JP2010054753A - Method of manufacturing liquid crystal display device - Google Patents

Method of manufacturing liquid crystal display device Download PDF

Info

Publication number
JP2010054753A
JP2010054753A JP2008219026A JP2008219026A JP2010054753A JP 2010054753 A JP2010054753 A JP 2010054753A JP 2008219026 A JP2008219026 A JP 2008219026A JP 2008219026 A JP2008219026 A JP 2008219026A JP 2010054753 A JP2010054753 A JP 2010054753A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
display device
applying
color filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008219026A
Other languages
Japanese (ja)
Other versions
JP5358143B2 (en
Inventor
Osamu Sato
治 佐藤
Junji Watanabe
順次 渡辺
Masatoshi Tokita
雅利 戸木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Priority to JP2008219026A priority Critical patent/JP5358143B2/en
Priority to KR1020090077557A priority patent/KR101630321B1/en
Publication of JP2010054753A publication Critical patent/JP2010054753A/en
Application granted granted Critical
Publication of JP5358143B2 publication Critical patent/JP5358143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a liquid crystal display device capable of reducing the performance degradation of the liquid crystal display device, facilitating process management and improving contrast. <P>SOLUTION: The method of manufacturing the liquid crystal display device includes: a liquid crystal polymer application processes 130, 140 for containing a liquid crystal polymer component in at least one component, providing the liquid crystal polymer component with a UV curing functional component, and applying a block polymer dissolved in a solvent, to a TFT substrate 10 and a CF substrate 20 so that the liquid crystal polymer component is on the opposite side to the substrates; a seal application process 160 for applying a sealant to the CF substrate 20 to surround a region into which liquid crystal is put; a liquid crystal drip injection process 170 for filling liquid crystal between the TFT substrate 10 and CF substrate 20; a heating/magnetic field aligning process 180 for heating at a temperature not lower than a glass transition point of the liquid crystal polymer component for a predetermined time and applying a magnetic field in a direction to align the liquid crystal; and a UV curing process 190 for irradiating UV (ultraviolet rays) between the substrates to UV-cure the block polymer and to fix the alignment. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、配向膜として、少なくとも1つの成分に液晶性ポリマー成分を含むブロックポリマーを用い、磁場配向を行うことによって、非接触な方法による均一配向を実現した液晶表示装置の製造方法に関するものである。   The present invention relates to a method of manufacturing a liquid crystal display device that achieves uniform alignment by a non-contact method by performing magnetic field alignment using a block polymer containing a liquid crystalline polymer component as at least one component as an alignment film. is there.

従来の液晶表示装置の製造方法について図5及び図6を参照しながら説明する。図5は、従来の液晶表示装置の製造方法の工程を示す図である。また、図6は、従来の液晶表示装置の製造方法のラビング工程を示す図である。   A method for manufacturing a conventional liquid crystal display device will be described with reference to FIGS. FIG. 5 is a diagram showing the steps of a conventional method for manufacturing a liquid crystal display device. FIG. 6 is a diagram showing a rubbing step of a conventional method for manufacturing a liquid crystal display device.

図5において、上段の工程910A〜工程950と、下段の工程910B〜工程960は、上段及び下段の工程を同時進行で処理する場合もあれば、上段又は下段の工程の後、下段又は上段の工程を処理する場合もある。   In FIG. 5, the upper step 910A to step 950 and the lower step 910B to step 960 may process the upper step and the lower step simultaneously, or after the upper step or the lower step, the lower step or the upper step. The process may be processed.

洗浄工程910Aにおいて、TFT(Thin Film Transistor:薄膜トランジスタ)アレイ工程を終了したTFT基板10を、セル工程に投入する際に、最初に洗浄する。   In the cleaning process 910A, the TFT substrate 10 that has completed the TFT (Thin Film Transistor) array process is first cleaned when it is put into the cell process.

洗浄工程910Bにおいて、CF(Color Filter:カラーフィルター)生成工程を終了したCF基板20を、セル工程に投入する際に、最初に洗浄する。   In the cleaning process 910B, the CF substrate 20 that has completed the CF (Color Filter) generation process is first cleaned when it is put into the cell process.

次に、配向膜形成工程920A、920Bは、印刷工程と、プレベーク工程と、本硬化工程の3つの工程からなる。   Next, the alignment film forming steps 920A and 920B include three steps: a printing step, a pre-baking step, and a main curing step.

印刷工程において、配向膜(溶媒に溶けたポリイミド)をフレキソ印刷法等でTFT基板10、CF基板20に塗布して、配向膜を形成する。   In the printing process, an alignment film (polyimide dissolved in a solvent) is applied to the TFT substrate 10 and the CF substrate 20 by a flexographic printing method or the like to form an alignment film.

プレベーク工程において、印刷した配向膜から溶媒を飛ばす為に、60〜100℃程度で数分間加熱する。多くはホットプレート方式やオーブン式である。   In the pre-baking step, heating is performed at about 60 to 100 ° C. for several minutes in order to remove the solvent from the printed alignment film. Most are hot plate type or oven type.

本硬化工程において、最終的な重合を行わせる為に、二百数十℃で数十分加熱する。   In the main curing step, heating is performed at several hundred and several tens of degrees Celsius for the final polymerization.

次に、ラビング工程930A、930Bにおいて、液晶の並び方向(配向の向き)を決める為に、図6に示すように、綿やレーヨンなどの布(バフ材)93を巻き付けたローラ92で、TFT基板10、CF基板20に形成された配向膜91の表面を擦る。   Next, in the rubbing process 930A, 930B, in order to determine the alignment direction (orientation direction) of the liquid crystal, as shown in FIG. 6, a roller 92 around which a cloth (buff material) 93 such as cotton or rayon is wound is used. The surfaces of the alignment films 91 formed on the substrate 10 and the CF substrate 20 are rubbed.

次に、洗浄工程940A、940Bにおいて、ラビング工程で発生した布の毛や配向膜の削れカスを洗い流す。   Next, in the cleaning processes 940A and 940B, the hair of the cloth and the scraps of the alignment film generated in the rubbing process are washed away.

次に、導通材塗布工程950において、TFT基板10とCF基板20の導通を取る為、TFT基板10にAgペースト等の導通材を点状に塗布する。なお、IPSモードでは不要である。   Next, in a conductive material application step 950, a conductive material such as an Ag paste is applied to the TFT substrate 10 in a dot shape in order to establish conduction between the TFT substrate 10 and the CF substrate 20. Note that this is not necessary in the IPS mode.

シール塗布工程960において、液晶が入る領域を囲む為に、CF基板20にシール剤を塗布する。また、シール剤は、TFT基板10とCF基板20を接着させる役割も担う。シール剤を塗布した後、90℃程度で数分間プレベークを行う場合がある。シール剤は熱硬化タイプとUV(Ultraviolet ray:紫外線)硬化タイプがあるが、液晶滴下注入を行う場合は、UV硬化タイプのシール剤を用いる場合が多い。   In a seal application step 960, a sealant is applied to the CF substrate 20 so as to surround the region where the liquid crystal enters. The sealing agent also plays a role of bonding the TFT substrate 10 and the CF substrate 20 together. After applying the sealing agent, pre-baking may be performed at about 90 ° C. for several minutes. There are a thermosetting type and a UV (ultraviolet ray) curing type, but when liquid crystal dropping injection is performed, a UV curing type sealing agent is often used.

次に、液晶滴下注入工程970は、液晶滴下工程と、重ね合わせ工程の2つの工程からなる。   Next, the liquid crystal dropping / injecting step 970 includes two steps, a liquid crystal dropping step and an overlaying step.

液晶滴下工程において、CF基板20に液晶を必要量滴下する。   In the liquid crystal dropping step, a required amount of liquid crystal is dropped on the CF substrate 20.

重ね合わせ工程において、液晶を滴下したCF基板20とTFT基板10を真空下で精密に重ね合わせる。重ね合わせた後、基板を大気中に取り出すことにより、大気圧で目標とするセルGAPまで潰される。その後、シール剤に紫外線(UV)を照射することで、シール剤を半硬化させる。   In the superposition process, the CF substrate 20 onto which the liquid crystal is dropped and the TFT substrate 10 are precisely superposed under vacuum. After the superposition, the substrate is taken out into the atmosphere, and is crushed to the target cell GAP at atmospheric pressure. Thereafter, the sealant is semi-cured by irradiating the sealant with ultraviolet rays (UV).

次に、加熱工程980において、150℃程度で数十分加熱し、シール剤を本硬化させると共に、液晶を一旦、等方相から液晶相に再配向させることで配向の安定性を高める。   Next, in the heating step 980, heating is carried out for several tens of minutes at about 150 ° C., the sealant is fully cured, and the alignment stability is enhanced by reorienting the liquid crystal from the isotropic phase to the liquid crystal phase.

なお、関連の先行技術文献として、ブロックポリマーでない液晶性高分子を配向膜とし液晶が充填されていない状態で磁場を印加する液晶表示装置の製造方法が記載された特許文献1、ブロック共重合体について記載された特許文献2がある。   As a related prior art document, Patent Document 1, which describes a manufacturing method of a liquid crystal display device in which a liquid crystal polymer that is not a block polymer is used as an alignment film and a magnetic field is applied in a state where the liquid crystal is not filled, is a block copolymer There is Patent Document 2 in which is described.

特公平7−54381号公報Japanese Patent Publication No. 7-54381 特開2004−124088号公報JP 2004-124088 A

上述したような従来の液晶表示装置の製造方法では、ラビング工程930A、930B起因の不良(ラビングキズ、異物の不良等)が発生し、液晶表示装置の性能が低下するという問題点があった。また、ラビング工程930A、930Bは制御因子の定量化が難しいため、工程管理が難しいという問題点があった。さらに、ラビングキズ、ラビング方向のズレや、TFT基板10とCF基板20の重ね合わせ時のズレにより、配向軸がズレ、液晶表示装置のコントラストが低下するという問題点があった。   In the conventional method for manufacturing a liquid crystal display device as described above, defects (rubbing scratches, defective foreign matter, etc.) due to the rubbing processes 930A and 930B occur, and the performance of the liquid crystal display device is degraded. Further, the rubbing processes 930A and 930B have a problem that process control is difficult because it is difficult to quantify the control factors. Further, there is a problem that the alignment axis is deviated due to rubbing scratches, rubbing direction misalignment, and misalignment when the TFT substrate 10 and the CF substrate 20 are overlapped, and the contrast of the liquid crystal display device is lowered.

この発明は、上述のような課題を解決するためになされたもので、その目的は、液晶表示装置の性能の低下を低減でき、工程管理を容易化でき、かつ液晶表示装置のコントラストを向上することができる液晶表示装置の製造方法を得るものである。   The present invention has been made to solve the above-described problems, and its object is to reduce the deterioration of the performance of the liquid crystal display device, to facilitate process management, and to improve the contrast of the liquid crystal display device. A method of manufacturing a liquid crystal display device that can be obtained is obtained.

この発明に係る液晶表示装置の製造方法は、少なくとも1つの成分に液晶性ポリマー成分を含み、この液晶性ポリマー成分にUV硬化機能成分を持たせ、溶媒に溶かしたブロックポリマーを、前記液晶性ポリマー成分が基板とは反対側になるように、アレイ基板及びカラーフィルター基板に塗布する液晶高分子塗布工程と、液晶が入る領域を囲む為に、前記カラーフィルター基板にシール剤を塗布するシール塗布工程と、前記アレイ基板及び前記カラーフィルター基板の間に液晶を充填形成する液晶形成行程と、前記液晶性ポリマー成分のガラス転移点以上の第1の所定温度で所定時間加熱し、液晶を配向させたい方向に磁場を印加する加熱・磁場配向工程と、基板間に紫外線を照射して前記ブロックポリマーをUV硬化させ、配向を固定化するUV硬化工程とを設けたものである。   The method for producing a liquid crystal display device according to the present invention comprises a liquid crystalline polymer component as at least one component, a UV curing functional component in the liquid crystalline polymer component, and a block polymer dissolved in a solvent, the liquid crystalline polymer A liquid crystal polymer coating step for applying to the array substrate and the color filter substrate so that the component is on the opposite side of the substrate, and a seal coating step for applying a sealing agent to the color filter substrate so as to surround the region where the liquid crystal enters And liquid crystal forming step of filling and forming liquid crystal between the array substrate and the color filter substrate, and heating for a predetermined time at a first predetermined temperature not lower than the glass transition point of the liquid crystalline polymer component to align the liquid crystal Heating and magnetic field orientation process that applies a magnetic field in the direction, UV irradiation between the substrates and UV curing of the block polymer to fix the orientation That is provided with a a UV curing step.

この発明に係る液晶表示装置の製造方法は、液晶表示装置の性能の低下を低減でき、工程管理を容易化でき、かつ液晶表示装置のコントラストを向上することができるという効果を奏する。   The method for manufacturing a liquid crystal display device according to the present invention has the effects that it is possible to reduce deterioration in the performance of the liquid crystal display device, facilitate process management, and improve the contrast of the liquid crystal display device.

実施の形態1.
この発明の実施の形態1に係る液晶表示装置の製造方法について図1から図4までを参照しながら説明する。図1は、この発明の実施の形態1に係る液晶表示装置の製造方法の工程を示す図である。なお、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
A method of manufacturing the liquid crystal display device according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing steps of a method for manufacturing a liquid crystal display device according to Embodiment 1 of the present invention. In addition, in each figure, the same code | symbol shows the same or equivalent part.

図1において、この発明の実施の形態1に係る液晶表示装置の製造方法は、洗浄工程110と、洗浄工程120と、液晶高分子塗布工程130と、液晶高分子塗布工程140と、導通材塗布工程150と、シール塗布工程160と、液晶滴下注入工程170と、加熱・磁場配向工程180と、UV硬化工程190とが設けられている。   In FIG. 1, the manufacturing method of the liquid crystal display device according to Embodiment 1 of the present invention includes a cleaning process 110, a cleaning process 120, a liquid crystal polymer coating process 130, a liquid crystal polymer coating process 140, and a conductive material coating. A step 150, a seal coating step 160, a liquid crystal dropping injection step 170, a heating / magnetic field alignment step 180, and a UV curing step 190 are provided.

つぎに、この実施の形態1に係る液晶表示装置の製造方法の各工程の動作について図面を参照しながら説明する。   Next, the operation of each process of the manufacturing method of the liquid crystal display device according to the first embodiment will be described with reference to the drawings.

図2は、この発明の実施の形態1に係る液晶表示装置の製造方法の液晶高分子塗布工程を示す図である。また、図3は、この発明の実施の形態1に係る液晶表示装置の製造方法の加熱・磁場配向工程及びUV硬化工程を示す図である。   FIG. 2 is a diagram showing a liquid crystal polymer coating step in the method of manufacturing the liquid crystal display device according to Embodiment 1 of the present invention. FIG. 3 is a diagram showing a heating / magnetic field alignment step and a UV curing step in the method for manufacturing the liquid crystal display device according to Embodiment 1 of the present invention.

図1において、上段の工程110〜工程150と、下段の工程120〜工程160は、上段及び下段の工程を同時進行で処理する場合もあれば、上段又は下段の工程の後、下段又は上段の工程を処理する場合もある。   In FIG. 1, the upper step 110 to the step 150 and the lower step 120 to the step 160 may process the upper step and the lower step simultaneously, or after the upper step or the lower step, the lower step or the upper step. The process may be processed.

洗浄工程110において、TFT(Thin Film Transistor:薄膜トランジスタ)アレイ工程を終了したTFT基板(アレイ基板)10を、セル工程に投入する際に、最初に洗浄する。   In the cleaning process 110, the TFT substrate (array substrate) 10 that has completed the TFT (Thin Film Transistor) array process is first cleaned when it is put into the cell process.

洗浄工程120において、CF(Color Filter:カラーフィルター)生成工程を終了したCF基板(カラーフィルター基板)20を、セル工程に投入する際に、最初に洗浄する。   In the cleaning process 120, the CF substrate (color filter substrate) 20 that has completed the CF (Color Filter) generation process is first cleaned when it is put into the cell process.

次に、液晶高分子塗布工程130、140は、塗布工程と、プレベーク工程と、本硬化工程の3つの工程からなる。   Next, the liquid crystal polymer coating steps 130 and 140 are composed of three steps: a coating step, a pre-baking step, and a main curing step.

塗布工程において、配向膜の代わりに、溶媒に溶かした液晶性高分子(液晶性ポリマー成分にUV硬化機能成分を持たせたブロックポリマー)を、TFT基板10、CF基板20に塗布して形成する。   In the coating step, instead of the alignment film, a liquid crystalline polymer dissolved in a solvent (a block polymer in which a liquid crystalline polymer component has a UV curing function component) is applied to the TFT substrate 10 and the CF substrate 20 to form. .

図2(a)に示すように、少なくとも1つの成分に液晶性ポリマー成分を含むブロックポリマー1を用いる。また、図2(b)に示すように、液晶性ポリマー成分が基板10、20と反対側(液晶側)に向くように、ブロックポリマー1及び基板表面を設計する。   As shown in FIG. 2A, a block polymer 1 containing a liquid crystalline polymer component as at least one component is used. Further, as shown in FIG. 2B, the block polymer 1 and the substrate surface are designed so that the liquid crystalline polymer component faces the side opposite to the substrates 10 and 20 (liquid crystal side).

図2(c)及び(d)に示すように、液晶を配向させる為の成分(液晶性ポリマー成分)1aが上を向く、つまり基板10、20と反対側(液晶側)に向くようにする。必要に応じて、液晶を配向させる為の成分1aとは異なる成分1b、1cと相性の良い物質(界面調整膜)2を基板10、20に塗布することで、液晶性ポリマー成分1aが上を向くことを実現する。なお、図2(e)は、液晶を配向させる為の成分(液晶性ポリマー成分)1aが上を向いていない例を示す。   As shown in FIGS. 2 (c) and 2 (d), the component (liquid crystalline polymer component) 1a for aligning the liquid crystal faces upward, that is, faces the side opposite to the substrates 10 and 20 (liquid crystal side). . If necessary, the liquid crystalline polymer component 1a is raised by applying to the substrates 10 and 20 a substance (interface adjustment film) 2 that is compatible with the components 1b and 1c different from the component 1a for aligning the liquid crystal. Realize facing. FIG. 2 (e) shows an example in which the component (liquid crystalline polymer component) 1a for aligning the liquid crystal does not face upward.

プレベーク工程において、塗布した液晶性高分子(液晶性ポリマー成分にUV硬化機能成分を持たせたブロックポリマー)から溶媒を飛ばす為に、60〜100℃程度で数分間加熱する。多くはホットプレート方式又はオーブン式である。   In the pre-baking step, heating is performed at about 60 to 100 ° C. for several minutes in order to remove the solvent from the applied liquid crystalline polymer (block polymer in which the liquid crystalline polymer component has a UV curing function component). Most are hot plate type or oven type.

本硬化工程において、ブロックポリマー1とガラス基板との密着を向上させる為に、百数十℃で数十分加熱する。   In the main curing step, heating is performed at several hundreds of degrees Celsius for several tens of degrees in order to improve the adhesion between the block polymer 1 and the glass substrate.

次に、導通材塗布工程150において、TFT基板10とCF基板20の導通を取る為、TFT基板10にAgペースト等の導通材を点状に塗布する。なお、IPSモードでは不要である。   Next, in the conductive material application process 150, a conductive material such as an Ag paste is applied to the TFT substrate 10 in a dot shape in order to establish conduction between the TFT substrate 10 and the CF substrate 20. Note that this is not necessary in the IPS mode.

シール塗布工程160において、液晶が入る領域を囲む為に、CF基板20にシール剤を塗布する。また、シール剤は、TFT基板10とCF基板20を接着させる役割も担う。シール剤を塗布した後、90℃程度で数分間プレベークを行う場合がある。シール剤は熱硬化タイプとUV(Ultraviolet ray:紫外線)硬化タイプがあるが、液晶滴下注入を行う場合は、UV硬化タイプのシール剤を用いる。   In the seal application process 160, a sealant is applied to the CF substrate 20 so as to surround the region where the liquid crystal enters. The sealing agent also plays a role of bonding the TFT substrate 10 and the CF substrate 20 together. After applying the sealing agent, pre-baking may be performed at about 90 ° C. for several minutes. There are a thermosetting type and a UV (ultraviolet ray) curing type, but when performing liquid crystal drop injection, a UV curing type sealing agent is used.

次に、液晶滴下注入工程170は、液晶滴下工程と、重ね合わせ工程の2つの工程からなる。   Next, the liquid crystal dropping / injecting step 170 includes two steps of a liquid crystal dropping step and an overlaying step.

液晶滴下工程において、CF基板20に液晶を必要量滴下する。   In the liquid crystal dropping step, a required amount of liquid crystal is dropped on the CF substrate 20.

重ね合わせ工程において、液晶を滴下したCF基板20とTFT基板10を真空下で精密に重ね合わせる。重ね合わせた後、基板を大気中に取り出すことにより、大気圧で目標とするセルGAPまで潰される。その後、シール剤に紫外線(UV)を照射することで、シール剤を半硬化させる。   In the superposition process, the CF substrate 20 onto which the liquid crystal is dropped and the TFT substrate 10 are precisely superposed under vacuum. After the superposition, the substrate is taken out into the atmosphere, and is crushed to the target cell GAP at atmospheric pressure. Thereafter, the sealant is semi-cured by irradiating the sealant with ultraviolet rays (UV).

次に、加熱・磁場配向工程180において、150℃程度で数十分加熱し、シール剤を本硬化させると共に、液晶を配向させたい方向に磁場を印加しながら、除冷することで、非接触配向を実現する。   Next, in the heating / magnetic field alignment step 180, heating is performed at about 150 ° C. for several tens of minutes, the sealant is fully cured, and the liquid crystal is applied in the direction in which the liquid crystal is to be aligned. Realize orientation.

図3(a)に示すように、液晶3の充填後に、液晶性ポリマー成分のガラス転移点Tg以上の温度、例えば、150℃で30分加熱し、1℃/minで常温まで除冷し、加熱開始から除冷終了までの間、永久磁石や超電導磁石により、例えば、5T(テスラー)の磁場を印加することで配向処理を行う。つまり、液晶性ポリマー成分のガラス転移点Tgより高い温度から、このガラス転移点Tg及び液晶の転移点NIよりも低い温度まで除冷させながら、磁場を印加する。磁場はガラス転移点Tgより高い温度からガラス転移点Tg及び液晶の転移点NIより低い温度まで印加し続ける。なお、液晶が充填されていない状態で磁場を印加してもよい。   As shown in FIG. 3 (a), after the liquid crystal 3 is filled, the liquid crystalline polymer component is heated to a temperature equal to or higher than the glass transition point Tg, for example, at 150 ° C. for 30 minutes, and cooled to room temperature at 1 ° C./min. From the start of heating to the end of cooling, the orientation treatment is performed by applying a magnetic field of 5T (Tessler), for example, with a permanent magnet or a superconducting magnet. That is, a magnetic field is applied while cooling from a temperature higher than the glass transition point Tg of the liquid crystalline polymer component to a temperature lower than the glass transition point Tg and the liquid crystal transition point NI. The magnetic field is continuously applied from a temperature higher than the glass transition point Tg to a temperature lower than the glass transition point Tg and the liquid crystal transition point NI. Note that the magnetic field may be applied in a state where the liquid crystal is not filled.

次に、UV硬化工程190において、均一配向が得られた段階で、基板10、20の間に紫外線(UV)を照射することで、液晶高分子(ブロックポリマー)がUV硬化し、配向を固定化する。   Next, in the UV curing process 190, when the uniform alignment is obtained, the liquid crystal polymer (block polymer) is UV cured and fixed in alignment by irradiating ultraviolet rays (UV) between the substrates 10 and 20. Turn into.

図3(b)に示すように、ブロックポリマーにUV硬化機能成分を持たせ、磁場配向により均一配向を得た後、例えば、数百〜数万mJ(ミリジュール)の紫外線(UV)を照射してUV硬化することで、配向安定性を高める。このUV照射は、液晶性ポリマー成分のガラス転移点Tg及び液晶の転移点NIよりも低い温度で照射し、配向を固定化する。なお、UV照射は、磁場を印加しない状態でも良いが、磁場を印加したままの状態で行うと配向がより均一となる。   As shown in FIG. 3B, the block polymer is provided with a UV curing functional component, and after obtaining a uniform orientation by magnetic field orientation, for example, irradiation with ultraviolet rays (UV) of several hundred to tens of thousands mJ (millijoule) is performed. Then, UV-curing improves alignment stability. This UV irradiation is performed at a temperature lower than the glass transition point Tg of the liquid crystalline polymer component and the transition point NI of the liquid crystal to fix the alignment. The UV irradiation may be performed in a state where no magnetic field is applied, but the alignment becomes more uniform when performed while the magnetic field is applied.

図4は、この発明の実施の形態1に係る液晶表示装置の製造方法の別の工程を示す図である。   FIG. 4 is a diagram showing another process of the method of manufacturing the liquid crystal display device according to Embodiment 1 of the present invention.

図4において、この発明の実施の形態1に係る液晶表示装置の製造方法は、洗浄工程110と、洗浄工程120と、液晶高分子塗布工程130と、液晶高分子塗布工程140と、導通材塗布工程150と、シール塗布工程160と、加熱・磁場配向工程180と、UV硬化工程190とが設けられ、さらに、液晶滴下注入工程170の代わりに、貼り合わせ工程210と、加熱・圧着工程220と、ガラス切断工程230と、液晶注入工程240と、封止工程250とが設けられている。   4, the manufacturing method of the liquid crystal display device according to the first embodiment of the present invention includes a cleaning process 110, a cleaning process 120, a liquid crystal polymer coating process 130, a liquid crystal polymer coating process 140, and a conductive material coating. A step 150, a seal coating step 160, a heating / magnetic field orientation step 180, and a UV curing step 190 are provided. Further, instead of the liquid crystal dropping injection step 170, a bonding step 210, a heating / crimping step 220, A glass cutting step 230, a liquid crystal injection step 240, and a sealing step 250 are provided.

貼り合わせ工程210〜封止工程250の概略は次の通りである。   The outline of the bonding process 210 to the sealing process 250 is as follows.

シール塗布工程160の後、TFT基板10上に、CF基板20を載せて貼り合わせる。圧力を加えながら熱を加えてシール剤を固める。その後、マザーガラス基板を液晶セル(パネル)単位又は短冊状に切断する。続いて、液晶セルの2枚のガラス基板を真空に保ち毛細管現象を利用して液晶を注入口から注入する。液晶注入が終了したら注入口を閉じる(封止)。   After the seal coating process 160, the CF substrate 20 is placed on the TFT substrate 10 and bonded thereto. Heat is applied while applying pressure to harden the sealant. Thereafter, the mother glass substrate is cut into liquid crystal cell (panel) units or strips. Subsequently, the two glass substrates of the liquid crystal cell are kept in vacuum, and liquid crystal is injected from the injection port by utilizing capillary action. When the liquid crystal injection is completed, the injection port is closed (sealing).

この発明の実施の形態1に係る液晶表示装置の製造方法によれば、配向処理は磁場によって行う為、つまり、非接触配向で行う為、ラビングによる傷がなく、コントラスト及び歩留りを向上することができる。液晶充填後に、加熱・磁場印加によって配向処理を行う為、つまり、ラビング工程930A、930Bの廃止、ラビング後の洗浄工程940A、940Bの廃止、液晶滴下注入後のアニールと磁場配向を同時に行うことにより、全体の工程TAT(Turn Around Time)を短縮すると共にコストダウンを実現することができる。また、液晶充填後に、配向処理を実施するので、ラビング工程930A、930Bで見られる配向軸のズレ(ラビング方向のズレ、重ねズレ)がなく、コントラストを向上することができる。さらに、磁場配向では、磁場強度、温度、時間、平行度、角度など制御可能な因子で管理できる。   According to the manufacturing method of the liquid crystal display device according to the first embodiment of the present invention, since the alignment process is performed by a magnetic field, that is, non-contact alignment, there is no damage due to rubbing, and the contrast and yield can be improved. it can. In order to perform alignment treatment by heating and applying a magnetic field after filling the liquid crystal, that is, by eliminating the rubbing steps 930A and 930B, by eliminating the cleaning steps 940A and 940B after rubbing, and simultaneously performing annealing and magnetic field alignment after liquid crystal drop injection. The overall process TAT (Turn Around Time) can be shortened and the cost can be reduced. In addition, since the alignment treatment is performed after filling the liquid crystal, there is no alignment axis shift (rubbing direction shift or overlap shift) seen in the rubbing steps 930A and 930B, and contrast can be improved. Furthermore, the magnetic field orientation can be managed by controllable factors such as magnetic field strength, temperature, time, parallelism, and angle.

この発明の実施の形態1に係る液晶表示装置の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of the liquid crystal display device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る液晶表示装置の製造方法の液晶高分子塗布工程を示す図である。It is a figure which shows the liquid crystal polymer application | coating process of the manufacturing method of the liquid crystal display device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る液晶表示装置の製造方法の加熱・磁場配向工程及びUV硬化工程を示す図である。It is a figure which shows the heating and magnetic field orientation process and UV hardening process of the manufacturing method of the liquid crystal display device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る液晶表示装置の製造方法の別の工程を示す図である。It is a figure which shows another process of the manufacturing method of the liquid crystal display device which concerns on Embodiment 1 of this invention. 従来の液晶表示装置の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of the conventional liquid crystal display device. 従来の液晶表示装置の製造方法のラビング工程を示す図である。It is a figure which shows the rubbing process of the manufacturing method of the conventional liquid crystal display device.

符号の説明Explanation of symbols

1 ブロックポリマー、1a 液晶性ポリマー成分、10 TFT基板、20 CF基板、110 洗浄工程、120 洗浄工程、130 液晶高分子塗布工程、140 液晶高分子塗布工程、150 導通材塗布工程、160 シール塗布工程、170 液晶適下注入工程、180 加熱・磁場配向工程、190 UV硬化工程、210 貼り合わせ工程、220 加熱・圧着工程、230 ガラス切断工程、240 液晶注入工程、250 封止工程。   1 block polymer, 1a liquid crystalline polymer component, 10 TFT substrate, 20 CF substrate, 110 cleaning process, 120 cleaning process, 130 liquid crystal polymer coating process, 140 liquid crystal polymer coating process, 150 conductive material coating process, 160 seal coating process , 170 liquid crystal injection step, 180 heating / magnetic field alignment step, 190 UV curing step, 210 bonding step, 220 heating / compression step, 230 glass cutting step, 240 liquid crystal injection step, 250 sealing step.

Claims (6)

少なくとも1つの成分に液晶性ポリマー成分を含み、この液晶性ポリマー成分にUV硬化機能成分を持たせ、溶媒に溶かしたブロックポリマーを、前記液晶性ポリマー成分が基板とは反対側になるように、アレイ基板及びカラーフィルター基板に塗布する液晶高分子塗布工程と、
液晶が入る領域を囲む為に、前記カラーフィルター基板にシール剤を塗布するシール塗布工程と、
前記アレイ基板及び前記カラーフィルター基板の間に液晶を充填形成する液晶形成行程と、
前記液晶性ポリマー成分のガラス転移点以上の第1の所定温度で所定時間加熱し、液晶を配向させたい方向に磁場を印加する加熱・磁場配向工程と、
基板間に紫外線を照射して前記ブロックポリマーをUV硬化させ、配向を固定化するUV硬化工程と
を含むことを特徴とする液晶表示装置の製造方法。
A liquid crystal polymer component is included in at least one component, and this liquid crystal polymer component has a UV curing functional component, and a block polymer dissolved in a solvent is disposed so that the liquid crystal polymer component is opposite to the substrate. A liquid crystal polymer coating step for coating the array substrate and the color filter substrate;
A seal application step of applying a sealant to the color filter substrate in order to surround an area where liquid crystal enters;
A liquid crystal forming step of filling and forming liquid crystal between the array substrate and the color filter substrate;
Heating and magnetic field orientation step of heating for a predetermined time at a first predetermined temperature not lower than the glass transition point of the liquid crystalline polymer component and applying a magnetic field in the direction in which the liquid crystal is to be aligned;
And a UV curing step of fixing the orientation by irradiating ultraviolet rays between the substrates to UV cure the block polymer.
前記液晶高分子塗布工程の前に、前記アレイ基板及び前記カラーフィルター基板を洗浄する洗浄工程をさらに含む
ことを特徴とする請求項1記載の液晶表示装置の製造方法。
The method for manufacturing a liquid crystal display device according to claim 1, further comprising a cleaning step of cleaning the array substrate and the color filter substrate before the liquid crystal polymer coating step.
前記液晶高分子塗布工程は、
前記ブロックポリマーを、前記アレイ基板及び前記カラーフィルター基板に塗布する塗布工程と、
塗布したブロックポリマーから溶媒を飛ばす為に、第2の所定温度で数分間加熱するプレベーク工程と、
前記ブロックポリマーとガラス基板との密着を向上させる為に、第3の所定温度で数十分間加熱する本硬化工程とを含む
ことを特徴とする請求項1記載の液晶表示装置の製造方法。
The liquid crystal polymer coating step includes
An application step of applying the block polymer to the array substrate and the color filter substrate;
A pre-baking step of heating at a second predetermined temperature for several minutes in order to remove the solvent from the applied block polymer;
The method of manufacturing a liquid crystal display device according to claim 1, further comprising: a main curing step of heating for several tens of minutes at a third predetermined temperature in order to improve adhesion between the block polymer and the glass substrate.
前記液晶高分子塗布工程の後に、前記アレイ基板及び前記カラーフィルター基板の導通を取る為、前記アレイ基板に導通材を塗布する導通材塗布工程をさらに含む
ことを特徴とする請求項1記載の液晶表示装置の製造方法。
2. The liquid crystal according to claim 1, further comprising a conductive material applying step of applying a conductive material to the array substrate in order to establish conduction between the array substrate and the color filter substrate after the liquid crystal polymer applying step. Manufacturing method of display device.
前記液晶形成行程は、液晶滴下注入工程であり、
前記カラーフィルター基板に液晶を必要量滴下する液晶滴下工程と、
液晶を滴下したカラーフィルター基板と前記アレイ基板を真空下で重ね合わせる重ね合わせ工程とを含む
ことを特徴とする請求項1記載の液晶表示装置の製造方法。
The liquid crystal forming step is a liquid crystal dropping injection step,
A liquid crystal dropping step of dropping a required amount of liquid crystal on the color filter substrate;
The method for manufacturing a liquid crystal display device according to claim 1, further comprising an overlaying step of overlaying the color filter substrate onto which the liquid crystal is dropped and the array substrate under vacuum.
前記液晶形成行程は、
前記アレイ基板上に、前記カラーフィルター基板を載せて貼り合わせる貼り合わせ工程と、
圧力を加えながら熱を加えてシール剤を固める加熱・圧着工程と、
マザーガラス基板を液晶セル単位に切断するガラス切断工程と、
液晶セルの2枚のガラス基板を真空に保ち毛細管現象を利用して液晶を注入口から注入する液晶注入工程と、
液晶注入が終了したら注入口を閉じる封止工程とを含む
ことを特徴とする請求項1記載の液晶表示装置の製造方法。
The liquid crystal forming process includes:
A bonding step of attaching the color filter substrate on the array substrate and bonding them together,
A heating and pressure bonding process in which heat is applied while applying pressure to harden the sealant;
A glass cutting step of cutting the mother glass substrate into liquid crystal cell units;
A liquid crystal injecting step of injecting liquid crystal from the inlet using capillary action while keeping the two glass substrates of the liquid crystal cell in a vacuum;
The method for manufacturing a liquid crystal display device according to claim 1, further comprising: a sealing step of closing the injection port when the liquid crystal injection is completed.
JP2008219026A 2008-08-28 2008-08-28 Manufacturing method of liquid crystal display device Expired - Fee Related JP5358143B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008219026A JP5358143B2 (en) 2008-08-28 2008-08-28 Manufacturing method of liquid crystal display device
KR1020090077557A KR101630321B1 (en) 2008-08-28 2009-08-21 method of fabricating liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219026A JP5358143B2 (en) 2008-08-28 2008-08-28 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2010054753A true JP2010054753A (en) 2010-03-11
JP5358143B2 JP5358143B2 (en) 2013-12-04

Family

ID=42070753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219026A Expired - Fee Related JP5358143B2 (en) 2008-08-28 2008-08-28 Manufacturing method of liquid crystal display device

Country Status (2)

Country Link
JP (1) JP5358143B2 (en)
KR (1) KR101630321B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120042169A (en) 2010-10-22 2012-05-03 삼성모바일디스플레이주식회사 Liquid crystal display and manufacturing method of the same
JP5650001B2 (en) * 2011-02-08 2015-01-07 エルジー ディスプレイ カンパニー リミテッド Manufacturing method of liquid crystal display device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136024A (en) * 1986-11-28 1988-06-08 Matsushita Electric Ind Co Ltd Liquid crystal orientation film and production thereof
JPH0754381B2 (en) * 1984-08-07 1995-06-07 セイコーエプソン株式会社 Liquid crystal display manufacturing method
JPH07152035A (en) * 1993-11-30 1995-06-16 Kuraray Co Ltd Organic polymer structure and its production
JPH08194225A (en) * 1995-01-13 1996-07-30 Seiko Epson Corp Method for correcting orientation of liquid crystal and device for correcting orienation of liquid crystal
JPH11133430A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Liquid crystal alignment layer and its production as well as liquid crystal element
JP2005086126A (en) * 2003-09-11 2005-03-31 Advanced Display Inc Method for manufacturing stage, hot plate, processing machine, and electronic device
JP2005338613A (en) * 2004-05-28 2005-12-08 Fujitsu Display Technologies Corp Liquid crystal display device and method for manufacturing the same
JP2006078718A (en) * 2004-09-09 2006-03-23 Fuji Photo Film Co Ltd Optically anisotropic membrane, its manufacturing method, and liquid crystal display
JP2006215326A (en) * 2005-02-04 2006-08-17 Sharp Corp Liquid crystal display device
JP2008158187A (en) * 2006-12-22 2008-07-10 Sony Corp Liquid crystal display element and method of manufacturing the same
JP2009139455A (en) * 2007-12-04 2009-06-25 Sony Corp Vertical alignment film and method of manufacturing the same, vertical alignment substrate and method of manufacturing the same, and liquid crystal display element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166831B1 (en) * 2005-09-27 2012-07-23 엘지디스플레이 주식회사 Method and apparatus of fabricating liquid crystal display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754381B2 (en) * 1984-08-07 1995-06-07 セイコーエプソン株式会社 Liquid crystal display manufacturing method
JPS63136024A (en) * 1986-11-28 1988-06-08 Matsushita Electric Ind Co Ltd Liquid crystal orientation film and production thereof
JPH07152035A (en) * 1993-11-30 1995-06-16 Kuraray Co Ltd Organic polymer structure and its production
JPH08194225A (en) * 1995-01-13 1996-07-30 Seiko Epson Corp Method for correcting orientation of liquid crystal and device for correcting orienation of liquid crystal
JPH11133430A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Liquid crystal alignment layer and its production as well as liquid crystal element
JP2005086126A (en) * 2003-09-11 2005-03-31 Advanced Display Inc Method for manufacturing stage, hot plate, processing machine, and electronic device
JP2005338613A (en) * 2004-05-28 2005-12-08 Fujitsu Display Technologies Corp Liquid crystal display device and method for manufacturing the same
JP2006078718A (en) * 2004-09-09 2006-03-23 Fuji Photo Film Co Ltd Optically anisotropic membrane, its manufacturing method, and liquid crystal display
JP2006215326A (en) * 2005-02-04 2006-08-17 Sharp Corp Liquid crystal display device
JP2008158187A (en) * 2006-12-22 2008-07-10 Sony Corp Liquid crystal display element and method of manufacturing the same
JP2009139455A (en) * 2007-12-04 2009-06-25 Sony Corp Vertical alignment film and method of manufacturing the same, vertical alignment substrate and method of manufacturing the same, and liquid crystal display element

Also Published As

Publication number Publication date
JP5358143B2 (en) 2013-12-04
KR20100026997A (en) 2010-03-10
KR101630321B1 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
JP3658604B2 (en) Manufacturing method of liquid crystal panel
JP4173380B2 (en) Liquid crystal display element and manufacturing method thereof
USRE46146E1 (en) Liquid crystal display device and method of manufacturing the same
JP3950987B2 (en) Manufacturing method of liquid crystal display device
JP4420869B2 (en) Method for forming alignment film of liquid crystal display device
JP2007148449A (en) Liquid crystal display device
JP5358143B2 (en) Manufacturing method of liquid crystal display device
KR101192773B1 (en) Method For Fabricating Liquid Crystal Display Device
JP2004053851A (en) Method for manufacturing liquid crystal display device
JP2010224094A (en) Method of manufacturing electrooptical device
KR101384453B1 (en) Liquid crystal display manufacturing apparatus and liquid crystal display manufacturing method
JP5416537B2 (en) Manufacturing method of liquid crystal display device
US8873003B2 (en) Liquid crystal display device and manufacture method thereof
KR101325218B1 (en) Manufacturing mthod of flexible panel
KR101747715B1 (en) Method for manufacturing of liquid crystal display device
JP4370788B2 (en) Manufacturing method of electro-optical device
JP3888104B2 (en) Liquid crystal device and manufacturing method thereof
JP2005148523A (en) Manufacturing method of liquid crystal display device
KR100243273B1 (en) Manufacturing method for LCD
JPH10104562A (en) Production of liquid crystal display and apparatus for production
JP2001222016A (en) Liquid crystal display panel and its manufacturing method
JP2010054749A (en) Liquid crystal display panel and method of manufacturing the same
JP2009168972A (en) Method of manufacturing liquid crystal display panel
JP4324729B2 (en) Manufacturing method of liquid crystal element
KR20080059016A (en) Method for manufacturing liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees