JP2010057292A - Power supply for vehicle - Google Patents

Power supply for vehicle Download PDF

Info

Publication number
JP2010057292A
JP2010057292A JP2008220442A JP2008220442A JP2010057292A JP 2010057292 A JP2010057292 A JP 2010057292A JP 2008220442 A JP2008220442 A JP 2008220442A JP 2008220442 A JP2008220442 A JP 2008220442A JP 2010057292 A JP2010057292 A JP 2010057292A
Authority
JP
Japan
Prior art keywords
temperature
battery
detected
temperature sensor
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008220442A
Other languages
Japanese (ja)
Other versions
JP5355966B2 (en
Inventor
Kazuki Hashizumi
和樹 橋住
Yutaka Yamauchi
豊 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008220442A priority Critical patent/JP5355966B2/en
Publication of JP2010057292A publication Critical patent/JP2010057292A/en
Application granted granted Critical
Publication of JP5355966B2 publication Critical patent/JP5355966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To more accurately detect the temperatures of a plurality of batteries, by detecting without fail the in-range failures in a plurality of temperature sensors which detect the temperatures of the plurality of batteries. <P>SOLUTION: The power supply for a vehicle includes a travel battery 1, in which a plurality of secondary batteries 2 are connected for supplying power to a motor that travels a vehicle; a plurality of temperature sensors 3 for detecting the temperatures of the secondary batteries 2 of the travel battery 1; a control circuit 4 which controls charging/discharging of the travel battery 1, at the battery temperature detected by the temperature sensor 3; and a failure determining circuit 5 which detects failure of the temperature sensors 3, based on the detected temperatures of the plurality of temperature sensors 3. The failure-determining circuit 5 includes a calculation circuit 6 so as to detect the stoppage of the vehicle and go into operating state, after the set period elapses which is set longer than the converging time of abnormal heating of the battery. In the failure-determining circuit 5, the calculation circuit 6 in operation calculates the detection temperatures detected by the temperature sensors 3, to determine failure with respective temperature sensors 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハイブリッドカーや電気自動車などの電動車両に搭載される電源装置に関し、とくに車両を走行させるモータに電力を供給する走行用バッテリの温度を検出する温度センサを備える車両用の電源装置に関する。   The present invention relates to a power supply device mounted on an electric vehicle such as a hybrid car or an electric vehicle, and more particularly to a vehicle power supply device including a temperature sensor that detects the temperature of a running battery that supplies power to a motor that runs the vehicle. .

車両用の電源装置は、車両を走行させるモータに電力を供給する走行用バッテリの電池温度を温度センサで検出している。二次電池は、温度によって電気特性が変化する物性があり、電池温度が異常に高くなり、あるいは低くなると、充放電の電流を少なく制限するからである。また、ハイブリッドカーの走行用バッテリは、充電と放電を繰り返しながら使用されるので、充放電によって変化する残容量を演算している。残容量が設定された範囲となるように充放電を制御することで、電池の劣化を少なくして寿命を長くしている。電池は、過充電と過放電によって著しく劣化するので、残容量を50%を中心として所定の範囲となるように充放電を制御している。電池の残容量は、充電容量を加算し、放電容量を減算して演算される。充電容量は充電電流と時間の積、すなわち充電電流の積算値で演算され、放電容量は放電電流の積算値で演算される。実質的に電池に充電される充電容量と放電容量は、積算値を温度で補正してより正確に演算できる。電池の残容量は、充放電を繰り返し、加算と減算を繰り返して演算されるので、時間が経過するにしたがって誤差が累積される。累積する誤差は、演算される残容量を狂わせて、設定している残容量の範囲で充放電できなくする。この弊害を防止するために、電池の温度は正確に検出することが要求される。さらに、走行用バッテリは、モータに大電力を供給するために多数の二次電池を直列に接続して出力電圧を高くしている。多数の電池からなる走行用バッテリは、全ての電池温度を均一にすることが極めて難しく、各々の電池に温度差ができる。電池の温度差は、残容量の演算に誤差を発生させる。各々の電池の残容量をより正確に検出するために、複数の温度センサを設けて、各々の電池温度を正確に検出している。   The power supply device for vehicles detects the battery temperature of the battery for driving | running | working which supplies electric power to the motor which drive | works a vehicle with a temperature sensor. This is because the secondary battery has physical properties in which electrical characteristics change depending on the temperature, and when the battery temperature becomes abnormally high or low, the charge / discharge current is limited to a small amount. Moreover, since the battery for driving | running | working of a hybrid car is used repeating charging and discharging, the remaining capacity which changes with charging / discharging is calculated. By controlling charging / discharging so that the remaining capacity falls within the set range, the battery life is reduced and the life is extended. Since the battery is remarkably deteriorated by overcharge and overdischarge, the charge / discharge is controlled so that the remaining capacity is in a predetermined range centering on 50%. The remaining battery capacity is calculated by adding the charge capacity and subtracting the discharge capacity. The charge capacity is calculated by the product of the charge current and time, that is, the integrated value of the charge current, and the discharge capacity is calculated by the integrated value of the discharge current. The charge capacity and the discharge capacity that are substantially charged in the battery can be calculated more accurately by correcting the integrated value with the temperature. Since the remaining capacity of the battery is calculated by repeating charging and discharging, and repeating addition and subtraction, errors accumulate as time passes. The accumulated error causes the calculated remaining capacity to be distorted so that charging and discharging cannot be performed within the set remaining capacity range. In order to prevent this harmful effect, it is required to accurately detect the temperature of the battery. Furthermore, in order to supply a large electric power to the motor, the traveling battery increases the output voltage by connecting a large number of secondary batteries in series. It is extremely difficult to make all the battery temperatures uniform in a traveling battery composed of a large number of batteries, and there is a temperature difference between the batteries. The battery temperature difference causes an error in the calculation of the remaining capacity. In order to more accurately detect the remaining capacity of each battery, a plurality of temperature sensors are provided to accurately detect each battery temperature.

ところが、多数の温度センサを備える電源装置は、温度センサが故障する確率も高くなる。温度センサの断線や短絡の故障は、検出温度が大幅にずれることから簡単に判定できる。しかしながら、温度センサの検出温度が電池温度が変化する範囲内でずれる故障、すなわちインレンジ故障は、故障の判定が極めて難しい。それは、各々の電池に温度差があるので、温度センサの故障と電池の温度差とを識別できないからである。   However, a power supply device including a large number of temperature sensors also increases the probability that the temperature sensor will fail. A disconnection or short circuit failure of the temperature sensor can be easily determined because the detected temperature is greatly deviated. However, it is extremely difficult to determine the failure of a failure in which the temperature detected by the temperature sensor deviates within a range where the battery temperature changes, that is, an in-range failure. This is because each battery has a temperature difference, so that it is impossible to distinguish between a temperature sensor failure and a battery temperature difference.

ところで、エンジンの水温を検出する水温センサの故障を検出するために、車両を停止して所定の時間経過した後、水温センサの検出温度から故障を判定する故障判定装置は開発されている。(特許文献1参照)
特開2008−25468号公報
By the way, in order to detect the failure of the water temperature sensor that detects the water temperature of the engine, a failure determination device has been developed that determines a failure from the temperature detected by the water temperature sensor after a predetermined time has elapsed since the vehicle was stopped. (See Patent Document 1)
JP 2008-25468 A

特許文献1に記載される装置は、エンジンを停止時の水温センサの検出温度と、エンジンを停止して一定の時間経過後の水温センサの検出温度との温度差を検出し、この温度差から故障を判定する。すなわち、温度差が、吸気温度で補正される設定値を超えていると水温センサの故障と判定する。この構造は、水温センサの故障を判定できるが、わずかなずれによる故障、たとえば電池のインレンジ故障等を正確に検出できない欠点がある。とくに、エンジンは停止すると次第に水温が低下することから、一定時間経過して水温を吸気温度に近づけることができる。ところが、車両の走行用バッテリは、車両を停止する前の充放電の状態によっては、停止した後に異常発熱によって電池温度が一時的に上昇することがある。電池の温度上昇は、車両を停止する以前の充放電の条件によって変化するので、あるときは上昇し、あるときは上昇しない。したがって、一定の時間経過後に、温度センサの検出温度から故障を判定すると、電池の異常発熱による誤差で正確に故障を判定できなくなる。この異常発熱の影響を避けるために、故障と判定する条件幅を広くすると、温度センサのわずかなずれを故障として判定できなくなる。多数の電池からなる走行用バッテリの温度を検出する温度センサは、わずかな検出温度の差が残容量の演算に影響を与えて、電池を劣化させる原因となる。このため、車両用の電源装置は、水温センサのようにひとつのセンサで温度を検出するのではなく、複数の温度センサでもって、わずかに温度差がある各々の電池温度を正確に検出して、温度による電池の特性の変化を正確に検出して、残容量等を正確に演算している。このことから、車両用の電源装置は、複数の温度センサのわずかなずれによる故障を正確に判定することが大切であるが、水温センサの故障判定では、この故障を検出できない。   The apparatus described in Patent Document 1 detects a temperature difference between a detected temperature of the water temperature sensor when the engine is stopped and a detected temperature of the water temperature sensor after a certain time has elapsed after the engine is stopped. Determine failure. That is, if the temperature difference exceeds the set value corrected by the intake air temperature, it is determined that the water temperature sensor has failed. Although this structure can determine the failure of the water temperature sensor, it has a drawback that it cannot accurately detect a failure due to a slight deviation, for example, a battery in-range failure. In particular, when the engine is stopped, the water temperature gradually decreases, so that the water temperature can be brought close to the intake air temperature after a certain period of time. However, depending on the state of charge and discharge before the vehicle is stopped, the battery temperature of the vehicle battery may temporarily rise due to abnormal heat generation after the vehicle stops. The temperature rise of the battery changes depending on the charge / discharge conditions before the vehicle is stopped. Therefore, the battery temperature rises at some times and does not rise at other times. Therefore, if a failure is determined from the temperature detected by the temperature sensor after a certain time has elapsed, the failure cannot be determined accurately due to an error due to abnormal heat generation of the battery. In order to avoid the influence of this abnormal heat generation, if the condition range for determining a failure is widened, a slight deviation of the temperature sensor cannot be determined as a failure. In a temperature sensor that detects the temperature of a traveling battery composed of a large number of batteries, a slight difference in detected temperature affects the calculation of the remaining capacity, causing deterioration of the battery. For this reason, the power supply device for vehicles does not detect the temperature with a single sensor like a water temperature sensor, but accurately detects each battery temperature having a slight temperature difference with a plurality of temperature sensors. The change in the battery characteristics due to temperature is accurately detected, and the remaining capacity and the like are accurately calculated. For this reason, it is important for a vehicle power supply device to accurately determine a failure due to a slight deviation of a plurality of temperature sensors, but this failure cannot be detected by failure determination of the water temperature sensor.

本発明は、以上の要件を満足することを目的に開発されたものである。本発明の重要な目的は、複数の電池の温度を検出する複数の温度センサのインレンジ故障を確実に検出して、複数の電池の温度をより正確に検出できる車両用の電源装置を提供することにある。   The present invention has been developed for the purpose of satisfying the above requirements. An important object of the present invention is to provide a power supply device for a vehicle that can reliably detect the in-range failure of a plurality of temperature sensors that detect the temperature of a plurality of batteries and more accurately detect the temperature of the plurality of batteries. There is.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の車両用の電源装置は、車両を走行させるモータに電力を供給する、複数の二次電池2を接続してなる走行用バッテリ1と、走行用バッテリ1の二次電池2の温度を検出する複数の温度センサ3と、この温度センサ3で検出される電池温度で走行用バッテリ1の充放電を制御する制御回路4と、複数の温度センサ3の検出温度から各々の温度センサ3の故障を検出する故障判定回路5とを備えている。故障判定回路5は、車両の停止を検出して、電池の異常発熱が集束するよりも長い時間に設定している設定時間経過すると動作状態となる演算回路6を備えている。故障判定回路5は、動作状態にある演算回路6が各々の温度センサ3で検出される各々の検出温度を演算して、各々の温度センサ3の故障を判定する。   The power supply device for a vehicle according to the present invention includes a traveling battery 1 that connects a plurality of secondary batteries 2 that supplies power to a motor that travels the vehicle, and the temperature of the secondary battery 2 of the traveling battery 1. A plurality of temperature sensors 3 to be detected, a control circuit 4 that controls charging / discharging of the traveling battery 1 at a battery temperature detected by the temperature sensors 3, and each temperature sensor 3 from the detected temperatures of the plurality of temperature sensors 3. And a failure determination circuit 5 for detecting a failure. The failure determination circuit 5 includes an arithmetic circuit 6 that is in an operating state when a set time that is longer than the time when the abnormal heat generation of the battery is converged is detected by detecting the stop of the vehicle. The failure determination circuit 5 determines the failure of each temperature sensor 3 by calculating each detected temperature detected by each temperature sensor 3 by the arithmetic circuit 6 in the operating state.

以上の車両用の電源装置は、複数の電池の温度を検出する複数の温度センサのインレンジ故障を確実に検出して、複数の電池の温度をより正確に検出できる特徴がある。とくに、以上の電源装置は、電池の異常発熱が集束するよりも長い時間に設定している設定時間経過すると動作状態となる演算回路でもって、各々の温度センサで検出される各々の検出温度を演算して、各々の温度センサの故障を判定することから、各々の温度センサのインレンジ故障を正確に判定できる。   The above-described power supply device for a vehicle has a feature that the in-range failure of the plurality of temperature sensors that detect the temperature of the plurality of batteries can be reliably detected, and the temperature of the plurality of batteries can be detected more accurately. In particular, the above power supply device has an arithmetic circuit that enters an operating state after a set time set longer than the time when the abnormal heat generation of the battery converges, and detects each detected temperature detected by each temperature sensor. By calculating and determining the failure of each temperature sensor, the in-range failure of each temperature sensor can be accurately determined.

本発明の車両用の電源装置は、故障判定回路5の演算回路6が、各々の温度センサ3で検出される検出温度の平均値と各々の温度センサ3の検出温度から故障を判定する最大誤差温度を記憶して、検出温度と平均値との差が最大誤差温度よりも大きな電池の温度センサ3を故障と判定することができる。
以上の電源装置は、演算回路の簡単な演算で、各々の温度センサのインレンジ故障を正確に判定できる。それは、各々の温度センサで検出される検出温度の平均値からインレンジ故障を判定するからである。
In the vehicle power supply device of the present invention, the arithmetic circuit 6 of the failure determination circuit 5 has a maximum error for determining a failure from the average value of the detected temperatures detected by each temperature sensor 3 and the detected temperature of each temperature sensor 3. By storing the temperature, the battery temperature sensor 3 in which the difference between the detected temperature and the average value is larger than the maximum error temperature can be determined as a failure.
The above power supply apparatus can accurately determine an in-range failure of each temperature sensor with a simple calculation of an arithmetic circuit. This is because an in-range failure is determined from the average value of the detected temperatures detected by each temperature sensor.

さらに、本発明の車両用の電源装置は、演算回路6が、車両が停止されて変化する各々の温度センサ3の温度変化特性を記憶して、この温度変化特性と温度差から故障を判定することができる。
以上の電源装置は、各々の温度センサが検出する検出温度を温度変化特性で補正しながら故障を判定するので、より正確にインレンジ故障を判定できる。
Furthermore, in the power supply device for a vehicle according to the present invention, the arithmetic circuit 6 stores the temperature change characteristic of each temperature sensor 3 that changes when the vehicle is stopped, and determines a failure from the temperature change characteristic and the temperature difference. be able to.
Since the above power supply apparatus determines the failure while correcting the detected temperature detected by each temperature sensor with the temperature change characteristic, the in-range failure can be determined more accurately.

本発明の車両用の電源装置は、走行用バッテリ1を冷却する冷却機構7を備えると共に、この冷却機構7が二次電池2を強制冷却する媒体の温度を検出する冷却媒体の温度センサ8を備えて、演算回路6が、動作状態となって各々の温度センサ3で検出される各々の検出温度を演算して、各々の温度センサ3の故障を判定することができる。
以上の電源装置は、電池の温度を検出する温度センサに加えて、電池を冷却する媒体、たとえば冷却空気などの温度を検出する温度センサの故障も正確に判定できる。
The power supply device for a vehicle according to the present invention includes a cooling mechanism 7 that cools the traveling battery 1, and a cooling medium temperature sensor 8 that detects the temperature of the medium that the cooling mechanism 7 forcibly cools the secondary battery 2. In addition, the arithmetic circuit 6 can calculate each detected temperature that is detected by each temperature sensor 3 in the operating state, and can determine a failure of each temperature sensor 3.
In addition to the temperature sensor that detects the temperature of the battery, the above power supply apparatus can also accurately determine the failure of the temperature sensor that detects the temperature of a medium that cools the battery, such as cooling air.

本発明の車両用の電源装置は、制御回路4が、二次電池2の温度を検出する温度センサ3の検出温度でもって、充放電される二次電池2の残容量を補正して演算することができる。
以上の電源装置は、温度センサの検出温度で残容量を補正してより正確に電池の残容量を検出しながら充放電できる。このため、電池の劣化を少なくして電池の寿命を長くできる特徴がある。
In the power supply device for a vehicle of the present invention, the control circuit 4 corrects and calculates the remaining capacity of the secondary battery 2 to be charged / discharged with the detected temperature of the temperature sensor 3 that detects the temperature of the secondary battery 2. be able to.
The above power supply device can charge and discharge while detecting the remaining capacity of the battery more accurately by correcting the remaining capacity with the temperature detected by the temperature sensor. For this reason, there is a feature that the battery life can be extended by reducing the deterioration of the battery.

さらに、本発明の車両用の電源装置は、制御回路4が、故障と判定された温度センサ3の検出温度を、故障と判定してなる温度センサ3に隣接して配設している温度センサ3の検出温度から補間して演算し、演算された検出温度で二次電池2の残容量を演算することができる。
以上の電源装置は、いずれかの温度センサが故障しても、故障した温度センサで温度を検出している電池の残容量を正確に検出できる。それは、近傍の温度センサで検出される電池温度で故障した温度センサが検出する電池の温度を補間して検出するからである。
Furthermore, in the power supply device for a vehicle according to the present invention, the control circuit 4 is disposed adjacent to the temperature sensor 3 determined by the control circuit 4 to determine the detected temperature of the temperature sensor 3 determined to be a failure. The remaining capacity of the secondary battery 2 can be calculated using the calculated detected temperature.
The power supply apparatus described above can accurately detect the remaining capacity of the battery whose temperature is detected by the failed temperature sensor even if any of the temperature sensors fails. This is because the temperature of the battery detected by the temperature sensor that has failed at the battery temperature detected by the nearby temperature sensor is detected by interpolation.

本発明の車両用の電源装置は、車両の停止を検出して4時間以上経過して、演算回路6を動作状態とすることができる。
以上の電源装置は、車両停止後に発生する電池の異常発熱を集束させた後に、各々の温度センサの検出温度から故障を判定することで、各々の温度センサのインレンジ故障を確実に正確に検出できる。
The power supply device for a vehicle of the present invention can put the arithmetic circuit 6 into an operating state after 4 hours or more have elapsed after detecting the stop of the vehicle.
The above power supply devices focus on abnormal battery heat generation after the vehicle stops, and then determine the failure from the detected temperature of each temperature sensor, thereby accurately detecting in-range failures of each temperature sensor. it can.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための車両用の電源装置を例示するものであって、本発明は車両用の電源装置を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a vehicle power supply device for embodying the technical idea of the present invention, and the present invention does not specify the vehicle power supply device as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1に示す車両用の電源装置は、車両を走行させるモータに電力を供給する、複数の二次電池2を接続してなる走行用バッテリ1と、走行用バッテリ1の二次電池2の温度を検出する複数の温度センサ3と、この温度センサ3で検出される電池温度で走行用バッテリ1の充放電を制御する制御回路4と、複数の温度センサ3の検出温度から各々の温度センサ3の故障を検出する故障判定回路5とを備える。   The power supply device for a vehicle shown in FIG. 1 supplies a power to a motor that travels the vehicle and is connected to a plurality of secondary batteries 2 and a temperature of the secondary battery 2 of the traveling battery 1. , A control circuit 4 for controlling charging / discharging of the traveling battery 1 at the battery temperature detected by the temperature sensor 3, and each temperature sensor 3 based on the temperature detected by the plurality of temperature sensors 3. And a failure determination circuit 5 for detecting the failure.

走行用バッテリ1は、複数の二次電池2を直列に接続して出力電圧を高くしている。走行用バッテリ1は、直列に接続する二次電池2の個数で出力電圧を調整する。二次電池2を直列に接続する個数は、走行用バッテリ1の出力電圧を100V〜300Vとする数である。二次電池2は、ニッケル水素電池又はリチウムイオン電池などのすべての充電できる電池が使用できる。   The traveling battery 1 has a plurality of secondary batteries 2 connected in series to increase the output voltage. The traveling battery 1 adjusts the output voltage by the number of secondary batteries 2 connected in series. The number of secondary batteries 2 connected in series is a number that sets the output voltage of the traveling battery 1 to 100V to 300V. As the secondary battery 2, any rechargeable battery such as a nickel metal hydride battery or a lithium ion battery can be used.

走行用バッテリ1は、大電流で充放電されて発熱する。各々の二次電池2の温度を検出するために、複数の温度センサ3を設けている。図1の電源装置は、8個の温度センサ3を設けている。各々の温度センサ3は、二次電池2の表面に熱結合するように固定されて、二次電池2の温度を検出する。走行用バッテリ1は、出力電圧を高くするために多数の二次電池2を直列に接続している。たとえば、ニッケル水素電池を直列に接続して、出力電圧を288Vとする走行用バッテリは、240個のニッケル水素電池を直列に接続している。二次電池2をニッケル水素電池とする走行用バッテリ1は、5〜6個のニッケル水素電池を直列に接続して電池モジュールとし、この電池モジュールを直列に接続して出力電圧を所定の電圧としている。たとえば、5個の二次電池を直列に接続している電池モジュールは、48個を直列に接続して出力電圧を288Vにできる。また、6個の二次電池を直列に接続している電池モジュールは、40個を直列に接続して288Vにできる。   The traveling battery 1 is charged and discharged with a large current and generates heat. In order to detect the temperature of each secondary battery 2, a plurality of temperature sensors 3 are provided. The power supply device of FIG. 1 is provided with eight temperature sensors 3. Each temperature sensor 3 is fixed so as to be thermally coupled to the surface of the secondary battery 2, and detects the temperature of the secondary battery 2. The traveling battery 1 has a large number of secondary batteries 2 connected in series in order to increase the output voltage. For example, a traveling battery in which nickel hydride batteries are connected in series and have an output voltage of 288 V has 240 nickel hydride batteries connected in series. The traveling battery 1 in which the secondary battery 2 is a nickel metal hydride battery has 5 to 6 nickel metal hydride batteries connected in series to form a battery module, and the battery modules are connected in series to set the output voltage to a predetermined voltage. Yes. For example, a battery module in which five secondary batteries are connected in series can be connected to 48 in series to achieve an output voltage of 288V. Moreover, the battery module which connected six secondary batteries in series can connect 40 pieces in series, and can be set to 288V.

走行用バッテリ1は、必ずしも全て二次電池2の温度を温度センサ3で検出しない。たとえば、240個の二次電池からなる走行用バッテリは、8個の温度センサでもって、代表的な位置にある二次電池の温度を検出して、これらの検出温度から他の二次電池の温度を特定する。この電源装置は、電池モジュールを2列に並べて配置し、各々の列の両側部と中間2点に温度センサを配置して、各列を4個の温度センサで、合計8個の温度センサでもって二次電池の温度を検出する。複数の温度センサ3は、最も温度が高くなる電池、最も温度が低くなる電池、温度が変化しやすい電池等を検出するように配置される。1列に24本の電池モジュールを配置する走行用バッテリは、4個の温度センサで両端部と中間部の2カ所の電池モジュールの温度を検出して、全ての電池モジュールの温度を演算する。直接に温度が検出されない電池モジュールは、その近傍の電池モジュールの温度を検出する温度センサの検出温度を、距離を考慮して補間して演算される。   The traveling battery 1 does not always detect the temperature of the secondary battery 2 with the temperature sensor 3. For example, a running battery consisting of 240 secondary batteries detects the temperature of a secondary battery at a representative position with eight temperature sensors, and detects the temperature of other secondary batteries from these detected temperatures. Identify the temperature. In this power supply device, battery modules are arranged in two rows, temperature sensors are arranged on both sides and two middle points of each row, and each row is composed of four temperature sensors, for a total of eight temperature sensors. Thus, the temperature of the secondary battery is detected. The plurality of temperature sensors 3 are arranged so as to detect a battery having the highest temperature, a battery having the lowest temperature, a battery whose temperature is likely to change, and the like. A traveling battery in which 24 battery modules are arranged in one row detects the temperature of two battery modules at both ends and an intermediate part with four temperature sensors, and calculates the temperature of all battery modules. A battery module whose temperature is not directly detected is calculated by interpolating the detection temperature of a temperature sensor that detects the temperature of a battery module in the vicinity of the battery module in consideration of the distance.

図2は、制御回路4が補間して全ての電池モジュールの温度を演算する状態を示している。この図は、24個の電池モジュールを4個の温度センサで検出して、温度を検出しない電池モジュールの温度を補間して検出する状態を示している。この図の実線Aは、温度センサで検出される検出温度を直線で補間して、温度センサの間に配置している電池モジュールの温度を演算する状態を示している。また、鎖線Bは検出温度を曲線で補間して温度が直接に検出されない電池モジュールの温度を演算している。   FIG. 2 shows a state in which the control circuit 4 calculates the temperatures of all the battery modules by interpolation. This figure shows a state in which 24 battery modules are detected by four temperature sensors, and the temperatures of battery modules that do not detect the temperature are interpolated and detected. A solid line A in this figure shows a state in which the temperature of the battery modules arranged between the temperature sensors is calculated by interpolating the detected temperature detected by the temperature sensor with a straight line. The chain line B calculates the temperature of the battery module whose temperature is not directly detected by interpolating the detected temperature with a curve.

二次電池をリチウムイオン電池とする走行用バッテリも、ニッケル水素電池の走行用バッテリと同じように、多数のリチウムイオン電池から代表的な電池の温度を検出して全ての電池温度を演算して検出する。   Like a nickel-metal hydride battery battery, a battery that uses a secondary battery as a lithium-ion battery detects the temperature of a representative battery from a number of lithium-ion batteries and calculates all battery temperatures. To detect.

走行用バッテリ1は、大電流で充放電されるので発熱する。電池の温度を設定値よりも低くするために、図1の電源装置は、電池の冷却機構7を備えている。図の冷却機構7は、電池の表面に空気を強制送風して電池を冷却する送風ファン10を備えている。走行用バッテリ1は、空気を通過させる送風隙間11を二次電池2の間に設けている。さらに、各々の二次電池2に強制送風するように、走行用バッテリ1の外側に対向するように、流入ダクト12と排出ダクト13とを設けている。送風ファン10は、流入ダクト12に空気を供給し、あるいは排出ダクト13から空気を吸引して二次電池2の送風隙間11に空気を強制送風する。この冷却機構7は、吸入温度と排気温度とを検出する温度センサ8を備えている。制御回路4は、温度センサ8で検出される吸入温度及び排気温度と、温度センサ3で検出される電池温度から、電池の発熱状態や冷却状態を判定して送風ファン10の運転を制御する。   The traveling battery 1 generates heat because it is charged and discharged with a large current. In order to lower the temperature of the battery below the set value, the power supply device of FIG. 1 includes a battery cooling mechanism 7. The cooling mechanism 7 shown in the figure includes a blower fan 10 that forcibly blows air over the surface of the battery to cool the battery. The battery 1 for driving | running | working provides the ventilation gap 11 between the secondary batteries 2 which allows air to pass through. Further, an inflow duct 12 and an exhaust duct 13 are provided so as to face the outside of the traveling battery 1 so as to forcibly blow air to each secondary battery 2. The blower fan 10 supplies air to the inflow duct 12 or sucks air from the discharge duct 13 to forcibly blow air into the blower gap 11 of the secondary battery 2. The cooling mechanism 7 includes a temperature sensor 8 that detects an intake temperature and an exhaust temperature. The control circuit 4 controls the operation of the blower fan 10 by determining the heat generation state and the cooling state of the battery from the intake temperature and exhaust temperature detected by the temperature sensor 8 and the battery temperature detected by the temperature sensor 3.

多数の温度センサ3を備える電源装置は、温度センサ3のインレンジ故障を故障判定回路5で検出する。故障判定回路5は、車両の停止を検出して、電池の異常発熱が集束するよりも長い時間に設定している設定時間経過すると動作状態となる演算回路6を備えている。演算回路6は、起動時間を記憶するタイマを内蔵している。タイマは、車両のメインスイッチであるイグニッションスイッチがオフに切り換えられるタイミングでカウントを開始して、あらかじめ記憶している設定時間が経過するとタイムアップして起動信号を出力する。この起動信号で演算回路6は動作状態となる。タイマが記憶する設定時間は、電池の異常発熱が集束する時間よりも長く設定される。   A power supply device including a large number of temperature sensors 3 detects an in-range failure of the temperature sensor 3 with a failure determination circuit 5. The failure determination circuit 5 includes an arithmetic circuit 6 that is in an operating state when a set time that is longer than the time when the abnormal heat generation of the battery is converged is detected by detecting the stop of the vehicle. The arithmetic circuit 6 has a built-in timer that stores the activation time. The timer starts counting at the timing when the ignition switch, which is the main switch of the vehicle, is turned off, and when the preset time stored in advance elapses, the timer expires and outputs an activation signal. With this activation signal, the arithmetic circuit 6 enters an operating state. The set time stored by the timer is set longer than the time when the abnormal heat generation of the battery converges.

図3は、車両を停止して異常発熱によって温度が上昇する電池温度を示している。この図に示すように、走行用バッテリ1は、車両を停止する以前の充放電によって、停止した後に温度が低下することなく一時的に上昇することがある。電池の異常発熱は、全ての電池で同じように発生しないので、異常発熱の影響を受けるタイミングに温度センサ3の検出温度から故障を判定すると、インレンジ故障を正確に検出できなくなる。したがって、タイマの設定時間は、異常発熱が集束して異常発熱で上昇した電池の温度が低下するよりも長い時間、たとえば4時間以上、好ましくは5時間以上に設定される。タイマの設定時間が長すぎると、温度センサ3のインレンジ故障を検出する頻度が少なくなるので、タイマの設定時間は、たとえば10時間以下、好ましくは8時間以下に設定される。   FIG. 3 shows the battery temperature at which the temperature rises due to abnormal heat generation when the vehicle is stopped. As shown in this figure, the traveling battery 1 may temporarily rise without being lowered after being stopped due to charging / discharging before the vehicle is stopped. Since the abnormal heat generation of the battery does not occur in the same manner in all the batteries, if the failure is determined from the temperature detected by the temperature sensor 3 at the timing affected by the abnormal heat generation, the in-range failure cannot be detected accurately. Therefore, the set time of the timer is set to a time longer than the temperature of the battery that has risen due to the abnormal heat generation and is increased, for example, 4 hours or more, preferably 5 hours or more. If the set time of the timer is too long, the frequency of detecting an in-range failure of the temperature sensor 3 is reduced. Therefore, the set time of the timer is set to 10 hours or less, preferably 8 hours or less, for example.

演算回路6は、動作状態になって各々の温度センサ3の検出温度を演算して故障を判定する。演算回路6は、以下の演算をして、各々の温度センサ3の故障を判定する。
(1)各々の温度センサ3で検出される検出温度の平均値を演算する。
(2)演算された検出温度の平均値と各々の温度センサ3の検出温度との温度差を演算し、演算される温度差を最大誤差温度に比較して、温度差が最大誤差温度よりも大きいと故障と判定する。最大誤差温度は、たとえば1℃〜5℃、好ましくは2℃〜4℃に設定される。最大誤差温度を小さくして、温度センサ3のインレンジ故障をより正確に検出できる。ただ、最大誤差温度が小さ過ぎると、インレンジ故障でなくて、外的な条件で温度センサ3の検出温度が変動するときに、故障でない温度センサ3を故障と判定する弊害がある。したがって、最大誤差温度は、インレンジ故障を確実に検出しながら、外的な条件による判定エラーが発生しないように、前述の範囲に設定される。
The arithmetic circuit 6 enters an operating state, calculates the detected temperature of each temperature sensor 3, and determines a failure. The arithmetic circuit 6 determines the failure of each temperature sensor 3 by performing the following calculation.
(1) The average value of the detected temperatures detected by each temperature sensor 3 is calculated.
(2) The temperature difference between the calculated average value of the detected temperatures and the detected temperature of each temperature sensor 3 is calculated, the calculated temperature difference is compared with the maximum error temperature, and the temperature difference is greater than the maximum error temperature. If it is larger, it is judged as a failure. The maximum error temperature is set to, for example, 1 ° C to 5 ° C, preferably 2 ° C to 4 ° C. By reducing the maximum error temperature, an in-range failure of the temperature sensor 3 can be detected more accurately. However, if the maximum error temperature is too small, there is a detrimental effect that a non-failed temperature sensor 3 is determined as a failure when the detected temperature of the temperature sensor 3 fluctuates under an external condition, not an in-range failure. Therefore, the maximum error temperature is set in the above-described range so that a determination error due to an external condition does not occur while reliably detecting an in-range failure.

車両用の電源装置は、車両を停止して、電池の異常発熱が集束するよりも長い時間に設定している設定時間、たとえば4時間〜6時間も経過すると、電池の温度や他の冷却機構7の冷却媒体の温度が外気温度に近い温度になる。したがって、各々の温度センサ3が検出する検出温度はほぼ等しくなる。したがって、この状態において、検出温度が他の温度センサ3の検出温度と異なる温度となる温度センサ3はインレンジ故障と判定できる。   The power supply device for a vehicle stops the vehicle, and when a set time set for a longer time than the abnormal heat generation of the battery converges, for example, 4 hours to 6 hours, the battery temperature and other cooling mechanisms The temperature of the cooling medium 7 becomes a temperature close to the outside air temperature. Accordingly, the detected temperatures detected by the respective temperature sensors 3 are substantially equal. Therefore, in this state, the temperature sensor 3 whose detected temperature is different from the detected temperature of the other temperature sensors 3 can be determined as an in-range failure.

さらに、演算回路6は、車両が停止されてから変化する各々の温度センサ3の温度変化特性を記憶して、記憶する温度変化特性と温度差から故障を判定することで、より正確にインレンジ故障を判定できる。たとえば、設定時間が経過したときに、各々の正確な温度センサ3が検出する温度に検出温度差があるとき、この検出温度差をあらかじめ演算回路6に記憶させておき、この検出温度差で補正して、各々の温度センサ3の検出温度を平均値に比較することで、より正確に温度センサ3のインレンジ故障を判定することができる。   Further, the arithmetic circuit 6 stores the temperature change characteristic of each temperature sensor 3 that changes after the vehicle is stopped, and determines the failure from the stored temperature change characteristic and the temperature difference, thereby making the in-range more accurate. A failure can be determined. For example, when there is a detected temperature difference between the temperatures detected by the respective accurate temperature sensors 3 when the set time has elapsed, the detected temperature difference is stored in the arithmetic circuit 6 in advance, and is corrected by the detected temperature difference. Then, by comparing the detected temperature of each temperature sensor 3 with the average value, an in-range failure of the temperature sensor 3 can be determined more accurately.

さらにまた、演算回路6は、各々の温度センサ3の平均値との温度差によらず、設定時間経過後における各々の温度センサ3の正しい検出温度を標準温度範囲としてメモリに記憶し、この標準温度範囲を設定時間経過後に検出する検出温度に比較して、検出温度が標準温度範囲でないとインレンジ故障と判定することもできる。演算回路6は、標準温度範囲を外気温度で補正することで、より正確に各々の温度センサ3のインレンジ故障を判定できる。外気温度は、例えば、温度センサ8で検出することができる。   Furthermore, the arithmetic circuit 6 stores the correct detected temperature of each temperature sensor 3 after the set time has passed in the memory as a standard temperature range in the memory regardless of the temperature difference from the average value of each temperature sensor 3. If the detected temperature is not within the standard temperature range as compared to the detected temperature detected after the set time has elapsed, it can be determined that an in-range failure has occurred. The arithmetic circuit 6 can determine the in-range failure of each temperature sensor 3 more accurately by correcting the standard temperature range with the outside air temperature. The outside air temperature can be detected by the temperature sensor 8, for example.

演算回路6は、車両を走行させる状態で、あるいは車両を停止して演算回路6を動作状態する状態で、各々の温度センサ3の検出温度が、あらかじめ設定している最大設定温度範囲から外れた値になると、故障と判定することができる。   The arithmetic circuit 6 is in a state where the vehicle is running or in a state where the vehicle is stopped and the arithmetic circuit 6 is in an operating state, so that the temperature detected by each temperature sensor 3 deviates from the preset maximum temperature range. When the value is reached, it can be determined that there is a failure.

制御回路4は、二次電池2の温度を検出する温度センサ3の検出温度でもって、充放電される二次電池2の残容量を補正して演算する。二次電池2の残容量は、充電容量の積算値を加算し、放電容量の積算値を減算して演算される。このとき、残容量演算回路は、積算値を温度で補正して残容量を演算する。   The control circuit 4 corrects and calculates the remaining capacity of the secondary battery 2 to be charged / discharged with the detected temperature of the temperature sensor 3 that detects the temperature of the secondary battery 2. The remaining capacity of the secondary battery 2 is calculated by adding the integrated value of the charge capacity and subtracting the integrated value of the discharge capacity. At this time, the remaining capacity calculation circuit calculates the remaining capacity by correcting the integrated value with the temperature.

二次電池2の残容量を演算する制御回路4は、残容量が設定範囲となるように、走行用バッテリ1の充放電をコントロールする。また、制御回路4は、各々の二次電池2の温度でもって充放電を制御する。二次電池2の温度が最高温度よりも高く、あるいは最低温度よりも低くなると、充放電の電流を遮断し、あるいは小さく制限して二次電池2を保護しながら充放電させる。   The control circuit 4 that calculates the remaining capacity of the secondary battery 2 controls charging / discharging of the traveling battery 1 so that the remaining capacity falls within the set range. The control circuit 4 controls charging / discharging with the temperature of each secondary battery 2. When the temperature of the secondary battery 2 is higher than the maximum temperature or lower than the minimum temperature, the charging / discharging current is interrupted or limited to a small value to charge / discharge while protecting the secondary battery 2.

制御回路4は、電池の温度を検出する全ての温度センサ3が正確に電池温度を検出するとき、図2に示すように、各々の温度センサの検出温度から各々の電池モジュールの温度を演算し、演算された電池温度で補正して残容量を演算し、また、走行用バッテリの充放電を制御する。制御回路4は、特定の温度センサが故障と判定されると、故障と判定された温度センサの検出温度を、故障と判定してなる温度センサに隣接して配設している温度センサの検出温度から補間して演算する。図4において、第2の温度センサが故障して、第1と第3と第4の温度センサが正確に電池温度を検出するとき、制御回路4は、第2の温度センサが検出する温度を、他の温度センサの検出温度から補間して演算する。制御回路4は、図4の実線で示すように、両側に配設される第1と第3の温度センサの検出温度から直線的に補間して第2の温度センサの検出温度を演算し、あるいは鎖線で示すように、第2の温度センサの温度を、第1と第3と第4の温度センサの検出温度から補間して演算することもできる。   When all the temperature sensors 3 for detecting the battery temperature accurately detect the battery temperature, the control circuit 4 calculates the temperature of each battery module from the detected temperature of each temperature sensor as shown in FIG. The remaining capacity is calculated by correcting with the calculated battery temperature, and the charging / discharging of the traveling battery is controlled. When it is determined that a specific temperature sensor has failed, the control circuit 4 detects the temperature sensor that is disposed adjacent to the temperature sensor that has been determined to be faulty. Interpolated from temperature. In FIG. 4, when the second temperature sensor fails and the first, third, and fourth temperature sensors accurately detect the battery temperature, the control circuit 4 determines the temperature detected by the second temperature sensor. The calculation is performed by interpolating from the detected temperatures of other temperature sensors. The control circuit 4 calculates the detected temperature of the second temperature sensor by linearly interpolating from the detected temperatures of the first and third temperature sensors arranged on both sides, as shown by the solid line in FIG. Alternatively, as indicated by a chain line, the temperature of the second temperature sensor can be calculated by interpolation from the detected temperatures of the first, third, and fourth temperature sensors.

制御回路4は、温度センサ3が故障する状態で、故障した温度センサの温度を補間して演算し、演算された温度でもって各々の電池温度を演算し、各々の電池温度でもって、二次電池2の残容量を補正しながら演算し、演算された残容量で走行用バッテリ1の充放電をコントロールする。   The control circuit 4 interpolates and calculates the temperature of the failed temperature sensor in a state in which the temperature sensor 3 fails, calculates each battery temperature with the calculated temperature, and calculates the secondary temperature with each battery temperature. Calculation is performed while correcting the remaining capacity of the battery 2, and charging / discharging of the traveling battery 1 is controlled with the calculated remaining capacity.

本発明の一実施例にかかる車両用の電源装置の概略構成図である。It is a schematic block diagram of the power supply device for vehicles concerning one Example of the present invention. 制御回路が全ての電池モジュールの温度を補間して演算する状態を示す図である。It is a figure which shows the state which a control circuit interpolates and calculates the temperature of all the battery modules. 車両停止後に異常発熱によって電池温度が上昇する状態を示す図である。It is a figure which shows the state which battery temperature rises by abnormal heat_generation | fever after a vehicle stops. 故障した温度センサの検出温度を他の温度センサの検出温度から補間する状態を示す図である。It is a figure which shows the state which interpolates the detected temperature of the temperature sensor which failed down from the detected temperature of another temperature sensor.

1…走行用バッテリ
2…二次電池
3…温度センサ
4…制御回路
5…故障判定回路
6…演算回路
7…冷却機構
8…温度センサ
10…送風ファン
11…送風隙間
12…流入ダクト
13…排出ダクト
DESCRIPTION OF SYMBOLS 1 ... Battery for driving | running | working 2 ... Secondary battery 3 ... Temperature sensor 4 ... Control circuit 5 ... Failure determination circuit 6 ... Arithmetic circuit 7 ... Cooling mechanism 8 ... Temperature sensor 10 ... Blower fan 11 ... Blower gap 12 ... Inflow duct 13 ... Exhaust duct

Claims (7)

車両を走行させるモータに電力を供給する、複数の二次電池(2)を接続してなる走行用バッテリ(1)と、走行用バッテリ(1)の二次電池(2)の温度を検出する複数の温度センサ(3)と、この温度センサ(3)で検出される電池温度で走行用バッテリ(1)の充放電を制御する制御回路(4)と、複数の温度センサ(3)の検出温度から各々の温度センサ(3)の故障を検出する故障判定回路(5)とを備える車両用の電源装置であって、
前記故障判定回路(5)が、車両の停止を検出して、電池の異常発熱が集束するよりも長い時間に設定している設定時間経過すると動作状態となる演算回路(6)を備えており、動作状態にある演算回路(6)が各々の温度センサ(3)で検出される各々の検出温度を演算して、各々の温度センサ(3)の故障を判定するようにしてなる車両用の電源装置。
Detects the temperature of the traveling battery (1), which is connected to a plurality of secondary batteries (2), supplying power to the motor that drives the vehicle, and the secondary battery (2) of the traveling battery (1) A plurality of temperature sensors (3), a control circuit (4) for controlling charging / discharging of the traveling battery (1) at the battery temperature detected by the temperature sensors (3), and detection by the plurality of temperature sensors (3) A vehicle power supply device comprising a failure determination circuit (5) for detecting a failure of each temperature sensor (3) from a temperature,
The failure determination circuit (5) is provided with an arithmetic circuit (6) that detects a stop of the vehicle and enters an operation state after a set time that is set longer than the abnormal heat generation of the battery converges. The operation circuit (6) in the operating state calculates each detected temperature detected by each temperature sensor (3), and determines the failure of each temperature sensor (3). Power supply.
前記故障判定回路(5)の演算回路(6)が、各々の温度センサ(3)で検出される検出温度の平均値と各々の温度センサ(3)の検出温度から故障を判定する最大誤差温度を記憶しており、検出温度と平均値との差が最大誤差温度よりも大きな電池の温度センサ(3)を故障と判定する請求項1に記載される車両用の電源装置。   The arithmetic circuit (6) of the failure determination circuit (5) has a maximum error temperature for determining a failure from the average value of the detected temperature detected by each temperature sensor (3) and the detected temperature of each temperature sensor (3). The power supply device for a vehicle according to claim 1, wherein the battery temperature sensor (3) having a difference between the detected temperature and the average value larger than the maximum error temperature is determined as a failure. 前記演算回路(6)が、車両が停止されて変化する各々の温度センサ(3)の温度変化特性を記憶しており、この温度変化特性と温度差から故障を判定する請求項2に記載される車両用の電源装置。   The arithmetic circuit (6) stores a temperature change characteristic of each temperature sensor (3) that changes when the vehicle is stopped, and determines a failure from the temperature change characteristic and the temperature difference. A power supply device for a vehicle. 前記走行用バッテリ(1)を冷却する冷却機構(7)を備えると共に、この冷却機構(7)が二次電池(2)を強制冷却する媒体の温度を検出する冷却媒体の温度センサ(8)を備えており、
前記演算回路(6)が、動作状態となって各々の温度センサ(3)で検出される各々の検出温度を演算して、各々の温度センサ(3)の故障を判定するようにしてなる請求項1に記載される車両用の電源装置。
A cooling mechanism (7) for cooling the traveling battery (1), and a cooling medium temperature sensor (8) for detecting the temperature of the medium in which the cooling mechanism (7) forcibly cools the secondary battery (2). With
The arithmetic circuit (6) calculates each detected temperature that is detected by each temperature sensor (3) when it is in an operating state to determine a failure of each temperature sensor (3). Item 4. A power supply device for a vehicle according to Item 1.
前記制御回路(4)が、二次電池(2)の温度を検出する温度センサ(3)の検出温度でもって、充放電される二次電池(2)の残容量を補正して演算する請求項1に記載される車両用の電源装置。   The control circuit (4) calculates and corrects the remaining capacity of the secondary battery (2) to be charged / discharged with the detected temperature of the temperature sensor (3) that detects the temperature of the secondary battery (2). Item 4. A power supply device for a vehicle according to Item 1. 前記制御回路(4)が、故障と判定された温度センサ(3)の検出温度を、故障と判定してなる温度センサ(3)に隣接して配設している温度センサ(3)の検出温度から補間して演算し、演算された検出温度で二次電池(2)の残容量を演算する請求項5に記載される車両用の電源装置。   The control circuit (4) detects the temperature sensor (3) detected adjacent to the temperature sensor (3) determined to be faulty, with the temperature detected by the temperature sensor (3) determined to be faulty. The power supply device for a vehicle according to claim 5, wherein the power source device for the vehicle is calculated by interpolating from the temperature and calculating the remaining capacity of the secondary battery (2) at the calculated detected temperature. 前記演算回路(6)が、車両の停止を検出して4時間以上経過して動作状態となる請求項1に記載される車両用の電源装置。   The power supply device for a vehicle according to claim 1, wherein the arithmetic circuit (6) detects the stop of the vehicle and enters an operation state after 4 hours or more.
JP2008220442A 2008-08-28 2008-08-28 Power supply for vehicle Active JP5355966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220442A JP5355966B2 (en) 2008-08-28 2008-08-28 Power supply for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220442A JP5355966B2 (en) 2008-08-28 2008-08-28 Power supply for vehicle

Publications (2)

Publication Number Publication Date
JP2010057292A true JP2010057292A (en) 2010-03-11
JP5355966B2 JP5355966B2 (en) 2013-11-27

Family

ID=42072628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220442A Active JP5355966B2 (en) 2008-08-28 2008-08-28 Power supply for vehicle

Country Status (1)

Country Link
JP (1) JP5355966B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050100A1 (en) * 2010-10-14 2012-04-19 矢崎総業株式会社 Voltage measurement device for plurality of assembled batteries
FR2968842A1 (en) * 2010-12-14 2012-06-15 Renault Sa Battery diagnosing method for motor vehicle e.g. hybrid vehicle, involves measuring set of temperature values within battery by set of temperature sensors, and comparing measurements to detect where there is anomaly in battery
KR101315682B1 (en) 2011-11-21 2013-10-10 린나이코리아 주식회사 Automatic amending method for decection error of temperature sensor in gas range
JP2014120457A (en) * 2012-12-19 2014-06-30 Denso Corp Power supply device
CN104507793A (en) * 2012-06-01 2015-04-08 Abb技术有限公司 Method and system for predicting the performance of ship
JP2015094593A (en) * 2013-11-08 2015-05-18 日産自動車株式会社 Battery temperature estimation system and battery temperature estimation method
JP2015100182A (en) * 2013-11-19 2015-05-28 三菱自動車工業株式会社 Temperature sensor abnormality detection device
KR101551016B1 (en) 2013-12-18 2015-09-07 현대자동차주식회사 Method for calculating supply power during a temperature sensor failure
JP2015528176A (en) * 2012-06-11 2015-09-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Temperature control system for high temperature battery or high temperature electrolytic cell
KR20160036423A (en) * 2014-09-25 2016-04-04 현대자동차주식회사 Apparatus and method for controlling high voltage battery in vehicle
JP2017054789A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Cooling control method of battery
JP2017139153A (en) * 2016-02-04 2017-08-10 株式会社豊田自動織機 Temperature monitoring device
JP2019029141A (en) * 2017-07-27 2019-02-21 株式会社デンソーテン Sensor selection device and sensor selection method
GB2566308A (en) * 2017-09-08 2019-03-13 Hyperdrive Innovation Ltd Battery management system
KR20190132743A (en) * 2018-05-21 2019-11-29 주식회사 성우하이텍 System and method for vehicle body monitoring
JP2020008480A (en) * 2018-07-11 2020-01-16 株式会社豊田自動織機 Temperature sensor abnormality determination device and temperature sensor abnormality determination method
JP2020024120A (en) * 2018-08-06 2020-02-13 株式会社豊田自動織機 Voltage estimation device and method
JP2020038076A (en) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 Power storage system
CN111478646A (en) * 2020-04-28 2020-07-31 重庆长安新能源汽车科技有限公司 Temperature protection method and system for electric vehicle motor system, electric vehicle and storage medium
JP2020174441A (en) * 2019-04-09 2020-10-22 株式会社Subaru Failure diagnostic device for temperature sensor and failure diagnostic method for temperature sensor
CN113147475A (en) * 2020-09-09 2021-07-23 北京华商三优新能源科技有限公司 Energy storage system for bus charging station
CN113189147A (en) * 2021-04-30 2021-07-30 中国商用飞机有限责任公司 Method, system and medium for detecting electrical property of windshield glass
JP7327288B2 (en) 2020-06-04 2023-08-16 株式会社デンソー Battery temperature monitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210105B2 (en) 2015-11-04 2017-10-11 トヨタ自動車株式会社 Battery device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178231A (en) * 1997-12-09 1999-07-02 Denso Corp Temperature control device of set battery for electric vehicle
JP2000230453A (en) * 1999-02-09 2000-08-22 Honda Motor Co Ltd Temperature sensor fault diagnostics system
JP2003286888A (en) * 2002-03-27 2003-10-10 Honda Motor Co Ltd Controller of vehicle for detecting abnormality of temperature sensor
JP2004127915A (en) * 2002-07-30 2004-04-22 Denso Corp Fuel cell system
JP2004325110A (en) * 2003-04-22 2004-11-18 Nec Lamilion Energy Ltd Method and apparatus for detecting failure of temperature sensor
JP2006004655A (en) * 2004-06-15 2006-01-05 Toyota Motor Corp Abnormality detecting method of temperature sensor and power supply unit
JP2006074869A (en) * 2004-08-31 2006-03-16 Sanyo Electric Co Ltd Power unit for vehicle
WO2007132729A1 (en) * 2006-05-16 2007-11-22 Toyota Jidosha Kabushiki Kaisha Battery device, vehicle having the same, and battery device failure judging method
JP2008164469A (en) * 2006-12-28 2008-07-17 Nissan Motor Co Ltd Short-circuit failure detector of thermistor
JP2009059504A (en) * 2007-08-30 2009-03-19 Sony Corp Battery pack, and control method
JP2010007530A (en) * 2008-06-25 2010-01-14 Hitachi Ltd Temperature sensor diagnostic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178231A (en) * 1997-12-09 1999-07-02 Denso Corp Temperature control device of set battery for electric vehicle
JP2000230453A (en) * 1999-02-09 2000-08-22 Honda Motor Co Ltd Temperature sensor fault diagnostics system
JP2003286888A (en) * 2002-03-27 2003-10-10 Honda Motor Co Ltd Controller of vehicle for detecting abnormality of temperature sensor
JP2004127915A (en) * 2002-07-30 2004-04-22 Denso Corp Fuel cell system
JP2004325110A (en) * 2003-04-22 2004-11-18 Nec Lamilion Energy Ltd Method and apparatus for detecting failure of temperature sensor
JP2006004655A (en) * 2004-06-15 2006-01-05 Toyota Motor Corp Abnormality detecting method of temperature sensor and power supply unit
JP2006074869A (en) * 2004-08-31 2006-03-16 Sanyo Electric Co Ltd Power unit for vehicle
WO2007132729A1 (en) * 2006-05-16 2007-11-22 Toyota Jidosha Kabushiki Kaisha Battery device, vehicle having the same, and battery device failure judging method
JP2008164469A (en) * 2006-12-28 2008-07-17 Nissan Motor Co Ltd Short-circuit failure detector of thermistor
JP2009059504A (en) * 2007-08-30 2009-03-19 Sony Corp Battery pack, and control method
JP2010007530A (en) * 2008-06-25 2010-01-14 Hitachi Ltd Temperature sensor diagnostic device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9128163B2 (en) 2010-10-14 2015-09-08 Yazaki Corporation Voltage measuring apparatus for plural battery
JP2012083283A (en) * 2010-10-14 2012-04-26 Yazaki Corp Voltage measuring device of multiple battery pack
WO2012050100A1 (en) * 2010-10-14 2012-04-19 矢崎総業株式会社 Voltage measurement device for plurality of assembled batteries
FR2968842A1 (en) * 2010-12-14 2012-06-15 Renault Sa Battery diagnosing method for motor vehicle e.g. hybrid vehicle, involves measuring set of temperature values within battery by set of temperature sensors, and comparing measurements to detect where there is anomaly in battery
KR101315682B1 (en) 2011-11-21 2013-10-10 린나이코리아 주식회사 Automatic amending method for decection error of temperature sensor in gas range
JP2015526778A (en) * 2012-06-01 2015-09-10 アーベーベー・テヒノロギー・アーゲー And system for predicting ship performance
CN104507793A (en) * 2012-06-01 2015-04-08 Abb技术有限公司 Method and system for predicting the performance of ship
US9537189B2 (en) 2012-06-11 2017-01-03 Siemens Aktiengesellschaft Temperature control system for a high-temperature battery or a high-temperature electrolyzer
JP2015528176A (en) * 2012-06-11 2015-09-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Temperature control system for high temperature battery or high temperature electrolytic cell
JP2014120457A (en) * 2012-12-19 2014-06-30 Denso Corp Power supply device
JP2015094593A (en) * 2013-11-08 2015-05-18 日産自動車株式会社 Battery temperature estimation system and battery temperature estimation method
JP2015100182A (en) * 2013-11-19 2015-05-28 三菱自動車工業株式会社 Temperature sensor abnormality detection device
KR101551016B1 (en) 2013-12-18 2015-09-07 현대자동차주식회사 Method for calculating supply power during a temperature sensor failure
CN105762427B (en) * 2014-09-25 2019-08-16 现代自动车株式会社 Device and method for controlling vehicle mesohigh battery
KR20160036423A (en) * 2014-09-25 2016-04-04 현대자동차주식회사 Apparatus and method for controlling high voltage battery in vehicle
KR101628489B1 (en) 2014-09-25 2016-06-08 현대자동차주식회사 Apparatus and method for controlling high voltage battery in vehicle
CN105762427A (en) * 2014-09-25 2016-07-13 现代自动车株式会社 Apparatus And Method For Controlling High Voltage Battery In Vehicle
US10408689B2 (en) 2014-09-25 2019-09-10 Hyundai Motor Company Apparatus and method for controlling a high voltage battery in vehicle
JP2017054789A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Cooling control method of battery
JP2017139153A (en) * 2016-02-04 2017-08-10 株式会社豊田自動織機 Temperature monitoring device
JP2019029141A (en) * 2017-07-27 2019-02-21 株式会社デンソーテン Sensor selection device and sensor selection method
GB2566308B (en) * 2017-09-08 2020-05-20 Hyperdrive Innovation Ltd Battery management system
GB2566308A (en) * 2017-09-08 2019-03-13 Hyperdrive Innovation Ltd Battery management system
KR20190132743A (en) * 2018-05-21 2019-11-29 주식회사 성우하이텍 System and method for vehicle body monitoring
KR102102613B1 (en) * 2018-05-21 2020-05-29 주식회사 성우하이텍 System and method for vehicle body monitoring
JP2020008480A (en) * 2018-07-11 2020-01-16 株式会社豊田自動織機 Temperature sensor abnormality determination device and temperature sensor abnormality determination method
JP2020024120A (en) * 2018-08-06 2020-02-13 株式会社豊田自動織機 Voltage estimation device and method
JP2020038076A (en) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 Power storage system
JP2020174441A (en) * 2019-04-09 2020-10-22 株式会社Subaru Failure diagnostic device for temperature sensor and failure diagnostic method for temperature sensor
JP7339757B2 (en) 2019-04-09 2023-09-06 株式会社Subaru Temperature sensor failure diagnosis device and temperature sensor failure diagnosis method
CN111478646A (en) * 2020-04-28 2020-07-31 重庆长安新能源汽车科技有限公司 Temperature protection method and system for electric vehicle motor system, electric vehicle and storage medium
CN111478646B (en) * 2020-04-28 2023-04-14 重庆长安新能源汽车科技有限公司 Temperature protection method and system for motor system of electric vehicle, electric vehicle and storage medium
JP7327288B2 (en) 2020-06-04 2023-08-16 株式会社デンソー Battery temperature monitor
CN113147475A (en) * 2020-09-09 2021-07-23 北京华商三优新能源科技有限公司 Energy storage system for bus charging station
CN113189147A (en) * 2021-04-30 2021-07-30 中国商用飞机有限责任公司 Method, system and medium for detecting electrical property of windshield glass
CN113189147B (en) * 2021-04-30 2024-02-27 中国商用飞机有限责任公司 Windshield glass electrical property detection method, system and medium

Also Published As

Publication number Publication date
JP5355966B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5355966B2 (en) Power supply for vehicle
US7492129B2 (en) Temperature abnormality detecting apparatus and method for secondary battery
US8947023B2 (en) Battery control device and motor drive system
CN102934318B (en) Control apparatus for parallel battery connection circuit
JP5562433B2 (en) Electric storage device discharge device
US9933491B2 (en) Electric storage system
JP5159498B2 (en) Charge / discharge control method for battery in power supply device of hybrid car
JP5699880B2 (en) Battery cooling system
US8143854B2 (en) Adjusting method of battery pack and adjusting method of battery pack with controller
JP2010029015A (en) Battery pack system
KR20160036423A (en) Apparatus and method for controlling high voltage battery in vehicle
JP5942882B2 (en) Battery system
JP2015186266A (en) Power storage system comprising abnormality detection unit
JP2012052857A (en) Abnormality detection circuit for secondary battery and battery power supply device
JP5463324B2 (en) Assembled battery system
JP5338135B2 (en) Battery control method and apparatus for automobile
JP2019021387A (en) Abnormality detection device
JP3654058B2 (en) Battery inspection device
JP5626190B2 (en) Power storage system
JP6369429B2 (en) Battery cooling control method
JP5626195B2 (en) Power storage system
JP6071344B2 (en) Secondary battery cooling method
JP2007109536A (en) Temperature detection device
JP6658407B2 (en) Battery temperature estimation method
JP2014120457A (en) Power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R151 Written notification of patent or utility model registration

Ref document number: 5355966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151