JP2010053779A - Hermetic compressor and refrigerating cycle device using the same - Google Patents

Hermetic compressor and refrigerating cycle device using the same Download PDF

Info

Publication number
JP2010053779A
JP2010053779A JP2008219882A JP2008219882A JP2010053779A JP 2010053779 A JP2010053779 A JP 2010053779A JP 2008219882 A JP2008219882 A JP 2008219882A JP 2008219882 A JP2008219882 A JP 2008219882A JP 2010053779 A JP2010053779 A JP 2010053779A
Authority
JP
Japan
Prior art keywords
oil
pipe
hermetic compressor
refrigerating machine
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008219882A
Other languages
Japanese (ja)
Other versions
JP5288457B2 (en
Inventor
Kazu Takashima
和 高島
Hisataka Kato
久尊 加藤
Toshikimi Aoki
俊公 青木
Koji Satodate
康治 里舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2008219882A priority Critical patent/JP5288457B2/en
Publication of JP2010053779A publication Critical patent/JP2010053779A/en
Application granted granted Critical
Publication of JP5288457B2 publication Critical patent/JP5288457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hermetic compressor capable of improving oil level detection accuracy, even if a communicating tube is used for detecting an oil level. <P>SOLUTION: The hermetic compressor 4a has the oil level detecting communicating tube 41a on a side surface of a sealed vessel, for storing an electric motor part 4Aa in an upper part in the sealed vessel 40a for storing refrigerating machine oil in a bottom part, and storing an electric motor part and a compression mechanism part 4Ba connected via a rotary shaft in a lower part in the sealed vessel, and has a preventive means for preventing the refrigerating machine oil flowing down on an inner wall surface of the sealed vessel and the refrigerating machine oil splashed by being mixed in a refrigerant from being directly introduced to an opening part of the communicating tube. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は密閉型圧縮機およびこれを用いた冷凍サイクル装置に係り、特に冷凍機油の油面を検知する連通管の取付構造を改良した密閉型圧縮機およびこれを用いた冷凍サイクル装置に関する。   The present invention relates to a hermetic compressor and a refrigeration cycle apparatus using the same, and more particularly to a hermetic compressor having an improved mounting structure of a communication pipe for detecting the oil level of refrigeration oil and a refrigeration cycle apparatus using the same.

従来、高圧型の密閉圧縮機は、密閉容器で被われ、密閉容器内には冷凍機油が充填される。この冷凍機油は、圧縮機が冷媒を吸込んで吐出するのに伴い、一部が冷媒と共に冷凍サイクル中に流出するため、圧縮機において潤滑油不足を生じることがある。   Conventionally, a high pressure type hermetic compressor is covered with a hermetic container, and the hermetic container is filled with refrigerating machine oil. A part of the refrigerating machine oil flows out into the refrigerating cycle together with the refrigerant as the compressor sucks and discharges the refrigerant, so that there may be a shortage of lubricating oil in the compressor.

そこで、密閉容器の側面に油面検知用の連通管を接続し、この連通管を用いて油面高さ検出を行い、油面が低い状態を検出した場合に冷凍サイクルから冷凍機油を供給する制御を行って、機械的なスイッチを用いることなく的確に油面の検知を行っている(例えば、特許文献1参照)。   Therefore, a communication pipe for detecting the oil level is connected to the side surface of the sealed container, and the oil level is detected using this communication pipe, and when the oil level is detected, the refrigerating machine oil is supplied from the refrigeration cycle. Control is performed to accurately detect the oil level without using a mechanical switch (see, for example, Patent Document 1).

しかしながら、特許文献1に記載の圧縮機は、連通管はシリンダ上面と同じ高さに配置していたため、タイムラグが生ずることがあり、このタイムラグが大きいと油供給が間に合わずに限界油面を下回ることがあった。   However, in the compressor described in Patent Document 1, since the communication pipe is arranged at the same height as the cylinder upper surface, a time lag may occur, and if this time lag is large, the oil supply is not in time and falls below the limit oil level. There was a thing.

また、連通管の開口部の鉛直方向上部にステータ外周切欠部が位置し、さらに、連通管の開口部は水平方向・圧縮機中心軸を向き、マフラーの吐出ガス出口は圧縮機中心軸周りに円環上に設けられており連通管とできるだけ離間させるような配慮はなされていない。また、連通管の開口部周辺にはカバー等は設置されていない。   In addition, the stator outer circumferential notch is located vertically above the opening of the communication pipe, and the opening of the communication pipe faces the horizontal direction and the compressor central axis, and the exhaust gas outlet of the muffler is around the compressor central axis. It is provided on a ring and no consideration is given to separating it from the communication pipe as much as possible. Also, no cover or the like is provided around the opening of the communication pipe.

さらに、シリンダよりも上のモータ下部空間の雰囲気は、ロータ回転による旋回流や、マフラー出口からの吐出ガス等に加え、モータ上部空間で冷媒と分離された冷凍機油がステータ外周切欠を通って落下してくるため、特に高Hz運転時は冷媒・油が混合一体となった乱流状態であり、油面判別が困難なことがある。   Furthermore, the atmosphere in the motor lower space above the cylinder is caused by the rotating flow caused by the rotor rotation, the discharge gas from the muffler outlet, etc., and the refrigerating machine oil separated from the refrigerant in the motor upper space falls through the stator outer notch. Therefore, particularly during high-Hz operation, the turbulent flow state is a mixture of refrigerant and oil, and it may be difficult to distinguish the oil level.

一方、シリンダより下の空間は、シリンダ自体が壁となり、シリンダ上よりも相対的に油面が安定している。
特開2002−242833号公報
On the other hand, in the space below the cylinder, the cylinder itself becomes a wall, and the oil level is relatively more stable than on the cylinder.
JP 2002-242833 A

本発明は上述した事情を考慮してなされたもので、油面検知に連通管を用いても、油面検出精度の向上を図ることができる密閉型圧縮機を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a hermetic compressor capable of improving the oil level detection accuracy even when a communication pipe is used for oil level detection.

また、油面検知に連通管を用いても、油面検出精度の向上を図ることができる密閉型圧縮機を用いた冷凍サイクル装置を提供することを目的とする。   It is another object of the present invention to provide a refrigeration cycle apparatus using a hermetic compressor that can improve oil level detection accuracy even when a communication pipe is used for oil level detection.

上述した目的を達成するため、本発明に係る密閉型圧縮機は、底部に冷凍機油を貯留した密閉容器内の上部に電動機部を収容するとともに、前記密閉容器内の下部に前記電動機部と回転軸を介して連結された圧縮機構部とを収容し、前記密閉容器の側面に油面検知用の連通管を接続した密閉型圧縮機において、前記密閉容器の内壁面を流下する冷凍機油及び冷媒に混入して飛散している冷凍機油が前記連通管の開口部に直接導かれるのを防止する防止手段を備えたことを特徴とする。   In order to achieve the above-described object, a hermetic compressor according to the present invention houses an electric motor part in an upper part of a closed container storing refrigeration oil at the bottom, and rotates with the electric motor part in a lower part of the closed container. A refrigerating machine oil and a refrigerant that flow down the inner wall surface of the hermetic container in a hermetic compressor that houses a compression mechanism unit connected via a shaft and has a communication pipe for detecting oil level connected to a side surface of the hermetic container Refrigerator oil mixed and scattered is provided with a preventing means for preventing the refrigerating machine oil from being guided directly to the opening of the communication pipe.

また、本発明に係る冷凍サイクル装置は、上記密閉型圧縮機を用いたことを特徴とする。   Moreover, the refrigeration cycle apparatus according to the present invention uses the above-described hermetic compressor.

本発明に係る密閉型圧縮機によれば、油面検知に連通管を用いても、油面検出精度の向上を図ることができる密閉型圧縮機を提供することができる。   According to the hermetic compressor according to the present invention, it is possible to provide a hermetic compressor capable of improving the oil level detection accuracy even if a communication pipe is used for oil level detection.

また、本発明に係る密閉型圧縮機を用いた冷凍サイクル装置によれば、油面検知に連通管を用いても、油面検出精度の向上を図ることができる密閉型圧縮機を用いた冷凍サイクル装置を提供することができる。   Further, according to the refrigeration cycle apparatus using the hermetic compressor according to the present invention, the refrigeration using the hermetic compressor that can improve the oil level detection accuracy even if the communication pipe is used for the oil level detection. A cycle device can be provided.

本発明の第1実施形態に係る密閉型圧縮機およびこれを用いた冷凍サイクル装置について添付図面を参照して説明する。   A hermetic compressor and a refrigeration cycle apparatus using the same according to a first embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の第1実施形態に係る密閉型圧縮機を用いた冷凍サイクル装置の概念図であり、図2は本発明の第1実施形態に係る密閉型圧縮機の縦断面図である。   FIG. 1 is a conceptual diagram of a refrigeration cycle apparatus using a hermetic compressor according to a first embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of the hermetic compressor according to the first embodiment of the present invention. .

図1に示すように、本実施形態の冷凍サイクル装置1が組込まれた空気調和装置Aは、室外ユニット2と室内ユニット3を接続してなる。   As shown in FIG. 1, an air conditioner A in which the refrigeration cycle apparatus 1 according to this embodiment is incorporated includes an outdoor unit 2 and an indoor unit 3 connected to each other.

室外ユニット2は、並列に接続された同一構造を有する2台の圧縮機4a、4b、油分離器7、四方弁9、室外熱交換器10、アキュムレータ16、室外ファン20等により構成され、室内ユニット3は、電子膨張弁13、室内熱交換器14、室内用送風ファン30等により構成されており、さらに、室内ユニット2及び室外ユニット3は、液管12とガス管15により接続されている。   The outdoor unit 2 includes two compressors 4a and 4b having the same structure connected in parallel, an oil separator 7, a four-way valve 9, an outdoor heat exchanger 10, an accumulator 16, an outdoor fan 20, and the like. The unit 3 includes an electronic expansion valve 13, an indoor heat exchanger 14, an indoor fan 30, and the like. Furthermore, the indoor unit 2 and the outdoor unit 3 are connected by a liquid pipe 12 and a gas pipe 15. .

図2は一方の圧縮機4aの縦断面図であり、圧縮機4a、4bは同一構造であるので、他方の圧縮機4bの説明は省略する。   FIG. 2 is a longitudinal sectional view of one compressor 4a. Since the compressors 4a and 4b have the same structure, the description of the other compressor 4b is omitted.

図2に示すように、圧縮機4aは、ツインタイプのロータリー式圧縮機であり、インバータ装置(図示せず)により可変回転数で駆動し、密閉容器40aを備え、その底部40aに冷凍機油を貯留したその上部に電動機部4Aaを収容するとともに、密閉容器40aの下部に電動機部4Aaと回転軸4Caを介して連結された圧縮機構部4Baとを収容する。 As shown in FIG. 2, the compressor 4a is a twin type rotary compressor, driven by a variable rotational speed by an inverter device (not shown), it comprises a sealed container 40a, the refrigerating machine oil in the bottom part 40a 1 The motor part 4Aa is housed in the upper part of the reservoir, and the motor part 4Aa and the compression mechanism part 4Ba connected via the rotating shaft 4Ca are housed in the lower part of the sealed container 40a.

さらに、圧縮機4aの冷媒吐出口に吐出管5aが接続され、吐出管5aが高圧側配管6に接続される。   Further, the discharge pipe 5 a is connected to the refrigerant discharge port of the compressor 4 a, and the discharge pipe 5 a is connected to the high-pressure side pipe 6.

吐出管5a、5bには、逆止弁51a、51bが設けられる。また、圧縮機4a、4bの冷媒吸込口に吸込管18a、18bが接続され、これら吸込管18a、18bが低圧側配管17に接続され、吸込管18a、18bには、サクションカップ19a、19bが接続される。   The discharge pipes 5a and 5b are provided with check valves 51a and 51b. Further, suction pipes 18a and 18b are connected to the refrigerant suction ports of the compressors 4a and 4b, these suction pipes 18a and 18b are connected to the low-pressure side pipe 17, and suction cups 19a and 19b are connected to the suction pipes 18a and 18b. Connected.

圧縮機4aの密閉容器40aの所定高さ位置には、油面検知用の連通管41aの開口部41aを備えた一端部41aが接続される。 At a predetermined height position of the sealed container 40a of the compressor 4a, one end portion 41a 1 having an opening 41a 2 of the communication pipe 41a for detecting the oil level is connected.

連通管41aは、上方から下方に延び、途中で曲折し、一端部41aはその開口面積が連通管41aの開口面積よりも小さく形成される。 Communicating pipe 41a extends downward from above, bent in the middle, one end portion 41a 1 is the opening area is formed smaller than the opening area of the communicating pipe 41a.

また、この一端部41aは、圧縮機4aの電動機部4Aaの固定子41Aaの下端と、電動機部4Aaにより駆動される圧縮機構部4Baのシリンダ4Ba間に位置して、開口部41aが開口される。 Further, one end portion 41a 1 is, and the lower end of the stator 41Aa 1 of the motor portion 4Aa of the compressor 4a, located between the cylinder 4Ba 1 compression mechanism 4Ba driven by an electric motor unit 4Aa, opening 41a 2 Is opened.

さらに、開口部41aに対向し、離間近接して、冷凍機油が直接導かれるのを防止する防止手段としてのカバー部材21aが密閉容器40aに固着されて設けられる。 Further, opposite to the opening 41a 2, and closely spaced, the cover member 21a as prevention means for preventing the refrigerating machine oil is introduced directly provided is fixed to the sealed container 40a.

図3に示すように、カバー部材21aは、正面視長方形状をなし、前面および裏面が密閉容器40aの曲率を同じ曲率の円弧状をなした略直方体であり、カバー部材21aには図中、点線および網掛けで示すように、左側および底部が開放された略直方体状の空間部21aが形成される。この空間部21aに開口部41aが対向して開口する。また、カバー部材21aは、固定子一端部4Aa(図2)の外周切欠4Aaの真下に位置する。 As shown in FIG. 3, the cover member 21a has a rectangular shape when viewed from the front, and the front surface and the back surface are substantially rectangular parallelepiped shapes having the same curvature as the curvature of the sealed container 40a. As indicated by the dotted line and the shaded area, a substantially rectangular parallelepiped space portion 21a 1 having an open left side and a bottom portion is formed. An opening 41a 2 is opened to face the space 21a 1 . The cover member 21a is positioned just below the outer periphery notch 4Aa 3 stator end 4Aa 1 (FIG. 2).

図中カバー部材21aの右側および上側は閉塞され、左側および下側の大部分は開放され、回転子4Aaの回転により生じる冷媒の流れに対向し、冷媒の開口部41aへの流れを阻止する。 Right and upper side in the drawing the cover member 21a is closed, most of the left side and the lower side is open and faces the flow of the refrigerant caused by the rotation of the rotor 4Aa 2, blocking the flow of the opening 41a 2 of the refrigerant To do.

連通管41aの端部近傍にはガイド管48aが固着され、連通管41aは補強され、搬送時や封止時に連通管41aに力を加えても問題ない。   A guide tube 48a is fixed in the vicinity of the end of the communication tube 41a, the communication tube 41a is reinforced, and there is no problem even if a force is applied to the communication tube 41a during conveyance or sealing.

再び、図1に示すように、連通管41a、41bの油流出方向に逆止弁42a、42b及び第1減圧手段例えばキャピラリチューブ43a、43bが設けられる。このキャピラリチューブ43a、43bの開口面積に比べて、開口部41a(図2)の開口面積は大きくなっている。これにより、開口部41aが抵抗になるのが回避されて、均油回路への油の流れ特性を向上させることができる。 Again, as shown in FIG. 1, check valves 42a and 42b and first decompression means such as capillary tubes 43a and 43b are provided in the direction of oil outflow of the communication tubes 41a and 41b. The opening area of the opening 41a 2 (FIG. 2) is larger than the opening areas of the capillary tubes 43a and 43b. Thus, the opening 41a 2 becomes resistance is avoided, thereby improving the flow properties of the oil into the oil equalizing circuit.

このキャピラリチューブ43a、43bの下流側には、第1温度検出センサT1a、T1bが設けられている。連通管41a、41bの他端には、気液分離の機能を兼ねたオイルタンク60が接続され、連通管41a、41bはオイルタンク60において集合している。オイルタンク60は、連通管41a、41bから流れてきた余剰分の冷凍機油を一時的に蓄え、気体と液体とを分離する。オイルタンク60の所定高さに均油管45が接続され、この均油管45のオイルタンク60付近には、第2温度検出センサT2が設けられている。均油管45は、途中で均油分管45a、45bに分岐し、この均油分管45a、45bが各吸込管18a、18bに接続される。均油分管45a、45bには、第2減圧手段例えばキャピラリチューブ46a、46bがそれぞれ設けられる。   First temperature detection sensors T1a and T1b are provided on the downstream side of the capillary tubes 43a and 43b. The other end of the communication pipes 41 a and 41 b is connected to an oil tank 60 that also functions as a gas-liquid separation, and the communication pipes 41 a and 41 b are assembled in the oil tank 60. The oil tank 60 temporarily stores excess refrigeration oil flowing from the communication pipes 41a and 41b, and separates gas and liquid. An oil equalizing pipe 45 is connected to a predetermined height of the oil tank 60, and a second temperature detection sensor T2 is provided near the oil tank 60 of the oil equalizing pipe 45. The oil equalizing pipe 45 is branched into oil equalizing distribution pipes 45a and 45b on the way, and the oil equalizing distribution pipes 45a and 45b are connected to the suction pipes 18a and 18b. The oil equalizing distribution pipes 45a and 45b are respectively provided with second decompression means, for example, capillary tubes 46a and 46b.

さらに、オイルタンク60と高圧側配管6との間にバイパス管47が接続される。バイパス管47には第3減圧手段例えばキャピラリチューブ48が設けられ、このキャピラリチューブ48の下流側には第3温度検出センサT3が設けられる。   Further, a bypass pipe 47 is connected between the oil tank 60 and the high-pressure side pipe 6. The bypass pipe 47 is provided with third decompression means, for example, a capillary tube 48, and a third temperature detection sensor T3 is provided downstream of the capillary tube 48.

第1減圧手段としてのキャピラリチューブ43a、43bは、その抵抗が、第2減圧手段としてのキャピラリチューブ46a、46bの抵抗よりも大きく設けられる。これによりオイルタンク60内の冷凍機油は、第1連通管41a、41bから均油分管45a、45bへ引っ張られ、逆流することがない。   The resistances of the capillary tubes 43a and 43b as the first pressure reducing means are provided larger than the resistances of the capillary tubes 46a and 46b as the second pressure reducing means. Thereby, the refrigerating machine oil in the oil tank 60 is pulled from the first communication pipes 41a and 41b to the oil equalizing distribution pipes 45a and 45b and does not flow backward.

また、油分離器7と均油管45の間には、油戻管71、72が並列に接続される。油戻管71は、その一端が油分離器7の所定高さ位置に接続され、キャピラリチューブ73が設けられている。油戻管71の接続位置より上方に溜まった油分離器7内の冷凍機油は、油戻管71に流入し、キャピラリチューブ74を介して均油管45に流入する。この均油管45に流入した潤滑油は、均油分管45a、45bに分流され、キャピラリチューブ46a、46bを介して各吸込管18a、18bに流入し、冷凍サイクルを循環した冷媒と共に圧縮機4a、4bに吸込まれる。   Further, oil return pipes 71 and 72 are connected in parallel between the oil separator 7 and the oil equalizing pipe 45. One end of the oil return pipe 71 is connected to a predetermined height position of the oil separator 7, and a capillary tube 73 is provided. The refrigerating machine oil in the oil separator 7 accumulated above the connection position of the oil return pipe 71 flows into the oil return pipe 71 and flows into the oil equalizing pipe 45 through the capillary tube 74. The lubricating oil flowing into the oil equalizing pipe 45 is divided into oil equalizing distribution pipes 45a and 45b, flows into the suction pipes 18a and 18b via the capillary tubes 46a and 46b, and together with the refrigerant circulated through the refrigeration cycle, the compressor 4a, It is sucked into 4b.

一方、油戻管72は、その一端が油分離器7の下部に接続され、開閉弁74が設けられている。なお、密閉容器40a、40bに収容される冷凍機油の量は、規定油封入量高さL1(図2)と限界油面(上部シリンダが一部油に浸る高さ)L2によって設定される。   On the other hand, one end of the oil return pipe 72 is connected to the lower part of the oil separator 7, and an on-off valve 74 is provided. The amount of refrigerating machine oil stored in the sealed containers 40a and 40b is set by the specified oil filling amount height L1 (FIG. 2) and the limit oil level (the height at which the upper cylinder is partially immersed in oil) L2.

また、吐出管5a、5bには共通の高圧側配管6が接続され、さらに、この高圧側配管6には油分離器7が接続され、この油分離器7には冷媒流出管8、四方弁9を介して室外熱交換器10が接続されている。この室外熱交換器10は受液器11、パックドバルブ22a、液管12、パックドバルブ22c、室内ユニット3に設けられた電子膨張弁13を介して室内熱交換器14に接続され、さらに、パックドバルブ22d、ガス管15、パックドバルブ22bを順に介して室外ユニット2に接続されている。   Further, a common high-pressure side pipe 6 is connected to the discharge pipes 5a and 5b, and an oil separator 7 is connected to the high-pressure side pipe 6. The oil separator 7 has a refrigerant outflow pipe 8, a four-way valve. An outdoor heat exchanger 10 is connected via 9. The outdoor heat exchanger 10 is connected to the indoor heat exchanger 14 via the liquid receiver 11, the packed valve 22 a, the liquid pipe 12, the packed valve 22 c, and the electronic expansion valve 13 provided in the indoor unit 3. It is connected to the outdoor unit 2 through the valve 22d, the gas pipe 15, and the packed valve 22b in this order.

なお、図中符号4Daは回転軸4Caを支持する主軸受であり、符号4Eaは副軸受であり、符号4Faはマフラーである。   In the figure, reference numeral 4Da is a main bearing that supports the rotating shaft 4Ca, reference numeral 4Ea is a sub-bearing, and reference numeral 4Fa is a muffler.

次に第1実施形態の密閉型圧縮機を用いた冷凍サイクル装置の動作について説明する。   Next, the operation of the refrigeration cycle apparatus using the hermetic compressor of the first embodiment will be described.

図1に示すような冷凍サイクル装置1の圧縮機4a、4bが運転されると、冷媒は、吐出管5a、5bを介して高圧側配管6に流れ、その高圧側配管6により油分離器7に供給される。油分離器7は、冷媒と冷凍機油を分離し、この油分離器7内の冷媒は、冷媒流出管8に流れ、冷媒流出管8から四方弁9に流れる。冷房運転時、冷媒は、四方弁9を通って室外熱交換器10に流れ、この室外熱交換器10で室外空気と熱交換して凝縮(液化)する。   When the compressors 4 a and 4 b of the refrigeration cycle apparatus 1 as shown in FIG. 1 are operated, the refrigerant flows into the high-pressure side pipe 6 via the discharge pipes 5 a and 5 b, and the oil separator 7 is connected to the high-pressure side pipe 6. To be supplied. The oil separator 7 separates the refrigerant and the refrigerating machine oil, and the refrigerant in the oil separator 7 flows to the refrigerant outflow pipe 8 and from the refrigerant outflow pipe 8 to the four-way valve 9. During the cooling operation, the refrigerant flows through the four-way valve 9 to the outdoor heat exchanger 10 and is condensed (liquefied) by exchanging heat with outdoor air in the outdoor heat exchanger 10.

室外熱交換器10を経た冷媒は、パックドバルブ22a、液管12、パックドバルブ22bを順に介して室内ユニット3に流れる。室内ユニット3に流れた冷媒は、電子膨張弁13を通って室内熱交換器14に流れ、この室内熱交換器14で室内空気と熱交換して気化する。室内熱交換器14を経た冷媒は、パックドバルブ22d、ガス管15、パックドバルブ22bを順に介して室外ユニット2に流れる。   The refrigerant that has passed through the outdoor heat exchanger 10 flows to the indoor unit 3 through the packed valve 22a, the liquid pipe 12, and the packed valve 22b in this order. The refrigerant that has flowed into the indoor unit 3 flows through the electronic expansion valve 13 to the indoor heat exchanger 14, and is vaporized by exchanging heat with the indoor air in the indoor heat exchanger 14. The refrigerant that has passed through the indoor heat exchanger 14 flows to the outdoor unit 2 through the packed valve 22d, the gas pipe 15, and the packed valve 22b in this order.

室外ユニット2に流れた冷媒は、四方弁9を通ってアキュムレータ16に流れ、低圧側配管17から吸込管18a、18bを通って各圧縮機4a、4bに吸込まれる。   The refrigerant that has flowed to the outdoor unit 2 flows through the four-way valve 9 to the accumulator 16, and is sucked into the compressors 4a and 4b from the low-pressure side pipe 17 through the suction pipes 18a and 18b.

暖房運転時は、四方弁9を切り換えることにより、冷媒は上記とは逆方向に流れる。   During the heating operation, the refrigerant flows in the reverse direction by switching the four-way valve 9.

上記のような圧縮機4a、4bによる冷媒圧縮過程において、油面検知は、次のようにして行われる。   In the refrigerant compression process by the compressors 4a and 4b as described above, the oil level detection is performed as follows.

例えば、各室外ユニットの圧縮機4a、4bは運転されており、これら圧縮機4a、4bの密閉容器40a、40b内油面が適正であれば、連通管41a、41bに冷凍機油が流入し、オイルタンク60は適正油量が維持され、均油管45に冷凍機油が流入する。圧縮機4a、4bの密閉容器40a、40b内油面が低下していれば、連通管41a、41bには冷媒が流入し、オイルタンク60の油面も低下するので均油管45に冷媒が流入する。それぞれの管の温度を比べた場合、各管の抵抗が等しければ、冷凍機油が流入する管は温度が高く、冷媒が流入する管は温度が低く検出される。   For example, the compressors 4a and 4b of each outdoor unit are operated, and if the oil levels in the sealed containers 40a and 40b of these compressors 4a and 4b are appropriate, the refrigerating machine oil flows into the communication pipes 41a and 41b, The oil amount in the oil tank 60 is maintained, and the refrigerating machine oil flows into the oil equalizing pipe 45. If the oil levels in the sealed containers 40a and 40b of the compressors 4a and 4b are lowered, the refrigerant flows into the communication pipes 41a and 41b, and the oil level of the oil tank 60 is also lowered, so the refrigerant flows into the oil equalizing pipe 45. To do. When the temperature of each pipe is compared, if the resistance of each pipe is equal, the temperature of the pipe into which the refrigerating machine oil flows is high, and the temperature of the pipe into which the refrigerant flows is low.

連通管41a、41bには第1温度検出センサT1a、T1bが設けられ、均油管45には第2温度検出センサT2が設けられ、バイパス管47には第3温度センサT3が設けられている。これら各温度検出センサT1a、T1b、T2、T3で検出された温度差を比較することによって油面を検出できる。これら各温度検出センサT1a、T1b、T2、T3のデータを室外ユニット制御部(図示せず)が処理し、各弁の開閉を制御して均油を行う。   The communication pipes 41a and 41b are provided with first temperature detection sensors T1a and T1b, the oil equalizing pipe 45 is provided with a second temperature detection sensor T2, and the bypass pipe 47 is provided with a third temperature sensor T3. The oil level can be detected by comparing temperature differences detected by these temperature detection sensors T1a, T1b, T2, and T3. The outdoor unit control unit (not shown) processes the data of each of these temperature detection sensors T1a, T1b, T2, and T3, and controls the opening and closing of each valve to perform oil equalization.

さらに、圧縮機4a、4bによる冷媒圧縮過程において、圧縮機4a、4bの密閉容器40a、40b内油面がそれぞれ連通管41a、41bの接続位置よりも高い場合(冷凍機油が足りている場合)には、その接続位置を越えている分の冷凍機油が、余剰分として連通管41a、41bに流入する。   Further, in the refrigerant compression process by the compressors 4a and 4b, when the oil levels in the sealed containers 40a and 40b of the compressors 4a and 4b are higher than the connection positions of the communication pipes 41a and 41b, respectively (when the refrigerator oil is sufficient). Then, the refrigerating machine oil that exceeds the connection position flows into the communication pipes 41a and 41b as a surplus.

連通管41a、41bに流入した冷凍機油は、キャピラリチューブ43a、43bを介してオイルタンク60に流入する。また、オイルタンク60には、バイパス管47により微量の吐出ガスが流入する。オイルタンク60に流入した冷凍機油は、このオイルタンク60内において、微量吐出ガスによる圧力と、低圧側の吸引力により、均油分管45a、45bに分流し、キャピラリチューブ46a、46bを介して吸込管18a、18bに流入する。吸込管18a、18bに流入した冷凍機油は、冷凍サイクル装置1中を循環した冷媒と共に圧縮機4a、4bに吸込まれる。   The refrigerating machine oil that has flowed into the communication pipes 41a and 41b flows into the oil tank 60 through the capillary tubes 43a and 43b. A small amount of discharge gas flows into the oil tank 60 through the bypass pipe 47. The refrigerating machine oil that has flowed into the oil tank 60 is divided into the oil equalizing distribution pipes 45a and 45b by the pressure of the small amount of discharge gas and the suction force on the low pressure side, and is sucked through the capillary tubes 46a and 46b. It flows into the pipes 18a and 18b. The refrigerating machine oil that has flowed into the suction pipes 18a and 18b is sucked into the compressors 4a and 4b together with the refrigerant circulated through the refrigeration cycle apparatus 1.

また、圧縮機4aの密閉容器40a内油面が、連通管41aの接続位置よりも高く、圧縮機4bの密閉容器40b内油面が連通管41bの接続位置よりも低いというように、各圧縮機4a、4bの密閉容器40a、40b内油面に偏りが生じる場合(冷凍機油が不足している場合)がある。この場合、圧縮機4aに接続されている連通管41aには冷凍機油が流入し、圧縮機4bに接続されている連通4bには高圧の冷媒ガスが流入するが、これら流入した冷凍機油及び冷媒ガスはオイルタンク60で合流し、このオイルタンク60内において、冷媒と冷凍機油に分離され、オイルタンク60から流出する際に混合状態となって均油管45に流入する。この均油管45に流入した混合状態の冷凍機油及び冷媒は、キャピラリチューブ46a、46bの抵抗作用によって均油分管45a、45bに均等に分流する。この分流により油量の多い側の圧縮機4aから油量の少ない側の圧縮機4bへと冷凍機油が移動するようになり、圧縮機4a、4bの密閉容器40a、40b内油面が迅速にバランスする。   In addition, the oil level in the sealed container 40a of the compressor 4a is higher than the connection position of the communication pipe 41a, and the oil level in the sealed container 40b of the compressor 4b is lower than the connection position of the communication pipe 41b. There may be a case where the oil levels in the sealed containers 40a and 40b of the machines 4a and 4b are uneven (when the refrigerator oil is insufficient). In this case, refrigeration oil flows into the communication pipe 41a connected to the compressor 4a, and high-pressure refrigerant gas flows into the communication 4b connected to the compressor 4b. The gas joins in the oil tank 60, is separated into refrigerant and refrigerating machine oil in the oil tank 60, and enters the oil equalizing pipe 45 in a mixed state when flowing out from the oil tank 60. The mixed refrigeration oil and refrigerant flowing into the oil equalizing pipe 45 are equally divided into the oil equalizing distribution pipes 45a and 45b by the resistance action of the capillary tubes 46a and 46b. Due to this diversion, the refrigeration oil moves from the compressor 4a having a larger oil amount to the compressor 4b having a smaller oil amount, and the oil levels in the sealed containers 40a and 40b of the compressors 4a and 4b are rapidly increased. To balance.

一方、圧縮機4a、4bの運転により、吐出管5a、5bから冷媒と共に吐出した冷凍機油は、高圧側配管6を介して油分離器7に流入する。油分離器7において、冷凍機油は冷媒と分離され、油戻管71の接続位置を越えた分の冷凍機油が油戻管71に流入し、均油管45において上記均油回路と合流して各圧縮機4a、4bに戻される。   On the other hand, the refrigerating machine oil discharged together with the refrigerant from the discharge pipes 5 a and 5 b by the operation of the compressors 4 a and 4 b flows into the oil separator 7 through the high-pressure side pipe 6. In the oil separator 7, the refrigerating machine oil is separated from the refrigerant, and the refrigerating machine oil that exceeds the connection position of the oil return pipe 71 flows into the oil return pipe 71, and joins the oil leveling circuit in the oil leveling pipe 45. It returns to compressor 4a, 4b.

圧縮機4a、4bの密閉容器40a、40b内油面が両方とも低下した場合は、油戻管72に設けられた開閉弁74を開けることによって、油分離器7内の冷凍機油を均油管45に流入させて各圧縮機4a、4bに戻す。圧縮機4a、4bに冷凍機油の不足が生じても、連通管41a、41bの働きで、圧縮機4a、4bの冷凍機油は足りた状態に復帰し、略均一に保たれる。   When both the oil levels in the sealed containers 40a and 40b of the compressors 4a and 4b are lowered, the open / close valve 74 provided in the oil return pipe 72 is opened, so that the refrigerating machine oil in the oil separator 7 is supplied to the oil equalizing pipe 45. And return to the compressors 4a and 4b. Even when the compressors 4a and 4b are deficient in refrigerating machine oil, the communication pipes 41a and 41b return the refrigerating machine oil of the compressors 4a and 4b to a sufficient state and keep it substantially uniform.

上記のような連通管41a、41bによる油均一過程において、図3に示すように、連通管41aの開口部41aは、カバー部材21aによって被われているので、回転子4Aaの回転により生じた冷媒の直接開口部41aへの流れは阻止され、さらに、密閉容器40aの内壁面を流下する冷凍機油及び冷媒に混入して飛散している冷凍機油が、開口部41aに直接導かれて、連通管41a、41b内に流入するのが防止され、油面検知精度が向上する。 Communicating pipe 41a as described above, in the oil uniformly process by 41b, as shown in FIG. 3, the openings 41a 2 of the communication pipe 41a is because it is covered by the cover member 21a, caused by the rotation of the rotor 4Aa 2 The refrigerant directly flowing into the opening 41a 2 is blocked, and the refrigerating machine oil flowing down the inner wall surface of the sealed container 40a and the refrigerating machine oil mixed and scattered in the refrigerant are directly guided to the opening 41a 2. Thus, it is prevented from flowing into the communication pipes 41a and 41b, and the oil level detection accuracy is improved.

本第1実施形態の密閉型圧縮機によれば、油面検知に連通管を用いても、油面検出精度の向上を図ることができる密閉型圧縮機が実現する。   According to the hermetic compressor of the first embodiment, a hermetic compressor capable of improving the oil level detection accuracy is realized even if a communication pipe is used for oil level detection.

また、本第1実施形態の密閉型圧縮機を用いた冷凍サイクル装置によれば、油面検知に連通管を用いても、油面検出精度の向上を図ることができる密閉型圧縮機を用いた冷凍サイクル装置が実現する。   Further, according to the refrigeration cycle apparatus using the hermetic compressor of the first embodiment, the hermetic compressor that can improve the oil level detection accuracy even if the communication pipe is used for the oil level detection is used. The refrigeration cycle device that was used is realized.

また、第1実施形態のカバー部材の変形例について説明する。   Moreover, the modification of the cover member of 1st Embodiment is demonstrated.

本変形例は、第1実施形態のカバー部材が一側と下側を開放するのに対して、カバー部材の下側のみを開放する。   In this modification, the cover member of the first embodiment opens one side and the lower side, whereas only the lower side of the cover member is opened.

例えば、図4に示すように、本変形例のカバー部材21aは、連通管41aの開口部41aに対向して、カバー部材21aの底部のみが開放された略直方体状の空間部21a1が形成され、この空間部21aに開口部41aが対向して開口する。 For example, as shown in FIG. 4, the cover member 21a of this modification is to face the opening 41a 2 of the communicating pipe 41a, a substantially rectangular parallelepiped space portion 21a1 which only the bottom part is the opening of the cover member 21a is formed Then, the opening 41a 2 is opposed to the space 21a 1 and opens.

これにより、第1実施形態のカバー部材と同様の効果が得られる。   Thereby, the effect similar to the cover member of 1st Embodiment is acquired.

また、本発明の第2実施形態に係る密閉型圧縮機について説明する。   A hermetic compressor according to the second embodiment of the present invention will be described.

本第2実施形態は、第1実施形態が別個のカバー部材を密閉容器に固着するのに対して、圧縮機構部を密閉容器に固定するフレームで兼用する。   In the second embodiment, the separate cover member is fixed to the sealed container in the first embodiment, but the compression mechanism is fixed to the sealed container.

例えば、図5に示すように、第2実施形態に係る密閉型圧縮機4aは、圧縮機構部4Baを密閉容器40aに固定するフレーム4Gaを備え、このフレーム4Gaには、連通管41aの開口部41aに対向して空間凹部21aが形成される。 For example, as shown in FIG. 5, the hermetic compressor 4a according to the second embodiment includes a frame 4Ga that fixes the compression mechanism 4Ba to the hermetic container 40a, and the frame 4Ga includes an opening of the communication pipe 41a. A space recess 21a 1 is formed opposite to 41a 2 .

これにより、冷媒が直接開口部41aへの流れは阻止され、さらに、密閉容器40aの内壁面を流下する冷凍機油及び冷媒に混入して飛散している冷凍機油が、開口部41aに直接導かれて、連通管41a内に流入するのが防止され、油面検知精度が向上する。また、別個の部材を用いることがないので、経済的である。 Thereby, the refrigerant is prevented from flowing directly to the opening 41a 2 , and the refrigerating machine oil flowing down the inner wall surface of the sealed container 40a and the refrigerating machine oil scattered and scattered in the refrigerant directly enter the opening 41a 2 . It is prevented from flowing into the communication pipe 41a and the oil level detection accuracy is improved. Moreover, since a separate member is not used, it is economical.

また、本発明の第3実施形態に係る密閉型圧縮機について説明する。   Further, a hermetic compressor according to a third embodiment of the present invention will be described.

本第3実施形態は、第1実施形態が防止手段としてカバー部材を用いるのに対して、連通管の開口部の位置を、固定子に設けた外周切欠の範囲から外すことで構成する。   The third embodiment is configured by removing the position of the opening of the communication pipe from the range of the outer circumferential notch provided in the stator, whereas the first embodiment uses a cover member as the prevention means.

例えば、図6に示すように、第3実施形態の密閉型圧縮機4aに設け連通管41aの開口部41aの位置は、固定子4Aaに設けた複数の外周切欠4Aaの範囲から外す。 For example, as shown in FIG. 6, the position of the opening 41a 2 of the communication pipe 41a provided in the hermetic compressor 4a of the third embodiment, excluded from the plurality of ranges of the peripheral notches 4Aa 3 provided on the stator 4Aa 1 .

さらに、図7に示すように、開口部41aを下方に向けるか、図8に示すように、連通管41aの端部を閉塞し、端部近傍に下方に開口する開口部41aを設けるようにしてもよい。 Further, as shown in FIG. 7, the opening 41a 2 is directed downward, or as shown in FIG. 8, the end of the communication pipe 41a is closed, and an opening 41a 2 that opens downward is provided near the end. You may do it.

これにより、冷媒が直接開口部41aへの流れは阻止され、さらに、密閉容器40aの内壁面を流下する冷凍機油及び冷媒に混入して飛散している冷凍機油が、開口部41aに直接導かれて、連通管41a内に流入するのが防止され、油面検知精度が向上する。また、別個の部材を用いることがないので、経済的である。 Thereby, the refrigerant is prevented from flowing directly to the opening 41a 2 , and the refrigerating machine oil flowing down the inner wall surface of the sealed container 40a and the refrigerating machine oil scattered and scattered in the refrigerant directly enter the opening 41a 2 . It is prevented from flowing into the communication pipe 41a and the oil level detection accuracy is improved. Moreover, since a separate member is not used, it is economical.

また、本発明の第4実施形態に係る密閉型圧縮機について説明する。   Moreover, the hermetic compressor according to the fourth embodiment of the present invention will be described.

本第4実施形態は、第1実施形態が防止手段としてカバー部材を用いるのに対して、連通管の開口部の位置からマフラーに設けた吐出ガス出口までの距離を最大限にする。   The fourth embodiment maximizes the distance from the position of the opening of the communication pipe to the discharge gas outlet provided in the muffler, whereas the first embodiment uses a cover member as the prevention means.

例えば、図9に示すように、第4実施形態の密閉型圧縮機4aに設け連通管41aの開口部41aの位置から最も離れたマフラー4Faの上に吐出ガス出口4Faを設ける。 For example, as shown in FIG. 9, provided the discharge gas outlet 4fa 1 on the farthest muffler 4fa from the position of the opening 41a 2 of the communication pipe 41a provided in the hermetic compressor 4a of the fourth embodiment.

これにより、冷媒が直接開口部41aへの流れは阻止され、さらに、密閉容器40aの内壁面を流下する冷凍機油及び冷媒に混入して飛散している冷凍機油が、開口部41aに直接導かれて、連通管41a、41b内に流入するのが防止され、油面検知精度が向上する。また、別個の部材を用いることがないので、経済的である。 Thereby, the refrigerant is prevented from flowing directly to the opening 41a 2 , and the refrigerating machine oil flowing down the inner wall surface of the sealed container 40a and the refrigerating machine oil scattered and scattered in the refrigerant directly enter the opening 41a 2 . It is guided and is prevented from flowing into the communication pipes 41a and 41b, and the oil level detection accuracy is improved. Moreover, since a separate member is not used, it is economical.

本発明の第1実施形態に係る密閉型圧縮機を用いた冷凍サイクル装置の概念図。The conceptual diagram of the refrigerating-cycle apparatus using the hermetic compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る密閉型圧縮機の縦断面図。1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention. 本発明の第1実施形態に係る密閉型圧縮機の用いるカバー部材の斜視図。The perspective view of the cover member which the hermetic compressor concerning a 1st embodiment of the present invention uses. 本発明の第1実施形態に係る密閉型圧縮機の用いるカバー部材の変形例の斜視図。The perspective view of the modification of the cover member which the hermetic compressor concerning a 1st embodiment of the present invention uses. 本発明の第2実施形態に係る密閉型圧縮機の縦断面図。The longitudinal cross-sectional view of the hermetic compressor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る密閉型圧縮機の横断面図。The cross-sectional view of the hermetic compressor according to the third embodiment of the present invention. 図6の密閉型圧縮機に用いる連通管の縦断面図。The longitudinal cross-sectional view of the communicating pipe used for the hermetic compressor of FIG. 図7の連通管の変形例の縦断面図。The longitudinal cross-sectional view of the modification of the communicating pipe of FIG. 本発明の第4実施形態に係る密閉型圧縮機の横断面図。The cross-sectional view of the hermetic compressor according to the fourth embodiment of the present invention.

符号の説明Explanation of symbols

1…冷凍サイクル装置、2…室外ユニット、3…室内ユニット、4a、4b…圧縮機、4Aa…電動機部、4Ba…圧縮機構部、4Ca…回転軸、9…四方弁、10…室外熱交換器、21a…カバー部材、21a…空間部、40a…密閉容器、41a、41b…連通管、45a、45b…均油分管。 DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 2 ... Outdoor unit, 3 ... Indoor unit, 4a, 4b ... Compressor, 4Aa ... Electric motor part, 4Ba ... Compression mechanism part, 4Ca ... Rotary shaft, 9 ... Four-way valve, 10 ... Outdoor heat exchanger , 21a ... cover member, 21a 1 ... space part, 40a ... sealed container, 41a, 41b ... communication pipe, 45a, 45b ... oil level distribution pipe.

Claims (4)

底部に冷凍機油を貯留した密閉容器内の上部に電動機部を収容するとともに、前記密閉容器内の下部に前記電動機部と回転軸を介して連結された圧縮機構部とを収容し、前記密閉容器の側面に油面検知用の連通管を接続した密閉型圧縮機において、前記密閉容器の内壁面を流下する冷凍機油及び冷媒に混入して飛散している冷凍機油が前記連通管の開口部に直接導かれるのを防止する防止手段を備えたことを特徴とする密閉型圧縮機。 A motor part is housed in an upper part of a sealed container storing refrigerating machine oil at the bottom, and a compression mechanism part connected to the motor part through a rotating shaft is housed in a lower part of the sealed container, and the sealed container In the hermetic compressor in which a communication pipe for detecting the oil level is connected to the side surface of the compressor, the refrigerating machine oil flowing down the inner wall surface of the hermetic container and the refrigerating machine oil scattered in the refrigerant are scattered in the opening of the communication pipe. A hermetic compressor comprising a prevention means for preventing direct guidance. 前記防止手段が、前記連通管の開口部を覆い下部に開口を有するカバー部材であることを特徴とする請求項1記載の密閉型圧縮機。 2. The hermetic compressor according to claim 1, wherein the prevention means is a cover member that covers the opening of the communication pipe and has an opening in the lower part. 前記カバー部材を、前記圧縮機構部を密閉容器に固定するフレームで兼用したことを特徴とする密閉型圧縮機。 A hermetic compressor, wherein the cover member is also used as a frame for fixing the compression mechanism to a hermetic container. 請求項1〜3のいずれか1項に記載の密閉型圧縮機を備えたことを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus comprising the hermetic compressor according to any one of claims 1 to 3.
JP2008219882A 2008-08-28 2008-08-28 Hermetic compressor and refrigeration cycle apparatus using the same Active JP5288457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219882A JP5288457B2 (en) 2008-08-28 2008-08-28 Hermetic compressor and refrigeration cycle apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219882A JP5288457B2 (en) 2008-08-28 2008-08-28 Hermetic compressor and refrigeration cycle apparatus using the same

Publications (2)

Publication Number Publication Date
JP2010053779A true JP2010053779A (en) 2010-03-11
JP5288457B2 JP5288457B2 (en) 2013-09-11

Family

ID=42069960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219882A Active JP5288457B2 (en) 2008-08-28 2008-08-28 Hermetic compressor and refrigeration cycle apparatus using the same

Country Status (1)

Country Link
JP (1) JP5288457B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112689A (en) * 1988-10-20 1990-04-25 Daikin Ind Ltd Scroll type compressor
JPH0476979U (en) * 1990-11-19 1992-07-06
JPH05133339A (en) * 1991-11-07 1993-05-28 Matsushita Refrig Co Ltd Compressor
JP2004293822A (en) * 2003-03-25 2004-10-21 Toshiba Kyaria Kk Refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112689A (en) * 1988-10-20 1990-04-25 Daikin Ind Ltd Scroll type compressor
JPH0476979U (en) * 1990-11-19 1992-07-06
JPH05133339A (en) * 1991-11-07 1993-05-28 Matsushita Refrig Co Ltd Compressor
JP2004293822A (en) * 2003-03-25 2004-10-21 Toshiba Kyaria Kk Refrigeration cycle device

Also Published As

Publication number Publication date
JP5288457B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
EP2992274B1 (en) Compressor bearing cooling and lubrication via purge unit
JP4742985B2 (en) Expander-integrated compressor and refrigeration cycle apparatus
EP2012075B1 (en) Refrigeration device
JPWO2009141956A1 (en) Fluid machinery and refrigeration cycle equipment
JP6508814B2 (en) Unit for compressor, compressor, and refrigerant circuit
JP2007255730A (en) Air conditioner
JP6826808B2 (en) Refrigeration equipment
JP2007093141A (en) Refrigerating device
JP5288457B2 (en) Hermetic compressor and refrigeration cycle apparatus using the same
JP4948240B2 (en) Refrigeration cycle equipment
JPH0735045A (en) Compressor
KR100792458B1 (en) Oil seperating apparatus for compressor
DK3088823T3 (en) Device for tempering a tempering fluid
JP2004293822A (en) Refrigeration cycle device
JP2004353904A (en) Accumulator and air conditioner
JP6380515B2 (en) Gas-liquid separator and air conditioner equipped with the same
JP6693123B2 (en) Compressor and air conditioner equipped with the same
WO2007063077A1 (en) A compressor
US11549732B2 (en) Refrigeration apparatus having subcooling heat exchanger for lubrication flow
KR101442114B1 (en) Air conditioner
JP2007211678A (en) Electric-powered compressor and air conditioner
JP4720594B2 (en) Refrigeration equipment
JP6091575B2 (en) Hermetic compressor and refrigeration cycle apparatus provided with the hermetic compressor
JP2021056134A (en) container
JP5892261B2 (en) Refrigeration cycle apparatus and heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5288457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250