JP2010056496A - Method of forming metallic material in wafer - Google Patents

Method of forming metallic material in wafer Download PDF

Info

Publication number
JP2010056496A
JP2010056496A JP2008222956A JP2008222956A JP2010056496A JP 2010056496 A JP2010056496 A JP 2010056496A JP 2008222956 A JP2008222956 A JP 2008222956A JP 2008222956 A JP2008222956 A JP 2008222956A JP 2010056496 A JP2010056496 A JP 2010056496A
Authority
JP
Japan
Prior art keywords
hole
metal material
wafer
metallic material
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008222956A
Other languages
Japanese (ja)
Inventor
Yoshinori Nasu
義紀 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2008222956A priority Critical patent/JP2010056496A/en
Publication of JP2010056496A publication Critical patent/JP2010056496A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a metallic material in a wafer, which facilitates filling a through-hole, while reducing an environmental load. <P>SOLUTION: The method of forming the metallic material in the wafer includes disposing the metallic material 20 into the through-hole 11 having a taper formed in a plate like wafer 10. The metallic material 20 having a diameter larger than that of the narrower side of the opening of the through-hole 11 is inserted into the through-hole 11 from the wider side of the opening. The portion of the metallic material 20 protruded from the through-hole 11 is pressed with a jig G to dispose the metallic material 20 into the through-hole 11, while the metallic material 20 is deformed and adhered on the side face of the through-hole 11. The center position of the metallic material 20 is placed in the range of the thickness of the wafer 10 when the metallic material 20 is inserted into the through-hole 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、貫通穴を金属材料で埋めるウェハの金属材料形成方法に関する。   The present invention relates to a metal material forming method for a wafer in which a through hole is filled with a metal material.

従来から、電子機器には電子部品を搭載した電子基板が用いられている。この電子基板には、金属膜からなる導通パターンが形成されており、この導通パターンに半田等でコンデンサ等のチップ部品を接合することで電子基板に電子部品を搭載している。
また、電子部品は、チップ部品の他に、凹部を有する容器に各種素子を搭載して凹部を封止した構造の電子部品が含まれる。この電子部品に用いられる容器体は、ウェハの状態で複数個設けられており、ウェハの状態で容器体となる部分に設けられた各凹部にそれぞれ各種素子が搭載される。
Conventionally, electronic boards on which electronic components are mounted are used in electronic devices. A conductive pattern made of a metal film is formed on the electronic substrate, and an electronic component is mounted on the electronic substrate by bonding a chip component such as a capacitor to the conductive pattern with solder or the like.
In addition to the chip component, the electronic component includes an electronic component having a structure in which various elements are mounted on a container having a recess and the recess is sealed. A plurality of container bodies used for the electronic component are provided in the state of a wafer, and various elements are mounted in the respective concave portions provided in the portion that becomes the container body in the state of the wafer.

ここで、ウェハに設けられる導通パターンは、例えば、外部と電気的・機械的接続をするための外部端子と、水晶振動素子などの素子と導通を取るための搭載パッド及び引き回しパターンとがある。外部端子は、ウェハの一方の主面に設けられる搭載パッド等とは反対側のウェハの主面に設けられるため、貫通穴を介して導通するように構成される(例えば、特許文献1参照)。
このようなウェハの両主面にそれぞれ設けられた導通パターンを電気的に接続するために、電解めっき又は無電解めっきを行って貫通穴を埋めていた。
Here, the conduction pattern provided on the wafer includes, for example, an external terminal for electrical and mechanical connection with the outside, a mounting pad for conducting with a device such as a crystal resonator element, and a routing pattern. Since the external terminal is provided on the main surface of the wafer opposite to the mounting pad provided on one main surface of the wafer, the external terminal is configured to conduct through the through hole (see, for example, Patent Document 1). .
In order to electrically connect the conductive patterns provided on both main surfaces of such a wafer, electrolytic plating or electroless plating was performed to fill the through holes.

特開2005−347329号公報JP 2005-347329 A

しかしながら、貫通穴の内部の全てを電解めっきや無電解めっきで埋める場合、貫通穴が埋まるまでに多くの時間を要するため、生産性が悪くなる問題がある。
また、貫通穴を電解めっきや無電解めっきで埋める場合、金属材料が貫通穴内から流れ出てしまうことがあるため、これを防ぐために貫通穴の一方の開口を塞ぐことがある。この場合、貫通穴の一方の開口を塞ぐ工程が余計に増えてしまい、作業が煩雑になるという問題がある。
また、電解めっきや無電解めっきは、薬品を多く使用するため、環境負荷が大きくなるという問題も有る。
However, when the entire inside of the through hole is filled with electrolytic plating or electroless plating, a long time is required until the through hole is filled, so that there is a problem that productivity is deteriorated.
Further, when the through hole is filled with electrolytic plating or electroless plating, the metal material may flow out of the through hole, so that one opening of the through hole may be blocked to prevent this. In this case, there is a problem in that the number of steps for closing one opening of the through hole is increased, and the operation becomes complicated.
In addition, since electrolytic plating and electroless plating use a large amount of chemicals, there is also a problem that the environmental load increases.

そこで、本発明では、前記した問題を解決し、容易に貫通穴を埋めることができ、環境負荷が小さくなるウェハの金属材料形成方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a method for forming a metal material of a wafer that solves the above-described problems, can easily fill a through hole, and has a low environmental load.

前記課題を解決するため、本発明は、板状のウェハに設けられたテーパのついた貫通穴に球状の金属材料を設けるウェハの金属材料形成方法であって、前記貫通穴の開口の狭い側の径よりも径の大きい前記金属材料を開口の広い側から前記貫通穴に入れ、前記金属材料の前記貫通穴よりはみ出ている部分を治具により圧力を加え、前記金属材料を変形させながら前記貫通穴の側面に密着させることで、前記貫通穴に前記前記金属材料を設けることを特徴とする。   In order to solve the above problems, the present invention provides a metal material forming method for a wafer in which a spherical metal material is provided in a tapered through hole provided in a plate-shaped wafer, and the narrow side of the opening of the through hole is provided. The metal material having a diameter larger than the diameter of the metal material is put into the through hole from the wide side of the opening, a portion protruding from the through hole of the metal material is pressed with a jig, and the metal material is deformed while being deformed. The metal material is provided in the through hole by being in close contact with a side surface of the through hole.

また、本発明は、前記金属材料が、前記貫通穴に入れられたときに、前記金属材料の中心位置が前記ウェハの厚みの範囲にあることを特徴とする。   Further, the present invention is characterized in that when the metal material is put into the through hole, the center position of the metal material is in the range of the thickness of the wafer.

このようなウェハの金属材料形成方法によれば、治具により押しつぶされた金属材料が貫通穴の側面に密着することで貫通穴を埋めることができる。つまり、金属材料を貫通穴に圧入させることで容易に貫通穴を埋めることができる。
これにより、電解めっきや無電解めっきのように薬品を使わずに貫通穴を埋めることができるので、環境負荷を小さくすることができる。
According to such a metal material forming method for a wafer, the metal material squeezed by the jig can be in close contact with the side surface of the through hole, thereby filling the through hole. That is, the through hole can be easily filled by pressing the metal material into the through hole.
As a result, the through-hole can be filled without using chemicals as in electrolytic plating and electroless plating, so the environmental load can be reduced.

また、金属材料が、貫通穴に入れられたときに、金属材料の中心位置がウェハの厚みの範囲にあることにより、貫通穴の側面に確実に密着するので、気密不良をなくすことができる。   In addition, when the metal material is put into the through hole, the center position of the metal material is in the range of the thickness of the wafer, so that the metal material is securely adhered to the side surface of the through hole, so that the airtight defect can be eliminated.

次に、本発明を実施するための最良の形態(以下、「実施形態」という。)について、適宜図面を参照しながら詳細に説明する。なお、各構成要素について、状態をわかりやすくするために、誇張して図示している。また、各図面において、紙面に対して奥側を「上」、手前側を「下」とする。   Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate. Note that each component is exaggerated for easy understanding of the state. In each drawing, the back side is “up” and the near side is “down” with respect to the page.

図1(a)はウェハに貫通穴を形成する前の状態の一例を示す概念図であり、(b)はウェハに貫通穴が設けられた状態の一例を示す概念図であり、(c)はウェハに下地金属膜を設けた一例を示す概念図であり、(d)は貫通穴に金属材料を入れた状態の一例を示す概念図であり、(e)は金属材料を加圧する前の状態の一例を示す概念図であり、(f)は金属材料を貫通穴に圧入した状態の一例を示す概念図であり、(g)は貫通穴を金属材料を構成していた金属材料で埋めた状態の一例を示す概念図である。
図2は、導通パターンをウェハに設けた状態の一例を示す概念図である。
図1に示すように、本発明の実施形態に係るウェハの金属材料形成方法は、ウェハ10に設けられた貫通穴11を球状の金属材料20で埋めるものである。
FIG. 1A is a conceptual diagram illustrating an example of a state before a through hole is formed in a wafer, and FIG. 1B is a conceptual diagram illustrating an example of a state in which a through hole is provided in a wafer. Is a conceptual diagram showing an example in which a base metal film is provided on a wafer, (d) is a conceptual diagram showing an example of a state in which a metal material is put in a through hole, and (e) is a diagram before pressurizing the metal material. It is a conceptual diagram which shows an example of a state, (f) is a conceptual diagram which shows an example of the state which press-fitted the metal material in the through-hole, (g) is filled with the metal material which comprised the metal material. FIG.
FIG. 2 is a conceptual diagram showing an example of a state in which a conductive pattern is provided on the wafer.
As shown in FIG. 1, the method for forming a metal material of a wafer according to an embodiment of the present invention fills the through hole 11 provided in the wafer 10 with a spherical metal material 20.

ここで、図1に示すウェハ10は、ガラス、ガラスセラミック、結晶化ガラス、シリコン(Si)、焼成が完了したセラミックスのいずれかからなり、複数の貫通穴11が設けられている。
なお、このウェハ10は、個片化された部品単位の板状部材であっても良いし、これら板状部材を複数まとめた集合基板であっても良い。なお、説明を判り易くするために、ウェハ10を水晶からなる集合基板として説明する。
Here, the wafer 10 shown in FIG. 1 is made of any one of glass, glass ceramic, crystallized glass, silicon (Si), and fired ceramic, and is provided with a plurality of through holes 11.
In addition, this wafer 10 may be a plate-like member for individual parts, or a collective substrate in which a plurality of these plate-like members are collected. For ease of explanation, the wafer 10 will be described as an aggregate substrate made of quartz.

図1(b)に示す貫通穴11は、例えば、従来周知のフォトリソグラフィ技術及びエッチング技術により形成される。なお、貫通穴11は、サンドブラスト技術で形成しても良い。説明をわかり易くするために、貫通穴11がサンドブラスト技術で形成された場合について説明する。
この貫通穴11は、貫通穴11の形成を始めた一方の開口の直径が、貫通穴11の形成を終えた他方の開口の直径よりも大きくなっている。言い換えれば、この貫通穴11は、一方の主面側から他方の主面側に向かうにつれて拡径するように、つまり、テーパがつけられて形成されている。
また、貫通穴11の開口の広い側の半径R1は、ウェハ10の厚さをTとしたとき、R1<Tの関係となっているのが好ましい。
The through hole 11 shown in FIG. 1B is formed by, for example, a conventionally known photolithography technique and etching technique. The through hole 11 may be formed by a sand blast technique. In order to make the explanation easy to understand, the case where the through hole 11 is formed by the sandblasting technique will be described.
In the through hole 11, the diameter of one opening that has started forming the through hole 11 is larger than the diameter of the other opening that has finished forming the through hole 11. In other words, the through hole 11 is formed so as to increase in diameter from one main surface side toward the other main surface side, that is, tapered.
Further, it is preferable that the radius R1 on the wide side of the opening of the through hole 11 has a relationship of R1 <T, where T is the thickness of the wafer 10.

図1(d)に示す金属材料20は、例えば、Au(金)からなる。この金属材料20は、球状に形成されており、貫通穴11に入れられたときに、金属材料20の中心位置がウェハ10の厚みの範囲に位置する大きさで形成されている。つまり、金属材料20の中心位置は、ウェハ10の内部に位置していることとなる。
例えば、貫通穴11の広い開口側の半径R1をAとし、狭い側の開口の半径R2がA/2とした場合、金属材料20の半径R3をA×3/4とすれば、金属材料20の中心位置がウェハ10の内部に位置することとなる。
The metal material 20 shown in FIG. 1D is made of, for example, Au (gold). The metal material 20 is formed in a spherical shape, and is formed in such a size that the center position of the metal material 20 is located in the range of the thickness of the wafer 10 when inserted into the through hole 11. That is, the center position of the metal material 20 is located inside the wafer 10.
For example, when the radius R1 on the wide opening side of the through hole 11 is A and the radius R2 of the narrow opening is A / 2, the metal material 20 can be obtained by setting the radius R3 of the metal material 20 to A × 3/4. The center position of is located inside the wafer 10.

なお、金属材料20は、後述する圧入の前であって貫通穴11に入れられたとき、必ず、一部がウェハ10からはみ出る大きさになっている。
このような大きさで金属材料20を形成するのは、金属材料20の中心位置がウェハ10の厚み内に入っていない場合、金属材料20の容積が貫通穴11の容積より大きくなり、圧入したあと、貫通穴11からはみ出し、ウェハ10を破損させる恐れがある。また、金属材料20の中心位置がウェハ10の厚み内にあったとしてもウェハ10からはみ出る部分がなければ、圧入ができなくなり、金属材料20を変形させて貫通穴11を埋めることができなくなる。
したがって、金属材料20は、前記のとおり、一部がウェハ10からはみ出る大きさであって、中心位置がウェハ10の厚み内にあるように形成するのが良い。
The metal material 20 is sized so that a part of the metal material 20 protrudes from the wafer 10 before being inserted into the through hole 11 before press-fitting described later.
The metal material 20 is formed in such a size when the center position of the metal material 20 is not within the thickness of the wafer 10, the volume of the metal material 20 becomes larger than the volume of the through hole 11 and press-fitted. Thereafter, the wafer 10 may protrude from the through hole 11 and be damaged. Further, even if the center position of the metal material 20 is within the thickness of the wafer 10, if there is no portion protruding from the wafer 10, press fitting cannot be performed, and the metal material 20 cannot be deformed to fill the through hole 11.
Therefore, as described above, the metal material 20 is preferably formed so that a part thereof protrudes from the wafer 10 and the center position is within the thickness of the wafer 10.

次に、本発明の実施形態に係るウェハの金属材料形成方法について説明する。
まず、図1(a)及び(b)に示すように、フォトリソグラフィ技術やエッチング技術又はサンドブラスト技術により貫通穴11を形成する。
図1(c)に示すように、形成された貫通穴11を有するウェハ10に下地金属膜Cを蒸着により形成する下地金属膜形成工程を行う。
このとき、蒸着により、貫通穴11の内部にも下地金属膜Cが設けられる。
なお、下地金属膜Cには、Cr、Ni、ニクロム、Cu、Au、Ag、Tiなどを用いることができる。
Next, a method for forming a metal material on a wafer according to an embodiment of the present invention will be described.
First, as shown in FIGS. 1A and 1B, the through holes 11 are formed by a photolithography technique, an etching technique, or a sand blast technique.
As shown in FIG. 1C, a base metal film forming step of forming a base metal film C on the formed wafer 10 having the through holes 11 by vapor deposition is performed.
At this time, the base metal film C is also provided inside the through hole 11 by vapor deposition.
For the base metal film C, Cr, Ni, Nichrome, Cu, Au, Ag, Ti, or the like can be used.

この状態で、図1(d)に示すように、貫通穴11の開口が広い方を上に向けて、所定の載置台にウェハ10を固定する。
貫通穴11の開口の広い側からこの貫通穴11に金属材料20を入れる金属材料設置工程を行う。ここで、貫通穴11が複数ある場合は、全ての貫通穴11に金属材料20を入れる。
このとき、金属材料20の一部はウェハ10からはみ出た状態となっている。
ウェハ10の貫通穴11は、テーパが付けられた形状となっている。そのため、金属材料20は、貫通穴11の側面に接触した状態で、貫通穴11内で止まるようになっている。
In this state, as shown in FIG. 1D, the wafer 10 is fixed to a predetermined mounting table with the wide opening of the through hole 11 facing upward.
A metal material installation step of putting the metal material 20 into the through hole 11 from the wide side of the opening of the through hole 11 is performed. Here, when there are a plurality of through holes 11, the metal material 20 is put into all the through holes 11.
At this time, a part of the metal material 20 protrudes from the wafer 10.
The through hole 11 of the wafer 10 has a tapered shape. Therefore, the metal material 20 stops in the through hole 11 while being in contact with the side surface of the through hole 11.

ここで、図1(e)に示すように、表面が平らになっている治具Gを用意し、この治具Gの平らな表面を金属材料20の貫通穴11よりはみ出ている部分に当接させ、図1(f)に示すように、ウェハ10の方向にそのまま圧力を加える加圧工程を行う。これにより、金属材料20を変形させながら貫通穴11の側面に密着させる。
つまり、金属材料20は、貫通穴11の側面と接触している点を支持点とて、貫通穴11内に金属材料20が入り込んでくる。これにより、金属材料20は、貫通穴11の側面に設けられている下地金属膜Cと接合して側面と密着した気密性の高い密着状態となる。
したがって、図1(g)に示すように、金属材料20は、貫通穴11を埋めた状態となる。これにより、金属材料20は、図2に示すように、ウェハ10の両主面に設けられる導通パターンPの電気的接続に用いることができるようになる。
Here, as shown in FIG. 1 (e), a jig G having a flat surface is prepared, and the flat surface of the jig G is applied to a portion protruding from the through hole 11 of the metal material 20. Then, as shown in FIG. 1 (f), a pressurizing process is performed in which pressure is applied as it is toward the wafer 10. Thus, the metal material 20 is brought into close contact with the side surface of the through hole 11 while being deformed.
That is, the metal material 20 enters the through hole 11 using the point where the metal material 20 is in contact with the side surface of the through hole 11 as a support point. As a result, the metal material 20 is bonded to the base metal film C provided on the side surface of the through hole 11 and is in close contact with the side surface with high airtightness.
Therefore, as shown in FIG. 1G, the metal material 20 is in a state where the through hole 11 is filled. As a result, the metal material 20 can be used for electrical connection of the conductive patterns P provided on both main surfaces of the wafer 10, as shown in FIG.

このようなウェハの金属材料形成方法によれば、治具Gにより押しつぶされた金属材料20が貫通穴11の側面に密着することで貫通穴11を埋めることができる。つまり、金属材料20を貫通穴11に圧入させることで容易に貫通穴11を埋めることができる。
これにより、電解めっきや無電解めっきのように薬品を使わずに貫通穴11を埋めることができるので、環境負荷を小さくすることができる。
また、金属材料20が貫通穴11に入れられたときに、金属材料20の中心位置がウェハ10の厚みTの範囲にあることにより、圧入された後に貫通穴11の側面に確実に密着するので、気密不良をなくすことができる。
According to such a metal material forming method for a wafer, the metal material 20 squeezed by the jig G can be in close contact with the side surface of the through hole 11 to fill the through hole 11. That is, the through hole 11 can be easily filled by press-fitting the metal material 20 into the through hole 11.
Thereby, since the through-hole 11 can be filled without using chemicals like electrolytic plating or electroless plating, the environmental load can be reduced.
Further, when the metal material 20 is put into the through hole 11, the center position of the metal material 20 is in the range of the thickness T of the wafer 10, so that the metal material 20 is securely adhered to the side surface of the through hole 11 after being press-fitted. , Airtightness can be eliminated.

なお、本発明の実施形態について説明したが、本発明は前記実施形態には限定されない。例えば、金属材料20の材質は、Auに限定されず、導通パターンと導通可能な金属材料を用いることができる。例えば、Cu、Al、金すず、金ゲルマニウム、はんだボールなどを用いることができる。   In addition, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, the material of the metal material 20 is not limited to Au, and a metal material that can conduct with the conduction pattern can be used. For example, Cu, Al, gold tin, gold germanium, solder balls, or the like can be used.

(a)はウェハに貫通穴を形成する前の状態の一例を示す概念図であり、(b)はウェハに貫通穴が設けられた状態の一例を示す概念図であり、(c)はウェハに下地金属膜を設けた一例を示す概念図であり、(d)は貫通穴に金属材料を入れた状態の一例を示す概念図であり、(e)は金属材料を加圧する前の状態の一例を示す概念図であり、(f)は金属材料を貫通穴に圧入した状態の一例を示す概念図であり、(g)は貫通穴を金属材料を構成していた金属材料で埋めた状態の一例を示す概念図である。(A) is a conceptual diagram which shows an example of the state before forming a through-hole in a wafer, (b) is a conceptual diagram which shows an example of the state in which the through-hole was provided in the wafer, (c) is a wafer It is a conceptual diagram which shows an example which provided the base metal film in (d) is a conceptual diagram which shows an example of the state which put the metal material in the through-hole, (e) is a state before pressurizing a metal material. It is a conceptual diagram which shows an example, (f) is a conceptual diagram which shows an example of the state which press-fit the metal material in the through-hole, (g) is the state which filled the through-hole with the metal material which comprised the metal material It is a conceptual diagram which shows an example. 導通パターンをウェハに設けた状態の一例を示す概念図である。It is a conceptual diagram which shows an example of the state which provided the conduction | electrical_connection pattern in the wafer.

符号の説明Explanation of symbols

10 ウェハ
11 貫通穴
20 金属材料
G 治具
C 下地金属膜
10 Wafer 11 Through-hole 20 Metal material G Jig C Base metal film

Claims (2)

板状のウェハに設けられたテーパのついた貫通穴に球状の金属材料を設けるウェハの金属材料形成方法であって、
前記貫通穴の開口の狭い側の径よりも径の大きい前記金属材料を開口の広い側から前記貫通穴に入れ、
前記金属材料の前記貫通穴よりはみ出ている部分を治具により圧力を加え、
前記金属材料を変形させながら前記貫通穴の側面に密着させることで、前記貫通穴に前記前記金属材料を設けることを特徴とするウェハの金属材料形成方法。
A metal material forming method for a wafer in which a spherical metal material is provided in a tapered through hole provided in a plate-shaped wafer,
Put the metal material having a diameter larger than the diameter of the narrow side of the opening of the through hole into the through hole from the wide side of the opening,
Apply pressure to the part of the metal material protruding from the through hole with a jig,
A method of forming a metal material on a wafer, wherein the metal material is provided in the through hole by bringing the metal material into close contact with a side surface of the through hole while deforming the metal material.
前記金属材料は、前記貫通穴に入れられたときに、前記金属材料の中心位置が前記ウェハの厚みの範囲にあることを特徴とする請求項1に記載のウェハの金属材料形成方法。   The method for forming a metal material of a wafer according to claim 1, wherein when the metal material is put in the through hole, the center position of the metal material is in the range of the thickness of the wafer.
JP2008222956A 2008-08-30 2008-08-30 Method of forming metallic material in wafer Pending JP2010056496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008222956A JP2010056496A (en) 2008-08-30 2008-08-30 Method of forming metallic material in wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008222956A JP2010056496A (en) 2008-08-30 2008-08-30 Method of forming metallic material in wafer

Publications (1)

Publication Number Publication Date
JP2010056496A true JP2010056496A (en) 2010-03-11

Family

ID=42072056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008222956A Pending JP2010056496A (en) 2008-08-30 2008-08-30 Method of forming metallic material in wafer

Country Status (1)

Country Link
JP (1) JP2010056496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094464A (en) * 2011-10-28 2013-05-08 瑷司柏电子股份有限公司 High thermal conductivity baseboard, light emitting diode with the same and manufacturing method
JP2015084434A (en) * 2010-07-23 2015-04-30 テッセラ,インコーポレイテッド Microelectronic element with post-assembly planarization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015084434A (en) * 2010-07-23 2015-04-30 テッセラ,インコーポレイテッド Microelectronic element with post-assembly planarization
US9659812B2 (en) 2010-07-23 2017-05-23 Tessera, Inc. Microelectronic elements with post-assembly planarization
US9966303B2 (en) 2010-07-23 2018-05-08 Tessera, Inc. Microelectronic elements with post-assembly planarization
US10559494B2 (en) 2010-07-23 2020-02-11 Tessera, Inc. Microelectronic elements with post-assembly planarization
CN103094464A (en) * 2011-10-28 2013-05-08 瑷司柏电子股份有限公司 High thermal conductivity baseboard, light emitting diode with the same and manufacturing method

Similar Documents

Publication Publication Date Title
TWI506737B (en) A manufacturing method of an electronic device package, an electronic device package, and an oscillator
JP4513513B2 (en) Manufacturing method of electronic parts
JP5554092B2 (en) Method for manufacturing electronic device package
US10665562B2 (en) Power electronics assembly having an adhesion layer, and method for producing said assembly
JP2010056496A (en) Method of forming metallic material in wafer
JP5171210B2 (en) Method for manufacturing piezoelectric vibrator
JP2015122413A (en) Package and manufacturing method of the same
JP2000077965A (en) Piezoelectric vibrator and sealing method for piezoelectric vibration element
JP5193522B2 (en) Ceramic package for storing semiconductor element and manufacturing method thereof
US9666497B2 (en) Crystal device
JP2014086963A (en) Package and method of manufacturing package
JP2006523013A (en) Electronic components in substrate elements
JP2013026919A (en) Method of manufacturing electronic device package, electronic device package, and oscillator
JP5368046B2 (en) Wafer metal material embedding system
JP4828980B2 (en) Joining member, method for manufacturing the same, joining structure, and method for connecting base
JP2006339791A (en) Manufacturing method of piezoelectric device
JP5379437B2 (en) Wafer airtight leak inspection apparatus and wafer airtight leak inspection method
JP5520465B2 (en) Wafer metal material embedding apparatus and wafer metal material embedding method
JP2017022334A (en) Multi-piece wiring board and manufacturing method thereof
JP2005347673A (en) Method for mounting conductive ball and its mounting equipment
JP2010157813A (en) Method for manufacturing piezoelectric device
JP2012015363A (en) Electronic device, electronic equipment, and method of manufacturing electronic device
JP2010226418A (en) Piezoelectric device
JP2018042090A (en) Crystal device
JP2005295081A (en) Press fit cylinder type quartz resonator