JP2010054739A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2010054739A
JP2010054739A JP2008218785A JP2008218785A JP2010054739A JP 2010054739 A JP2010054739 A JP 2010054739A JP 2008218785 A JP2008218785 A JP 2008218785A JP 2008218785 A JP2008218785 A JP 2008218785A JP 2010054739 A JP2010054739 A JP 2010054739A
Authority
JP
Japan
Prior art keywords
voltage
discharge
developing roller
photosensitive drum
image formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008218785A
Other languages
Japanese (ja)
Other versions
JP5193747B2 (en
Inventor
Kensuke Fujiwara
研介 藤原
Akane Tokushige
あかね 徳重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2008218785A priority Critical patent/JP5193747B2/en
Priority to US12/546,845 priority patent/US7979011B2/en
Publication of JP2010054739A publication Critical patent/JP2010054739A/en
Application granted granted Critical
Publication of JP5193747B2 publication Critical patent/JP5193747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing For Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image forming apparatus that measures a potential difference between the photoreceptor drum and a developing roller, which cause discharge, while suppressing cracking of a photoreceptive layer of a photoreceptor drum and, at the same time. <P>SOLUTION: The image forming apparatus 1 includes: the photoreceptor drum 9; a developing roller 81 to which a DC voltage application section 85 and an AC voltage application section 86 are connected; a detecting section 14 for detecting discharge between the developing roller 81 and the photoreceptor drum 9; and a control section 10. The control section 10 instructs the AC voltage application section 86 to gradually change an AC voltage applied to the developing roller 81. When the detecting section 14 detects discharge, the AC voltage application section 86 applies an AC voltage to the developing roller 81, the AC voltage being set such that a duty ratio is smaller than that for image formation and a frequency is lower than that for image formation so that the plus side time is equal to that for image formation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複写機、プリンタ、ファクシミリ等の画像形成装置に関する。   The present invention relates to an image forming apparatus such as a copying machine, a printer, and a facsimile.

従来から、複写機、プリンタ、ファクシミリ等のトナーを用いる画像形成装置では、感光体ドラムと対向する現像ローラとが、ギャップを設けて配されることがある。そして、現像ローラには、直流と交流が重畳された、いわゆる現像バイアスが印加され、帯電したトナーが現像ローラから感光体ドラムに飛翔し、静電潜像が現像される。   2. Description of the Related Art Conventionally, in an image forming apparatus using toner such as a copying machine, a printer, and a facsimile, a developing roller facing a photosensitive drum is sometimes provided with a gap. A so-called developing bias in which direct current and alternating current are superimposed is applied to the developing roller, and the charged toner flies from the developing roller to the photosensitive drum, and the electrostatic latent image is developed.

ここで、十分にトナーを感光体ドラムに供給し、形成される画像の濃度を確保し、現像効率を高めるには、現像ローラに印加する交流電圧のピーク間電圧(ピークトゥピーク)を大きくすればよいが、大きくしすぎると感光体ドラムと現像ローラ間のギャップで放電が発生する。放電が発生すると、感光体ドラム表面の電位変化により静電潜像が乱れ、形成される画像の品質が劣化する。   Here, in order to sufficiently supply the toner to the photosensitive drum, to ensure the density of the formed image and to improve the development efficiency, the peak-to-peak voltage of the AC voltage applied to the developing roller should be increased. However, if it is too large, discharge occurs in the gap between the photosensitive drum and the developing roller. When the discharge occurs, the electrostatic latent image is disturbed due to the potential change on the surface of the photosensitive drum, and the quality of the formed image is deteriorated.

そこで、例えば、特許文献1には、像担持体と現像領域において所要間隔を介して対向するトナー担持体を設け、このトナー担持体と像担持体との間に直流電圧と交流電圧とが重畳された現像バイアス電圧を印加させて、トナー担持体に保持されたトナーを像担持体に供給して静電潜像を現像する現像装置において、像担持体とトナー担持体との間に印加させるリーク検知電圧を変化させて像担持体とトナー担持体との間にリークを発生させるリーク発生手段と、リークを検知するリーク検知手段とを設け、リーク検知電圧と像担持体の表面電位との最大の電位差ΔVmaxを徐々に増加させて、像担持体とトナー担持体との間に流れる電流が連続して増加した場合、リーク検知手段によってリークと判断する現像装置が記載されている(例えば、特許文献1:請求項1等参照)。このような現像装置によれば、放電(リーク)が生じる像担持体とトナー担持体間の電位差を測定することができる。
特許第3815356号公報
Therefore, for example, Patent Document 1 provides a toner carrier that is opposed to the image carrier with a required distance in the development region, and a DC voltage and an AC voltage are superimposed between the toner carrier and the image carrier. In the developing device that applies the developed developing bias voltage and supplies the toner held on the toner carrier to the image carrier to develop the electrostatic latent image, it is applied between the image carrier and the toner carrier. Leak generation means for generating a leak between the image carrier and the toner carrier by changing the leak detection voltage and a leak detection means for detecting the leak are provided, and the leak detection voltage and the surface potential of the image carrier are A developing device is described in which when the maximum potential difference ΔVmax is gradually increased and the current flowing between the image carrier and the toner carrier continuously increases, the leak detection means determines that the leak has occurred (example) In Patent Document 1: see Japanese claim 1). According to such a developing device, it is possible to measure the potential difference between the image carrier and the toner carrier where discharge (leakage) occurs.
Japanese Patent No. 3815356

ここで、図10に、感光体ドラムと現像ローラ間の電位差と、感光体ドラムと現像ローラ間に流れる放電電流との関係を示す。図10に示すよう、現像ローラが感光体ドラムよりも電位が低い条件(マイナス方向)では、現像ローラと感光体ドラム間の電位差がある閾値を超えると放電電流が急激に増加し、現像ローラが感光体ドラムよりも電位が高い条件(プラス方向)では、現像ローラと感光体ドラム間の電位差がある閾値を超えても放電電流は緩やかに増加するといった特性が確認されている。このような特性は、感光体ドラムが有する感光層がアモルファスシリコンで構成される場合に生じやすい(他の材質であっても生じる可能性はある)。   Here, FIG. 10 shows the relationship between the potential difference between the photosensitive drum and the developing roller and the discharge current flowing between the photosensitive drum and the developing roller. As shown in FIG. 10, under the condition that the potential of the developing roller is lower than that of the photosensitive drum (in the negative direction), the discharge current increases rapidly when the potential difference between the developing roller and the photosensitive drum exceeds a certain threshold value. It has been confirmed that the discharge current gradually increases even when the potential difference between the developing roller and the photosensitive drum exceeds a certain threshold value under a condition where the potential is higher than that of the photosensitive drum (in the positive direction). Such a characteristic is likely to occur when the photosensitive layer of the photosensitive drum is made of amorphous silicon (it may occur even with other materials).

上記特許文献1の現像装置では、リーク検知電圧を変化させてマイナス方向に放電が発生する可能性があり、そのとき上記特性によって大電流の放電電流が流れ、感光層にドラムピンホールといわれる微小な穴が形成されて感光層の破壊が生じる可能性が高い。ドラムピンホールが形成されると、その部分に電荷を留まらせることができないため、画像形成時の画質異常につながる。   In the developing device described in Patent Document 1, there is a possibility that discharge will occur in the negative direction by changing the leak detection voltage. At that time, a large discharge current flows due to the above characteristics, and a minute pin called a drum pinhole flows in the photosensitive layer. There is a high possibility that the photosensitive layer will be destroyed by forming a hole. If a drum pinhole is formed, the charge cannot be retained in that portion, leading to an image quality abnormality during image formation.

本発明は、上記問題点を鑑み、感光体ドラムの感光層の破壊を抑えつつ、放電が生じる感光体ドラムと現像ローラ間の電位差を測定できる画像形成装置を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an image forming apparatus capable of measuring a potential difference between a photosensitive drum and a developing roller where discharge occurs while suppressing destruction of a photosensitive layer of the photosensitive drum.

上記目的を達成するために請求項1に係る画像形成装置は、周面にトナー像を担持する感光体ドラムと、
前記感光体ドラムにギャップが設けられつつ対向し、画像形成時にトナーを担持し、前記感光体ドラムへのトナーの供給のため、直流電圧印加部と、交流電圧印加部が接続される現像ローラと、
前記現像ローラと前記感光体ドラム間での放電発生を検出する検出部と、
装置の各部を制御するとともに、前記検出部の出力が入力され放電発生を認識する制御部と、を有し、
前記制御部が前記現像ローラに印加する交流電圧の段階的な変更を前記交流電圧印加部に指示し、前記検出部により放電の発生を検出する放電発生検出時に、
前記交流電圧印加部は、画像形成時よりデューティ比が小さく、プラス側時間が画像形成時と同じになるよう周波数が画像形成時より小さく設定された交流電圧を前記現像ローラに印加する構成とした。
In order to achieve the above object, an image forming apparatus according to claim 1 includes a photosensitive drum carrying a toner image on a peripheral surface,
A direct current voltage application unit and a developing roller to which an alternating voltage application unit is connected to face the photoconductive drum with a gap, carry a toner during image formation, and supply the toner to the photoconductive drum. ,
A detector for detecting the occurrence of discharge between the developing roller and the photosensitive drum;
A control unit that controls each part of the device and recognizes the occurrence of discharge when the output of the detection unit is input;
Instructing the AC voltage application unit to change the AC voltage applied to the developing roller by the control unit to the AC voltage application unit, and detecting the occurrence of discharge by the detection unit,
The AC voltage application unit is configured to apply an AC voltage having a smaller duty ratio than that at the time of image formation and a frequency set to be lower than that at the time of image formation to the developing roller so that the plus time is the same as that at the time of image formation. .

このような構成によれば、放電が発生する現像ローラと感光体ドラム間の電位差を把握するため、現像ローラに印加する交流電圧を変化させつつ放電の発生を検出、確認する場合、画像形成時よりデューティ比が小さく、プラス側時間が画像形成時と同じになるよう周波数が画像形成時より小さく設定された交流電圧を現像ローラに印加させる。   According to such a configuration, in order to grasp the potential difference between the developing roller where the discharge occurs and the photosensitive drum, when the occurrence of the discharge is detected and confirmed while changing the AC voltage applied to the developing roller, when the image is formed An AC voltage having a smaller duty ratio and a frequency set to be smaller than that at the time of image formation is applied to the developing roller so that the plus time is the same as that at the time of image formation.

放電発生検出時の交流電圧のデューティ比を画像形成時よりも小さくすることで、交流電圧におけるプラス側ピーク値と面積中心、つまり直流電圧印加部による直流バイアスとの差を大きくすることができる。従って、交流電圧のプラス側ピーク値と感光体ドラム表面電位との電位差を大きくでき、プラス方向(感光体ドラムより現像ローラの電位が高い状態)で現像ローラと感光体ドラム間の放電を起こすことができる。前述したように、プラス方向に放電した場合、現像ローラと感光体ドラム間に急激に電流が流れないような特性を感光体ドラムが有する場合、プラス方向の放電により感光体ドラムにドラムピンホールが形成され感光層が破壊されるおそれはほとんどない。つまり、感光体ドラムの感光層の破壊を抑えつつ、放電が生じる感光体ドラムと現像ローラ間の電位差を測定することができるのである。   By making the duty ratio of the alternating voltage at the occurrence of discharge detection smaller than that at the time of image formation, it is possible to increase the difference between the positive side peak value and the area center in the alternating voltage, that is, the direct current bias by the direct current voltage application unit. Therefore, the potential difference between the positive peak value of the AC voltage and the surface potential of the photosensitive drum can be increased, and a discharge occurs between the developing roller and the photosensitive drum in the positive direction (a state where the potential of the developing roller is higher than that of the photosensitive drum). Can do. As described above, when the photosensitive drum has such a characteristic that current does not flow suddenly between the developing roller and the photosensitive drum when discharged in the plus direction, a drum pinhole is formed in the photosensitive drum due to the positive discharge. There is almost no risk that the formed photosensitive layer will be destroyed. That is, it is possible to measure the potential difference between the photosensitive drum and the developing roller, where discharge occurs, while suppressing the destruction of the photosensitive layer of the photosensitive drum.

又、プラス側時間が画像形成時と同じになるよう周波数が画像形成時より小さく設定された交流電圧を現像ローラに印加させるので、交流電圧の立上り及び立下りに時間がかかったとしても、交流電圧のプラス側ピークの時間を画像形成時と同様に確保でき、放電発生検出時の交流電圧の印加状態を画像形成時に合わせることができる。   In addition, since an AC voltage whose frequency is set smaller than that at the time of image formation is applied to the developing roller so that the plus side time is the same as that at the time of image formation, even if it takes time to rise and fall of the AC voltage, the AC voltage The positive peak time of the voltage can be ensured in the same manner as in the image formation, and the application state of the AC voltage when the occurrence of discharge is detected can be matched during the image formation.

又、請求項2に係る発明は、請求項1に係る発明において、前記現像ローラに対向して設けられ、正極性に帯電されたトナーを保持する磁気ローラをさらに備え、
前記放電発生検出時に、前記制御部は、前記直流電圧印加部に画像形成時よりも高い直流電圧を前記現像ローラに印加させる構成とした。このような構成によれば、トナーが正極性に帯電されるので、放電発生検出時に磁気ローラから現像ローラへトナーが供給されてしまうことを抑えることができる。
The invention according to claim 2 further comprises a magnetic roller provided in the invention according to claim 1 so as to be opposed to the developing roller and holding toner charged positively.
When the occurrence of discharge is detected, the control unit causes the DC voltage application unit to apply a higher DC voltage to the developing roller than during image formation. According to such a configuration, since the toner is positively charged, it is possible to prevent the toner from being supplied from the magnetic roller to the developing roller when the occurrence of discharge is detected.

又、請求項3に係る発明は、請求項1又は請求項2に係る発明において、前記放電発生検出時に放電が発生したことを検出した場合、
前記制御部は、放電発生時に前記現像ローラに印加していた交流電圧のピーク間電圧に対する前記感光体ドラムと前記現像ローラ間の電位差を求め、画像形成時における前記現像ローラと前記感光体ドラムの表面電位の電位差が前記電位差よりも小さくなるように、画像形成時に現像ローラに印加すべき交流電圧を定める構成とした。このような構成によれば、把握された放電が発生する現像ローラと感光体ドラム間の電位差に基づき、現像効率を高めた、適切な画像形成時に放電の生じない交流電圧の設定を行うことができる。
Further, in the invention according to claim 3, in the invention according to claim 1 or claim 2, when it is detected that discharge has occurred at the time of detection of the occurrence of discharge,
The control unit obtains a potential difference between the photosensitive drum and the developing roller with respect to a peak-to-peak voltage of the AC voltage applied to the developing roller at the time of occurrence of discharge, and determines the difference between the developing roller and the photosensitive drum during image formation. The AC voltage to be applied to the developing roller during image formation is determined so that the surface potential difference is smaller than the potential difference. According to such a configuration, based on the potential difference between the developing roller and the photosensitive drum where the recognized discharge is generated, the development efficiency is increased, and an AC voltage that does not cause a discharge during appropriate image formation can be set. it can.

又、請求項4に係る発明は、請求項1〜請求項3のいずれか1項に係る発明において、前記感光体ドラムは、正帯電のアモルファスシリコンの感光層を有する構成とした。このような構成によれば、感光体ドラムの感光層が正帯電のアモルファスシリコンで構成されるので、プラス方向の放電によっては大電流が流れにくいといった特性が顕著に表れ、感光体ドラムの感光層の破壊を抑える効果が大きくなる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the photosensitive drum includes a positively charged amorphous silicon photosensitive layer. According to such a configuration, since the photosensitive layer of the photosensitive drum is made of positively charged amorphous silicon, the characteristic that a large current hardly flows due to positive discharge is remarkably exhibited. The effect of suppressing the destruction of is increased.

本発明の画像形成装置によれば、感光体ドラムの感光層の破壊を抑えつつ、放電が生じる感光体ドラムと現像ローラ間の電位差を測定できる。   According to the image forming apparatus of the present invention, it is possible to measure the potential difference between the photosensitive drum and the developing roller, where discharge occurs, while suppressing the destruction of the photosensitive layer of the photosensitive drum.

以下、本発明の実施形態を図1乃至10に基づき説明する。本実施形態では、電子写真方式でタンデム型のカラーのプリンタ1(画像形成装置に相当)を例に挙げ説明する。但し、本実施形態に記載されている構成、配置等の各要素は、発明の範囲を限定するものではなく単なる説明例にすぎない。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. In this embodiment, an electrophotographic tandem color printer 1 (corresponding to an image forming apparatus) will be described as an example. However, each element such as the configuration and arrangement described in the present embodiment does not limit the scope of the invention and is merely an illustrative example.

(画像形成装置の概略構成)
まず、図1乃至図3を用いて、本発明の実施形態に係るプリンタ1の概略を説明する。図1は、本発明の実施形態に係るプリンタ1の概略構成を示す断面図である。図2は、本発明の実施形態に係る各画像形成部3の拡大断面図である。図3は、本発明の実施形態に係る露光装置4の一例を示す模式図である。そして、本実施形態にかかるプリンタ1は、図1に示すように、本体内に、シート供給部2a、搬送路2b、画像形成部3、露光装置4、中間転写部5、定着部6等が設けられる。
(Schematic configuration of image forming apparatus)
First, the outline of the printer 1 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a cross-sectional view showing a schematic configuration of a printer 1 according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of each image forming unit 3 according to the embodiment of the present invention. FIG. 3 is a schematic diagram showing an example of the exposure apparatus 4 according to the embodiment of the present invention. As shown in FIG. 1, the printer 1 according to the present embodiment includes a sheet supply unit 2 a, a conveyance path 2 b, an image forming unit 3, an exposure device 4, an intermediate transfer unit 5, a fixing unit 6 and the like in the main body. Provided.

前記シート供給部2aは、中間転写部5等に向け、例えば、コピー用紙、OHPシート、ラベル用紙等の各種シートを収容し、モータ等の駆動機構(不図示)により回転する給紙ローラ21により搬送路2bに送り出す。そして、搬送路2bは、プリンタ1内でシートを搬送し、シート供給部2aから供給されたシートを、中間転写部5、定着部6を経て排出トレイ22まで導く。搬送路2bには、搬送ローラ対23やガイド24及び搬送されてくるシートを中間転写部5の手前で待機させ、タイミングをあわせて送り出すレジストローラ対25等が設けられる。   The sheet supply unit 2a stores various sheets such as copy sheets, OHP sheets, and label sheets toward the intermediate transfer unit 5 and the like, and is fed by a sheet feeding roller 21 that is rotated by a driving mechanism (not shown) such as a motor. It sends out to the conveyance path 2b. The conveyance path 2 b conveys the sheet in the printer 1 and guides the sheet supplied from the sheet supply unit 2 a to the discharge tray 22 through the intermediate transfer unit 5 and the fixing unit 6. The conveyance path 2b is provided with a pair of conveyance rollers 23, a guide 24, and a registration roller pair 25 that waits for the conveyed sheet in front of the intermediate transfer unit 5 and sends it in time.

図1及び図2に示すように、プリンタ1は、形成すべき画像の画像データに基づき、トナー像を形成する部分として、4色分の画像形成部3を備える。具体的に、プリンタ1は、ブラックの画像を形成する画像形成部3a(帯電装置7a、現像装置8a、除電装置31a、清掃装置32a等を具備)と、イエローの画像を形成する画像形成部3b(帯電装置7b、現像装置8b、除電装置31b、清掃装置32b等を具備)と、シアンの画像を形成する画像形成部3c(帯電装置7c、現像装置8c、除電装置31c、清掃装置32c等を具備)と、マゼンタの画像を形成する画像形成部3d(帯電装置7d、現像装置8d、除電装置31d、清掃装置32d等を具備)と、を備える。   As shown in FIGS. 1 and 2, the printer 1 includes an image forming unit 3 for four colors as a part for forming a toner image based on image data of an image to be formed. Specifically, the printer 1 includes an image forming unit 3a (including a charging device 7a, a developing device 8a, a charge removing device 31a, a cleaning device 32a, and the like) that forms a black image, and an image forming unit 3b that forms a yellow image. (Equipped with a charging device 7b, a developing device 8b, a static eliminating device 31b, a cleaning device 32b, etc.) and an image forming unit 3c (charging device 7c, developing device 8c, static eliminating device 31c, cleaning device 32c, etc.) for forming a cyan image. And an image forming unit 3d (including a charging device 7d, a developing device 8d, a charge removing device 31d, a cleaning device 32d, and the like) that forms a magenta image.

ここで、図2に基づき、各画像形成部3a〜3dについて詳述する。尚、各画像形成部3a〜3dは、形成するトナー像の色が異なるだけで、いずれも基本的に同様の構成である。そこで、下の説明では、各画像形成部3内のa、b、c、dの符号は、特に説明する場合を除き省略する(尚、図2では、画像形成部3a、3b、3c、3d内の各部材に、識別的にa、b、c、dの符号を付すこととする。)   Here, the image forming units 3a to 3d will be described in detail with reference to FIG. Each of the image forming units 3a to 3d has basically the same configuration except that the color of the toner image to be formed is different. Therefore, in the following description, the symbols a, b, c, and d in each image forming unit 3 are omitted except for the case where they are specifically described (in FIG. 2, the image forming units 3a, 3b, 3c, and 3d). The reference numerals a, b, c, and d are given to the respective members in the same manner.)

各感光体ドラム9は、周面にトナー像を担持し、例えば、アルミニウム製のドラムの外周面上に正帯電のアモルファスシリコンの感光層を有し、駆動装置(不図示)によって所定のプロセススピードで紙面時計方向に回転駆動される。尚、本実施形態の各感光体ドラム9は、正帯電型である。   Each photosensitive drum 9 carries a toner image on its peripheral surface, and has, for example, a positively charged amorphous silicon photosensitive layer on the outer peripheral surface of an aluminum drum, and has a predetermined process speed by a driving device (not shown). Is rotated in the clockwise direction on the paper. Each photosensitive drum 9 of the present embodiment is a positively charged type.

各帯電装置7は、帯電ローラ71を有し、感光体ドラム9を一定の電位で帯電させる。各帯電ローラ71は、各感光体ドラム9に接し、感光体ドラム9に合わせ回転する。又、各帯電ローラ71には、帯電電圧印加部72(図5参照)により直流と交流が重畳された電圧が印加され、感光体ドラム9の表面が所定の正極性の電位(例えば、200V〜300V、暗電位)に均一に帯電される。又、各帯電ローラ71の表面の異物を除去する清掃ブラシ73(例えば、軸に樹脂等のブラシを巻き付けたもの)が設けられる。尚、帯電装置7は、コロナ放電式や、ブラシ等を用いて感光体ドラム9を帯電させるものでも良い。   Each charging device 7 has a charging roller 71 and charges the photosensitive drum 9 with a constant potential. Each charging roller 71 is in contact with each photosensitive drum 9 and rotates in accordance with the photosensitive drum 9. In addition, a voltage in which direct current and alternating current are superimposed is applied to each charging roller 71 by a charging voltage applying unit 72 (see FIG. 5), and the surface of the photosensitive drum 9 has a predetermined positive potential (for example, 200V to 300V, dark potential). In addition, a cleaning brush 73 (for example, a resin brush or the like wound around a shaft) for removing foreign matters on the surface of each charging roller 71 is provided. The charging device 7 may be a device that charges the photosensitive drum 9 using a corona discharge type or a brush.

各現像装置8は、トナーと磁性体のキャリアからなる現像剤(いわゆる2成分現像剤)を収納する(現像装置8aはブラック、現像装置8bはイエロー、現像装置8cはシアン、現像装置8dはマゼンタの現像剤を収納する)。各現像装置8は、現像ローラ81と、磁気ローラ82と、搬送部材83とを有する。各現像ローラ81は、それぞれ感光体ドラム9に対向し、所定のギャップ(例えば、1mm以下)を設けて配される。そして、各磁気ローラ82は、各現像ローラ81の右斜め上方に対向し、所定の隙間を設けて配される。そして、各搬送部材83は、各磁気ローラ82の上方に設けられる。   Each developing device 8 accommodates a developer (so-called two-component developer) composed of toner and a magnetic carrier (the developing device 8a is black, the developing device 8b is yellow, the developing device 8c is cyan, and the developing device 8d is magenta. Of developer). Each developing device 8 includes a developing roller 81, a magnetic roller 82, and a conveying member 83. Each developing roller 81 faces the photosensitive drum 9 and is provided with a predetermined gap (for example, 1 mm or less). Each magnetic roller 82 faces the upper right of each developing roller 81 and is disposed with a predetermined gap. Each transport member 83 is provided above each magnetic roller 82.

各現像ローラ81と各磁気ローラ82の各ローラ軸811、821は固定される。そして、各現像ローラ81と各磁気ローラ82の内部の各ローラ軸811、821には、軸線方向にのびる磁石813、823が取り付けられる。そして、各現像ローラ81と各磁気ローラ82は、それぞれ、磁石813、823を覆う円筒状のスリーブ812、822を有し、画像形成時は、このスリーブ812、822が回転する(図4参照)。そして、現像ローラ81の磁石813と、磁気ローラ82の磁石823では、現像ローラ81と磁気ローラ82の対向位置で異極が向かい合う。   The roller shafts 811 and 821 of each developing roller 81 and each magnetic roller 82 are fixed. Magnets 813 and 823 extending in the axial direction are attached to the roller shafts 811 and 821 inside the developing rollers 81 and the magnetic rollers 82, respectively. Each developing roller 81 and each magnetic roller 82 have cylindrical sleeves 812 and 822 that cover the magnets 813 and 823, respectively, and these sleeves 812 and 822 rotate during image formation (see FIG. 4). . In the magnet 813 of the developing roller 81 and the magnet 823 of the magnetic roller 82, different polarities face each other at a position where the developing roller 81 and the magnetic roller 82 face each other.

これにより、各現像ローラ81と、各磁気ローラ82間には、磁性体キャリアで磁気ブラシが形成される。磁気ブラシと磁気ローラ82のスリーブ822の回転や磁気ローラ82への電圧印加(磁気ローラバイアス印加部84:図5参照)等で、現像ローラ81に、トナーが供給され、現像ローラ81にはトナーの薄層が形成される。又、現像後に残留したトナーは、磁気ブラシで現像ローラ81から引き剥がされる。各搬送部材83は、例えば、軸に対しスクリューが螺旋状に設けられ、現像剤を各現像装置8内で搬送、撹拌し、トナーを所定のレベルに帯電させる(本実施形態では、トナーは正帯電)。   Thereby, a magnetic brush is formed by the magnetic carrier between each developing roller 81 and each magnetic roller 82. The toner is supplied to the developing roller 81 by rotating the magnetic brush and the sleeve 822 of the magnetic roller 82 or applying a voltage to the magnetic roller 82 (magnetic roller bias applying unit 84: see FIG. 5). A thin layer of is formed. The toner remaining after the development is peeled off from the developing roller 81 by a magnetic brush. For example, each conveying member 83 is provided with a screw spirally with respect to the shaft, and conveys and stirs the developer in each developing device 8 to charge the toner to a predetermined level (in this embodiment, the toner is positive). Electrification).

各清掃装置32は、感光体ドラム9の清掃を行い、例えば、外周部分に弾性を有する円筒状の素材の清掃部材33を有し、清掃部材33は、各感光体ドラム9に当接し、ドラム表面の転写残トナーを除去、回収する。又、各清掃装置32の下方に、感光体ドラム9に対し光を照射して除電を行う除電装置31(例えば、アレイ状のLED)が設けられる。   Each cleaning device 32 cleans the photosensitive drum 9 and has, for example, a cleaning member 33 made of a cylindrical material having elasticity on the outer peripheral portion. The cleaning member 33 abuts on each photosensitive drum 9, and the drum The transfer residual toner on the surface is removed and collected. Further, a neutralization device 31 (for example, an array of LEDs) that performs neutralization by irradiating the photosensitive drum 9 with light is provided below each cleaning device 32.

各画像形成部3の上方の露光装置4は、入力されるカラー色分解された画像信号をレーザ出力部(不図示)にて光信号にそれぞれ変換し、変換された光信号であるレーザ光(破線で図示)を出力し、帯電後の感光体ドラム9の走査露光を行って、静電潜像を形成する。   The exposure device 4 above each image forming unit 3 converts an input color-separated image signal into an optical signal by a laser output unit (not shown), and laser light (converted optical signal). (Shown by a broken line) is output, and the photosensitive drum 9 after scanning is scanned and exposed to form an electrostatic latent image.

ここで、図3に基づき、露光装置4の概略構成を説明する。図3に示すように、露光装置4には、半導体レーザ装置41(レーザダイオード)と、レーザ光を反射させる平面反射面を複数持ち高速回転するポリゴンミラー42(ポリゴンモータ43により回転)と、fθレンズ44、レーザ光を適宜、各感光体ドラム9に向けて反射させるミラー45等が設けられる(尚、図3では1色分の構成のみを図示。例えば、4色の場合、ポリゴンミラー42は共有され、その他の半導体レーザ装置41、fθレンズ44、ミラー45等は各色分備えられる)。この構成で、レーザ光が露光装置4から各感光体ドラム9に照射され、画像データに併せた静電潜像が感光体ドラム9上に形成される。具体的に、本実施形態の各感光体ドラム9は正帯電し、光の照射部分は電位が下がり、電位が下がった部分に正帯電トナーが付着する(例えば、ベタ塗り画像の場合、全ライン、全画素にレーザ光を照射)。尚、露光装置4は、多数のLEDからなるもの等を用いてもよい。   Here, a schematic configuration of the exposure apparatus 4 will be described with reference to FIG. As shown in FIG. 3, the exposure device 4 includes a semiconductor laser device 41 (laser diode), a polygon mirror 42 (rotated by a polygon motor 43) that has a plurality of plane reflecting surfaces that reflect laser light, and rotates at high speed, fθ. A lens 44 and a mirror 45 for reflecting the laser light toward each photosensitive drum 9 are provided as appropriate (in FIG. 3, only one color configuration is shown. For example, in the case of four colors, the polygon mirror 42 is The other semiconductor laser device 41, the fθ lens 44, the mirror 45, etc. are provided for each color). With this configuration, laser light is irradiated from the exposure device 4 to each photosensitive drum 9, and an electrostatic latent image combined with image data is formed on the photosensitive drum 9. Specifically, each photosensitive drum 9 of the present embodiment is positively charged, the potential of the light irradiation portion is lowered, and the positively charged toner adheres to the portion where the potential is lowered (for example, in the case of a solid image, all lines Irradiate all pixels with laser light). The exposure device 4 may be composed of a large number of LEDs.

尚、露光装置4には、レーザ光の照射範囲内、かつ、感光体ドラム9への照射範囲外に、受光素子46が設けられる。この受光素子46は、レーザ光が照射されると、電流(電圧)を出力し、この出力は、例えば、後述のCPU11(Central Processing Unit)に入力され、放電発生の有無の確認時の同期信号として用いられる(図5参照)。   Note that the exposure device 4 is provided with a light receiving element 46 within the irradiation range of the laser light and outside the irradiation range of the photosensitive drum 9. The light receiving element 46 outputs a current (voltage) when irradiated with laser light, and this output is input to, for example, a CPU 11 (Central Processing Unit) to be described later, and a synchronization signal at the time of confirming whether discharge has occurred or not. (See FIG. 5).

図1に戻り、中間転写部5は、感光体ドラム9からトナー像の1次転写を受けて、シートに2次転写を行うもので、各1次転写ローラ51a〜51d、中間転写ベルト52、駆動ローラ53、従動ローラ54、55、56、2次転写ローラ57、ベルト清掃装置58等で構成される。各1次転写ローラ51a〜51dは、無端状の中間転写ベルト52を介して各感光体ドラム9に当接し、転写用の電圧を印加する転写電圧印加部(不図示)に接続され、トナー像を中間転写ベルト52に転写する。   Returning to FIG. 1, the intermediate transfer unit 5 receives the primary transfer of the toner image from the photosensitive drum 9 and performs secondary transfer onto the sheet. Each of the primary transfer rollers 51 a to 51 d, the intermediate transfer belt 52, The driving roller 53, driven rollers 54, 55, 56, a secondary transfer roller 57, a belt cleaning device 58, and the like are included. Each primary transfer roller 51a to 51d is in contact with each photosensitive drum 9 via an endless intermediate transfer belt 52, and is connected to a transfer voltage application unit (not shown) for applying a transfer voltage, thereby toning a toner image. Is transferred to the intermediate transfer belt 52.

中間転写ベルト52は、駆動ローラ53、従動ローラ54、55、56に張架され、モータ等の駆動機構(不図示)に接続される駆動ローラ53の回転駆動により紙面反時計方向に周回する。中間転写ベルト52は、例えば、誘電体樹脂で構成される。又、駆動ローラ53は、中間転写ベルト52を介して2次転写ローラ57と当接し、2次転写部を形成する。シートへのトナー像転写を説明すると、各画像形成部3で形成されたトナー像(ブラック、イエロー、シアン、マゼンタの各色)は、各1次転写ローラ51に所定の電圧を印加して、順次、中間転写ベルト52に1次転写される。この時、各色のトナー像は、ずれなく重畳されるように、タイミングを取られつつ1次転写される。そして、各色重ね合わされたトナー像は、所定の電圧を印加された2次転写ローラ57により、シートに転写される。尚、2次転写後に中間転写ベルト52上に残った残トナー等は、ベルト清掃装置58で除去されて回収される(図1参照)。   The intermediate transfer belt 52 is stretched around a driving roller 53 and driven rollers 54, 55, and 56, and rotates in the counterclockwise direction on the paper surface by rotational driving of the driving roller 53 connected to a driving mechanism (not shown) such as a motor. The intermediate transfer belt 52 is made of, for example, a dielectric resin. The driving roller 53 is in contact with the secondary transfer roller 57 via the intermediate transfer belt 52 to form a secondary transfer portion. The toner image transfer to the sheet will be described. Toner images (black, yellow, cyan, and magenta colors) formed by the image forming units 3 are sequentially applied by applying predetermined voltages to the primary transfer rollers 51. The primary transfer is performed on the intermediate transfer belt 52. At this time, the toner images of the respective colors are primarily transferred while being timed so as to be superimposed without deviation. The superimposed toner images are transferred onto the sheet by a secondary transfer roller 57 to which a predetermined voltage is applied. The residual toner remaining on the intermediate transfer belt 52 after the secondary transfer is removed and collected by the belt cleaning device 58 (see FIG. 1).

前記定着部6は、2次転写部の転写材搬送方向の下流側に配され、シートに2次転写されたトナー像を加熱・加圧して定着させる。そして、定着部6は主として、発熱源を内蔵する定着ローラ61と、これに圧接される加圧ローラ62とで構成され、ニップが形成される。そして、トナー像の転写されたシートは、ニップを通過すると加熱・加圧され、その結果、トナー像がシートに定着する。尚、定着後のシートは、排出トレイ22に排出され画像形成処理が完了する。   The fixing unit 6 is disposed downstream of the secondary transfer unit in the transfer material conveyance direction, and fixes the toner image secondarily transferred to the sheet by heating and pressing. The fixing unit 6 is mainly composed of a fixing roller 61 having a built-in heat source and a pressure roller 62 pressed against the fixing roller 61 to form a nip. The sheet on which the toner image has been transferred is heated and pressurized as it passes through the nip, and as a result, the toner image is fixed on the sheet. The fixed sheet is discharged to the discharge tray 22 and the image forming process is completed.

(放電検出用の構成)
次に、本発明の特徴となる各現像ローラ81への現像バイアス印加及び各感光体ドラム9と各現像ローラ81間の放電検出に関する構成を説明する。
(Configuration for discharge detection)
Next, a configuration relating to development bias application to each developing roller 81 and discharge detection between each photosensitive drum 9 and each developing roller 81, which is a feature of the present invention, will be described.

図4は、本発明の実施形態に係る現像ローラ81への現像バイアス印加及び感光体ドラム9と現像ローラ81間の放電発生検出に関する現像ローラ81周辺の構成を示す。ただし、図4は1つの画像形成部3についてのみ示し、画像形成部3ごとに直流電圧印加部85、交流電圧印加部86、検出部14、アンプ15が設けられ、各アンプ15の出力が、後述する制御部10のCPU11に入力される。ここで、直流電圧印加部85、交流電圧印加部86、検出部14、アンプ15のそれぞれについて、各画像形成部の区別を示すa、b、c、dの符号を付しても良いが、各画像形成部では同様のものが設けられるので、記載の煩雑さを回避するため、以下では、a、b、c、dの符号は省略して説明する。   FIG. 4 shows a configuration around the developing roller 81 relating to the application of the developing bias to the developing roller 81 and the detection of the occurrence of discharge between the photosensitive drum 9 and the developing roller 81 according to the embodiment of the present invention. However, FIG. 4 shows only one image forming unit 3. Each image forming unit 3 is provided with a DC voltage application unit 85, an AC voltage application unit 86, a detection unit 14, and an amplifier 15, and the output of each amplifier 15 is The data is input to a CPU 11 of the control unit 10 described later. Here, each of the DC voltage application unit 85, the AC voltage application unit 86, the detection unit 14, and the amplifier 15 may be affixed with symbols a, b, c, and d indicating the distinction between the image forming units. Since the same components are provided in each image forming unit, in order to avoid complicated description, the following description will be made with the symbols a, b, c, and d omitted.

図4に示すように、現像ローラ81は、感光体ドラム9にギャップが設けられつつ対向し、ローラ軸811、画像形成時にトナーを担持するスリーブ812、キャップ814を有する。ローラ軸811はスリーブ812を挿通され、スリーブ812の両端に円形のキャップ814が嵌入される。又、現像ローラ81のローラ軸811には、感光体ドラム9へのトナーの供給のため、直流電圧印加部85と、交流電圧印加部86が接続される。   As shown in FIG. 4, the developing roller 81 is opposed to the photosensitive drum 9 with a gap, and includes a roller shaft 811, a sleeve 812 that carries toner during image formation, and a cap 814. The roller shaft 811 is inserted through the sleeve 812, and circular caps 814 are fitted to both ends of the sleeve 812. Further, a DC voltage application unit 85 and an AC voltage application unit 86 are connected to the roller shaft 811 of the developing roller 81 for supplying toner to the photosensitive drum 9.

直流電圧印加部85は、現像ローラ81に印加する直流成分を発生させる回路であり、その出力は交流電圧印加部86に入力される。そして、直流電圧印加部85は、出力制御部87を有し、出力制御部87は、直流電圧印加部85が出力するバイアスの値をCPU11の指示に応じて制御する。   The DC voltage application unit 85 is a circuit that generates a DC component to be applied to the developing roller 81, and its output is input to the AC voltage application unit 86. The DC voltage application unit 85 includes an output control unit 87, and the output control unit 87 controls the bias value output from the DC voltage application unit 85 in accordance with an instruction from the CPU 11.

直流電圧印加部85は、プリンタ1内の電源装置16(図5参照)からの直流電力の供給を受け、CPU11の指示に応じ、出力制御部87の制御により、出力電圧が可変な回路である(例えば、出力電圧が異なる出力端までの経路を複数有し、画像形成時と放電検出時で、その経路の選択を変える等)。これにより、現像ローラ81に印加する交流電圧をバイアスさせることができる。   The DC voltage application unit 85 is a circuit that receives supply of DC power from the power supply device 16 (see FIG. 5) in the printer 1 and whose output voltage is variable under the control of the output control unit 87 in accordance with an instruction from the CPU 11. (For example, there are a plurality of paths to output terminals with different output voltages, and the selection of the path is changed between image formation and discharge detection). Thereby, the alternating voltage applied to the developing roller 81 can be biased.

又、交流電圧印加部86は、例えば、矩形波状(パルス状)であり、直流電圧印加部85の出力する直流電圧を平均値(面積中心値)とする交流電圧を出力する回路である。そして、交流電圧印加部86は、Vpp制御部88およびデューティ比/周波数制御部89を有する。Vpp制御部88は、交流電圧のピーク間電圧(ピークトゥピーク)をCPU11の指示に応じて制御する。また、デューティ比/周波数制御部89は、交流電圧のデューティ比および周波数をCPU11の指示に応じて制御する。   The AC voltage application unit 86 is, for example, a rectangular wave (pulse shape), and is a circuit that outputs an AC voltage having the DC voltage output from the DC voltage application unit 85 as an average value (area center value). AC voltage application unit 86 includes a Vpp control unit 88 and a duty ratio / frequency control unit 89. The Vpp control unit 88 controls the peak-to-peak voltage of the AC voltage according to an instruction from the CPU 11. Further, the duty ratio / frequency control unit 89 controls the duty ratio and frequency of the AC voltage in accordance with an instruction from the CPU 11.

例えば、交流電圧印加部86は、スイッチング素子等を備え、出力の正負をスイッチングにより反転させ、交流電圧を出力する。そして、デューティ比/周波数制御部89は、例えば、交流電圧印加部86の出力の正負のスイッチングのタイミングを制御することで、交流電圧のデューティ比や周波数を制御することができる。又、Vpp制御部88は、現像ローラ81に印加すべき交流電圧のピーク間電圧とデューティ比とに基づき、電源装置16から入力される直流電圧の昇降圧等により、交流電圧における正側のピーク値と負側のピーク値を、CPU11の指示に応じ、可変させる。又、尚、交流電圧印加部86の構成や、交流電圧のピーク間電圧、デューティ比、周波数を可変させる構成は、ピーク間電圧、デューティ比、周波数を変化できればよい。   For example, the AC voltage application unit 86 includes a switching element or the like, inverts the output polarity by switching, and outputs an AC voltage. The duty ratio / frequency control unit 89 can control the duty ratio and frequency of the AC voltage by controlling, for example, the positive / negative switching timing of the output of the AC voltage application unit 86. Further, the Vpp control unit 88 uses the voltage between the peaks of the AC voltage to be applied to the developing roller 81 and the duty ratio, and the positive peak in the AC voltage by the step-up / step-down of the DC voltage input from the power supply device 16. The value and the negative peak value are varied according to an instruction from the CPU 11. In addition, the configuration of the AC voltage application unit 86 and the configuration in which the peak-to-peak voltage, the duty ratio, and the frequency of the AC voltage can be varied as long as the peak-to-peak voltage, the duty ratio, and the frequency can be changed.

そして、交流電圧印加部86内には、例えば、昇圧用トランス等による昇圧回路を出力段に備えることができ、昇圧後の直流と交流の重畳された現像バイアスが、例えば、現像ローラ81のローラ軸811に印加される。これにより、スリーブ812にも現像バイアスが印加され、スリーブ812に担持される帯電トナーが飛翔する。   In the AC voltage application unit 86, for example, a boosting circuit such as a boosting transformer can be provided in the output stage, and the developing bias in which the DC and AC are superimposed after the boosting is, for example, the roller of the developing roller 81. Applied to the shaft 811. As a result, a developing bias is also applied to the sleeve 812, and the charged toner carried on the sleeve 812 flies.

検出部14は、現像ローラ81と感光体ドラム9間での放電発生時に流れる電流を電圧信号に変換し、放電の発生を検出する回路であり、変換した電圧信号をアンプ15に出力する。アンプ15は、検出部14からの電圧信号を増幅しCPU11に出力する。CPU11は、アンプ15からの電圧信号をA/D変換する。このA/D変換されたアンプ15の出力から、CPU11は、発生した放電の大きさ(現像ローラ81と感光体ドラム9間に流れた電流の大きさ)を認識することができる。   The detection unit 14 is a circuit that converts a current that flows when a discharge occurs between the developing roller 81 and the photosensitive drum 9 into a voltage signal and detects the occurrence of the discharge, and outputs the converted voltage signal to the amplifier 15. The amplifier 15 amplifies the voltage signal from the detection unit 14 and outputs it to the CPU 11. The CPU 11 A / D converts the voltage signal from the amplifier 15. From the output of the A / D converted amplifier 15, the CPU 11 can recognize the magnitude of the generated discharge (the magnitude of the current flowing between the developing roller 81 and the photosensitive drum 9).

(プリンタ1のハードウェア構成)
次に、図5に基づき、本発明の実施形態に係るプリンタ1のハードウェア構成を説明する。図5は、本発明の実施形態に係るプリンタ1のハードウェア構成の一例を示すブロック図である。
(Hardware configuration of printer 1)
Next, the hardware configuration of the printer 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 5 is a block diagram illustrating an example of a hardware configuration of the printer 1 according to the embodiment of the present invention.

図5に示すように、本実施形態に係るプリンタ1は、内部に制御部10を有する。制御部10は、プリンタ1の各部を制御し、検出部14の出力が入力され放電発生を認識する。例えば、制御部10は、CPU11、記憶部12等から構成される。CPU11は、中央演算処理装置であり、記憶部12に格納され、展開される制御プログラムに基づきプリンタ1の各部の制御や演算を行う。記憶部12は、ROM、RAM、フラッシュROM等の不揮発性と揮発性の記憶装置の組み合わせで構成される。例えば、記憶部12は、プリンタ1の制御プログラム、制御データ等を記憶する。尚、本発明に関し、放電検出や現像ローラ81に印加する交流電圧の設定用プログラムも記憶部12に記憶される。   As shown in FIG. 5, the printer 1 according to the present embodiment includes a control unit 10 inside. The control unit 10 controls each unit of the printer 1 and receives the output of the detection unit 14 to recognize the occurrence of discharge. For example, the control unit 10 includes a CPU 11, a storage unit 12, and the like. The CPU 11 is a central processing unit, and controls and calculates each unit of the printer 1 based on a control program stored in the storage unit 12 and developed. The storage unit 12 is configured by a combination of nonvolatile and volatile storage devices such as ROM, RAM, and flash ROM. For example, the storage unit 12 stores a control program, control data, and the like for the printer 1. In the present invention, the storage unit 12 also stores a program for detecting discharge and setting an AC voltage applied to the developing roller 81.

そして、制御部10は、シート供給部2a、搬送路2b、画像形成部3、露光装置4、中間転写部5、定着装置、操作パネル13等と接続され、記憶部12の制御プログラムやデータに基づき、適切に画像形成が行われるように各部の動作を制御する。   The control unit 10 is connected to the sheet supply unit 2a, the conveyance path 2b, the image forming unit 3, the exposure device 4, the intermediate transfer unit 5, the fixing device, the operation panel 13, and the like. Based on this, the operation of each unit is controlled so that image formation is performed appropriately.

尚、図5に示す操作パネル13は、例えば、プリンタ1の正面上方に設けられ、液晶画面を有し、種々の設定情報、警告等を表示する。又、操作パネル13は、種々の操作ボタンを有し、ユーザからの操作を受け付ける。又、制御部10には、印刷を行う画像データの送信元となるユーザ端末100(パーソナルコンピュータ等)等が接続され、制御部10は、受信した画像データを画像処理し、露光装置4に送信し、露光装置4はその画像データに基づき、感光体ドラム9に静電潜像を形成する。又、図5に示す、磁気ローラバイアス印加部84は、磁気ローラ82に、交流と直流を重畳した電圧を印加する回路である。又、帯電電圧印加部72は、帯電ローラ71に帯電用の電圧を印加する回路である。   The operation panel 13 shown in FIG. 5 is provided, for example, at the upper front of the printer 1 and has a liquid crystal screen to display various setting information, warnings, and the like. The operation panel 13 has various operation buttons and accepts operations from the user. The control unit 10 is connected to a user terminal 100 (personal computer or the like) as a transmission source of image data to be printed, and the control unit 10 performs image processing on the received image data and transmits it to the exposure apparatus 4. Then, the exposure device 4 forms an electrostatic latent image on the photosensitive drum 9 based on the image data. A magnetic roller bias applying unit 84 shown in FIG. 5 is a circuit that applies a voltage in which alternating current and direct current are superimposed on the magnetic roller 82. The charging voltage application unit 72 is a circuit that applies a charging voltage to the charging roller 71.

又、本発明に関し、制御部10(CPU11)は、検出部14(アンプ15)が接続される。又、本発明の実施時、CPU11は、現像ローラ81に印加する交流電圧のピーク間電圧等を段階的に変える指示を交流電圧印加部86に与え、検出部14(アンプ15)の出力から放電発生の有無の検出や、放電の大きさを判断する。そして、放電の発生を検出した場合、制御部10は、その時の直流電圧や交流電圧のピーク間電圧等の値に基づき、放電発生時の感光体ドラム9と現像ローラ81間の電位差を把握し、画像形成時に放電が生じないように、画像形成動作時に印加すべき現像バイアスの設定を決定する。尚、現像バイアスの設定値は記憶部12に記憶できる。   Further, with respect to the present invention, the control unit 10 (CPU 11) is connected to the detection unit 14 (amplifier 15). When the present invention is implemented, the CPU 11 gives an instruction to the AC voltage application unit 86 to change the peak-to-peak voltage of the AC voltage applied to the developing roller 81 in a stepwise manner, and discharges from the output of the detection unit 14 (amplifier 15). Detection of occurrence and determination of discharge magnitude. When the occurrence of discharge is detected, the control unit 10 grasps the potential difference between the photosensitive drum 9 and the developing roller 81 at the time of occurrence of discharge based on values such as the DC voltage and the peak-to-peak voltage of the AC voltage at that time. The setting of the developing bias to be applied during the image forming operation is determined so that no discharge occurs during the image formation. The setting value of the developing bias can be stored in the storage unit 12.

(放電発生検出動作、及び、現像ローラ81に印加する交流電圧の設定)
次に、図6及び図7に示すタイミングチャートで、感光体ドラム9と現像ローラ81間での放電の発生検出動作の一例を説明する。図6は、本発明の実施形態に係る放電発生検出動作の概略を説明するためのタイミングチャートである。図7は、本発明の実施形態に係る現像ローラ81に印加する交流電圧の詳細を説明するタイミングチャートである。尚、この放電発生検出動作は、各画像形成部3について、1つずつ順に行われる。
(Discharge occurrence detection operation and setting of AC voltage applied to developing roller 81)
Next, an example of an operation for detecting the occurrence of discharge between the photosensitive drum 9 and the developing roller 81 will be described with reference to timing charts shown in FIGS. FIG. 6 is a timing chart for explaining an outline of the discharge occurrence detection operation according to the embodiment of the present invention. FIG. 7 is a timing chart illustrating details of the AC voltage applied to the developing roller 81 according to the embodiment of the present invention. This discharge occurrence detection operation is sequentially performed for each image forming unit 3 one by one.

まず、図6に基づき、放電発生検出動作の概略を説明する。尚、図6での、「現像ローラ(交流)」は、交流電圧印加部86が現像ローラ81に交流電圧を印加するタイミングを示す。「Vpp」は、現像ローラ81へ印加する交流電圧のピーク間電圧の大きさの変化を示す。「現像ローラ(直流)」は、直流電圧印加部85が現像ローラ81に直流電圧を印加するタイミングを示す。「磁気ローラ(交流)」は、磁気ローラバイアス印加部84(図5参照)が磁気ローラ82に交流電圧を印加するタイミングを示す。「磁気ローラ(直流)」は磁気ローラバイアス印加部84が磁気ローラ82に直流電圧を印加するタイミングを示す。   First, the outline of the discharge occurrence detection operation will be described with reference to FIG. In FIG. 6, “developing roller (alternating current)” indicates the timing at which the alternating voltage application unit 86 applies an alternating voltage to the developing roller 81. “Vpp” indicates a change in the peak-to-peak voltage of the AC voltage applied to the developing roller 81. “Developing roller (DC)” indicates a timing at which the DC voltage application unit 85 applies a DC voltage to the developing roller 81. “Magnetic roller (AC)” indicates a timing at which the magnetic roller bias applying unit 84 (see FIG. 5) applies an AC voltage to the magnetic roller 82. “Magnetic roller (DC)” indicates the timing at which the magnetic roller bias applying unit 84 applies a DC voltage to the magnetic roller 82.

又、「帯電ローラ」は、帯電装置7が感光体ドラム9を帯電させるタイミングを示す。「同期信号」は、露光装置4の受光素子46が出力する同期用信号である。「露光」は、露光装置4での感光体ドラム9の露光(レーザ光照射)タイミングを示す。「放電検出(検出部出力)」は、検出部14による放電発生検出タイミングを示す。   “Charging roller” indicates the timing at which the charging device 7 charges the photosensitive drum 9. The “synchronization signal” is a synchronization signal output from the light receiving element 46 of the exposure apparatus 4. “Exposure” indicates the exposure (laser beam irradiation) timing of the photosensitive drum 9 in the exposure apparatus 4. “Discharge detection (detector output)” indicates a discharge occurrence detection timing by the detector 14.

〈初期動作〉
本発明に係る放電発生検出動作が開始されると、感光体ドラム9、現像ローラ81、中間転写ベルト52等が回転を開始した後、初期動作では、現像ローラ81と磁気ローラ82にそれぞれ、交流と直流の電圧が印加される。この初期動作での磁気ローラ82への電圧印加により、少量のトナーが磁気ローラ82から現像ローラ81に供給される。放電発生検出では、基本的に、現像ローラ81にトナーを担持させないが、全くトナーを担持させないと、感光体ドラム9とこれに接する回転部材(中間転写ベルト52等)との摩擦が大きくなりすぎる等、弊害があるので、若干量、感光体ドラム9にトナーが供給される。初期動作の後、準備状態に移行する。
<Initial operation>
When the discharge generation detecting operation according to the present invention is started, after the photosensitive drum 9, the developing roller 81, the intermediate transfer belt 52, and the like start rotating, in the initial operation, the developing roller 81 and the magnetic roller 82 are respectively connected to the alternating current. A DC voltage is applied. By applying a voltage to the magnetic roller 82 in this initial operation, a small amount of toner is supplied from the magnetic roller 82 to the developing roller 81. In detection of occurrence of discharge, basically, toner is not carried on the developing roller 81, but if no toner is carried at all, the friction between the photosensitive drum 9 and the rotating member (intermediate transfer belt 52, etc.) in contact therewith becomes too large. Therefore, a small amount of toner is supplied to the photosensitive drum 9. After initial operation, transition to the ready state.

〈準備状態〉と〈デフォルト測定〉
準備状態では、帯電装置7による感光体ドラム9への帯電が開始される。尚、放電発生検出動作が終了するまで、帯電装置7に印加される電圧はONのままである。又、現像ローラ81に印加する交流電圧のピーク間電圧が測定するピーク間電圧にまで高められる。次に、デフォルト測定に移行し、放電の検出有無を確かめる。尚、デフォルト測定は、検出部14等、部材設置位置や回路等の異常発見のため行われる。デフォルト測定の後、条件変更状態(1回目)に移行する。
<Preparation state> and <Default measurement>
In the ready state, charging of the photosensitive drum 9 by the charging device 7 is started. Note that the voltage applied to the charging device 7 remains ON until the discharge occurrence detection operation is completed. Further, the peak-to-peak voltage of the AC voltage applied to the developing roller 81 is increased to the peak-to-peak voltage to be measured. Next, the process moves to the default measurement and confirms whether or not a discharge is detected. Note that the default measurement is performed to detect an abnormality in the detection position of the detection unit 14 or the like, the member installation position, the circuit, or the like. After the default measurement, the condition shifts to the condition change state (first time).

〈条件変更状態〉
条件変更状態となった場合、現像ローラ81に印加する交流電圧のピーク間電圧を段階的に変化される(例えば、上昇)。そして、条件変更状態の途中で、露光装置4の露光の開始の目安となる同期信号がHighとなる。同期信号のHigh後に、放電検出状態(1回目)に移行する。
<Condition change state>
When the condition is changed, the peak-to-peak voltage of the AC voltage applied to the developing roller 81 is changed stepwise (for example, increased). Then, in the middle of the condition change state, the synchronization signal that becomes a guide for the start of exposure of the exposure apparatus 4 becomes High. After the synchronization signal is high, the state shifts to the discharge detection state (first time).

〈放電検出状態〉
放電検出状態(1回目)では、現像ローラ81に対し現像バイアスが印加され、露光装置4が露光を継続して行う(感光体ドラム9全面の露光)。尚、本実施形態のプリンタ1では、トナーと感光体ドラム9の帯電極性が正極性であり、露光部分にトナーがのるので、継続した露光は、ベタ塗り画像の静電潜像形成と同じである。従って、放電検出状態では、例えば、制御部10から露光装置4に、ベタ塗りの画像データが送り込まれる(ベタ塗りの画像データは、例えば、記憶部12が記憶)。
<Discharge detection status>
In the discharge detection state (first time), a developing bias is applied to the developing roller 81, and the exposure device 4 continues exposure (exposure of the entire surface of the photosensitive drum 9). In the printer 1 of this embodiment, the toner and the photosensitive drum 9 are charged with positive polarity, and the toner is deposited on the exposed portion. Therefore, the continuous exposure is the same as the formation of the electrostatic latent image of the solid image. It is. Therefore, in the discharge detection state, for example, solid image data is sent from the control unit 10 to the exposure apparatus 4 (solid image data is stored in, for example, the storage unit 12).

この時、放電検出状態は、一定時間(例えば、1秒〜数秒間)続き、CPU11へのアンプ15の入力から放電発生を認識しない場合等、条件変更状態に移行する。条件変更状態では、再び、制御部10は、交流電圧印加部86に指示し、交流電圧のピーク間電圧の変更指示を出す。これにより、次回以降の放電検出状態では、前回よりも現像ローラ81に印加される交流電圧のピーク間電圧が高い状態で、放電の有無が確認される。以後、放電する交流電圧を認定するまで、条件変更状態と放電検出状態が繰り返され、繰り返しの間、段階的に一定の刻み幅で現像ローラ81に印加する交流電圧のピーク間電圧が基本的に高められる。尚、図5では、n回目の放電検出状態で、放電が検出されたことを示す。   At this time, the discharge detection state continues for a certain time (for example, 1 second to several seconds), and shifts to the condition change state, for example, when the occurrence of discharge is not recognized from the input of the amplifier 15 to the CPU 11. In the condition change state, the control unit 10 again instructs the AC voltage application unit 86 to issue an instruction to change the peak-to-peak voltage of the AC voltage. Thereby, in the discharge detection state after the next time, the presence or absence of discharge is confirmed in a state where the peak-to-peak voltage of the AC voltage applied to the developing roller 81 is higher than the previous time. Thereafter, until the AC voltage to be discharged is recognized, the condition change state and the discharge detection state are repeated, and during the repetition, the peak-to-peak voltage of the AC voltage applied to the developing roller 81 at a constant step size is basically determined. Enhanced. FIG. 5 shows that discharge is detected in the nth discharge detection state.

次に、図7に基づき、放電検出状態での現像ローラ81への電圧の印加について説明する。尚、図7では、上段に画像形成時のタイミングチャートを、下段に、放電検出状態のタイミングチャートを示している。   Next, application of a voltage to the developing roller 81 in the discharge detection state will be described with reference to FIG. In FIG. 7, a timing chart at the time of image formation is shown in the upper part, and a timing chart in the discharge detection state is shown in the lower part.

まず、画像形成時のタイミングチャートにおける矩形波は、現像ローラ81に印加される現像バイアス(交流+直流)の波形の一例である。そして、「Vdc1」は、直流電圧印加部85のバイアスの電位を示す。「V0」は、感光体ドラム9の露光装置4による露光後の電位(ほぼ0V=明電位)を示す。「V1」は、感光体ドラム9の帯電後の電位(露光しない部分の電位。例えば、200〜300V程度)を示す。「V+1」は、V0と、画像形成時の現像バイアスのプラス側ピークとの電位差を示す。「V−」は、V1と現像バイアスのマイナス側ピーク値との電位差を示す。「Vpp1」は、画像形成時の現像ローラ81に印加する交流電圧のピーク間電圧を示す。又、「T1」は、矩形波におけるプラス側時間である。「T01」は、矩形波の周期を示す。   First, the rectangular wave in the timing chart at the time of image formation is an example of the waveform of the developing bias (AC + DC) applied to the developing roller 81. “Vdc1” indicates the bias potential of the DC voltage application unit 85. “V0” indicates the potential of the photosensitive drum 9 after exposure by the exposure device 4 (approximately 0 V = bright potential). “V1” indicates a potential after charging of the photosensitive drum 9 (potential of a portion not exposed to light, for example, about 200 to 300 V). “V + 1” indicates a potential difference between V0 and the positive peak of the developing bias during image formation. “V−” indicates a potential difference between V1 and the negative peak value of the developing bias. “Vpp1” indicates the peak-to-peak voltage of the AC voltage applied to the developing roller 81 during image formation. “T1” is a plus time in the rectangular wave. “T01” indicates the period of the rectangular wave.

一方、放電発生検出時のタイミングチャートにおける矩形波は、放電有無検出時に、現像ローラ81に印加される現像バイアスの波形を示す。「Vdc2」は、検出時の直流電圧印加部85のバイアスの電位を示す。又、「V0」は、図7上段と同様、感光体ドラム9の露光装置4による露光後の電位(ほぼ0V)を示す。「V+2」は、検出時の現像バイアスのプラス側ピークとV0との電位差を示す。「Vpp2」は、検出時の現像ローラ81に印加する交流電圧のピーク間電圧を示す。「T2」は、矩形波におけるプラス側時間である。「T02」は、矩形波の周期である。   On the other hand, a rectangular wave in the timing chart when the occurrence of discharge is detected indicates the waveform of the developing bias applied to the developing roller 81 when the presence or absence of discharge is detected. “Vdc2” indicates the bias potential of the DC voltage application unit 85 at the time of detection. “V0” indicates a potential (approximately 0 V) after exposure of the photosensitive drum 9 by the exposure device 4 as in the upper part of FIG. “V + 2” indicates a potential difference between the positive peak of the developing bias at the time of detection and V0. “Vpp2” indicates a peak-to-peak voltage of the AC voltage applied to the developing roller 81 at the time of detection. “T2” is the plus time in the rectangular wave. “T02” is a period of a rectangular wave.

まず、放電発生検出時、CPU11の指示により、出力制御部87は直流電圧印加部85の出力を、放電発生検出用の設定値Vdc2(例えば、100V〜200V)に設定する。又、CPU11の指示で、Vpp制御部88は交流電圧印加部86の出力する交流電圧のVpp2を設定する。又、CPU11の指示で、デューティ比/周波数制御部89は、交流電圧印加部86の出力する交流電圧のデューティ比D2(周期T02に対するプラス側時間T2の比、T2/T02)を放電発生検出用の設定値に設定し、交流電圧印加部86の出力する交流電圧の周波数f2(=1/T02)を放電発生検出用の設定値に設定する(図7下段)。   First, when detecting the occurrence of discharge, the output control unit 87 sets the output of the DC voltage application unit 85 to a set value Vdc2 (for example, 100 V to 200 V) for detecting the occurrence of discharge according to an instruction from the CPU 11. Further, in response to an instruction from the CPU 11, the Vpp control unit 88 sets the Vpp 2 of the AC voltage output from the AC voltage application unit 86. Further, the duty ratio / frequency control unit 89 instructs the AC voltage duty unit D2 (the ratio of the positive side time T2 with respect to the cycle T02, T2 / T02) to be generated in response to an instruction from the CPU 11. Then, the frequency f2 (= 1 / T02) of the AC voltage output from the AC voltage application unit 86 is set to the setting value for detecting the occurrence of discharge (lower stage in FIG. 7).

ここで、デューティ比D2は、画像形成時のデューティ比D1(周期T01に対するHighの時間T1の比、T1/T01)より小さく設定される(例えば、D1=40%、D2=30%)。ここで、交流電圧の面積中心(平均値)は直流バイアスの設定値(画像形成時のVdc1、放電発生検出時のVdc2)となる。上記のように、放電発生検出時の交流電圧のデューティ比を画像形成時よりも小さくすることで、交流電圧におけるプラス側ピーク値と面積中心、つまり直流バイアス設定値Vdc2との差を大きくすることができる。又、デューティ比を画像形成時よりも小さくするので、ピーク間電圧を増加させても、プラス側電位よりも、マイナス側電位が下がり難い。従って、交流電圧のプラス側ピーク値と感光体ドラム表面の明電位V0(ほぼ0V)との電位差V+2を、マイナス側のピーク値と明電位V0との電位差よりもより大きくでき(図7下段)、プラス方向(感光体ドラムより現像ローラの電位が高い状態)で現像ローラと感光体ドラム間の放電を起こすことができる。   Here, the duty ratio D2 is set to be smaller than the duty ratio D1 at the time of image formation (ratio of the high time T1 to the period T01, T1 / T01) (for example, D1 = 40%, D2 = 30%). Here, the area center (average value) of the AC voltage is the set value of the DC bias (Vdc1 at the time of image formation, Vdc2 at the time of detecting the occurrence of discharge). As described above, the difference between the positive-side peak value and the area center, that is, the DC bias setting value Vdc2 in the AC voltage is increased by making the duty ratio of the AC voltage at the time of detecting the occurrence of discharge smaller than that during image formation. Can do. Further, since the duty ratio is made smaller than that at the time of image formation, even if the peak-to-peak voltage is increased, the minus side potential is less likely to fall than the plus side potential. Therefore, the potential difference V + 2 between the positive peak value of the AC voltage and the bright potential V0 (approximately 0 V) on the surface of the photosensitive drum can be made larger than the potential difference between the negative peak value and the bright potential V0 (lower row in FIG. 7). , It is possible to cause a discharge between the developing roller and the photosensitive drum in the plus direction (a state where the potential of the developing roller is higher than that of the photosensitive drum).

本実施形態の感光体ドラムは、正帯電のアモルファスシリコンの感光層を有する。このような感光体ドラムは、前述したように、プラス方向で放電が発生しても、放電電流は急激には増加せず、大電流が流れにくいという特性を有することが確認されている(図10参照)。従って、プラス方向の放電により、感光体ドラムに大電流が流れ感光体ドラムにドラムピンホール(微小な穴)が形成され感光層が破壊されるおそれはほとんどない。このように、放電発生検出時の交流電圧のデューティ比を画像形成時よりも小さくすることでプラス方向に放電させて感光層の破壊を抑えることができる。又、放電発生検出を繰り返しても感光体ドラムにダメージを与えることがないので、放電の発生の検出動作を頻繁に繰り返すこともでき、常にプリンタ1の現像効率を高い状態で維持できる。   The photosensitive drum of this embodiment has a positively charged amorphous silicon photosensitive layer. As described above, it has been confirmed that such a photosensitive drum has a characteristic that even if a discharge occurs in the plus direction, the discharge current does not increase rapidly and a large current does not flow easily (see FIG. 10). Therefore, there is almost no possibility that a large current flows through the photosensitive drum due to the positive discharge and a drum pin hole (a minute hole) is formed in the photosensitive drum, and the photosensitive layer is destroyed. Thus, by making the duty ratio of the AC voltage at the time of detecting the occurrence of discharge smaller than that at the time of image formation, it is possible to discharge in the plus direction and suppress the destruction of the photosensitive layer. Further, since the photosensitive drum is not damaged even if the occurrence of discharge is repeated, the occurrence detection of discharge can be repeated frequently, and the developing efficiency of the printer 1 can always be maintained at a high level.

ここで、実際には、現像ローラ81に付着するトナーや現像ローラ81と磁気ローラ82間の現像剤等の容量性負荷にも、交流電圧を印加していると見ることができるので、交流電圧は実際には電圧の立上り及び立下りは、急峻ではなく一定の時間がかかり、図8(a)のように、もし周期を画像形成時と同じとしたまま(T01=T02)、デューティ比D2を画像形成時のデューティ比D1よりも小さくすると、交流電圧のプラス側ピークの時間がかなり短くなる。そこで、本実施形態では、図8(b)のように、交流電圧のプラス側時間が画像形成時と放電発生検出時とで同じとなるよう(T1=T2)、周波数f2が設定される(例えば、D1=40%、D2=30%の場合、画像形成時の周波数f1=4kHzであれば、f2=3kHz)。これにより、放電発生検出時の交流電圧のプラス側ピークの時間を画像形成時とできるだけ近づけ、同様に確保することができ、放電発生検出時の交流電圧の印加状態を画像形成時に合わせることができる。   Here, in practice, it can be considered that the AC voltage is also applied to the capacitive load such as the toner adhering to the developing roller 81 and the developer between the developing roller 81 and the magnetic roller 82. Actually, the rise and fall of the voltage are not steep and take a certain time. As shown in FIG. 8A, if the cycle remains the same as that during image formation (T01 = T02), the duty ratio D2 Is smaller than the duty ratio D1 at the time of image formation, the time of the positive side peak of the AC voltage is considerably shortened. Therefore, in the present embodiment, as shown in FIG. 8B, the frequency f2 is set so that the positive side time of the AC voltage is the same between the image formation and the discharge occurrence detection (T1 = T2) ( For example, when D1 = 40% and D2 = 30%, f2 = 3 kHz if the frequency f1 = 4 kHz during image formation. As a result, the time of the positive side peak of the AC voltage at the time of detecting the occurrence of discharge can be as close as possible to that at the time of image formation, and can be ensured in the same way, and the application state of the AC voltage at the time of detecting discharge occurrence can be matched during the image formation .

尚、バイアスの放電発生検出用の設定値Vdc2は、画像形成時の設定値Vdc1よりも高く設定することが望ましい。トナーは正極性に帯電し、放電発生検出時に磁気ローラ82から現像ローラ81に供給されるトナーの量を抑えることができるからである。   It should be noted that the setting value Vdc2 for detecting the occurrence of bias discharge is desirably set higher than the setting value Vdc1 at the time of image formation. This is because the toner is positively charged, and the amount of toner supplied from the magnetic roller 82 to the developing roller 81 when the occurrence of discharge is detected can be suppressed.

(放電発生検出動作の制御の流れ)
次に、図9に基づき、本発明の実施形態に係るプリンタ1の放電発生検出動作の制御の流れの一例を説明する。図9は、本発明の実施形態に係るプリンタ1の放電発生検出動作の制御の流れの一例を示す、フローチャートである。尚、このフローチャートは、1つの画像形成部3に対する制御であり、全色行う場合、本実施形態では、4回繰り返される。
(Flow of control of discharge occurrence detection operation)
Next, an example of a control flow of the discharge occurrence detection operation of the printer 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 9 is a flowchart showing an example of the control flow of the discharge occurrence detection operation of the printer 1 according to the embodiment of the present invention. Note that this flowchart is a control for one image forming unit 3 and is repeated four times in the present embodiment when all colors are used.

尚、この放電発生検出動作は、例えば、初期不良発見や初期設定として製造時や、プリンタ1の設置時、現像装置8や感光体ドラム9の交換時に行える。又、プリンタ1の設置時に行うのは、設置環境の標高によって気圧が変化し(例えば、日本国内とメキシコの高地との差)、放電が発生する電圧に差があるためである。現像装置8等の交換時に行うのは、感光体ドラム9と現像ローラ81とのギャップが交換前と変わるためである。尚、上記の例に限られず、例えば、プリンタ1が一定枚数を印刷するごとに行っても良いし、実施タイミングは、適宜設定することが可能である。   This discharge occurrence detection operation can be performed, for example, at the time of manufacturing as initial defect detection or initial setting, when the printer 1 is installed, or when the developing device 8 or the photosensitive drum 9 is replaced. The reason why the printer 1 is installed is that the atmospheric pressure changes depending on the altitude of the installation environment (for example, the difference between Japan and the Mexican highlands), and there is a difference in the voltage at which discharge occurs. The reason for performing the replacement of the developing device 8 and the like is that the gap between the photosensitive drum 9 and the developing roller 81 is different from that before the replacement. Note that the present invention is not limited to the above example. For example, it may be performed every time the printer 1 prints a certain number of sheets, and the execution timing can be set as appropriate.

まず、操作パネル13において所定の操作がされ、放電発生検出動作が開始されると(スタート)、CPU11の指示で、不図示の駆動機構により、感光体ドラム9、現像ローラ81、磁気ローラ82、中間転写ベルト52等の画像形成部3と中間転写部5での各種回転体の回転が開始される(ステップS1)。この各回転体の駆動は、放電発生検出動作が終了するまで継続する。尚、放電発生検出動作では、基本的に、現像ローラ81はトナーを担持しない。次に、図6で説明した初期動作が行われる(ステップS2)。次に、図6で説明した準備状態に移行し(ステップS3)、例えば、CPU11の指示により、帯電電圧印加部72が、帯電装置7に電圧印加を開始する。   First, when a predetermined operation is performed on the operation panel 13 and a discharge generation detection operation is started (start), the photosensitive drum 9, the developing roller 81, the magnetic roller 82, The rotation of various rotating bodies in the image forming unit 3 such as the intermediate transfer belt 52 and the intermediate transfer unit 5 is started (step S1). The driving of each rotating body is continued until the discharge occurrence detecting operation is completed. In the discharge occurrence detection operation, the developing roller 81 basically does not carry toner. Next, the initial operation described in FIG. 6 is performed (step S2). Next, the process proceeds to the preparation state described with reference to FIG. 6 (step S <b> 3). For example, the charging voltage application unit 72 starts voltage application to the charging device 7 according to an instruction from the CPU 11.

次に、図6で説明したデフォルト測定が行われる(ステップS4)。この時、放電発生を検出しないことを確認する(ステップS5)。このデフォルト測定は、放電が到底発生しないという状態(例えば、現像ローラ81への交流電圧の大きさが極めて低い等)で行われ、デフォルト測定で放電発生を検出すれば(ステップS5のNo)、ギャップの異常や検出部14等のハードの異常が考えられる。この場合、操作パネル13等にエラー表示(ステップS6)を行って、放電発生検出動作は終了する(エンド)。   Next, the default measurement described in FIG. 6 is performed (step S4). At this time, it is confirmed that the occurrence of discharge is not detected (step S5). This default measurement is performed in a state in which no discharge occurs (for example, the magnitude of the AC voltage to the developing roller 81 is extremely low). If the occurrence of discharge is detected in the default measurement (No in step S5), There may be a gap abnormality or a hardware abnormality of the detection unit 14 or the like. In this case, an error display (step S6) is performed on the operation panel 13 or the like, and the discharge occurrence detection operation ends (end).

一方、CPU11に放電が発生した旨の信号が入力されなければ(ステップS5のYes)、図6で説明した条件変更状態に移行し、CPU11の指示で、Vpp制御部88が、交流電圧印加部86の出力する交流電圧のピーク間電圧を現状より所定の刻み幅ΔV1(例えば、30〜100Vなど)だけ増加させる設定が行われる(ステップS7)。   On the other hand, if the signal indicating that the discharge has occurred is not input to the CPU 11 (Yes in step S5), the process shifts to the condition change state described with reference to FIG. Setting is made to increase the peak-to-peak voltage of the AC voltage output by 86 by a predetermined step width ΔV1 (for example, 30 to 100 V, etc.) from the current state (step S7).

そして、次に、放電検出状態に移行し、具体的には、ΔV1だけピーク間電圧を増加させた交流電圧を現像ローラ81に印加し、CPU11の指示により所定時間露光が行われ、その間、CPU11はアンプ15の出力電圧が所定の閾値を越えた回数をカウントする(ステップS8)。そして、カウント数が0回でないかを確認し(ステップS9)、0回であれば(ステップS9のNo)、放電発生なしとして、現状のピーク間電圧が設定可能な最大値(例えば、1500〜3000V)に達しているかをCPU11が確認し(ステップS10)、達していれば(ステップS10のYes)、ステップS16に移行する(詳細は後述)。達していなければ(ステップS10のNo)、ステップS7に戻る。   Then, the state shifts to a discharge detection state. Specifically, an AC voltage whose peak-to-peak voltage is increased by ΔV1 is applied to the developing roller 81, and exposure is performed for a predetermined time according to an instruction from the CPU 11, during which the CPU 11 Counts the number of times the output voltage of the amplifier 15 exceeds a predetermined threshold (step S8). Then, it is confirmed whether the count number is not 0 (step S9). If it is 0 (No in step S9), the current peak-to-peak voltage can be set to a maximum value (for example, 1500 to 1500) as no discharge occurs. CPU11 confirms whether it has reached 3000V (step S10), and if it has reached (Yes in step S10), the process proceeds to step S16 (details will be described later). If not reached (No in step S10), the process returns to step S7.

ステップS9で、カウント値が1回以上ならば(ステップS9のYes)、放電発生として、CPU11の指示で、Vpp制御部88は、交流電圧印加部86が現像ローラ81に印加する交流電圧のピーク間電圧を、現状より所定の刻み幅ΔV1だけ減少させ(ステップS11)、さらに所定の刻み幅ΔV2だけ増加させた値に設定する(ステップS12)。ここで、所定の刻み幅ΔV2は、所定の刻み幅ΔV1を分割したものとできる(例えば、ΔV1=50Vであれば、ΔV2=10V等)。言い換えると、放電が発生するピーク間電圧をより細かく探し当てるため、1段階戻って放電発生検出におけるピーク間電圧の段階的な変化の刻み幅を小さくする。   In step S9, if the count value is once or more (Yes in step S9), the discharge is generated, and the Vpp control unit 88 instructs the AC voltage application unit 86 to apply the peak of the AC voltage to the developing roller 81 in response to an instruction from the CPU 11. The inter-voltage is decreased from the current state by a predetermined step size ΔV1 (step S11), and further set to a value increased by a predetermined step size ΔV2 (step S12). Here, the predetermined step width ΔV2 can be obtained by dividing the predetermined step width ΔV1 (for example, ΔV2 = 10V when ΔV1 = 50V). In other words, in order to find the peak-to-peak voltage at which discharge occurs more finely, the step size is stepped back and the step size of the step-by-step change in the peak-to-peak voltage is reduced.

その後、ステップS8と同様に、放電検出状態となり、CPU11は、アンプ15の出力電圧が所定の閾値を越えた回数をカウントする(ステップS13)。言い換えると、刻み幅ΔV1でのピーク間電圧の段階的な変更の際、放電が検出されれば、より詳細に、放電が発生するピーク間電圧を得るため、刻み幅ΔV2で、放電が検出されるまで、放電検出状態と条件変更状態とが繰り返される。   Thereafter, as in step S8, the discharge detection state is set, and the CPU 11 counts the number of times that the output voltage of the amplifier 15 exceeds a predetermined threshold (step S13). In other words, if a discharge is detected in the stepwise change of the peak-to-peak voltage at the step size ΔV1, the discharge is detected at the step size ΔV2 in order to obtain a more detailed peak-to-peak voltage at which discharge occurs. Until this occurs, the discharge detection state and the condition change state are repeated.

次に、カウント数が0回でないかを確認し(ステップS14)、0回であれば(ステップS14のNo)、放電発生なしとして、現在のピーク間電圧が先に放電を検出したピーク間電圧に達しているかをCPU11が確認する(ステップS15)。もし達していれば(ステップS15のYes)、ステップS16に移行する。もし、達していなければ(ステップS15のNo)、ステップS12に戻る。一方、カウント値が1回以上であれば(ステップS14のYes)、CPU11は、現在のピーク間電圧のときに放電が発生すると認定し、ステップS16に進む。   Next, it is confirmed whether the count number is not 0 (step S14). If it is 0 (No in step S14), the current peak-to-peak voltage is the peak-to-peak voltage at which discharge is detected first as no discharge has occurred. CPU11 confirms whether it has reached (step S15). If it has been reached (Yes in step S15), the process proceeds to step S16. If not reached (No in step S15), the process returns to step S12. On the other hand, if the count value is one or more times (Yes in step S14), the CPU 11 determines that a discharge occurs at the current peak-to-peak voltage, and proceeds to step S16.

次に、ステップS16について、詳述する。放電発生検出時(ステップS14のYes、ステップS15のYesの場合)や、設定可能な最大ピーク間電圧でも検出できなかった場合(ステップS10のYes)、CPU11は、放電が発生すると認めたピーク間電圧Vpp2、又は最大ピーク間電圧、周波数f2、デューティ比D2、バイアス設定値Vdc2から、図7に示す電位差V+2(放電検出時又は設定可能な最大値でのVpp2印加時の感光体ドラム9と現像ローラ81間の電位差)を求める(ステップS16)。   Next, step S16 will be described in detail. When the discharge is detected (Yes in step S14, Yes in step S15) or even when the maximum peak-to-peak voltage that can be set cannot be detected (Yes in step S10), the CPU 11 recognizes that the discharge is generated. From the voltage Vpp2, or the maximum peak-to-peak voltage, the frequency f2, the duty ratio D2, and the bias setting value Vdc2, the potential difference V + 2 shown in FIG. 7 (photosensitive drum 9 and development at the time of detecting discharge or applying Vpp2 at the maximum settable value) A potential difference between the rollers 81 is obtained (step S16).

ここで、V+2は容易に求めることができる。CPU11は、ピーク間電圧の大きさを指定してVpp制御部88に指示を出す。従って、制御部10は、放電発生を検出した場合、その時のVpp2を把握している。そして、設定値としてのデューティ比D2と、Vdc2を基準として、正側の面積と負側の面積を等しくすることに基づき、プラス側ピーク値とVdc2の電位差が求められる。この電位差に、Vdc2とV0との電位差(V0は、ほぼ0Vなので、Vdc2と扱える)を加えれば、V+2が求められる。   Here, V + 2 can be easily obtained. CPU 11 designates the magnitude of the peak-to-peak voltage and issues an instruction to Vpp control unit 88. Therefore, the control part 10 grasps | ascertains Vpp2 at that time, when discharge generation | occurrence | production is detected. Then, based on the duty ratio D2 as the set value and Vdc2 as a reference, the positive side area and the negative side area are made equal to obtain the potential difference between the positive side peak value and Vdc2. If this potential difference is added with the potential difference between Vdc2 and V0 (V0 is almost 0V, it can be treated as Vdc2), V + 2 is obtained.

具体的には、周波数f2、デューティ比D2、バイアス設定値Vdc2を一定とすれば、各Vpp2の大きさに応じ、予めV+2を算出しておき、ルックアップテーブルとしてデータ化し、CPU11がそのテーブルを参照し、V+2が求められても良い。尚、このテーブルは、例えば、記憶部12に記憶しておけばよい。   Specifically, if the frequency f2, the duty ratio D2, and the bias setting value Vdc2 are constant, V + 2 is calculated in advance according to the size of each Vpp2, converted into data as a lookup table, and the CPU 11 stores the table. Reference may be made to obtain V + 2. In addition, what is necessary is just to memorize | store this table in the memory | storage part 12, for example.

次に、求められたV+2に基づき、CPU11は、図7に示したV+1と、V−がいずれも求められたV+2よりも、小さくなるように、画像形成時に現像ローラ81に印加する交流電圧のピーク間電圧Vpp1を設定する(ステップS17)。具体的に、Vpp1の決定方法は多様であるが、例えば、V+1とV−をV+2よりも、どれほど小さくすれば放電が発生しないか(マージンをどれほどとるべきか)は、使用トナーにより異なる等の事情から、開発時の実験に基づき、例えば、求められたV+2に対し、画像形成時に放電が発生しないと認められるVpp1の値をテーブル化し、CPU11がそのテーブルを参照し、Vpp1が定められても良い。尚、このテーブルも記憶部12に記憶しておけばよい。これにより、画像形成時、放電が発生しないできるだけ大きな交流電圧を印加できる。   Next, based on the obtained V + 2, the CPU 11 determines the AC voltage applied to the developing roller 81 during image formation so that V + 1 and V− shown in FIG. 7 are smaller than the obtained V + 2. The peak-to-peak voltage Vpp1 is set (step S17). Specifically, there are various methods for determining Vpp1, but for example, how much smaller V + 1 and V− than V + 2 will not cause discharge (how much margin should be taken) depends on the toner used. For example, based on an experiment at the time of development, for example, for V + 2 obtained, a value of Vpp1 that is recognized as causing no discharge during image formation is tabulated, and the CPU 11 refers to that table and Vpp1 is determined. good. This table may also be stored in the storage unit 12. This makes it possible to apply as much AC voltage as possible without causing discharge during image formation.

要するに、本実施形態のプリンタ1では、放電発生検出時に放電が発生したことを検出した場合、制御部10は、放電発生時に現像ローラ81に印加していた交流電圧に対する感光体ドラム9と現像ローラ81間の電位差を求め、画像形成時における現像ローラ81と感光体ドラム9の表面電位の電位差が上記求めた電位差よりも小さくなるように、画像形成時に現像ローラ81に印加すべき交流電圧を定めるのである。   In short, in the printer 1 of the present embodiment, when it is detected that a discharge has occurred when the occurrence of a discharge is detected, the control unit 10 causes the photosensitive drum 9 and the development roller with respect to the AC voltage applied to the developing roller 81 when the discharge occurs. A potential difference between 81 is determined, and an AC voltage to be applied to the developing roller 81 during image formation is determined so that the potential difference between the surface potentials of the developing roller 81 and the photosensitive drum 9 during image formation is smaller than the determined potential difference. It is.

そして、このVpp1の設定が完了すれば、放電発生検出と画像形成時のVpp1の設定は終了する(エンド)。そして、プリンタ1は、この制御完了後、画像形成可能な状態に復帰する。このように、本発明によれば、現像効率が高く、かつ、画像形成時に放電が発生しない、現像ローラ81に印加すべきVpp1を自動的に設定することができる。   When the setting of Vpp1 is completed, the detection of discharge occurrence and the setting of Vpp1 at the time of image formation are completed (END). Then, after the completion of this control, the printer 1 returns to a state where image formation is possible. As described above, according to the present invention, it is possible to automatically set Vpp1 to be applied to the developing roller 81, which has high development efficiency and does not generate discharge during image formation.

このようにして、本発明の実施形態によれば、放電が発生する現像ローラ81と感光体ドラム9間の電位差を把握するため、現像ローラ81に印加する交流電圧を変化させつつ放電の発生を検出、確認する場合、画像形成時よりデューティ比が小さく、プラス側時間が画像形成時と同じになるよう周波数が画像形成時より小さく設定された交流電圧を現像ローラ81に印加させる。   As described above, according to the embodiment of the present invention, in order to grasp the potential difference between the developing roller 81 and the photosensitive drum 9 where the discharge is generated, the discharge is generated while changing the AC voltage applied to the developing roller 81. When detecting and checking, an AC voltage having a duty ratio smaller than that at the time of image formation and a frequency set smaller than that at the time of image formation is applied to the developing roller 81 so that the plus side time is the same as that at the time of image formation.

放電発生検出時の交流電圧のデューティ比を画像形成時よりも小さくすることで、交流電圧におけるプラス側ピーク値と面積中心、つまり直流電圧印加部85による直流バイアスとの差を大きくすることができる。従って、交流電圧のプラス側ピーク値と感光体ドラム9表面電位との電位差を大きくでき、プラス方向(感光体ドラム9より現像ローラ81の電位が高い状態)で現像ローラ81と感光体ドラム9間の放電を起こすことができる。ここで、感光体ドラム9はアモルファスシリコンの感光層を有し、プラス方向に放電した場合、現像ローラ81と感光体ドラム9間に急激に電流が流れないような特性を感光体ドラム9が有するので、プラス方向の放電により感光体ドラム9にドラムピンホールが形成され感光層が破壊されるおそれはほとんどない。つまり、感光体ドラム9の感光層の破壊を抑えつつ、放電が生じる感光体ドラム9と現像ローラ81間の電位差を測定することができるのである。   By making the duty ratio of the AC voltage at the time of detecting the occurrence of discharge smaller than that at the time of image formation, the difference between the positive peak value and the center of the AC voltage, that is, the DC bias by the DC voltage application unit 85 can be increased. . Accordingly, the potential difference between the positive side peak value of the AC voltage and the surface potential of the photosensitive drum 9 can be increased, and between the developing roller 81 and the photosensitive drum 9 in the positive direction (a state where the potential of the developing roller 81 is higher than that of the photosensitive drum 9). Can cause a discharge. Here, the photosensitive drum 9 has an amorphous silicon photosensitive layer, and the photosensitive drum 9 has such a characteristic that a current does not suddenly flow between the developing roller 81 and the photosensitive drum 9 when discharged in the plus direction. Therefore, there is almost no possibility that a drum pinhole is formed in the photosensitive drum 9 due to the positive discharge and the photosensitive layer is destroyed. That is, it is possible to measure the potential difference between the photosensitive drum 9 and the developing roller 81 where the discharge occurs while suppressing the destruction of the photosensitive layer of the photosensitive drum 9.

又、プラス側時間が画像形成時と同じになるよう周波数が画像形成時より小さく設定された交流電圧を現像ローラ81に印加させるので、交流電圧の立上り及び立下りに時間がかかったとしても、交流電圧のプラス側ピークの時間を画像形成時と同様に確保でき、放電発生検出時の交流電圧の印加状態を画像形成時に合わせることができる。   In addition, since the AC voltage whose frequency is set smaller than that at the time of image formation is applied to the developing roller 81 so that the plus side time is the same as that at the time of image formation, even if it takes time to rise and fall of the AC voltage, The time of the positive side peak of the AC voltage can be secured in the same manner as in the image formation, and the application state of the AC voltage when the occurrence of discharge is detected can be matched during the image formation.

又、放電発生検出時に、制御部10は、直流電圧印加部85に画像形成時よりも高い直流電圧を現像ローラ81に印加させるので、放電発生検出時に磁気ローラから現像ローラへ正極性に帯電されたトナーが供給されてしまうことを抑えることができる。又、把握された放電が発生する現像ローラ81と感光体ドラム9の電位差に基づき、現像効率を高めた、適切な画像形成時に放電の生じない交流電圧の設定を行うことができる。   In addition, when the occurrence of discharge is detected, the control unit 10 causes the DC voltage application unit 85 to apply a higher DC voltage to the developing roller 81 than during image formation, so that when the occurrence of discharge is detected, the magnetic roller is positively charged from the developing roller. It is possible to prevent the toner from being supplied. In addition, based on the potential difference between the developing roller 81 and the photosensitive drum 9 where the detected discharge is generated, it is possible to set an AC voltage that enhances the development efficiency and does not generate a discharge during appropriate image formation.

又、感光体ドラム9の感光層が正帯電のアモルファスシリコンで構成されるので、プラス方向の放電によっては大電流が流れにくいといった特性が顕著に表れ、感光体ドラム9の感光層の破壊を抑える効果が大きくなる。   Further, since the photosensitive layer of the photosensitive drum 9 is composed of positively charged amorphous silicon, the characteristic that a large current hardly flows due to the positive discharge is remarkably exhibited, and the destruction of the photosensitive layer of the photosensitive drum 9 is suppressed. The effect is increased.

以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   The embodiment of the present invention has been described above, but the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.

本発明は、感光体ドラムと現像ローラを有し、現像ローラに現像バイアス(直流+
交流)を印加する画像形成装置に利用可能である。
The present invention includes a photosensitive drum and a developing roller, and a developing bias (DC +
It can be used for an image forming apparatus that applies (AC).

は、本発明の実施形態に係るプリンタの概略構成を示す断面図である。These are sectional views showing a schematic configuration of a printer according to an embodiment of the present invention. は、本発明の実施形態に係る画像形成部の拡大断面図である。These are the expanded sectional views of the image formation part concerning the embodiment of the present invention. は、本実施形態に係る露光装置の一例を示す模式図である。These are schematic diagrams showing an example of an exposure apparatus according to the present embodiment. は、本実施形態に係る現像ローラへの現像バイアス印加及び感光体ドラムと現像ローラ間の放電発生検出に関する現像ローラ周辺の構成を示す。FIG. 4 shows a configuration around the developing roller related to application of a developing bias to the developing roller and detection of discharge between the photosensitive drum and the developing roller according to the present embodiment. は、本実施形態に係るプリンタのハードウェア構成の一例のブロック図である。FIG. 2 is a block diagram illustrating an example of a hardware configuration of a printer according to the present embodiment. は、本実施形態に係る放電発生検出動作の概略を説明するためのタイミングチャートである。These are timing charts for explaining the outline of the discharge occurrence detection operation according to the present embodiment. は、本実施形態に係る現像ローラに印加する交流電圧の詳細を説明するタイミングチャートである。These are timing charts explaining the details of the AC voltage applied to the developing roller according to the present embodiment. は、現像ローラに印加する交流電圧の実際の波形を示すタイミングチャートである。These are timing charts showing the actual waveform of the AC voltage applied to the developing roller. は、本実施形態に係るプリンタの放電発生検出動作の制御の流れの一例を示す、フローチャートである。These are the flowcharts which show an example of the flow of control of discharge generation detection operation of the printer which concerns on this embodiment. は、感光体ドラムと現像ローラ間の電位差と、感光体ドラムと現像ローラ間に流れる放電電流との関係を示すグラフである。These are graphs showing the relationship between the potential difference between the photosensitive drum and the developing roller and the discharge current flowing between the photosensitive drum and the developing roller.

符号の説明Explanation of symbols

1 プリンタ(画像形成装置)
3(3a、3b、3c、3d) 画像形成部
8(8a、8b、8c、8d) 現像装置
81(81a、81b、81c、81d) 現像ローラ
85 直流電圧印加部
86 交流電圧印加部
9(9a、9b、9c、9d) 感光体ドラム
10 制御部
11 CPU(制御部10の一部)
14 検出部
1 Printer (image forming device)
3 (3a, 3b, 3c, 3d) Image forming unit 8 (8a, 8b, 8c, 8d) Developing device 81 (81a, 81b, 81c, 81d) Developing roller 85 DC voltage applying unit 86 AC voltage applying unit 9 (9a) 9b, 9c, 9d) Photosensitive drum 10 Control unit 11 CPU (part of control unit 10)
14 detector

Claims (4)

周面にトナー像を担持する感光体ドラムと、
前記感光体ドラムにギャップが設けられつつ対向し、画像形成時にトナーを担持し、前記感光体ドラムへのトナーの供給のため、直流電圧印加部と、交流電圧印加部が接続される現像ローラと、
前記現像ローラと前記感光体ドラム間での放電発生を検出する検出部と、
装置の各部を制御するとともに、前記検出部の出力が入力され放電発生を認識する制御部と、を備え、
前記制御部が前記現像ローラに印加する交流電圧の段階的な変更を前記交流電圧印加部に指示し、前記検出部により放電の発生を検出する放電発生検出時に、
前記交流電圧印加部は、画像形成時よりデューティ比が小さく、プラス側時間が画像形成時と同じになるよう周波数が画像形成時より小さく設定された交流電圧を前記現像ローラに印加することを特徴とする画像形成装置。
A photosensitive drum carrying a toner image on its peripheral surface;
A direct current voltage application unit and a developing roller to which an alternating voltage application unit is connected to face the photoconductive drum with a gap, carry a toner during image formation, and supply the toner to the photoconductive drum. ,
A detector for detecting the occurrence of discharge between the developing roller and the photosensitive drum;
A control unit that controls each part of the device and recognizes the occurrence of discharge when the output of the detection unit is input;
Instructing the AC voltage application unit to change the AC voltage applied to the developing roller by the control unit to the AC voltage application unit, and detecting the occurrence of discharge by the detection unit,
The AC voltage application unit applies an AC voltage having a smaller duty ratio than that at the time of image formation and a frequency set to be lower than that at the time of image formation so that the plus time is the same as that at the time of image formation. An image forming apparatus.
前記現像ローラに対向して設けられ、正極性に帯電されたトナーを保持する磁気ローラをさらに備え、
前記放電発生検出時に、前記制御部は、前記直流電圧印加部に画像形成時よりも高い直流電圧を前記現像ローラに印加させることを特徴とする請求項1に記載の画像形成装置。
A magnetic roller provided opposite to the developing roller and holding a positively charged toner;
The image forming apparatus according to claim 1, wherein when the occurrence of discharge is detected, the control unit causes the DC voltage application unit to apply a higher DC voltage to the developing roller than during image formation.
前記放電発生検出時に放電が発生したことを検出した場合、
前記制御部は、放電発生時に前記現像ローラに印加していた交流電圧のピーク間電圧に対する前記感光体ドラムと前記現像ローラ間の電位差を求め、画像形成時における前記現像ローラと前記感光体ドラムの表面電位の電位差が前記電位差よりも小さくなるように、画像形成時に現像ローラに印加すべき交流電圧を定めることを特徴とする請求項1又は請求項2に記載の画像形成装置。
When it is detected that a discharge has occurred during the occurrence of discharge,
The control unit obtains a potential difference between the photosensitive drum and the developing roller with respect to a peak-to-peak voltage of the AC voltage applied to the developing roller at the time of occurrence of discharge, and determines the difference between the developing roller and the photosensitive drum during image formation. 3. The image forming apparatus according to claim 1, wherein an AC voltage to be applied to the developing roller during image formation is determined so that a potential difference of the surface potential is smaller than the potential difference.
前記感光体ドラムは、正帯電のアモルファスシリコンの感光層を有することを特徴とする請求項1〜請求項3のいずれか1項に記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the photosensitive drum has a positively charged amorphous silicon photosensitive layer.
JP2008218785A 2008-08-27 2008-08-27 Image forming apparatus Active JP5193747B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008218785A JP5193747B2 (en) 2008-08-27 2008-08-27 Image forming apparatus
US12/546,845 US7979011B2 (en) 2008-08-27 2009-08-25 Image forming apparatus having a photoconductive drum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218785A JP5193747B2 (en) 2008-08-27 2008-08-27 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2010054739A true JP2010054739A (en) 2010-03-11
JP5193747B2 JP5193747B2 (en) 2013-05-08

Family

ID=42070742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218785A Active JP5193747B2 (en) 2008-08-27 2008-08-27 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP5193747B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194682A (en) * 2014-03-17 2015-11-05 京セラドキュメントソリューションズ株式会社 image forming apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098707A (en) * 1998-09-21 2000-04-07 Minolta Co Ltd Developing device and image forming device using it
JP2003208000A (en) * 2002-01-16 2003-07-25 Seiko Epson Corp Image forming apparatus and its method
JP2003255680A (en) * 2002-03-05 2003-09-10 Seiko Epson Corp Image forming apparatus and image forming method
JP2003287942A (en) * 2002-03-28 2003-10-10 Minolta Co Ltd Developing device
JP2004093701A (en) * 2002-08-29 2004-03-25 Minolta Co Ltd Developing device
JP2005078015A (en) * 2003-09-03 2005-03-24 Minolta Co Ltd Image forming apparatus
JP2005156903A (en) * 2003-11-26 2005-06-16 Seiko Epson Corp Image forming apparatus, discharge detection method in the same, and image forming method
JP2005156904A (en) * 2003-11-26 2005-06-16 Seiko Epson Corp Image forming apparatus, discharge detection method in the same, and image forming method
JP2005164852A (en) * 2003-12-01 2005-06-23 Seiko Epson Corp Image forming apparatus, discharge detecting method for the image forming apparatus and image forming method
JP2005249990A (en) * 2004-03-03 2005-09-15 Seiko Epson Corp Image forming apparatus and method for forming image
JP2005258256A (en) * 2004-03-15 2005-09-22 Seiko Epson Corp Image forming apparatus and image forming method
JP2008009035A (en) * 2006-06-28 2008-01-17 Konica Minolta Business Technologies Inc Process cartridge, image forming apparatus with the same, bias voltage measurement device for process cartridge, and development bias condition measuring method using the device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098707A (en) * 1998-09-21 2000-04-07 Minolta Co Ltd Developing device and image forming device using it
JP2003208000A (en) * 2002-01-16 2003-07-25 Seiko Epson Corp Image forming apparatus and its method
JP2003255680A (en) * 2002-03-05 2003-09-10 Seiko Epson Corp Image forming apparatus and image forming method
JP2003287942A (en) * 2002-03-28 2003-10-10 Minolta Co Ltd Developing device
JP2004093701A (en) * 2002-08-29 2004-03-25 Minolta Co Ltd Developing device
JP2005078015A (en) * 2003-09-03 2005-03-24 Minolta Co Ltd Image forming apparatus
JP2005156903A (en) * 2003-11-26 2005-06-16 Seiko Epson Corp Image forming apparatus, discharge detection method in the same, and image forming method
JP2005156904A (en) * 2003-11-26 2005-06-16 Seiko Epson Corp Image forming apparatus, discharge detection method in the same, and image forming method
JP2005164852A (en) * 2003-12-01 2005-06-23 Seiko Epson Corp Image forming apparatus, discharge detecting method for the image forming apparatus and image forming method
JP2005249990A (en) * 2004-03-03 2005-09-15 Seiko Epson Corp Image forming apparatus and method for forming image
JP2005258256A (en) * 2004-03-15 2005-09-22 Seiko Epson Corp Image forming apparatus and image forming method
JP2008009035A (en) * 2006-06-28 2008-01-17 Konica Minolta Business Technologies Inc Process cartridge, image forming apparatus with the same, bias voltage measurement device for process cartridge, and development bias condition measuring method using the device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194682A (en) * 2014-03-17 2015-11-05 京セラドキュメントソリューションズ株式会社 image forming apparatus

Also Published As

Publication number Publication date
JP5193747B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5264436B2 (en) Image forming apparatus
US7979011B2 (en) Image forming apparatus having a photoconductive drum
JP5175687B2 (en) Image forming apparatus
JP2009080460A (en) Image forming apparatus
EP2605074A2 (en) Developing device, image forming apparatus and method of controlling developing device
JP5193749B2 (en) Image forming apparatus
JP5193748B2 (en) Image forming apparatus
JP5081768B2 (en) Image forming apparatus
JP5193747B2 (en) Image forming apparatus
JP5081769B2 (en) Image forming apparatus
JP2013228538A (en) Developing device and image forming apparatus
JP2016212276A (en) Image forming apparatus
US11048192B1 (en) Image forming apparatus capable of suppressing occurrence of image defects in response to difference in carrier resistance and obtaining high image quality
JP2009115856A (en) Image forming apparatus
JP5396069B2 (en) Image forming apparatus
JP2007232856A (en) Image forming apparatus
JP6116507B2 (en) Developing device and image forming apparatus having the same
JP2002207351A (en) Electrifying device and image forming device
JP5255952B2 (en) Image forming apparatus
JP7115198B2 (en) image forming device
JP2010151981A (en) Image forming apparatus
JP5452000B2 (en) Image forming apparatus
JP2013152359A (en) Image forming apparatus
US11500311B2 (en) Image forming apparatus including techniques and mechanisms to suppress occurrence of an image defect caused by a transfer step
JP6784229B2 (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5193747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03