JP2010053111A - Gold fine particle and method for manufacturing the same - Google Patents

Gold fine particle and method for manufacturing the same Download PDF

Info

Publication number
JP2010053111A
JP2010053111A JP2008222952A JP2008222952A JP2010053111A JP 2010053111 A JP2010053111 A JP 2010053111A JP 2008222952 A JP2008222952 A JP 2008222952A JP 2008222952 A JP2008222952 A JP 2008222952A JP 2010053111 A JP2010053111 A JP 2010053111A
Authority
JP
Japan
Prior art keywords
gold
fine particles
peg
gold fine
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008222952A
Other languages
Japanese (ja)
Other versions
JP5427329B2 (en
Inventor
Takuro Niitome
琢郎 新留
Yasuro Niitome
康郎 新留
Takeshi Mori
健 森
Yoshiki Katayama
佳樹 片山
Atsushi Maruyama
厚 丸山
Arihiro Kano
有宏 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Kyushu University NUC
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Kyushu University NUC
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Kyushu University NUC, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2008222952A priority Critical patent/JP5427329B2/en
Publication of JP2010053111A publication Critical patent/JP2010053111A/en
Application granted granted Critical
Publication of JP5427329B2 publication Critical patent/JP5427329B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide gold nanorods which have enhanced dispersion stability in the blood by making PLL-g-PEG (polylysine grafted with polyethylene glycol) adsorbed onto them and are safe to a living body, and an application of the same. <P>SOLUTION: The gold fine particles (gold nanorods) have the shape of a rod of nanometer size onto which polylysine with polyethylene glycol grafted to its side chain is adsorbed. For instance, the gold fine particles are adsorbed with polylysine having a graft ratio of polyethylene glycol of 10-50 mol% and the zeta potential of an aqueous dispersion in which the gold fine particles are dispersed is +25 mV or less. Near infrared imaging using the gold fine particles as the bio-marker is presented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ポリエチレングリコール(PEG)を側鎖にグラフトしたポリリジン(PLL−g−PEG)が吸着しているナノサイズのロッド形状の金微粒子(金ナノロッド)とその用途に関する。   The present invention relates to nanosized rod-shaped gold fine particles (gold nanorods) adsorbed with polylysine (PLL-g-PEG) grafted with polyethylene glycol (PEG) on the side chain, and uses thereof.

本発明は、より具体的には、PEGのグラフト率を特定の割合に調整したポリリジンを吸着した金ナノロッドとその用途に関する。本発明の技術は、血液中での金ナノロッドの分散安定性を高める方法として有用であり、金ナノロッドを生体内へ投与しバイオマーカーとして利用できるため生体内の近赤外イメージングが可能である。   More specifically, the present invention relates to a gold nanorod adsorbed with polylysine in which the graft ratio of PEG is adjusted to a specific ratio and its use. The technique of the present invention is useful as a method for enhancing the dispersion stability of gold nanorods in blood. Since gold nanorods can be administered into a living body and used as a biomarker, in vivo near-infrared imaging is possible.

溶媒中に分散した金属微粒子に光を照射すると局在表面プラズモン共鳴(Localized Surface Plasmon resonance:LSPR)と呼ばれる共鳴吸収現象が生じる。この吸収現象は金属の種類と形状、そして金属微粒子周囲における媒体の屈折率によって吸収波長が決定される。例えば、球状の金微粒子が水に分散した場合は530nm付近に吸収域を持ち、金微粒子の形状を短軸10nm程度のロッド状(金ナノロッド)にすると、ロッドの短軸に起因する530nm付近の吸収の他に、ロッドの長軸に起因する長波長側の吸収を有することが知られている(非特許文献1)。   When light is applied to metal fine particles dispersed in a solvent, a resonance absorption phenomenon called Localized Surface Plasmon Resonance (LSPR) occurs. The absorption wavelength is determined by the type and shape of the metal and the refractive index of the medium around the metal fine particles. For example, when spherical gold fine particles are dispersed in water, there is an absorption region around 530 nm, and if the shape of the gold fine particles is made into a rod shape (gold nanorod) with a short axis of about 10 nm, it is around 530 nm due to the short axis of the rod. In addition to absorption, it is known to have absorption on the long wavelength side caused by the long axis of the rod (Non-Patent Document 1).

これらの金属微粒子分散液は、低分子化合物や高分子化合物を保護剤として金属微粒子表面に吸着ないし結合させることによって、金属微粒子が凝集することなく安定に溶媒に分散させることができる。特に金ナノロッドは形状の変化や凝集状態変化、金ナノロッド周辺の環境によって分光特性が変化する特異な金微粒子であり(非特許文献2、3、4)、近赤外光をプローブとして用いる新しい分光分析の材料として可能性がある。   These metal fine particle dispersions can be stably dispersed in a solvent without aggregation of the metal fine particles by adsorbing or binding to the surface of the metal fine particles using a low molecular compound or a polymer compound as a protective agent. In particular, gold nanorods are unique gold fine particles whose spectroscopic properties change depending on changes in shape, changes in the state of aggregation, and the environment around the gold nanorods (Non-Patent Documents 2, 3, and 4). Potential as analytical material.

金ナノロッドはアスペクト比(長軸長さ/短軸長さ)が1より大きいロッド状のナノサイズの金微粒子であり、例えば、カチオン性界面活性剤である第四級アンモニウム塩のヘキサデシルトリメチルアンモニウムブロミド(CTAB)に溶解した水中で合成され、CTAB水溶液中の金イオンを化学還元、電気還元、光還元などによって合成することが可能であり、合成した金ナノロッドはCTABの保護作用によって水中で安定に分散している(特許文献1、2、3、4)。   Gold nanorods are rod-shaped nano-sized gold fine particles having an aspect ratio (major axis length / minor axis length) of more than 1, for example, quaternary ammonium salt hexadecyltrimethylammonium that is a cationic surfactant. Synthesized in water dissolved in bromide (CTAB), it is possible to synthesize gold ions in CTAB aqueous solution by chemical reduction, electroreduction, photoreduction, etc. The synthesized gold nanorods are stable in water by the protective action of CTAB (Patent Documents 1, 2, 3, 4).

近年、窒素や硫黄を吸着基とする分散剤を、水中で合成した金ナノロッドに表面処理して有機溶媒中へ安定に抽出させる方法が報告されている(特許文献5、6)。また、保護鎖としてPEGを共有結合したポリリジン骨格中のアミノ基に近赤外域(650〜1300nm)に吸収を有する蛍光色素を共有結合させた近赤外蛍光プローブを用いた生体内の近赤外イメージング技術が報告されている(特許文献7)。   In recent years, a method has been reported in which a dispersant containing nitrogen or sulfur as an adsorption group is surface-treated on a gold nanorod synthesized in water and stably extracted into an organic solvent (Patent Documents 5 and 6). In vivo near infrared using a near infrared fluorescent probe in which a fluorescent dye having an absorption in the near infrared region (650 to 1300 nm) is covalently bonded to an amino group in a polylysine skeleton covalently bonded to PEG as a protective chain An imaging technique has been reported (Patent Document 7).

さらに、α−メトキシ−ω−メルカプトPEGを修飾した金ナノロッドをバイオマーカーとしてマウスに注入し、一定時間経過後に血中や各器官を分別採取しそれぞれの部位における金ナノロッドの濃度を測定することで、PEG修飾した金ナノロッドの血液中での分散安定性を報告している(非特許文献5)。また、CTABを除去しつつ、フォスファチジルコリン(PC)を金ナノロッドへ吸着させ、CTABの細胞毒性を低減させる方法が報告されており、CTABの低減とPCの吸着をゼータ電位の変化として測定している(非特許文献6)。また、様々なグラフト率のPEGのポリリジンが報告されている(非特許文献7)。
S.Link,M.B.Mohamed,M.A.El-Sayed,J.Phys.Chem.B,103,p3073(1999) K.Honda,Y.Niidome,N.Nakashima,H.Kawazumi,S.Yamada,Chem.Lett.,35,p854(2006) Y.Niidome,H.Takahashi,S.Urakawa,K.Nishioka,S.Yamada,Chem.Lett.,33,p454(2004) S.Link,M.A.El-Sayed,J.Phys.Chem.B,109,p10531(2005) T.Niidome,M.Yamagata,Y.Okamoto,Y.Akiyama,H.Takahashi,T.Kawano,Y.Katayama,Y.Niidome,J.Control.Release,114,p343(2006) H.Takahashi,Y.Niidome,T.Niidome,K.Kaneko,H.Kawasaki,S.Yamada,Langmuir,22,p2(2006) A. Sato, S. W. Choi, M. Hirai, A. Yamayoshi, R. Moriyama, T. Yamano, M. Takagi, A. Kano, A. Shimamoto, A. Maruyama, J.Control.Release,122,p209(2007) 特開2004−292627号公報 特開2005−97718号公報 特開2006−169544号公報 特開2006−118036号公報 特開2005−270957号公報 特開2006−176876号公報 特許公表2002−514610号公報
Furthermore, gold nanorods modified with α-methoxy-ω-mercaptoPEG were injected into mice as biomarkers, and after a certain period of time, blood and each organ were collected separately, and the concentration of gold nanorods at each site was measured. The dispersion stability of PEG-modified gold nanorods in blood has been reported (Non-Patent Document 5). In addition, a method has been reported in which phosphatidylcholine (PC) is adsorbed to gold nanorods while removing CTAB, thereby reducing the cytotoxicity of CTAB, and the reduction of CTAB and the adsorption of PC are measured as changes in zeta potential. (Non-Patent Document 6). In addition, polylysine of PEG having various graft ratios has been reported (Non-patent Document 7).
S.Link, MBMohamed, MAEl-Sayed, J.Phys.Chem.B, 103, p3073 (1999) K. Honda, Y. Niidome, N. Nakashima, H. Kawazumi, S. Yamada, Chem. Lett., 35, p854 (2006) Y. Niidome, H. Takahashi, S. Urakawa, K. Nishioka, S. Yamada, Chem. Lett., 33, p454 (2004) S.Link, MAEl-Sayed, J.Phys.Chem.B, 109, p10531 (2005) T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, J. Control. Release, 114, p343 (2006) H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, S. Yamada, Langmuir, 22, p2 (2006) A. Sato, SW Choi, M. Hirai, A. Yamayoshi, R. Moriyama, T. Yamano, M. Takagi, A. Kano, A. Shimamoto, A. Maruyama, J. Control. Release, 122, p209 (2007 ) JP 2004-292627 A JP-A-2005-97718 JP 2006-169544 A JP 2006-118036 A JP 2005-270957 A JP 2006-176876 A Patent Publication 2002-514610

特許文献1〜4などに記載されている方法で合成された金ナノロッドはCTABに被覆されて水中に分散しているが、CTABは高い細胞毒性を示すため、血液中への投与などの生体内への適用はできない。特許文献5〜6に記載されている方法では、窒素や硫黄で吸着する分散剤を用いて有機溶媒に金ナノロッドを安定に分散させることが可能であるが、血液中での分散安定性は検討されていない。特許文献7に記載されているものは、蛍光色素による生体内の近赤外イメージングを目的とした蛍光プローブであるが、蛍光色素をバイオマーカーに使用した場合は、得られる光信号の定量性に欠けており、再現性の得られる測定結果が得られない。   Gold nanorods synthesized by the methods described in Patent Documents 1 to 4 are coated with CTAB and dispersed in water. However, CTAB exhibits high cytotoxicity, so that it is in vivo such as administration into blood. Cannot be applied to In the methods described in Patent Documents 5 to 6, it is possible to stably disperse gold nanorods in an organic solvent using a dispersant adsorbing with nitrogen or sulfur, but the dispersion stability in blood is examined. It has not been. What is described in Patent Document 7 is a fluorescent probe intended for near-infrared imaging in a living body using a fluorescent dye. It lacks and measurement results with reproducibility cannot be obtained.

非特許文献5には、PEG修飾による金ナノロッドは血液中で分散安定性が高まることが報告されているが、PEG鎖中に反応性の官能基がないため、他の化合物と反応させることはできない。非特許文献6には、CTABを低減してPCで修飾した金ナノロッドは細胞毒性を低減することが報告されているが、血液中の分散安定性を高めたものではなく、ゼータ電位はCTABの除去割合を指標として数値化したものである。   Non-Patent Document 5 reports that gold nanorods with PEG modification have improved dispersion stability in blood, but since there is no reactive functional group in the PEG chain, it can be reacted with other compounds. Can not. Non-Patent Document 6 reports that gold nanorods modified with PC by reducing CTAB reduce cytotoxicity, but do not increase the dispersion stability in blood, and the zeta potential is the CTAB potential. The removal rate is numerically expressed as an index.

本発明は、金ナノロッドについて、従来の上記技術では知られていない新規技術を提供する。具体的には、PLL−g−PEGを吸着させることによって血液中での分散安定性を高めた、生体に対して安全な金ナノロッドとその用途を提供する。   The present invention provides a novel technique for gold nanorods that is not known from the above-described conventional techniques. Specifically, the present invention provides a gold nanorod safe for a living body and its use, which has improved dispersion stability in blood by adsorbing PLL-g-PEG.

本発明は、以下に示す構成を有する金微粒子とその用途に関する。
〔1〕ポリエチレングリコールを側鎖にグラフトしたポリリジンが吸着していることを特徴とするロッド形状の金微粒子。
〔2〕数平均分子量500〜50000のポリエチレングリコールを側鎖にグラフトした数平均分子量1000〜300000のポリリジンが吸着していることを特徴とする上記〔1〕に記載する金微粒子。
〔3〕ポリエチレングリコールのグラフト率が10〜50mol%のポリリジンが吸着していることを特徴とする請求項1〜2のいずれかに記載する金微粒子。
〔4〕金1mmolに対しポリエチレングリコールを側鎖にグラフトしたポリリジンが含有するアミノ基のモル数として0.05mmol以上吸着していることを特徴とする上記〔1〕〜〔3〕に記載する金微粒子。
〔5〕金微粒子を水中に分散した分散液のゼータ電位が+25mV以下であることを特徴とする請求項〔1〕〜〔4〕の何れかに記載する金微粒子。
〔6〕長軸長さ400nm未満であってアスペクト比が1より大きく、局在表面プラズモン共鳴の最大吸収波長が700〜2000nmの範囲である請求項〔1〕〜〔5〕何れかに記載する金微粒子。
〔7〕上記〔1〕〜〔6〕に記載する金微粒子に吸着しているポリエチレングリコールを側鎖にグラフトしたポリリジンが含有するアミノ基に、コハク酸無水物を反応させてカルボキシル基を付加することを特徴とする金微粒子。
〔8〕請求項〔1〕〜〔6〕に記載する金微粒子に吸着しているポリエチレングリコールを側鎖にグラフトしたポリリジンが含有するアミノ基に、無水酢酸を反応させてアセチル基を付加することを特徴とする金微粒子。
〔9〕上記〔1〕〜〔8〕の金微粒子をバイオマーカーとして使用した生体内の近赤外イメージング。
The present invention relates to gold fine particles having the following configuration and uses thereof.
[1] Rod-shaped gold fine particles characterized by adsorbing polylysine grafted with polyethylene glycol on side chains.
[2] The gold fine particles as described in [1] above, wherein polylysine having a number average molecular weight of 1000 to 300,000 grafted with polyethylene glycol having a number average molecular weight of 500 to 50,000 is adsorbed on a side chain.
[3] The gold fine particles according to any one of claims 1 and 2, wherein polylysine having a graft ratio of polyethylene glycol of 10 to 50 mol% is adsorbed.
[4] Gold as described in [1] to [3] above, wherein 0.05 mmol or more is adsorbed as 1 mol of amino group contained in polylysine grafted with polyethylene glycol on the side chain to 1 mmol of gold. Fine particles.
[5] The gold fine particles according to any one of [1] to [4], wherein the dispersion of gold fine particles dispersed in water has a zeta potential of +25 mV or less.
[6] The long axis length is less than 400 nm, the aspect ratio is larger than 1, and the maximum absorption wavelength of localized surface plasmon resonance is in the range of 700 to 2000 nm. Gold fine particles.
[7] Add a carboxyl group by reacting succinic anhydride with the amino group contained in polylysine grafted with polyethylene glycol adsorbed on the gold fine particles described in [1] to [6] above in the side chain. Gold fine particles characterized by that.
[8] Adding an acetyl group by reacting acetic anhydride with an amino group contained in polylysine grafted with polyethylene glycol adsorbed on the gold fine particles according to claims [1] to [6]. Gold fine particles characterized by
[9] Near-infrared imaging in vivo using the gold microparticles of [1] to [8] as a biomarker.

本発明の金ナノロッドは、PEGのグラフト率を10〜50mol%に調整したポリリジンを吸着させることで、金ナノロッドの血液中での分散安定性を高めることができる。また、PLL−g−PEGはアミノ基を有しており、金表面との吸着点として機能するばかりでなく、他の化合物を反応させることが可能である。   The gold nanorods of the present invention can increase the dispersion stability of gold nanorods in blood by adsorbing polylysine having a PEG grafting ratio adjusted to 10 to 50 mol%. Moreover, PLL-g-PEG has an amino group, and not only functions as an adsorption point with the gold surface but also allows other compounds to react.

さらに、本発明の金ナノロッドは、局在表面プラズモン共鳴の最大吸収波長が700〜2000nmの範囲の金ナノロッドを用いており、PLL−g−PEGを吸着させた金ナノロッドを生体内へ投与し、生体内の近赤外イメージング技術を構築することが可能である。   Furthermore, the gold nanorod of the present invention uses a gold nanorod having a maximum absorption wavelength of localized surface plasmon resonance in the range of 700 to 2000 nm, and administers the gold nanorod adsorbed with PLL-g-PEG into the living body. It is possible to construct in-vivo near-infrared imaging technology.

以下、本発明を実施形態に基づいて具体的に説明する。なお、濃度の%は特に示さない限り質量%である。また、本発明明における吸収スペクトルの変化とは、金ナノロッドの凝集に伴うLSPRの最大吸収波長の吸光度の低下や吸収スペクトル形状の変化を意味する。PEGのグラフト率とは、ポリリジンの側鎖アミンに結合したPEG鎖の割合〔結合したPEG量/側鎖アミン量〕を意味する。   Hereinafter, the present invention will be specifically described based on embodiments. The concentration% is mass% unless otherwise indicated. In addition, the change in the absorption spectrum in the present invention means a decrease in the absorbance at the maximum absorption wavelength of LSPR and a change in the absorption spectrum shape accompanying the aggregation of gold nanorods. The graft ratio of PEG means the ratio of the PEG chain bonded to the side chain amine of polylysine [the amount of PEG bonded / the amount of side chain amine].

本発明の金ナノロッドは、PEGを側鎖にグラフトしたポリリジン(PLL−g−PEG)が吸着していることを特徴とする金微粒子である。PEGは様々なグラフト率でPLLに結合しており、好ましくは、このPLL−g−PEGは特定の割合で金ナノロッドに吸着されている。   The gold nanorod of the present invention is a gold fine particle characterized by adsorbing polylysine (PLL-g-PEG) grafted with PEG on the side chain. PEG is bound to the PLL at various graft ratios, and preferably this PLL-g-PEG is adsorbed to the gold nanorods at a specific rate.

本発明の生体内の近赤外イメージングは、上記金ナノロッドの近赤外吸収特性とポリリジンの血液中での分散安定性をバイオマーカーとして利用したものである。   In vivo near-infrared imaging of the present invention utilizes the near-infrared absorption characteristics of the gold nanorods and the dispersion stability of polylysine in blood as biomarkers.

本発明で用いるPLL−g−PEGは、非特許文献7で報告されている合成法で合成されたポリリジンを使用することができる。本発明で用いるPLL−g−PEGについて、PEGのグラフト率は10〜50mol%が適当であり、15〜40mol%が好ましい。PEGのグラフト率が10mol%より小さい場合、血液中での分散安定性が悪くなり、金ナノロッドが凝集を起こす可能性が高くなる。また、PEGのグラフト率が50mol%より大きい場合、PEGの立体障害により、金ナノロッドへの吸着性が悪くなる。   As the PLL-g-PEG used in the present invention, polylysine synthesized by the synthesis method reported in Non-Patent Document 7 can be used. About PLL-g-PEG used by this invention, 10-50 mol% is suitable for the grafting rate of PEG, and 15-40 mol% is preferable. When the graft ratio of PEG is less than 10 mol%, the dispersion stability in blood is deteriorated, and the gold nanorods are more likely to aggregate. On the other hand, when the graft ratio of PEG is larger than 50 mol%, the adsorptivity to gold nanorods is deteriorated due to steric hindrance of PEG.

ポリリジンへグラフトするPEGの数平均分子量(Mn)は、500〜50000以下が適当であり、Mn1000〜20000が好ましい。Mn50000より大きい場合、血液中での分散安定性に変化ないため、コスト的に不利となる。また、PEGのMn500より小さい場合、血液中での分散安定性が悪くなり、金ナノロッドが凝集を起こす可能性が高くなる。   The number average molecular weight (Mn) of PEG grafted onto polylysine is suitably 500 to 50,000 or less, and preferably Mn 1000 to 20000. When Mn is larger than 50000, the dispersion stability in blood does not change, which is disadvantageous in cost. In addition, when the PEG is smaller than Mn500, the dispersion stability in blood is deteriorated and the gold nanorods are more likely to aggregate.

PEGをグラフトするポリリジンのMnは1000〜300000が適当であり、Mn5000〜100000が好ましい。Mn300000より大きい場合、金ナノロッドへ吸着するアミノ基は充分に存在するためコスト的に不利である。また、Mn1000より小さい場合、アミノ基の数が不足し、金ナノロッドへの吸着が不安定となり、脱離傾向が高まり、金ナノロッドが凝集を起こす可能性が高くなる
本発明で使用する金ナノロッドは、長軸の長さが400nm未満であって、アスペクト比が1より大きいロッド形状の金微粒子が好ましい。具体的には、LSPRの最大吸収波長が波長700〜2000nmの範囲内にあるアスペクト比の金ナノロッドが適当である。また金ナノロッドの長軸長さは200nm以下がより好ましい。長軸長さがこれより長いと、金ナノロッドが沈降しやすくなる傾向があり、分散媒中での分散安定性が失われる。
The Mn of polylysine grafted with PEG is suitably 1000 to 300,000, preferably Mn 5,000 to 100,000. When Mn is larger than 300,000, amino groups adsorbed on the gold nanorods are sufficiently present, which is disadvantageous in cost. In addition, when it is smaller than Mn1000, the number of amino groups is insufficient, the adsorption to the gold nanorods becomes unstable, the tendency to desorb is increased, and the gold nanorods are likely to aggregate. The gold nanorods used in the present invention are Rod-shaped gold fine particles having a major axis length of less than 400 nm and an aspect ratio of greater than 1 are preferred. Specifically, gold nanorods having an aspect ratio in which the maximum absorption wavelength of LSPR is in the range of 700 to 2000 nm are suitable. The major axis length of the gold nanorod is more preferably 200 nm or less. If the long axis length is longer than this, the gold nanorods tend to settle, and the dispersion stability in the dispersion medium is lost.

金ナノロッドは次式[I]で示される4級アンモニウム塩が溶解した水溶液中で金イ
オンを還元することによって合成することができる。例えば、n=15のヘキサデシルトリメチルアンモニウムブロミド(CTAB)を使用することによって、CTABが表面に吸着した金ナノロッドを得ることができる。この金ナノロッドはCTABが吸着した状態で水中に安定に分散している。
CH3(CH2)n+(CH3)3Br- (nは1〜15の整数) …[I]
Gold nanorods can be synthesized by reducing gold ions in an aqueous solution in which a quaternary ammonium salt represented by the following formula [I] is dissolved. For example, by using n = 15 hexadecyltrimethylammonium bromide (CTAB), gold nanorods with CTAB adsorbed on the surface can be obtained. This gold nanorod is stably dispersed in water with CTAB adsorbed.
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15)… [I]

CTABは高い細胞毒性を示し、血液中への投与といった生体内への適用はできないため、上記金ナノロッド水分散液は、水中に存在する余剰の界面活性剤CTABを除去して使用するとよい。具体的には、金ナノロッド水分散液を遠心分離して金ナノロッドを遠沈管の底に沈降させ、CTABを含む上澄みを除去する。沈降した金ナノロッドは水を添加して再分散させる。この操作を1〜3回繰り返すことによって余剰なCTABを除去することができる。なお、CTABを過剰に除去すると金ナノロッドが凝集して水に再分散しなくなる。   Since CTAB exhibits high cytotoxicity and cannot be applied to the living body such as administration into blood, the above-mentioned gold nanorod aqueous dispersion may be used after removing excess surfactant CTAB present in water. Specifically, the gold nanorod aqueous dispersion is centrifuged to settle the gold nanorod on the bottom of the centrifuge tube, and the supernatant containing CTAB is removed. The precipitated gold nanorods are redispersed by adding water. Excess CTAB can be removed by repeating this operation 1-3 times. If CTAB is removed excessively, the gold nanorods aggregate and do not re-disperse in water.

金ナノロッドにPLL−g−PEGを吸着させる方法としては、余剰のCTABを除去した金ナノロッドの水分散液に、PLL−g−PEGを溶解した水溶液を添加して混合すればよく、PLL−g−PEGのアミノ基が金表面へ多点吸着して、PLL−g−PEGが吸着した金ナノロッドが得られる。PLL−g−PEGの混合割合は、金1mmolに対し、PLL−g−PEGの含有するアミノ基のモル数として0.05mol以上が適当である。PLL−g−PEGの添加割合がそれより少ないとPEGの相対量が少なくなるため、血液中でも金ナノロッドの分散安定性が悪くなり、凝集を起こす傾向が高くなる。   As a method for adsorbing PLL-g-PEG to gold nanorods, an aqueous solution in which PLL-g-PEG is dissolved may be added to and mixed with an aqueous dispersion of gold nanorods from which excess CTAB has been removed. -Amino groups of PEG are adsorbed on the gold surface at multiple points, and gold nanorods adsorbed with PLL-g-PEG are obtained. The mixing ratio of PLL-g-PEG is suitably 0.05 mol or more as the number of moles of amino groups contained in PLL-g-PEG with respect to 1 mmol of gold. When the addition ratio of PLL-g-PEG is less than that, the relative amount of PEG decreases, so that the dispersion stability of gold nanorods deteriorates in blood and the tendency to cause aggregation increases.

PLL−g−PEGが吸着した金ナノロッドは、PEGのグラフト率が異なるPLL−g−PEGを用いることによって表面電荷(ゼータ電位)を調整することができる。   Gold nanorods adsorbed with PLL-g-PEG can be adjusted in surface charge (zeta potential) by using PLL-g-PEG having a different grafting ratio of PEG.

様々なグラフト率のPLL−g−PEGは、相対的に金ナノロッド表面のアミノ基の密度が変化するため、PLL−g−PEGを金ナノロッドに吸着させた場合、ゼータ電位を調整することができる。具体的には、PEGのグラフト率が高いPLL−g−PEGを金ナノロッドに吸着するとゼータ電位は低くなり、PEGのグラフト率が低いPLL−g−PEGを金ナノロッドに吸着するとゼータ電位は高くなる。   Since PLL-g-PEG with various graft ratios relatively changes the density of amino groups on the surface of the gold nanorod, the zeta potential can be adjusted when PLL-g-PEG is adsorbed on the gold nanorod. . Specifically, zeta potential decreases when PLL-g-PEG having a high PEG graft ratio is adsorbed on gold nanorods, and zeta potential increases when PLL-g-PEG having a low PEG graft ratio is adsorbed on gold nanorods. .

PLL−g−PEGを吸着させた金ナノロッドのゼータ電位は、+25mV以下が適当であり、+20mV以下が好ましい。ゼータ電位が+25mVより大きい場合、血液中での分散安定性が悪くなり、凝集を起こす傾向が高くなる。   The zeta potential of the gold nanorod on which PLL-g-PEG is adsorbed is suitably +25 mV or less, preferably +20 mV or less. When the zeta potential is larger than +25 mV, the dispersion stability in blood is deteriorated and the tendency to cause aggregation is increased.

PLL−g−PEG中のアミノ基は、他の化合物と反応させることができる。例えば、カルボン酸やカルボン酸無水物と反応させて金ナノロッドのゼータ電位を低くすることができる。なお、PLL−g−PEG中のアミノ基と反応させる化合物は、N−ヒドロキシスクシンイミドエステル(NHS)など、アミノ基と反応する官能基を有する化合物であれば、制限なく使用することができる。   The amino group in PLL-g-PEG can be reacted with other compounds. For example, the zeta potential of the gold nanorod can be lowered by reacting with carboxylic acid or carboxylic anhydride. In addition, if the compound made to react with the amino group in PLL-g-PEG has a functional group which reacts with an amino group, such as N-hydroxysuccinimide ester (NHS), it can be used without a restriction | limiting.

本発明は、(イ)PLL−g−PEG中のアミノ基にコハク酸無水物を反応させてカルボキシル基を付加することによってゼータ電位を変化させたPLL−g−PEG吸着金ナノロッド、(ロ)PLL−g−PEG中のアミノ基に無水酢酸を反応させてアセチル基を付加(アセチル化)することによってゼータ電位を変化させたPLL−g−PEG吸着金ナノロッドなどを含む。   The present invention relates to (a) a PLL-g-PEG-adsorbed gold nanorod whose zeta potential is changed by reacting a succinic anhydride with an amino group in PLL-g-PEG to add a carboxyl group, Examples include PLL-g-PEG adsorbed gold nanorods in which the zeta potential is changed by reacting an amino group in PLL-g-PEG with acetic anhydride to add an acetyl group (acetylation).

本発明に使用する金ナノロッドは、700〜2000nmにLSPRの吸収ピークを有しており、血液中で安定に分散するため、バイオマーカーとして使用できる。特に波長800nm〜1200nmの近赤外光は水の吸収による影響が少なく(Near Infrared Window)、生体にも安全な波長域であり、生体外部から近赤外光を照射することによって、生体内に投与した金ナノロッドの分散状態や凝集状態による分光特性の変化を測定することが可能であり、近赤外光分析システムやバイオイメージングシステムなどを構築することができる。   The gold nanorod used in the present invention has an LSPR absorption peak at 700 to 2000 nm and is stably dispersed in blood, and thus can be used as a biomarker. In particular, near-infrared light with a wavelength of 800 nm to 1200 nm is less affected by water absorption (Near Infrared Window) and is a safe wavelength range for the living body. By irradiating near-infrared light from outside the living body, It is possible to measure changes in spectral characteristics depending on the dispersion state or aggregation state of the administered gold nanorods, and it is possible to construct a near-infrared light analysis system, a bioimaging system, or the like.

以下、本発明を実施例によって具体的に示す。また、参考例を示す。なお、以下の実施例は、金ナノロッドの主に900nm付近の波長域におけるLSPRの吸収波長シフトを測定しているが、金ナノロッドのアスペクト比を変更することによって700〜2000nmまでの波長域についても同様の吸収波長のシフトを測定することができる。   Hereinafter, the present invention will be specifically described by way of examples. Reference examples are also shown. The following examples measure the absorption wavelength shift of LSPR mainly in the wavelength region near 900 nm of gold nanorods, but also in the wavelength region from 700 to 2000 nm by changing the aspect ratio of gold nanorods. A similar shift in absorption wavelength can be measured.

分光特性は日本分光株式会社製測定機(V-670)を用いて測定した。ゼータ電位はMalverne社製測定器(Zeta-sizer Nano―ZS)を用いて測定した。PLL−g−PEGは非特許文献7の合成方法を用いて合成した。   Spectral characteristics were measured using a measuring instrument (V-670) manufactured by JASCO Corporation. The zeta potential was measured using a measuring device (Zeta-sizer Nano-ZS) manufactured by Malverne. PLL-g-PEG was synthesized using the synthesis method of Non-Patent Document 7.

〔PLL−g−PEGの合成〕
非特許文献7の合成法に従い、PLL−g−PEGを合成した(図1、合成スキーム)。原料に、Mn28000のポリリジン、Mn5000のPEGを使用して、以下のPEGのグラフト率が異なる2種のPLL−g−PEGを得た。
(イ)PLL−g−PEG−1:グラフト率36mol%、Mn313000
(ロ)PLL−g−PEG−2:グラフト率5mol%、Mn96000
[Synthesis of PLL-g-PEG]
In accordance with the synthesis method of Non-Patent Document 7, PLL-g-PEG was synthesized (FIG. 1, synthesis scheme). Using the polylysine of Mn28000 and the PEG of Mn5000 as raw materials, the following two types of PLL-g-PEG having different graft ratios of PEG were obtained.
(A) PLL-g-PEG-1: Graft rate 36 mol%, Mn 313000
(B) PLL-g-PEG-2: Graft ratio 5 mol%, Mn 96000

〔金ナノロッド水分散液の調製〕
400mMのCTAB水溶液中で合成された金ナノロッド水分散液を遠沈管に入れ、14000(×g)の相対遠心加速度(遠心加速度を地球の重力加速度で除したもの)で10分間遠心分離して金ナノロッドを遠沈管の底に沈降させた。上澄み液を別の遠沈管に入れ、沈降した金ナノロッドは水で再分散させた。別の遠沈管に入れた上澄み液は、再び14000(×g)で10分間遠心分離して金ナノロッドを沈降させ、この上澄み液を除去することにより余剰のCTABを除去した。沈降した金ナノロッドは水で再分散させ、前の再分散液と合わせて、金ナノロッド水分散液を得た(NRs水分散液、金1mmol/L)。
[Preparation of gold nanorod aqueous dispersion]
A gold nanorod aqueous dispersion synthesized in a 400 mM CTAB aqueous solution is placed in a centrifuge tube and centrifuged at 14000 (× g) relative centrifugal acceleration (centrifugal acceleration divided by the gravitational acceleration of the earth) for 10 minutes. Nanorods were allowed to settle to the bottom of the centrifuge tube. The supernatant liquid was put into another centrifuge tube, and the settled gold nanorods were redispersed with water. The supernatant in another centrifuge tube was centrifuged again at 14,000 (× g) for 10 minutes to settle the gold nanorods, and the supernatant was removed to remove excess CTAB. The precipitated gold nanorods were redispersed with water, and combined with the previous redispersion liquid to obtain a gold nanorod aqueous dispersion (NRs aqueous dispersion, gold 1 mmol / L).

〔実施例1〕
NRs水分散液にPLL−g−PEG−1水溶液を、金と含有するアミノ基のモル比が1:0.1となるように添加し、ボルテックスミキサーで24時間攪拌した。攪拌終了後、2日間透析して余剰のPLL−g−PEG−1を除去した。得られたPLL−g−PEG−1が吸着した金ナノロッド(PLL−g−PEG−NRs−1)水分散液は、ゼータ電位が+17.5mVであり、処理前の分光特性から変化なく、PLL−g−PEG−1の吸着により金ナノロッドは安定に分散した(図2)。
[Example 1]
A PLL-g-PEG-1 aqueous solution was added to the NRs aqueous dispersion so that the molar ratio of gold to the amino group contained was 1: 0.1, and the mixture was stirred for 24 hours with a vortex mixer. After the stirring, the excess PLL-g-PEG-1 was removed by dialysis for 2 days. The obtained gold nanorod (PLL-g-PEG-NRs-1) aqueous dispersion on which PLL-g-PEG-1 was adsorbed had a zeta potential of +17.5 mV and remained unchanged from the spectral characteristics before treatment. The gold nanorods were stably dispersed by the adsorption of -g-PEG-1.

〔実施例2〕
PLL−g−PEG−NRs−1を、水、及び10%血清中で分散した状態で7日間保管し、波長890nmの吸光度の変化を確認した結果、顕著な変化は確認されず、水、及び血清中で安定に分散可能であった(図3(水)、図4(血清))。
[Example 2]
PLL-g-PEG-NRs-1 was stored for 7 days in a state dispersed in water and 10% serum, and as a result of confirming a change in absorbance at a wavelength of 890 nm, no significant change was confirmed. It was stably dispersible in serum (FIG. 3 (water), FIG. 4 (serum)).

〔実施例3〕
PLL−g−PEG−NRs−1水分散液を、5000(×g)の相対遠心加速度で10分間遠心分離し、水、及びpH7.4のリン酸緩衝液(PBS)で再分散し、波長890nmの吸光度の変化を確認したところ、遠心分離操作前後で顕著な分光特性変化は確認されず安定に分散可能であった(図5)。
Example 3
The PLL-g-PEG-NRs-1 aqueous dispersion is centrifuged for 10 minutes at a relative centrifugal acceleration of 5000 (× g), redispersed with water and phosphate buffer (PBS) pH 7.4, When the change in absorbance at 890 nm was confirmed, no significant change in spectral characteristics was observed before and after the centrifugation operation, and the dispersion was stably dispersible (FIG. 5).

〔実施例4〕
マウスから採血した血液中にPLL−g−PEG−NRs−1を分散し、室温に1時間静置した後、2000(×g)の相対遠心加速度で10分間遠心分離し血球細胞を除き、分光特性を測定した結果、顕著な変化は確認されず、血液中で安定に分散可能であった(図6)。
Example 4
PLL-g-PEG-NRs-1 is dispersed in blood collected from a mouse and allowed to stand at room temperature for 1 hour, and then centrifuged at a relative centrifugal acceleration of 2000 (× g) for 10 minutes to remove blood cells, and spectroscopy. As a result of measuring the characteristics, no significant change was confirmed, and it was possible to stably disperse in the blood (FIG. 6).

〔実施例5〕
PLL−g−PEG−NRs−1水分散液を、3000(×g)の相対遠心加速度で10分間遠心分離し水に再分散した。得られたPLL−g−PEG−NRs−1水分散液に、N、N−ジメチルホルムアミド(DMF)に溶解したコハク酸無水物とトリエチルアミンをPLL−g−PEG−1の含有するアミノ基のモル数と同モル数になるようそれぞれ加え、2時間静置した。この溶液を3000(×g)の相対遠心加速度で10分間遠心分離して金ナノロッドを沈降させ、この上澄み液を除去することにより余剰のコハク酸無水物とトリエチルアミンを除去した。沈降した金ナノロッドは水で再分散させてゼータ電位を測定したところ、反応前の+17.5mVから−14.4mVに変化しており、PLL−g−PEG−NRs−1中のアミノ基とコハク酸無水物が反応して表面電荷が変化したことを確認した。
Example 5
The PLL-g-PEG-NRs-1 aqueous dispersion was centrifuged at a relative centrifugal acceleration of 3000 (× g) for 10 minutes and redispersed in water. In the obtained PLL-g-PEG-NRs-1 aqueous dispersion, succinic anhydride and triethylamine dissolved in N, N-dimethylformamide (DMF) were added in moles of amino group containing PLL-g-PEG-1. Each was added so as to have the same number of moles as the number, and allowed to stand for 2 hours. This solution was centrifuged at a relative centrifugal acceleration of 3000 (× g) for 10 minutes to precipitate gold nanorods, and the supernatant was removed to remove excess succinic anhydride and triethylamine. When the precipitated gold nanorods were redispersed with water and the zeta potential was measured, it was changed from +17.5 mV before the reaction to -14.4 mV, and the amino group in PLL-g-PEG-NRs-1 and succinic acid were changed. It was confirmed that the surface charge was changed by the reaction of the acid anhydride.

〔実施例6〕
PLL−g−PEG−NRs−1水分散液を、3000(×g)の相対遠心加速度で10分間遠心分離し水に再分散した。得られたPLL−g−PEG−NRs−1水分散液に、N、N−ジメチルホルムアミド(DMF)に溶解した無水酢酸とトリエチルアミンをPLL−g−PEG−1の含有するアミノ基のモル数と同モル数になるようそれぞれ加え、2時間静置した。この溶液を3000(×g)の相対遠心加速度で10分間遠心分離して金ナノロッドを沈降させ、この上澄み液を除去することにより余剰のコハク酸無水物とトリエチルアミンを除去した。沈降した金ナノロッドは水で再分散させてゼータ電位を測定したところ、反応前の+17.5mVから−11.4mVに変化しており、PLL−g−PEG−NRs−1中のアミノ基と無水酢酸が反応してアセチル化され、表面電荷が変化したことを確認した。
Example 6
The PLL-g-PEG-NRs-1 aqueous dispersion was centrifuged at a relative centrifugal acceleration of 3000 (× g) for 10 minutes and redispersed in water. In the obtained PLL-g-PEG-NRs-1 aqueous dispersion, acetic anhydride and triethylamine dissolved in N, N-dimethylformamide (DMF) were added to the number of moles of amino groups contained in PLL-g-PEG-1. Each was added to the same number of moles and allowed to stand for 2 hours. This solution was centrifuged at a relative centrifugal acceleration of 3000 (× g) for 10 minutes to precipitate gold nanorods, and the supernatant was removed to remove excess succinic anhydride and triethylamine. The precipitated gold nanorods were redispersed with water and the zeta potential was measured. As a result, the gold nanorods changed from +17.5 mV before the reaction to -11.4 mV, and the amino groups in PLL-g-PEG-NRs-1 and anhydrous It was confirmed that acetic acid reacted and was acetylated to change the surface charge.

〔参考例1〕
NRs水分散液にPLL−g−PEG−1水溶液を、金と含有するアミノ基のモル比が1:0.01となるように添加する以外は実施例1と同様にして、PLL−g−PEG−1が吸着した金ナノロッド(PLL−g−PEG−NRs−2)水分散液を得た。得られた水分散液は、処理前の分光特性から大きく変化し、金ナノロッドは安定に分散しなかった(図2)。得られたPLL−g−PEG−NRs−2を、水、及び10%血清中に7日間保管した結果、分光特性の変化が確認され、水、及び血清中で安定に分散しなかった(図3(水)、図4(血清))。
[Reference Example 1]
In the same manner as in Example 1, except that an aqueous PLL-g-PEG-1 solution was added to the NRs aqueous dispersion so that the molar ratio of the amino group containing gold was 1: 0.01, PLL-g- A gold nanorod (PLL-g-PEG-NRs-2) aqueous dispersion in which PEG-1 was adsorbed was obtained. The obtained aqueous dispersion greatly changed from the spectral characteristics before the treatment, and the gold nanorods were not stably dispersed (FIG. 2). As a result of storing the obtained PLL-g-PEG-NRs-2 in water and 10% serum for 7 days, a change in spectral characteristics was confirmed, and it was not stably dispersed in water and serum (Fig. 3 (water), FIG. 4 (serum)).

〔参考例2〕
PLL−g−PEG−2を使用する以外は実施例1と同様にしてPLL−g−PEG−2が吸着した金ナノロッド(PLL−g−PEG−NRs−3)水分散液を得た。得られた水分散液は、ゼータ電位が+31.2mVであり、処理前の分光特性から変化なく、PLL−g−PEG−2の吸着により金ナノロッドは安定に分散した(図2)。また、PLL−g−PEG−NRs−3を、水、及び10%血清中で分散した状態で7日間保管し、波長890nmの吸光度の変化を確認した結果、顕著な変化は確認されず、水、及び血清中で安定に分散可能であった(図3(水)、図4(血清))。このPLL−g−PEG−NRs−3水分散液を5000(×g)の相対遠心加速度で10分間遠心分離し、水、及びpH7.4のPBSで再分散し、波長890nmの吸光度の変化を確認したところ変化が確認され、特にPBSに再分散した場合、顕著な変化が確認された(図5)。さらに、マウスから採血した血液中にPLL−g−PEG−NRs−3を分散し、室温に1時間静置した後、2000(×g)の相対遠心加速度で10分間遠心分離し血球細胞を除き、分光特性を測定した結果、吸光度の低下が確認され血液中で安定に分散しなかった(図6)。
[Reference Example 2]
A gold nanorod (PLL-g-PEG-NRs-3) aqueous dispersion adsorbed with PLL-g-PEG-2 was obtained in the same manner as in Example 1 except that PLL-g-PEG-2 was used. The obtained aqueous dispersion had a zeta potential of +31.2 mV, and the gold nanorods were stably dispersed by the adsorption of PLL-g-PEG-2 without change from the spectral characteristics before the treatment (FIG. 2). In addition, PLL-g-PEG-NRs-3 was stored for 7 days in a state dispersed in water and 10% serum, and as a result of confirming a change in absorbance at a wavelength of 890 nm, no significant change was confirmed. And stably dispersible in serum (FIG. 3 (water), FIG. 4 (serum)). This PLL-g-PEG-NRs-3 aqueous dispersion was centrifuged for 10 minutes at a relative centrifugal acceleration of 5000 (× g), redispersed with water and PBS of pH 7.4, and the change in absorbance at a wavelength of 890 nm was observed. When confirmed, a change was confirmed, particularly when redispersed in PBS (FIG. 5). Furthermore, PLL-g-PEG-NRs-3 is dispersed in the blood collected from the mouse, left to stand at room temperature for 1 hour, and then centrifuged at a relative centrifugal acceleration of 2000 (× g) for 10 minutes to remove blood cells. As a result of measuring the spectral characteristics, a decrease in absorbance was confirmed, and the dispersion was not stably dispersed in blood (FIG. 6).

PLL−g−PEGの合成スキームSynthesis scheme of PLL-g-PEG 実施例1、参考例1、2の分光特性Spectral characteristics of Example 1 and Reference Examples 1 and 2 実施例2、参考例2の分光特性Spectral characteristics of Example 2 and Reference Example 2 実施例2、参考例2の分光特性Spectral characteristics of Example 2 and Reference Example 2 (a)実施例3の分光特性、(b)参考例2の分光特性(a) Spectral characteristics of Example 3 (b) Spectral characteristics of Reference Example 2 実施例4、参考例2の分光特性Spectral characteristics of Example 4 and Reference Example 2

Claims (9)

ポリエチレングリコールを側鎖にグラフトしたポリリジンが吸着していることを特徴とするロッド形状の金微粒子。 Rod-shaped gold fine particles characterized by adsorbing polylysine grafted with polyethylene glycol on the side chain. 数平均分子量500〜50000のポリエチレングリコールを側鎖にグラフトした数平均分子量1000〜300000のポリリジンが吸着していることを特徴とする請求項1に記載する金微粒子。 2. The gold fine particles according to claim 1, wherein polylysine having a number average molecular weight of 1,000 to 300,000 obtained by grafting polyethylene glycol having a number average molecular weight of 500 to 50,000 on a side chain is adsorbed. ポリエチレングリコールのグラフト率が10〜50mol%のポリリジンが吸着していることを特徴とする請求項1〜2のいずれかに記載する金微粒子。 The gold fine particles according to claim 1, wherein polylysine having a graft ratio of polyethylene glycol of 10 to 50 mol% is adsorbed. 金1mmolに対しポリエチレングリコールを側鎖にグラフトしたポリリジンが含有するアミノ基のモル数として0.05mmol以上吸着していることを特徴とする請求項1〜3に記載する金微粒子。 The gold fine particles according to claim 1, wherein 0.05 mmol or more is adsorbed as 1 mol of amino groups contained in polylysine grafted with polyethylene glycol on the side chain with respect to 1 mmol of gold. 金微粒子を水中に分散した分散液のゼータ電位が+25mV以下であることを特徴とする請求項1〜4の何れかに記載する金微粒子。 The gold fine particles according to any one of claims 1 to 4, wherein the dispersion of gold fine particles dispersed in water has a zeta potential of +25 mV or less. 長軸長さ400nm未満であってアスペクト比が1より大きく、局在表面プラズモン共鳴の最大吸収波長が700〜2000nmの範囲である請求項1〜5の何れかに記載する金微粒子。 The gold fine particle according to any one of claims 1 to 5, wherein the major axis length is less than 400 nm, the aspect ratio is larger than 1, and the maximum absorption wavelength of localized surface plasmon resonance is in the range of 700 to 2000 nm. 請求項1〜6に記載する金微粒子に吸着しているポリエチレングリコールを側鎖にグラフトしたポリリジンが含有するアミノ基に、コハク酸無水物を反応させてカルボキシル基を付加することを特徴とする金微粒子。 A gold group obtained by reacting a succinic anhydride with an amino group contained in a polylysine grafted with polyethylene glycol adsorbed on the gold fine particles according to claim 1 to a side chain, thereby adding a carboxyl group. Fine particles. 請求項1〜6に記載する金微粒子に吸着しているポリエチレングリコールを側鎖にグラフトしたポリリジンが含有するアミノ基に、無水酢酸を反応させてアセチル基を付加することを特徴とする金微粒子。 A gold fine particle characterized by adding an acetyl group by reacting acetic anhydride with an amino group contained in a polylysine grafted with polyethylene glycol adsorbed to the gold fine particle according to claim 1 on a side chain. 請求項1〜8の金微粒子をバイオマーカーとして使用した生体内の近赤外イメージング。 In vivo near-infrared imaging using the gold fine particles according to claim 1 as a biomarker.
JP2008222952A 2008-08-30 2008-08-30 Gold fine particles and production method thereof Expired - Fee Related JP5427329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008222952A JP5427329B2 (en) 2008-08-30 2008-08-30 Gold fine particles and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008222952A JP5427329B2 (en) 2008-08-30 2008-08-30 Gold fine particles and production method thereof

Publications (2)

Publication Number Publication Date
JP2010053111A true JP2010053111A (en) 2010-03-11
JP5427329B2 JP5427329B2 (en) 2014-02-26

Family

ID=42069396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008222952A Expired - Fee Related JP5427329B2 (en) 2008-08-30 2008-08-30 Gold fine particles and production method thereof

Country Status (1)

Country Link
JP (1) JP5427329B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058079A1 (en) 2012-10-12 2014-04-17 帝人株式会社 Electrostatic-bonding-type vesicle including metal microparticles
JP2018053361A (en) * 2016-09-16 2018-04-05 大日本塗料株式会社 Suspension of gold nanoparticles with reduced amounts of quaternary ammonium cation and/or gold and/or silver halides on the surface
CN112480400A (en) * 2020-11-25 2021-03-12 华南理工大学 Poly-lysine graft modified mineralized crystal growth inhibitor and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515932A (en) * 1997-04-18 2002-05-28 カリフォルニア インスティチュート オブ テクノロジー Multifunctional polymeric tissue coating
JP2008524202A (en) * 2004-12-17 2008-07-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Targeting contrast agents or targeting therapeutics for molecular imaging and therapy
JP2008528114A (en) * 2005-01-22 2008-07-31 オラエフスキー,アレクサンダー Laser-activated nanopyrolysis of cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515932A (en) * 1997-04-18 2002-05-28 カリフォルニア インスティチュート オブ テクノロジー Multifunctional polymeric tissue coating
JP2008524202A (en) * 2004-12-17 2008-07-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Targeting contrast agents or targeting therapeutics for molecular imaging and therapy
JP2008528114A (en) * 2005-01-22 2008-07-31 オラエフスキー,アレクサンダー Laser-activated nanopyrolysis of cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013012345; LANGMUIR VOL.24, 20080722, P.8695-8700 *
JPN6013012348; ANAL.CHEM. VOL.78, 2006, P.4416-4423 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058079A1 (en) 2012-10-12 2014-04-17 帝人株式会社 Electrostatic-bonding-type vesicle including metal microparticles
JP5912186B2 (en) * 2012-10-12 2016-05-11 帝人株式会社 Electrostatic coupling type vesicle containing fine metal particles
JPWO2014058079A1 (en) * 2012-10-12 2016-09-05 帝人株式会社 Electrostatic coupling type vesicle containing fine metal particles
JP2018053361A (en) * 2016-09-16 2018-04-05 大日本塗料株式会社 Suspension of gold nanoparticles with reduced amounts of quaternary ammonium cation and/or gold and/or silver halides on the surface
CN112480400A (en) * 2020-11-25 2021-03-12 华南理工大学 Poly-lysine graft modified mineralized crystal growth inhibitor and preparation method and application thereof
CN112480400B (en) * 2020-11-25 2021-09-21 华南理工大学 Poly-lysine graft modified mineralized crystal growth inhibitor and preparation method and application thereof

Also Published As

Publication number Publication date
JP5427329B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
Mekaru et al. Biodegradability of disulfide-organosilica nanoparticles evaluated by soft X-ray photoelectron spectroscopy: cancer therapy implications
Kaur et al. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies
EP2634135B1 (en) Synthesis of molecular sieves for modifying the surfaces of nanoparticles having amphoteric ions, and application thereof
Zhang et al. Synthesis of poly (ethylene glycol)(PEG)-grafted colloidal silica particles with improved stability in aqueous solvents
JP4982687B2 (en) Method for preparing labeled spheres containing labeled molecules
Oz et al. Modular fabrication of polymer brush coated magnetic nanoparticles: engineering the interface for targeted cellular imaging
Karaman et al. Rational evaluation of the utilization of PEG-PEI copolymers for the facilitation of silica nanoparticulate systems in biomedical applications
Benkő et al. Bovine serum albumin-sodium alkyl sulfates bioconjugates as drug delivery systems
Peiris et al. Assembly of linear nano-chains from iron oxide nanospheres with asymmetric surface chemistry
JP2009186443A (en) Noble metal nano particle complex and its production method
WO2002020200A1 (en) Finely particulate functional metal and finely particulate functional semiconductor each with dispersion stability and process for producing the same
Kainz et al. Synthesis of functionalized, dispersible carbon-coated cobalt nanoparticles for potential biomedical applications
Zhang et al. Synthesis of superparamagnetic iron oxide nanoparticles modified with MPEG-PEI via photochemistry as new MRI contrast agent
JP5427329B2 (en) Gold fine particles and production method thereof
JP5486750B2 (en) Gold fine particle coating, method for producing the same, and use thereof
Lv et al. Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
Zhang et al. Multidentate Comb-Shaped Polypeptides Bearing Trithiocarbonate Functionality: Synthesis and Application for Water-Soluble Quantum Dots
Zhang et al. Facile synthesis of fluorescent Au@ SiO2 nanocomposites for application in cellular imaging
Chen et al. Preparation of zwitterionic polymers functionalized fluorescent mesoporous silica nanoparticles through photoinduced surface initiated RAFT polymerization in the presence of oxygen
Ijeh Covalent gold nanoparticle-antibody conjugates for sensivity improvement in LFIA
Maurice et al. Polymer‐grafted silicon nanoparticles obtained either via peptide bonding or click chemistry
Mai et al. Photo-induced copper mediated copolymerization of activated-ester methacrylate polymers and their use as reactive precursors to prepare multi-dentate ligands for the water transfer of inorganic nanoparticles
JP5690058B2 (en) Gold nanorod structure and manufacturing method thereof
JP2010083803A (en) Gold fine particle, method for producing the same and use thereof
Matsukuma et al. Amphiphilic copolymer of poly (ethylene glycol)-block-polypyridine; synthesis, physicochemical characterization, and adsorption onto silica nanoparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees