JP2010054302A - Method of estimating anechoic characteristic - Google Patents

Method of estimating anechoic characteristic Download PDF

Info

Publication number
JP2010054302A
JP2010054302A JP2008218665A JP2008218665A JP2010054302A JP 2010054302 A JP2010054302 A JP 2010054302A JP 2008218665 A JP2008218665 A JP 2008218665A JP 2008218665 A JP2008218665 A JP 2008218665A JP 2010054302 A JP2010054302 A JP 2010054302A
Authority
JP
Japan
Prior art keywords
anechoic
antenna
propagation loss
characteristic
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008218665A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitada
浩志 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008218665A priority Critical patent/JP2010054302A/en
Publication of JP2010054302A publication Critical patent/JP2010054302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of estimating an anechoic characteristic, which facilitates estimating the anechoic characteristic in an anechoic domain in a short time. <P>SOLUTION: A transmission antenna 4 and receiving antennas 6 are arranged in a radio wave anechoic chamber 1. Each receiving antenna 6 is arranged on three points, a center position O, an upper end P1 and a lower end P2 of the anechoic domain QZ, and each propagation loss L0, L1, L2 between the antennas 4, 6 on each position is measured. Then, the maximum value Lmax and the minimum value Lmin in propagation losses L1e, L2e determined by performing distance correction of each propagation loss L1, L2 and the propagation loss L0 are determined, and a fluctuation width of an electric field is estimated from a difference (propagation loss difference ΔL) between the maximum value Lmax and the minimum value Lmin. Finally, the anechoic characteristic R is operated based on a fluctuation width estimation value A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電波無響室内に設けた送信アンテナと受信アンテナとを用いて無響領域(Quiet Zone)の無響特性を推定する無響特性の推定方法に関する。   The present invention relates to an anechoic characteristic estimation method for estimating an anechoic characteristic of an anechoic region (Quiet Zone) using a transmitting antenna and a receiving antenna provided in an anechoic chamber.

一般に、電波無響室は、前,後,左,右の壁面、床面および天井面に電波吸収体を設ける構成としている。そして、例えば携帯電話等の被測定物のEMI特性等を測定するときには、電波無響室内には被測定物と測定アンテナとを配置し、被測定物からの電磁波を測定アンテナを用いて受信する。   In general, an anechoic chamber is configured such that a radio wave absorber is provided on front, rear, left, and right wall surfaces, floor surfaces, and ceiling surfaces. For example, when measuring the EMI characteristics or the like of an object to be measured such as a mobile phone, the object to be measured and the measurement antenna are disposed in the anechoic chamber, and electromagnetic waves from the object to be measured are received using the measurement antenna. .

また、電波無響室の壁面等は、電波吸収体によって反射波が発生するのを抑制している。しかし、反射波を完全に無くすことはできないから、電波無響室内には反射波の影響が大きい箇所と小さい箇所とが存在する。このため、測定前に反射波の影響が小さい無響領域を探し、この無響領域内に被測定物を配置して各種の特性を測定するのが好ましい。   In addition, the wall surface of the anechoic chamber suppresses the generation of reflected waves by the radio wave absorber. However, since the reflected wave cannot be completely eliminated, there are a portion where the influence of the reflected wave is large and a portion where the reflected wave is small in the anechoic chamber. For this reason, it is preferable to search for an anechoic region where the influence of the reflected wave is small before the measurement, and to measure various characteristics by placing an object to be measured in the anechoic region.

このような無響領域で反射減衰量に対応した無響特性(無反射特性ともいう)を測定する方法として、自由空間定在波比法が知られている(例えば非特許文献1参照)。この自由空間定在波比法では、測定アンテナを置く位置に送信アンテナを固定した状態で、無響領域内で受信アンテナを移動させながら送信アンテナからの送信信号を受信する。これにより、無響領域内の定在波を直接的に検出し、この定在波の振幅の最大値と最小値との差(定在波比)に基づいて強い反射波と弱い反射波との比率である無響特性を算出している。   A free space standing wave ratio method is known as a method for measuring an anechoic characteristic (also referred to as an antireflective characteristic) corresponding to the return loss in such an anechoic region (see, for example, Non-Patent Document 1). In this free space standing wave ratio method, a transmission signal from a transmission antenna is received while moving the reception antenna in an anechoic region with the transmission antenna fixed at the position where the measurement antenna is placed. As a result, standing waves in the anechoic region are directly detected, and strong reflected waves and weak reflected waves are detected based on the difference (standing wave ratio) between the maximum and minimum amplitudes of the standing waves. The anechoic characteristic, which is the ratio of

有限会社TSS JAPAN、"アンテナ用途電波暗室の評価方法 自由空間定在波比法"、[online]、平成13年10月30日、有限会社TSS JAPAN、[平成20年4月30日検索]、インターネット<URL:http://tssj.co.jp/pdf/antenahyoka.pdf>Limited company TSS JAPAN, "Evaluation method of antenna anechoic chamber free space standing wave ratio method", [online], October 30, 2001, limited company TSS JAPAN, [April 30, 2008 search], Internet <URL: http: //tssj.co.jp/pdf/antenahyoka.pdf>

ところで、自由空間定在波比法では、受信アンテナを移動させながら連続的に送信信号を受信するから、定在波の測定に多大な時間が必要になる。また、受信アンテナを移動させるためには、例えば受信アンテナを台車等に取付けると共に、この台車をモータを用いて自走させる、または紐やベルト等をモータを用いて引っ張る必要がある。このとき、モータや台車から反射波が生じ、測定結果に影響を及ぼす可能性がある。さらに、受信アンテナを高さ方向に連続的に移動させるために、専用の治具が必要になる等の問題がある。   By the way, in the free space standing wave ratio method, since a transmission signal is continuously received while moving a receiving antenna, a long time is required for measuring a standing wave. In order to move the receiving antenna, for example, it is necessary to attach the receiving antenna to a cart or the like and to make the cart run by itself using a motor, or to pull a string or belt using a motor. At this time, a reflected wave is generated from the motor or the carriage, which may affect the measurement result. Furthermore, there is a problem that a dedicated jig is necessary to continuously move the receiving antenna in the height direction.

本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、無響領域内の無響特性を短時間で簡易に推定することができる無響特性の推定方法を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an anechoic characteristic estimation method that can easily estimate an anechoic characteristic in an anechoic region in a short time. There is.

上述した課題を解決するために、請求項1の発明は、互いに直交するX軸、Y軸およびZ軸の3軸方向に広がる空間をもった電波無響室内に送信アンテナと受信アンテナとをY軸方向に離間して配置し、送信アンテナからの送信信号を受信アンテナを用いて複数箇所で受信することによって無響領域内に生じる送信信号の定在波に応じた無響特性を推定する無響特性の推定方法であって、前記受信アンテナを前記無響領域の中心位置に配置して前記送信アンテナと受信アンテナとの間の伝播損を測定する中心位置測定工程と、前記受信アンテナを前記無響領域のうち3軸方向のいずれか一軸方向の一側端部に配置して前記送信アンテナと受信アンテナとの間の伝播損を測定する一側端部測定工程と、前記受信アンテナを前記無響領域のうち前記一軸方向の他側端部に配置して前記送信アンテナと受信アンテナとの間の伝播損を測定する他側端部測定工程と、前記一側端部測定工程で測定した伝播損および前記他側端部測定工程で測定した伝播損を送信アンテナと受信アンテナとの間の距離に応じて補正する伝播損補正工程と、前記中心位置測定工程で測定した伝播損と該伝播損補正工程で補正した2つの補正伝播損との中で最大値と最小値とを定めて、該最大値と最小値との差を演算する伝播損差演算工程と、該伝播損差演算工程による伝播損差に基づいて回帰式から推定される電界の変動幅を推定する変動幅推定工程と、該変動幅推定工程による変動幅推定値に基づいて無響特性を演算する無響特性演算工程とによって構成している。   In order to solve the above-mentioned problem, the invention of claim 1 is characterized in that a transmitting antenna and a receiving antenna are placed in a radio anechoic chamber having a space extending in three axial directions of X axis, Y axis and Z axis orthogonal to each other. Estimate the anechoic characteristics according to the standing wave of the transmission signal generated in the anechoic region by arranging the transmission signals from the transmission antenna at multiple locations using the reception antenna. A method for estimating reverberation characteristics, comprising: a center position measuring step of measuring a propagation loss between the transmitting antenna and the receiving antenna by disposing the receiving antenna at a center position of the anechoic region; and One side end measurement step of measuring the propagation loss between the transmitting antenna and the receiving antenna by being arranged at one side end in any one of the three axial directions in the anechoic region; and Before the anechoic region The other side end measurement step of measuring the propagation loss between the transmitting antenna and the receiving antenna by being arranged at the other side end portion in the uniaxial direction, the propagation loss measured in the one side end measurement step, and the other side Propagation loss correction step for correcting the propagation loss measured in the edge measurement step according to the distance between the transmission antenna and the reception antenna, and the propagation loss measured in the center position measurement step and the propagation loss correction step A propagation loss difference calculation step of calculating a difference between the maximum value and the minimum value by determining a maximum value and a minimum value among the two corrected propagation losses, and a propagation loss difference by the propagation loss difference calculation step The fluctuation range estimation step of estimating the fluctuation range of the electric field estimated from the regression equation and the anechoic characteristic calculation step of calculating the anechoic characteristic based on the fluctuation range estimation value by the fluctuation range estimation step .

請求項2の発明では、前記受信アンテナは、無指向性のアンテナを用いる構成としている。   In the invention of claim 2, the receiving antenna is configured to use an omnidirectional antenna.

請求項3の発明では、前記無響領域は、前記送信アンテナから放射する送信信号の波長をλとしたときに、X軸方向に平行な長軸寸法d1が波長λ以下となり、Y軸方向に平行な短軸寸法d2が波長λの半分以下となった楕円を前記中心位置を通るY軸を中心として回転させた回転楕円体形状としている。   According to a third aspect of the present invention, when the wavelength of the transmission signal radiated from the transmission antenna is λ, the anechoic region has a major axis dimension d1 parallel to the X-axis direction that is less than or equal to the wavelength λ, and the Y-axis direction. An ellipse is formed by rotating an ellipse whose parallel minor axis dimension d2 is equal to or less than half of the wavelength λ around the Y axis passing through the center position.

請求項1の発明によれば、中心位置測定工程、一側端部測定工程および他側端部測定工程によって測定した3点の伝播損を用いて振幅の変動幅(定在波比)を推定し、この変動幅推定値に基づいて無響特性を演算する。このため、無響領域のうち1つの軸方向に対して3箇所で送信アンテナと受信アンテナとの間の伝播損を測定すればよく、測定時間を短縮することができる。また、受信アンテナは、1つの軸方向に対して3箇所に配置すればよいから、受信アンテナを台車等で連続的に移動させる必要がなく、モータや台車からの反射波の影響をなくすことができる。また、高さ方向(Z軸方向)に対しても受信アンテナを連続的に移動させる必要がないから、特殊な治具等を用いる必要がなく、無響特性の測定装置を簡略化することができる。   According to the first aspect of the present invention, the amplitude fluctuation range (standing wave ratio) is estimated using the three propagation losses measured in the center position measuring step, the one side end measuring step, and the other side end measuring step. Then, the anechoic characteristics are calculated based on the estimated fluctuation range. For this reason, it is only necessary to measure the propagation loss between the transmitting antenna and the receiving antenna at three points in one axial direction in the anechoic region, and the measurement time can be shortened. In addition, since the receiving antennas only need to be arranged at three locations with respect to one axial direction, there is no need to continuously move the receiving antennas with a carriage or the like, and the influence of reflected waves from the motor or carriage can be eliminated. it can. In addition, since it is not necessary to continuously move the receiving antenna in the height direction (Z-axis direction), there is no need to use a special jig or the like, and the anechoic characteristic measuring device can be simplified. it can.

請求項2の発明によれば、受信アンテナは無指向性のアンテナを用いて構成したから、例えば無響領域で携帯電話等のように無指向性の被測定物を評価する場合であっても、このような評価に適用可能な無響領域での無響特性を得ることができる。   According to the invention of claim 2, since the receiving antenna is configured using an omnidirectional antenna, for example, even when evaluating an omnidirectional object to be measured such as a mobile phone in an anechoic region. The anechoic characteristics in the anechoic region applicable to such evaluation can be obtained.

請求項3の発明によれば、無響領域は、XZ平面では中心位置を中心として直径が波長λ以下となった円形状となる。ここで、例えば直径を波長λの倍以上の値に設定したときには、定在波の最大値と最小値が複数存在するから、3箇所だけの測定では例えば最大値や最小値に近い値だけを測定する可能性があり、電界の変動幅推定値の信頼性が低下する。これに対し、本発明では、XZ平面の無響領域の直径が波長λ以下となっているから、X軸方向に対して無響領域内には定在波の最大値および最小値がそれぞれ1つだけ存在すると共に、Z軸方向に対しても無響領域内には定在波の最大値および最小値がそれぞれ1つだけ存在する。このため、3箇所だけの伝播損を測定しても、最大値と最小値に応じた値をそれぞれ測定することができ、X軸方向およびZ軸方向に対して電界の変動幅推定値および変動幅推定値から演算した無響特性の信頼性が向上する。   According to the invention of claim 3, the anechoic region has a circular shape having a diameter of not more than the wavelength λ with the center position as the center in the XZ plane. Here, for example, when the diameter is set to a value greater than or equal to twice the wavelength λ, there are a plurality of maximum and minimum values of the standing wave, so in the measurement at only three locations, for example, only a value close to the maximum or minimum value is obtained. There is a possibility of measurement, and the reliability of the estimated fluctuation range of the electric field is lowered. On the other hand, in the present invention, since the diameter of the anechoic region on the XZ plane is equal to or less than the wavelength λ, the maximum value and the minimum value of the standing wave are 1 in the anechoic region with respect to the X-axis direction. In addition, there are only one standing wave maximum value and one minimum value in the anechoic region in the Z-axis direction. For this reason, even if only three propagation losses are measured, values corresponding to the maximum value and the minimum value can be measured, respectively, and the fluctuation range estimated value and fluctuation of the electric field with respect to the X-axis direction and the Z-axis direction can be measured. The reliability of anechoic characteristics calculated from the estimated width is improved.

また、無響領域は、XY平面では中心位置を中心とした楕円形状とすると共に、この楕円はY軸方向に平行な短軸とX軸方向に平行な長軸とを有する構成となる。このとき、Y軸方向に平行な短軸寸法は波長λの半分以下となり、X軸方向に平行な長軸寸法d1は波長λ以下となる。   The anechoic region has an elliptical shape centered on the center position on the XY plane, and the ellipse has a short axis parallel to the Y-axis direction and a long axis parallel to the X-axis direction. At this time, the minor axis dimension parallel to the Y-axis direction is half or less of the wavelength λ, and the major axis dimension d1 parallel to the X-axis direction is less than or equal to the wavelength λ.

ここで、送信アンテナと受信アンテナとはY軸方向に離間しているから、反射波は送信アンテナや受信アンテナと壁面との間を往復して受信アンテナに入射する。このとき、反射波の経路長は受信アンテナがY軸方向に変位したときの変位量に対して2倍の変化が生じるから、Y軸方向に対しては半波長(λ/2)が定在波の1周期にほぼ一致する。   Here, since the transmission antenna and the reception antenna are separated from each other in the Y-axis direction, the reflected wave reciprocates between the transmission antenna and the reception antenna and the wall surface and enters the reception antenna. At this time, since the path length of the reflected wave changes twice as much as the displacement when the receiving antenna is displaced in the Y-axis direction, a half wavelength (λ / 2) is constant in the Y-axis direction. It almost coincides with one wave period.

これに対し、本発明では、無響領域の短軸寸法d2が波長λの半分以下となっているから、Y軸方向に対して無響領域内には定在波の最大値および最小値がそれぞれ1つだけ存在する。これにより、Y軸方向に対しても、変動幅推定値および無響特性の信頼性を向上することができる。   On the other hand, in the present invention, since the short axis dimension d2 of the anechoic region is less than half of the wavelength λ, the maximum value and the minimum value of the standing wave are within the anechoic region with respect to the Y-axis direction. There is only one each. As a result, the reliability of the estimated fluctuation range and the anechoic characteristics can be improved also in the Y-axis direction.

以下、本発明の実施の形態による無響特性の推定方法について添付図面に従って詳細に説明する。   Hereinafter, an anechoic characteristic estimation method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

まず、図1ないし図3は、無響特性の測定装置を示している。ここで、電波無響室1は、例えば六面体からなる部屋2の内部に電波吸収体3を設けることによって形成されている。また、部屋2は、前壁面2A、後壁面2B、左壁面2C、右壁面2D、床面2Eおよび天井面2Fを有し、これらの壁面2A〜2D、床面2Eおよび天井面2Fは導電性金属材料によって形成されている。そして、電波無響室1は、外部からの電磁波を遮断すると共に、内部の電磁波の反射を防止するものである。   1 to 3 show an anechoic characteristic measuring apparatus. Here, the radio wave anechoic chamber 1 is formed by providing a radio wave absorber 3 inside a room 2 made of, for example, a hexahedron. The room 2 has a front wall surface 2A, a rear wall surface 2B, a left wall surface 2C, a right wall surface 2D, a floor surface 2E, and a ceiling surface 2F. These wall surfaces 2A to 2D, the floor surface 2E, and the ceiling surface 2F are conductive. It is made of a metal material. The radio wave anechoic chamber 1 blocks external electromagnetic waves and prevents reflection of internal electromagnetic waves.

また、電波無響室1の内部には、幅方向(X軸方向)、奥行き方向(Y軸方向)、高さ方向(Z軸方向)に対して、例えば数m〜数十m程度の長さ寸法をもった空間が形成されている。このとき、前壁面2Aおよび後壁面2Bは、奥行き方向の両側に互いに対向して配置され、左壁面2Cおよび右壁面2Dは、幅方向の両側に互いに対向して配置されている。また、床面2Eおよび天井面2Fは、高さ方向の両側に互いに対向して配置されている。   In the anechoic chamber 1, for example, a length of about several meters to several tens of meters with respect to the width direction (X-axis direction), the depth direction (Y-axis direction), and the height direction (Z-axis direction). A space having a vertical dimension is formed. At this time, the front wall surface 2A and the rear wall surface 2B are disposed to face each other in the depth direction, and the left wall surface 2C and the right wall surface 2D are disposed to face each other in the width direction. Further, the floor surface 2E and the ceiling surface 2F are disposed opposite to each other on both sides in the height direction.

電波吸収体3は、各壁面2A〜2D、床面2Eおよび天井面2Fを略全面に亘って覆っている。また、電波吸収体3は、例えばカーボンを含有したウレタン材料等の電波吸収材料を用いて10〜15cm程度の突出寸法をもったピラミッド形状またはテーパ形状に形成され、部屋2の内部に向けて突出している。なお、電波吸収体3は、必ずしも先端が突出した形状である必要はなく、例えば平坦な平板状(シート状)に形成してもよい。   The radio wave absorber 3 covers the wall surfaces 2A to 2D, the floor surface 2E, and the ceiling surface 2F over substantially the entire surface. The radio wave absorber 3 is formed in a pyramid shape or a taper shape having a projecting dimension of about 10 to 15 cm using a radio wave absorbing material such as a urethane material containing carbon, and projects toward the inside of the room 2. ing. The radio wave absorber 3 does not necessarily have a shape with a protruding tip, and may be formed in a flat plate shape (sheet shape), for example.

送信アンテナ4は、電波無響室1の内部で例えばX軸方向に対して左,右の壁面2C,2Dの中間位置に配置されると共に、Y軸方向に対して前壁面2Aに近い位置に配置されている。ここで、送信アンテナ4は、アンテナポジショナ5に取付けられ、電波無響室1の内部に固定されている。また、送信アンテナ4は、後述する受信アンテナ6とY軸方向(奥行き方向)で離間した位置に配置されている。そして、送信アンテナ4は、後述するネットワークアナライザ8に接続され、例えば予め決められた周波数fの水平偏波または垂直偏波からなる送信信号を出力する。なお、送信アンテナ4の偏波面は、アンテナポジショナ5を用いて自動的に切換える構成としてもよく、測定者が手動で切換える構成としてもよい。   The transmitting antenna 4 is disposed inside the anechoic chamber 1 at, for example, an intermediate position between the left and right wall surfaces 2C and 2D with respect to the X-axis direction, and at a position close to the front wall surface 2A with respect to the Y-axis direction. Has been placed. Here, the transmission antenna 4 is attached to an antenna positioner 5 and is fixed inside the anechoic chamber 1. Further, the transmission antenna 4 is arranged at a position spaced apart from a reception antenna 6 described later in the Y-axis direction (depth direction). The transmission antenna 4 is connected to a network analyzer 8 to be described later, and outputs a transmission signal composed of, for example, a horizontally polarized wave or a vertically polarized wave having a predetermined frequency f. The polarization plane of the transmission antenna 4 may be switched automatically using the antenna positioner 5 or may be switched manually by the measurer.

受信アンテナ6は、送信アンテナ4とY軸方向に対して距離D0だけ離間し、電波無響室1の内部で後壁面2Bに近い位置に配置されている。ここで、受信アンテナ6は、無響領域QZの内部に位置して、アンテナ設置治具7に取付けられている。また、受信アンテナ6は、例えば無指向性のアンテナを用いて構成されている。そして、受信アンテナ6は、無響領域QZの内部でその中心位置OやX軸方向、Y軸方向、Z軸方向の端部に配置され、それぞれの位置で送信アンテナ4からの送信信号を受信するものである。   The receiving antenna 6 is separated from the transmitting antenna 4 by a distance D0 with respect to the Y-axis direction, and is disposed at a position close to the rear wall surface 2B in the anechoic chamber 1. Here, the receiving antenna 6 is positioned inside the anechoic region QZ and attached to the antenna installation jig 7. The receiving antenna 6 is configured using, for example, an omnidirectional antenna. And the receiving antenna 6 is arrange | positioned in the end part of the center position O, the X-axis direction, the Y-axis direction, and the Z-axis direction inside the anechoic region QZ, and receives the transmission signal from the transmitting antenna 4 at each position. To do.

このとき、無響領域QZは、送信アンテナ4と高さ位置および幅方向位置が同じでY軸方向に距離D0だけ離れた中心位置Oを中心とする楕円体形状となっている。また、この楕円体は、例えば送信信号の波長をλとしたときに、X軸方向に平行な長軸寸法d1が波長λ以下(d1≦λ)となり、Y軸方向に平行な短軸寸法d2が波長λの半分以下(d2≦λ/2)となった楕円を中心位置Oを通るY軸(軸Y0−Y0)を中心として回転させた回転楕円体形状となっている。これにより、無響領域QZには、X軸方向、Y軸方向、Z軸方向のいずれの方向に対しても、定在波が1周期分しか発生しない構成となっている。   At this time, the anechoic region QZ has an ellipsoidal shape centered on a center position O that is the same height position and width direction position as the transmitting antenna 4 and is separated by a distance D0 in the Y-axis direction. Further, for example, when the wavelength of the transmission signal is λ, the ellipsoid has a major axis dimension d1 parallel to the X-axis direction that is less than or equal to the wavelength λ (d1 ≦ λ) and a minor axis dimension d2 parallel to the Y-axis direction. Is a spheroid shape obtained by rotating an ellipse whose wavelength is less than half of the wavelength λ (d2 ≦ λ / 2) around the Y axis (axis Y0-Y0) passing through the center position O. Thereby, in the anechoic region QZ, a standing wave is generated for only one period in any of the X-axis direction, the Y-axis direction, and the Z-axis direction.

また、アンテナ設置治具7は、受信アンテナ6を無響領域QZの内部で中心位置OやX軸方向、Y軸方向の端部に配置するときには、床面2Eからの高さ寸法H0が送信アンテナ4と同じ値となるように、受信アンテナ6の高さ位置を調整する。一方、受信アンテナ6を無響領域QZのZ方向の端部となる上端部P1に配置するときには、高さ寸法H0よりも大きい高さ寸法Hmaxとなるように、受信アンテナ6の高さ位置を調整する。同様に、受信アンテナ6を無響領域QZのZ方向の端部となる下端部P2に配置するときには、高さ寸法H0よりも小さい高さ寸法Hminとなるように、受信アンテナ6の高さ位置を調整する。   Further, the antenna installation jig 7 transmits the height dimension H0 from the floor surface 2E when the reception antenna 6 is arranged at the center position O, the end in the X-axis direction, and the Y-axis direction within the anechoic region QZ. The height position of the receiving antenna 6 is adjusted so as to be the same value as the antenna 4. On the other hand, when the receiving antenna 6 is arranged at the upper end P1 that is the end in the Z direction of the anechoic region QZ, the height position of the receiving antenna 6 is set so that the height dimension Hmax is larger than the height dimension H0. adjust. Similarly, when the receiving antenna 6 is disposed at the lower end portion P2 that is the end portion in the Z direction of the anechoic region QZ, the height position of the receiving antenna 6 is set so that the height dimension Hmin is smaller than the height dimension H0. Adjust.

なお、Z軸方向の無響特性Rを推定するときには、受信アンテナ6はZ軸方向に対して3箇所に配置できればよい。このため、高さ寸法が異なる3個のアンテナ設置治具7を用意し、受信アンテナ6の高さ位置に応じてアンテナ設置治具7を交換する構成としてもよい。   When estimating the anechoic characteristic R in the Z-axis direction, it is only necessary that the receiving antenna 6 can be arranged at three locations with respect to the Z-axis direction. For this reason, it is good also as a structure which prepares the three antenna installation jigs 7 from which a height dimension differs, and replaces the antenna installation jig 7 according to the height position of the receiving antenna 6. FIG.

ネットワークアナライザ8は、送信アンテナ4と受信アンテナ6との間の空間減衰量である伝播損Lを測定する伝播損測定装置を構成し、高周波ケーブル8Aを通じて送信アンテナ4に接続されると共に、高周波ケーブル8Bを通じて受信アンテナ6に接続されている。そして、ネットワークアナライザ8は、送信アンテナ4から送信した電磁波(送信信号)を受信アンテナ6を用いて受信する。これにより、ネットワークアナライザ8は、送信アンテナ4に供給した電力と受信アンテナ6から受信した電力との比率を演算し、空間の損失分に相当するS行列のパラメータS21(伝播損)を測定する。   The network analyzer 8 constitutes a propagation loss measuring device that measures a propagation loss L, which is a spatial attenuation amount between the transmission antenna 4 and the reception antenna 6, and is connected to the transmission antenna 4 through the high-frequency cable 8A. It is connected to the receiving antenna 6 through 8B. The network analyzer 8 receives the electromagnetic wave (transmission signal) transmitted from the transmission antenna 4 using the reception antenna 6. Thereby, the network analyzer 8 calculates the ratio between the power supplied to the transmission antenna 4 and the power received from the reception antenna 6, and measures the parameter S21 (propagation loss) of the S matrix corresponding to the space loss.

本実施の形態による無響特性の測定装置は上述のように構成されるものであり、次に、図1を参照しつつ、この測定装置を用いた無響特性の推定方法について説明する。   The anechoic characteristic measurement apparatus according to the present embodiment is configured as described above. Next, an anechoic characteristic estimation method using this measurement apparatus will be described with reference to FIG.

まず、測定を開始する前に、ネットワークアナライザ8は、送信アンテナ4に接続する高周波ケーブル8Aと受信アンテナ6に接続する高周波ケーブル8Bとを直結し、高周波ケーブル8A,8Bによる損失分だけ目盛りの修正(キャリブレーション)を行う。また、送信アンテナ4は、例えば水平偏波の送信信号を出力するものとする。   First, before starting the measurement, the network analyzer 8 directly connects the high-frequency cable 8A connected to the transmission antenna 4 and the high-frequency cable 8B connected to the reception antenna 6, and corrects the scale by the loss caused by the high-frequency cables 8A and 8B. (Calibration) is performed. The transmission antenna 4 outputs a horizontally polarized transmission signal, for example.

次に、中心位置測定工程では、受信アンテナ6を無響領域QZの中心位置Oに配置する。この状態で、受信アンテナ6を用いて送信アンテナ4からの送信信号を受信し、中心位置Oでの伝播損L0(dBm)を測定する。   Next, in the center position measuring step, the receiving antenna 6 is arranged at the center position O of the anechoic region QZ. In this state, the transmission signal from the transmission antenna 4 is received using the reception antenna 6, and the propagation loss L0 (dBm) at the center position O is measured.

次に、一側端部測定工程では、例えば受信アンテナ6を無響領域QZのうちZ軸方向の上端部P1に配置する。この状態で、受信アンテナ6を用いて送信アンテナ4からの送信信号を受信し、上端部P1での伝播損L1(dBm)を測定する。   Next, in the one-side end measurement step, for example, the receiving antenna 6 is arranged at the upper end P1 in the Z-axis direction in the anechoic region QZ. In this state, the transmission signal from the transmission antenna 4 is received using the reception antenna 6, and the propagation loss L1 (dBm) at the upper end P1 is measured.

次に、他側端部測定工程では、例えば受信アンテナ6を無響領域QZのうちZ軸方向の下端部P2に配置する。この状態で、受信アンテナ6を用いて送信アンテナ4からの送信信号を受信し、下端部P2での伝播損L2(dBm)を測定する。   Next, in the other end measurement step, for example, the receiving antenna 6 is arranged at the lower end P2 in the Z-axis direction in the anechoic region QZ. In this state, the transmission signal from the transmission antenna 4 is received using the reception antenna 6, and the propagation loss L2 (dBm) at the lower end P2 is measured.

次に、伝播損補正工程では、アンテナ4,6間の距離に応じて伝播損L1,L2の距離減衰を補正する。具体的に説明すると、伝播損L0を測定したときのアンテナ4,6間の距離Dに比べて、伝播損L1,L2を測定したときのアンテナ4,6間の距離D1,D2は長くなっている。このため、伝播損L1,L2は、この距離寸法の増加分だけ伝播損L0に比べて大きな値になっている。このとき、アンテナ4,6間の任意の距離dと伝播損L(dB)との関係は、以下の数1に示すフリスの伝達式に基づいて、以下の数2の式のように表すことができる。   Next, in the propagation loss correction step, the distance attenuation of the propagation losses L1 and L2 is corrected according to the distance between the antennas 4 and 6. More specifically, the distances D1 and D2 between the antennas 4 and 6 when the propagation losses L1 and L2 are measured are longer than the distance D between the antennas 4 and 6 when the propagation loss L0 is measured. Yes. For this reason, the propagation losses L1 and L2 are larger than the propagation loss L0 by the increase of the distance dimension. At this time, the relationship between the arbitrary distance d between the antennas 4 and 6 and the propagation loss L (dB) is expressed as the following formula 2 based on the Friis transfer formula shown in the following formula 1. Can do.

Figure 2010054302
Figure 2010054302

Figure 2010054302
Figure 2010054302

なお、数1、数2の式において、Ptは送信アンテナ4から送信する送信電力を示し、Prは受信アンテナ6で受信する受信電力を示している。また、Gtは送信アンテナ4の利得を示し、Grは受信アンテナ6の利得を示している。さらに、λは送信信号の波長を示している。   In Equations 1 and 2, Pt represents transmission power transmitted from the transmission antenna 4, and Pr represents reception power received by the reception antenna 6. Gt represents the gain of the transmission antenna 4, and Gr represents the gain of the reception antenna 6. Further, λ represents the wavelength of the transmission signal.

このため、数1、数2の式に基づいて、距離D1,D2に応じた補正値CF1,CF2(dB)を以下の数3の式を用いて求めることができる。   For this reason, correction values CF1 and CF2 (dB) corresponding to the distances D1 and D2 can be obtained using the following equation (3) based on the equations (1) and (2).

Figure 2010054302
Figure 2010054302

なお、数3の式では、送信アンテナ4、受信アンテナ6はいずれも無指向性のアンテナであり、送信アンテナ利得Gtと受信アンテナ利得Grは方向に関係なく一定値であるものと仮定した。しかし、本発明はこれに限らず、例えばアンテナ4,6に指向性がある場合には、距離の補正と一緒に利得Gt,Grの補正を行ってもよい。   In the equation (3), it is assumed that the transmission antenna 4 and the reception antenna 6 are both non-directional antennas, and the transmission antenna gain Gt and the reception antenna gain Gr are constant values regardless of directions. However, the present invention is not limited to this. For example, when the antennas 4 and 6 have directivity, the gains Gt and Gr may be corrected together with the distance correction.

また、数3中の距離D1,D2は、例えば送信アンテナ4と受信アンテナ6との間の角度θ1,θ2および送信アンテナ4と中心位置Oとの間の距離D0に基づいて、以下の数4の式を用いて求める。   Further, the distances D1 and D2 in Equation 3 are based on, for example, the angles θ1 and θ2 between the transmission antenna 4 and the reception antenna 6 and the distance D0 between the transmission antenna 4 and the center position O as shown in the following Equation 4 It is calculated using the following formula.

Figure 2010054302
Figure 2010054302

そして、以下の数5の式に基づいて、伝播損L1,L2に補正値CF1,CF2をそれぞれ加えて補正伝播損L1e,L2eを求める。   Based on the following equation (5), corrected propagation losses L1e and L2e are obtained by adding correction values CF1 and CF2 to the propagation losses L1 and L2, respectively.

Figure 2010054302
Figure 2010054302

次に、伝播損差演算工程では、伝播損L0と補正伝播損L1e,L2eのうち最大値Lmaxと最小値Lminを定めて、この最大値Lmaxと最小値Lminとの間の差となる伝播損差ΔL(dB)を演算する。   Next, in the propagation loss difference calculation step, the maximum value Lmax and the minimum value Lmin are determined among the propagation loss L0 and the corrected propagation losses L1e and L2e, and the propagation loss is the difference between the maximum value Lmax and the minimum value Lmin. The difference ΔL (dB) is calculated.

次に、変動幅推定工程では、伝播損差ΔLに係数Kを掛けることにより、以下の数6の式に示すように、回帰式から推定される変動幅推定値Aを求める。このとき、係数Kは、実際の定在波比と3点計測による伝播損差ΔLとの間の相関係数に相当し、回帰式を用いて実験的に得られる値であり、例えば1.15程度(K≒1.15)の値となっている。   Next, in the fluctuation range estimation step, a fluctuation range estimation value A estimated from the regression equation is obtained by multiplying the propagation loss difference ΔL by a coefficient K as shown in the following equation (6). At this time, the coefficient K corresponds to a correlation coefficient between the actual standing wave ratio and the propagation loss difference ΔL by three-point measurement, and is a value obtained experimentally using a regression equation. The value is about 15 (K≈1.15).

Figure 2010054302
Figure 2010054302

最後に、無響特性演算工程では、以下の数7の式に示すように、変動幅推定値Aを用いて無響特性R(dB)を算出する。   Finally, in the anechoic characteristic calculation step, the anechoic characteristic R (dB) is calculated using the fluctuation range estimated value A as shown in the following equation (7).

Figure 2010054302
Figure 2010054302

以上の推定作業により、無響領域QZのZ軸方向に対する無響特性Rを推定することができる。同様に、以上の作業をX軸方向、Y軸方向に対して同様に行う。また、送信アンテナ4の偏波面を切換えて、垂直偏波の送信信号に対しても行う。これにより、無響領域QZ全体の無響特性Rを推定することができる。   By the above estimation work, the anechoic characteristic R with respect to the Z-axis direction of the anechoic region QZ can be estimated. Similarly, the above operation is similarly performed in the X-axis direction and the Y-axis direction. In addition, the polarization plane of the transmission antenna 4 is switched to perform the transmission signal of vertical polarization. Thereby, the anechoic characteristic R of the whole anechoic region QZ can be estimated.

本実施の形態では、上述のような無響特性の推定方法を用いるもので、次に、上述の無響特性の推定方法を用いて電波無響室1の無響特性Rを推定した場合と実際に定在波波形を直接測定して無響特性R0を演算した場合(定在波比法)とを比較した。   In this embodiment, the anechoic characteristic estimation method as described above is used, and then the anechoic characteristic R of the anechoic chamber 1 is estimated using the above-described anechoic characteristic estimation method. The case where the standing wave waveform was actually measured and the anechoic characteristic R0 was calculated (standing wave ratio method) was compared.

なお、無響領域QZの中心位置Oの高さ寸法H0は2.15mとした。また、送信信号の周波数fは210MHzとした。このとき、送信信号の波長λは1.43m程度の値になるから、無響領域QZの長軸寸法d1は1.3mとした。即ち、無響領域QZの上端部P1は中心位置Oよりも0.65m高い位置とし、無響領域QZの下端部P2は中心位置Oよりも0.65m低い位置とした。   The height dimension H0 of the center position O of the anechoic region QZ was 2.15 m. The frequency f of the transmission signal was 210 MHz. At this time, since the wavelength λ of the transmission signal is about 1.43 m, the long axis dimension d1 of the anechoic region QZ is set to 1.3 m. That is, the upper end portion P1 of the anechoic region QZ is set to a position 0.65 m higher than the center position O, and the lower end portion P2 of the anechoic region QZ is set to a position 0.65 m lower than the center position O.

まず、比較例として、従来技術と同様に、受信アンテナ6をZ軸方向に移動させて伝播損Lを連続的に測定した。その後、伝播損Lのうち中心位置O以外で測定した値は、距離dに応じて伝播損Lを補正し、補正伝播損LEを求めた。その結果を図4中に実線で示す。   First, as a comparative example, the propagation loss L was continuously measured by moving the receiving antenna 6 in the Z-axis direction, as in the prior art. After that, the value measured at other than the center position O among the propagation losses L was corrected according to the distance d, and the corrected propagation loss LE was obtained. The result is shown by a solid line in FIG.

図4の測定結果が示すように、補正伝播損LEは、受信アンテナ6の高さ位置に応じて増加または減少し、正弦波状に変化する。この理由は、受信アンテナ6は、送信アンテナ4から直接的に受信アンテナ6に入射される直接波だけでなく、壁面2A〜2Dや床面2E、天井面2Fによって反射した反射波も受信するから、これらの直接波と反射波とが干渉し、受信アンテナ6による受信電力Prが受信アンテナ6の位置に応じて変化するためである。   As the measurement result of FIG. 4 shows, the corrected propagation loss LE increases or decreases according to the height position of the receiving antenna 6 and changes in a sine wave shape. This is because the reception antenna 6 receives not only the direct wave directly incident on the reception antenna 6 from the transmission antenna 4 but also the reflected wave reflected by the wall surfaces 2A to 2D, the floor surface 2E, and the ceiling surface 2F. This is because the direct wave and the reflected wave interfere with each other, and the reception power Pr by the reception antenna 6 changes according to the position of the reception antenna 6.

そこで、この補正伝播損LEから最大値LEmaxと最小値LEminを求めると、最大値LEmaxが−8.28dBとなり、最小値LEminが−10.47dBとなった。この結果、定在波波形の振幅である変動幅A0は、最大値LEmaxと最小値LEminとの差に基づいて2.19dBとなるから、変動幅A0に基づいて無響特性R0は−18.0dBとなった。   Therefore, when the maximum value LEmax and the minimum value LEmin are obtained from the corrected propagation loss LE, the maximum value LEmax is −8.28 dB and the minimum value LEmin is −10.47 dB. As a result, the fluctuation range A0, which is the amplitude of the standing wave waveform, is 2.19 dB based on the difference between the maximum value LEmax and the minimum value LEmin, so that the anechoic characteristic R0 is -18. It became 0 dB.

一方、本実施の形態では、中心位置O、上端部P1、下端部P2の3箇所で伝播損L0,L1,L2をそれぞれ測定する。その後、上端部P1、下端部P2での伝播損L1,L2を距離D1,D2に応じて補正し、補正伝播損L1e,L2eを求める。この結果を図4中に白色の丸印で示す。   On the other hand, in the present embodiment, propagation losses L0, L1, and L2 are measured at three locations, the center position O, the upper end portion P1, and the lower end portion P2. Thereafter, the propagation losses L1 and L2 at the upper end P1 and the lower end P2 are corrected according to the distances D1 and D2, and the corrected propagation losses L1e and L2e are obtained. The result is shown by white circles in FIG.

そして、この伝播損L0および補正伝播損L1e,L2eの中で最大値Lmaxと最小値Lminを求めると、最大値Lmaxが中心位置Oでの伝播損L0に基づいて−8.69dBとなり、最小値Lminが下端部P2での補正伝播損L2に基づいて−10.39dBとなった。このとき、伝播損差ΔLは最大値Lmaxと最小値Lminとの差に基づいて1.70dBとなるから、伝播損差ΔLに相関係数Kを掛けることによって、変動幅推定値Aは1.955dBとなる。この結果、無響特性Rは変動幅推定値Aに基づいて−19.0dBとなり、定在波比法による無響特性R0(R0=−18.0dB)とほぼ一致することが確認できた。   Then, when the maximum value Lmax and the minimum value Lmin are obtained among the propagation loss L0 and the corrected propagation losses L1e and L2e, the maximum value Lmax becomes −8.69 dB based on the propagation loss L0 at the center position O, and the minimum value Lmin was -10.39 dB based on the corrected propagation loss L2 at the lower end P2. At this time, the propagation loss difference ΔL is 1.70 dB based on the difference between the maximum value Lmax and the minimum value Lmin, and therefore, by multiplying the propagation loss difference ΔL by the correlation coefficient K, the fluctuation range estimation value A is 1. 955 dB. As a result, the anechoic characteristic R was -19.0 dB based on the fluctuation range estimated value A, and it was confirmed that it substantially coincided with the anechoic characteristic R0 (R0 = -18.0 dB) obtained by the standing wave ratio method.

かくして、本実施の形態では、中心位置測定工程、一側端部測定工程および他側端部測定工程によって測定した3点の伝播損L0〜L2を用いて振幅の変動幅を推定し、この変動幅推定値Aに基づいて無響特性Rを算出する。このため、無響領域QZのうち1つの軸方向に対して3箇所で送信アンテナ4と受信アンテナ6との間の伝播損L0〜L2を測定すればよいから、測定時間を短縮することができ、無響特性Rの良好な無響領域QZを容易に探すことができる。   Thus, in the present embodiment, the amplitude fluctuation range is estimated using the three propagation losses L0 to L2 measured in the center position measuring step, the one side end measuring step, and the other side end measuring step, and this fluctuation is determined. Based on the estimated width A, the anechoic characteristic R is calculated. For this reason, it is only necessary to measure the propagation losses L0 to L2 between the transmitting antenna 4 and the receiving antenna 6 at three points in one axial direction in the anechoic region QZ, so that the measurement time can be shortened. Thus, an anechoic region QZ having a good anechoic characteristic R can be easily found.

また、受信アンテナ6は、1つの軸方向に対して3箇所に配置すればよいから、受信アンテナ6を台車等で連続的に移動させる必要がなく、モータや台車からの反射波の影響をなくすことができる。また、高さ方向(Z軸方向)に対しても受信アンテナ6を連続的に移動させる必要がないから、特殊な治具等を用いる必要がなく、無響特性Rの測定装置を簡略化することができる。   Further, since the receiving antenna 6 only needs to be arranged at three positions with respect to one axial direction, it is not necessary to continuously move the receiving antenna 6 with a carriage or the like, and the influence of reflected waves from the motor and the carriage is eliminated. be able to. Further, since it is not necessary to continuously move the receiving antenna 6 in the height direction (Z-axis direction), there is no need to use a special jig or the like, and the anechoic characteristic R measuring device is simplified. be able to.

また、受信アンテナ6は無指向性のアンテナを用いて構成したから、例えば無響領域QZで携帯電話等のように無指向性の被測定物を評価する場合であっても、このような評価に適用可能な無響領域QZの無響特性Rを得ることができる。   Further, since the receiving antenna 6 is configured using an omnidirectional antenna, for example, even when evaluating an omnidirectional object to be measured such as a cellular phone in an anechoic region QZ, such an evaluation is performed. The anechoic characteristic R of the anechoic region QZ applicable to the above can be obtained.

また、無響領域QZは、XZ平面では中心位置Oを中心として直径が波長λ以下となった円形状とした。ここで、この直径を例えば波長λの倍以上の値に設定したときには、無響領域QZ内に定在波の最大値と最小値が複数存在するから、3箇所だけの測定では例えば最大値や最小値に近い値だけを測定する可能性があり、電界の変動幅推定値Aの信頼性が低下する。これに対し、本発明では、XZ平面の無響領域QZの直径が波長λ以下となっているから、X軸方向に対して無響領域QZ内には定在波の最大値および最小値がそれぞれ1つだけ存在すると共に、Z軸方向に対しても無響領域QZ内には定在波の最大値および最小値がそれぞれ1つだけ存在する。このため、3箇所だけの伝播損Lを測定しても、定在波の最大値と最小値に応じた値をそれぞれ測定することができ、X軸方向およびZ軸方向に対して電界の変動幅推定値Aおよび変動幅推定値Aから演算した無響特性Rの信頼性が向上する。   Further, the anechoic region QZ has a circular shape with the diameter of the wavelength λ or less centered on the center position O on the XZ plane. Here, when this diameter is set to a value more than twice the wavelength λ, for example, there are a plurality of maximum and minimum values of the standing wave in the anechoic region QZ. Only the value close to the minimum value may be measured, and the reliability of the estimated fluctuation range A of the electric field decreases. On the other hand, in the present invention, since the diameter of the anechoic region QZ on the XZ plane is equal to or less than the wavelength λ, the maximum value and the minimum value of the standing wave are within the anechoic region QZ with respect to the X-axis direction. There is only one each, and there is only one maximum value and one minimum value of the standing wave in the anechoic region QZ in the Z-axis direction. For this reason, even if only three propagation losses L are measured, values corresponding to the maximum value and the minimum value of the standing wave can be measured respectively, and the electric field fluctuations in the X-axis direction and the Z-axis direction. The reliability of the anechoic characteristic R calculated from the estimated width A and the estimated variation A is improved.

一方、無響領域QZは、XY平面では中心位置Oを中心とした楕円形状とすると共に、この楕円はY軸方向に平行な短軸とX軸方向に平行な長軸とを有する構成とした。このとき、Y軸方向に平行な短軸寸法d2は波長λの半分以下とし、X軸方向に平行な長軸寸法d1は波長λ以下とした。   On the other hand, the anechoic region QZ has an elliptical shape centered on the center position O on the XY plane, and the ellipse has a short axis parallel to the Y-axis direction and a long axis parallel to the X-axis direction. . At this time, the minor axis dimension d2 parallel to the Y-axis direction was set to half or less of the wavelength λ, and the major axis dimension d1 parallel to the X-axis direction was set to the wavelength λ or less.

ここで、送信アンテナ4と受信アンテナ6とはY軸方向に離間しているから、反射波は、例えば送信アンテナ4と前壁面2Aとの間を往復するか、受信アンテナ6を通り越して後壁面2Bとの間を往復して受信アンテナ6に入射する。このとき、反射波の経路長は受信アンテナ6がY軸方向に変位したときの変位量に対して2倍の変化が生じるから、Y軸方向に対しては半波長(λ/2)が定在波の1周期にほぼ一致する。   Here, since the transmission antenna 4 and the reception antenna 6 are separated from each other in the Y-axis direction, the reflected wave reciprocates between the transmission antenna 4 and the front wall surface 2A, for example, or passes through the reception antenna 6 to the rear wall surface. Reciprocates between 2B and enters the receiving antenna 6. At this time, since the path length of the reflected wave changes twice as much as the displacement when the receiving antenna 6 is displaced in the Y-axis direction, a half wavelength (λ / 2) is fixed in the Y-axis direction. It almost coincides with one period of the standing wave.

これに対し、本実施の形態では、無響領域QZの短軸寸法d2が波長λの半分以下となっているから、Y軸方向に対して無響領域QZ内には定在波の最大値および最小値がそれぞれ1つだけ存在する。これにより、Y軸方向に対しても、変動幅推定値Aおよび無響特性Rの信頼性を向上することができる。   On the other hand, in the present embodiment, since the short axis dimension d2 of the anechoic region QZ is less than half of the wavelength λ, the maximum value of the standing wave in the anechoic region QZ with respect to the Y-axis direction. And there is only one minimum. Thereby, the reliability of the fluctuation range estimated value A and the anechoic characteristic R can be improved also in the Y-axis direction.

なお、前記実施の形態では、受信アンテナ6は無指向性のアンテナを用いて構成するものとしたが、指向性を有するアンテナを用いて構成してもよい。また、送信アンテナ4も、無指向性のアンテナを用いて構成してもよく、指向性を有するアンテナを用いて構成してもよい。   In the above embodiment, the receiving antenna 6 is configured using an omnidirectional antenna, but may be configured using a directional antenna. The transmission antenna 4 may also be configured using an omnidirectional antenna, or may be configured using a directional antenna.

本発明の実施の形態による無響特性の測定装置を示す断面図である。It is sectional drawing which shows the measuring apparatus of the anechoic characteristic by embodiment of this invention. 無響特性の測定装置を図1中の矢示II−II方向からみた断面図である。It is sectional drawing which looked at the measuring apparatus of the anechoic characteristic from the arrow II-II direction in FIG. 受信アンテナ等を図1中の矢示III−III方向からみた断面図である。FIG. 3 is a cross-sectional view of a receiving antenna and the like when viewed from the direction of arrows III-III in FIG. 受信アンテナの高さと伝播損および補正伝播損との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the height of a receiving antenna, propagation loss, and correction | amendment propagation loss.

符号の説明Explanation of symbols

1 電波無響室
4 送信アンテナ
6 受信アンテナ
8 ネットワークアナライザ
QZ 無響領域
1 Anechoic chamber 4 Transmitting antenna 6 Receiving antenna 8 Network analyzer QZ Anechoic region

Claims (3)

互いに直交するX軸、Y軸およびZ軸の3軸方向に広がる空間をもった電波無響室内に送信アンテナと受信アンテナとをY軸方向に離間して配置し、送信アンテナからの送信信号を受信アンテナを用いて複数箇所で受信することによって無響領域内に生じる送信信号の定在波に応じた無響特性を推定する無響特性の推定方法であって、
前記受信アンテナを前記無響領域の中心位置に配置して前記送信アンテナと受信アンテナとの間の伝播損を測定する中心位置測定工程と、
前記受信アンテナを前記無響領域のうち3軸方向のいずれか一軸方向の一側端部に配置して前記送信アンテナと受信アンテナとの間の伝播損を測定する一側端部測定工程と、
前記受信アンテナを前記無響領域のうち前記一軸方向の他側端部に配置して前記送信アンテナと受信アンテナとの間の伝播損を測定する他側端部測定工程と、
前記一側端部測定工程で測定した伝播損および前記他側端部測定工程で測定した伝播損を送信アンテナと受信アンテナとの間の距離に応じて補正する伝播損補正工程と、
前記中心位置測定工程で測定した伝播損と該伝播損補正工程で補正した2つの補正伝播損との中で最大値と最小値とを定めて、該最大値と最小値との差を演算する伝播損差演算工程と、
該伝播損差演算工程による伝播損差に基づいて回帰式から推定される電界の変動幅を推定する変動幅推定工程と、
該変動幅推定工程による変動幅推定値に基づいて無響特性を演算する無響特性演算工程とによって構成してなる無響特性の推定方法。
A transmitting antenna and a receiving antenna are arranged apart from each other in the Y-axis direction in a radio anechoic chamber having a space extending in three axial directions of X axis, Y axis and Z axis orthogonal to each other, and a transmission signal from the transmitting antenna is transmitted. An anechoic characteristic estimation method for estimating an anechoic characteristic according to a standing wave of a transmission signal generated in an anechoic region by receiving at a plurality of locations using a receiving antenna,
A center position measuring step of measuring the propagation loss between the transmitting antenna and the receiving antenna by arranging the receiving antenna at the center position of the anechoic region;
One side edge measurement step of measuring the propagation loss between the transmission antenna and the reception antenna by arranging the reception antenna at one side edge in any one of the three axial directions of the anechoic region;
The other side edge measurement step of measuring the propagation loss between the transmission antenna and the reception antenna by arranging the reception antenna at the other side edge in the uniaxial direction in the anechoic region,
A propagation loss correction step of correcting the propagation loss measured in the one side edge measurement step and the propagation loss measured in the other side edge measurement step according to the distance between the transmission antenna and the reception antenna;
A maximum value and a minimum value are determined between the propagation loss measured in the center position measurement step and the two corrected propagation losses corrected in the propagation loss correction step, and a difference between the maximum value and the minimum value is calculated. Propagation loss difference calculation process;
A fluctuation range estimating step of estimating a fluctuation range of the electric field estimated from the regression equation based on the propagation loss difference by the propagation loss difference calculating step;
An anechoic characteristic estimation method comprising: an anechoic characteristic calculation step of calculating an anechoic characteristic based on a fluctuation range estimation value obtained by the fluctuation range estimation step.
前記受信アンテナは、無指向性のアンテナを用いて構成してなる請求項1に記載の無響特性の推定方法。   The anechoic characteristic estimation method according to claim 1, wherein the reception antenna is configured using an omnidirectional antenna. 前記無響領域は、前記送信アンテナから放射する送信信号の波長をλとしたときに、X軸方向に平行な長軸寸法d1が波長λ以下となり、Y軸方向に平行な短軸寸法d2が波長λの半分以下となった楕円を前記中心位置を通るY軸を中心として回転させた回転楕円体形状としてなる請求項1または2に記載の無響特性の推定方法。   In the anechoic region, when the wavelength of the transmission signal radiated from the transmitting antenna is λ, the major axis dimension d1 parallel to the X-axis direction is less than or equal to the wavelength λ, and the minor axis dimension d2 parallel to the Y-axis direction is The method of estimating anechoic characteristics according to claim 1 or 2, wherein an ellipsoid having a spheroid shape obtained by rotating an ellipse having a wavelength less than or equal to half of the wavelength λ about the Y axis passing through the center position.
JP2008218665A 2008-08-27 2008-08-27 Method of estimating anechoic characteristic Pending JP2010054302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218665A JP2010054302A (en) 2008-08-27 2008-08-27 Method of estimating anechoic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218665A JP2010054302A (en) 2008-08-27 2008-08-27 Method of estimating anechoic characteristic

Publications (1)

Publication Number Publication Date
JP2010054302A true JP2010054302A (en) 2010-03-11

Family

ID=42070399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218665A Pending JP2010054302A (en) 2008-08-27 2008-08-27 Method of estimating anechoic characteristic

Country Status (1)

Country Link
JP (1) JP2010054302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518385A (en) * 2011-07-06 2014-07-28 アナイト・テレコムズ・オサケユキテュア Over the air test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518385A (en) * 2011-07-06 2014-07-28 アナイト・テレコムズ・オサケユキテュア Over the air test
EP2730040B1 (en) * 2011-07-06 2018-10-17 Keysight Technologies Singapore (Holdings) Pte. Ltd. Over-the-air test

Similar Documents

Publication Publication Date Title
JP6337030B2 (en) Massive-MIMO antenna measuring apparatus and directivity measuring method thereof
CN106770374B (en) Wave-absorbing material reflection measurement device and method
JP2006275967A (en) Antenna characteristics evaluation method and measuring device
WO2008151141A1 (en) Non-contact measurement system for accurate measurement of frequency and amplitude of mechanical vibration
CN106936524B (en) Test system of wireless terminal
JP5496070B2 (en) Insulation defect detector for semiconductor devices
JPH09311153A (en) Antenna tower and radiation immunity testing facility using same
KR101649514B1 (en) Electromagnetic compatibility testing apparatus
JP5215037B2 (en) Shield member abnormality detection method and shield member abnormality detection device
JP2010054302A (en) Method of estimating anechoic characteristic
JP2008076174A (en) Method and device for detecting abnormality of shield member
CN109728864B (en) System loss testing method based on antenna measuring system
Chen et al. Limitations of the Free Space VSWR Measurements for chamber validations
JP5760927B2 (en) Radio wave measuring apparatus and radio wave measuring method
WO2002016962A1 (en) Electromagnetic wave radar antenna manufacturing method and electromagnetic wave radar antenna
US20100073251A1 (en) Behind-the-wall antenna system
Banjeglav et al. 2.4 GHz horn antenna
Togawa et al. Reflectivity measurements in anechoic chambers in the microwave to millimeter range
JP5577300B2 (en) Method and apparatus for measuring antenna reflection loss of wireless terminal
JPH06281685A (en) Measuring apparatus for electromagnetic wave absorption characteristic
Harima et al. Determination of gain for pyramidal-horn antenna on basis of phase center location
KR102053914B1 (en) Interior test apparatus for performance of wireless telecommunication system
TW201341810A (en) Antenna function measurement method using waveguide
JP2001066336A (en) Reflected wave measuring instrument for radiated electromagnetic wave
RU143511U1 (en) SMALL ANCHOROUS CAMERA