezing roller mounting base 15 and brought into contact with the peripheral surface of the pipe P to be processed. Thus, a predetermined drawing process (for example, a diameter reduction process) is applied to the tip of the pipe P to be processed.

以上、本発明の絞り加工装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   The drawing apparatus of the present invention has been described based on the embodiments thereof. However, the present invention is not limited to the configurations described in the above embodiments, and the configuration is appropriately changed without departing from the spirit of the present invention. Is something that can be done.

本発明の絞り加工装置は、主軸とカム軸の回転位相差を制御するための機構と動力機構とが、別機構で、構造が簡単で、かつ、破損や故障を起こすことが少ない機構からなることから、高負荷の絞り加工装置や連続運転が求められる絞り加工装置の用途に好適に用いることができる。   In the drawing apparatus of the present invention, the mechanism for controlling the rotational phase difference between the main shaft and the camshaft and the power mechanism are separate mechanisms, the structure is simple, and there is little damage or failure. For this reason, it can be suitably used for high-load drawing devices or drawing devices that require continuous operation.

本発明の絞り加工装置の一実施例を示す全体図である。1 is an overall view showing an embodiment of a drawing apparatus of the present invention. 同絞り加工装置に使用する主軸機構を示す一部断面図である。It is a partial cross section figure which shows the spindle mechanism used for the drawing apparatus. 同絞り加工装置に使用する遊星歯車機構の説明図で、(a)は一部切り欠きの側面断面図で、(b)は(a)におけるX−X断面図である。It is explanatory drawing of the planetary gear mechanism used for the drawing apparatus, (a) is a side sectional view of a partly cutout, and (b) is an XX sectional view in (a). 従来の絞り加工装置を示す全体図である。It is a general view which shows the conventional drawing apparatus. 従来の絞り加工装置に使用する主軸機構を示す一部断面図である。It is a partial cross section figure which shows the spindle mechanism used for the conventional drawing apparatus. 絞り用工具取付台の初期状態を示す平面図である。It is a top view which shows the initial state of the tool mounting base for drawing. 絞り用工具取付台の移動状態を示す平面図である。It is a top view which shows the movement state of the tool mounting base for drawing. 従来の絞り加工装置に使用する変速機構の説明図で、(a)は変速機構の正面図((b)におけるX1−X1断面図)、(b)は(a)におけるY−Y断面図、(c)は変速作用の説明図である。It is explanatory drawing of the transmission mechanism used for the conventional drawing processing apparatus, (a) is a front view (X1-X1 sectional drawing in (b)) of a transmission mechanism, (b) is YY sectional drawing in (a), (C) is explanatory drawing of a speed change effect | action.

符号の説明Explanation of symbols

1 絞り加工装置
2 主軸機構
10 主軸
15 絞りローラ取付台
20 主取付台
22 カム板
24 カム軸
50 遊星歯車機構
E 回転位相差検出手段
IM モータ
S 制御機構
SM 数値制御式モータ
DESCRIPTION OF SYMBOLS 1 Drawing apparatus 2 Main shaft mechanism 10 Main shaft 15 Diaphragm roller mounting base 20 Main mounting base 22 Cam plate 24 Cam shaft 50 Planetary gear mechanism E Rotational phase difference detection means IM motor S control mechanism SM Numerical control type motor

Claims (3)

主軸の先端に、絞りローラを半径方向に移動可能に支持する絞りローラ取付台を備えるとともに、主軸に該主軸に対して同軸心に配設したカム軸の先端に、主軸とカム軸の相対的な回転位相差によって絞りローラを半径方向に移動させるカム板を備えた絞り加工装置において、主軸及びカム軸の駆動機構の少なくとも一方を数値制御式モータで構成し、主軸及びカム軸の回転を、遊星歯車機構に伝達し、主軸とカム軸の回転位相差を遊星歯車機構に配備した回転位相差検出手段を用いて検出し、検出した検出値に基づいて数値制御式モータを制御して絞り加工を行うようにしたことを特徴とする絞り加工装置。   A squeezing roller mounting base is provided at the tip of the main shaft so as to support the squeezing roller so as to be movable in the radial direction. In a drawing apparatus provided with a cam plate that moves the squeezing roller in the radial direction by a rotational phase difference, at least one of the drive mechanism of the main shaft and the cam shaft is constituted by a numerically controlled motor, and the rotation of the main shaft and the cam shaft is performed. Transmission to the planetary gear mechanism, the rotational phase difference between the main shaft and the camshaft is detected using the rotational phase difference detection means provided in the planetary gear mechanism, and the numerically controlled motor is controlled based on the detected value to perform drawing. Drawing apparatus characterized by performing the above. 主軸及びカム軸の駆動機構を、数値制御式モータで構成したことを特徴とする請求項1記載の絞り加工装置。   2. The drawing apparatus according to claim 1, wherein the drive mechanism for the main shaft and the cam shaft is constituted by a numerically controlled motor. 主軸及びカム軸の駆動機構を構成するモータの回転軸の回転位相差を、回転位相差検出手段によって、検出するようにしたことを特徴とする請求項1又は2記載の絞り加工装置。
3. The drawing apparatus according to claim 1, wherein a rotation phase difference between rotation shafts of motors constituting a drive mechanism for the main shaft and the cam shaft is detected by a rotation phase difference detection means.
JP2008226210A 2008-09-03 2008-09-03 Drawing apparatus Withdrawn JP2010058146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226210A JP2010058146A (en) 2008-09-03 2008-09-03 Drawing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226210A JP2010058146A (en) 2008-09-03 2008-09-03 Drawing apparatus

Publications (1)

Publication Number Publication Date
JP2010058146A true JP2010058146A (en) 2010-03-18

Family

ID=42185548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226210A Withdrawn JP2010058146A (en) 2008-09-03 2008-09-03 Drawing apparatus

Country Status (1)

Country Link
JP (1) JP2010058146A (en)

Similar Documents

Publication Publication Date Title
JP4446003B2 (en) Cutting unit and machine tool
JP2008080446A (en) Electric chuck opening/closing device
JP2014172134A (en) Processing device
JP5979568B1 (en) Processing equipment
JP3514730B2 (en) Spindle mechanism in drawing machine
JP2009039723A (en) Drawing device
CN201279698Y (en) Numerical control flat capstan
JP5877566B2 (en) Drilling and chamfering head
JP2009095839A (en) Drawing apparatus
JP2010058146A (en) Drawing apparatus
US10434579B2 (en) Peeling machine for oblong products
JPH11114758A (en) Torque transmitting device
JP2001047162A (en) Spinning device
JP6847632B2 (en) Variable tool diameter spindle device
US5882154A (en) Gear finishing apparatus with a helix compensation
JP2007255517A (en) Differential planetary gear reduction gear
CN213969320U (en) Rotary type channeling mechanism
CN219947573U (en) Printing roller shaft adjusting mechanism of flexographic printing machine
JP2020006406A (en) Welding torch moving mechanism and welder having the same
CN212420518U (en) Dynamic feeding device
CN212471057U (en) Barreling and polishing processing device
JPH07299656A (en) Tapping device
CN112122707A (en) Rotary type channeling mechanism
JP2000283261A (en) Movable body driving device
JP4525057B2 (en) Hobbing machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206