JP2010051124A - Direction protective relay device - Google Patents

Direction protective relay device Download PDF

Info

Publication number
JP2010051124A
JP2010051124A JP2008214363A JP2008214363A JP2010051124A JP 2010051124 A JP2010051124 A JP 2010051124A JP 2008214363 A JP2008214363 A JP 2008214363A JP 2008214363 A JP2008214363 A JP 2008214363A JP 2010051124 A JP2010051124 A JP 2010051124A
Authority
JP
Japan
Prior art keywords
phase
short
circuit
current
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008214363A
Other languages
Japanese (ja)
Inventor
Shigeo Matsumoto
重穗 松本
Yoshiaki Date
義明 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008214363A priority Critical patent/JP2010051124A/en
Publication of JP2010051124A publication Critical patent/JP2010051124A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direction protective relay device for further reducing the number of current transformers and direction protective relays installed for protecting a three-phase AC circuit from a short circuit failure. <P>SOLUTION: The short circuit direction relay device for protecting a power transmission line from a short circuit failure includes: a cross-through current transformer 10 in which R- and S-phases of the power transmission line cross and penetrate reversely at an arbitrary angle through a circular core on which a secondary coil is wound; and a short circuit direction relay 4 for simultaneously interrupting breakers 2<SB>1</SB>-2<SB>3</SB>installed on each of phases of the power transmission line upon detecting a short circuit failure based on a short circuit current I<SB>Ry</SB>input from the cross-through current transformer 10 and interline voltages V<SB>RS</SB>, V<SB>ST</SB>, V<SB>TR</SB>of the power transmission line. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、方向保護継電装置に関し、特に、短絡事故から三相交流回路を保護するための方向保護継電装置に関する。   The present invention relates to a direction protection relay device, and more particularly to a direction protection relay device for protecting a three-phase AC circuit from a short circuit accident.

従来、三相交流回路では、短絡事故から三相交流回路を保護するために、短絡方向継電器(DS)を相ごとに設置している(下記の特許文献1など参照)。   Conventionally, in a three-phase AC circuit, in order to protect the three-phase AC circuit from a short-circuit accident, a short-circuit direction relay (DS) is installed for each phase (see Patent Document 1 below).

たとえば、図18に示すように、第1の短絡方向継電器41には、送配電線のR相に設置された第1の変流器(CT)31からR相の短絡電流を入力するとともに母線に設置された計器用変圧器(PT)6からR相の相電圧VRおよびS相の相電圧VSを入力し、また、第2の短絡方向継電器42には、送配電線のS相に設置された第2の変流器32からS相の短絡電流を入力するとともに計器用変圧器6からS相の相電圧VSおよびT相の相電圧VTを入力し、さらに、第3の短絡方向継電器43には、送配電線のT相に設置された第3の変流器33からT相の短絡電流を入力するとともに計器用変圧器6からR相の相電圧VRおよびT相の相電圧VTを入力して、送配電線において短絡事故が発生したときには、以下に示すように、その事故様相に応じて送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を第1乃至第3の短絡方向継電器41〜43で一括遮断している。
(1)R相−S相間の短絡事故の場合
送配電線のR相に内部方向(送配電線の末端に向う方向)の短絡電流が流れるとともに、送配電線のS相に外部方向の短絡電流が流れる。したがって、第1の短絡方向継電器41が、R相の短絡電流およびR相−S相の線間電圧VRSに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のS相に内部方向の短絡電流が流れるとともに、送配電線のT相に外部方向の短絡電流が流れる。したがって、第2の短絡方向継電器42が、S相の短絡電流およびS相−T相の線間電圧VSTに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のT相に内部方向の短絡電流が流れるとともに、送配電線のR相に外部方向の短絡電流が流れる。したがって、第3の短絡方向継電器43が、T相の短絡電流およびT相−R相の線間電圧VTRに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
送配電線のR相、S相およびT相に内部方向の短絡電流がそれぞれ流れる。したがって、第1乃至第3の短絡方向継電器41〜43が、R相、S相およびT相の短絡電流とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいてそれぞれ動作して、第1乃至第3の遮断器21〜23を一括遮断する。
For example, as shown in FIG. 18, the first short directional relay 4 1, enter the short-circuit current of the R-phase from the power distribution wires of the first current transformer installed in the R-phase (CT) 3 1 enter the phase voltage V S of the phase voltage V R and S phases of the R-phase from potential transformer (PT) 6 installed on the bus together, also in the second short directional relay 4 2, transmission and distribution lines The S-phase short-circuit current is input from the second current transformer 32 installed in the S-phase, and the S-phase phase voltage V S and the T-phase phase voltage V T are input from the instrument transformer 6. in addition, the third short-circuit direction relay 4 3, from the third current transformer 3 3 installed in the T-phase of the transmission and distribution lines from the potential transformer 6 inputs the short-circuit current of the T-phase of the R-phase enter the phase voltage V T of the phase voltage V R and T phases, when the short-circuit fault occurs in the transmission and distribution lines, as shown below, the accident appearance Depending on transmission and distribution lines of R-phase, bulk blocked in the first to third circuit breaker 2 1 to 2 3 of the first to third short directional relay 41 to 3 of which are respectively installed on the S-phase and T-phase is doing.
(1) In case of short circuit between R phase and S phase Short circuit current in the internal direction (direction toward the end of the transmission and distribution line) flows in the R phase of the transmission and distribution line, and short circuit in the external direction to the S phase of the transmission and distribution line Current flows. Therefore, the first short-circuit direction relay 4 1 operates based on the R-phase short-circuit current and the R-phase to S-phase line voltage V RS , thereby connecting the first to third circuit breakers 2 1 to 2 3 . Shut off all at once.
(2) In the case of a short-circuit accident between the S phase and the T phase An internal short circuit current flows in the S phase of the transmission and distribution line, and an external short circuit current flows in the T phase of the transmission and distribution line. Accordingly, the second short-circuit direction relay 4 2 operates based on the S-phase short-circuit current and the S-phase to T-phase line voltage V ST , and the first to third circuit breakers 2 1 to 2 3 are connected. Shut off all at once.
(3) In the case of a short circuit accident between the T phase and the R phase An internal short circuit current flows in the T phase of the transmission and distribution line, and an external short circuit current flows in the R phase of the transmission and distribution line. Therefore, the third short-circuit direction relay 4 3 operates based on the T-phase short-circuit current and the T-phase to R-phase line voltage V TR , and the first to third circuit breakers 2 1 to 2 3 are connected. Shut off all at once.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase Short circuit currents in the internal direction flow in the R phase, the S phase, and the T phase of the transmission and distribution lines. Accordingly, the first to third short-circuit direction relays 4 1 to 4 3 are connected to the R-phase, S-phase, and T-phase short-circuit currents, the R-phase to S-phase line voltage V RS , and the S-phase to T-phase line spacing. The first to third circuit breakers 2 1 to 2 3 are collectively cut off by operating on the basis of the voltage V ST and the T-phase to R-phase line voltage V TR .

また、距離継電器(DZ)についても、図19に示すように、第1の距離継電器201には、送配電線のR相に設置された第1の変流器31および送配電線のT相に設置された第3の変流器33からR相およびT相の短絡電流をそれぞれ入力するとともに母線に設置された計器用変圧器6からR相およびT相の相電圧VR,VTを入力し、また、第2の距離継電器202には、第1の変流器31および送配電線のS相に設置された第2の変流器32からR相およびS相の短絡電流をそれぞれ入力するとともに計器用変圧器6からR相およびS相の相電圧VR,VSを入力し、さらに、第3の距離継電器203には、第2および第3の変流器32,33からS相およびT相の短絡電流をそれぞれ入力するとともに計器用変圧器6からS相の相電圧VSおよびT相の相電圧VTを入力して、送配電線において短絡事故が発生したときには、以下に示すように、その事故様相に応じて送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を第1乃至第3の距離継電器201〜203で一括遮断している。
(1)R相−S相間の短絡事故の場合
送配電線のR相に内部方向の短絡電流が流れるとともに、送配電線のS相に外部方向の短絡電流が流れる。したがって、第2の距離継電器202が、R相の短絡電流およびS相の短絡電流の差電流とR相−S相の線間電圧VRSとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のS相に内部方向の短絡電流が流れるとともに、送配電線のT相に外部方向の短絡電流が流れる。したがって、第3の距離継電器203が、S相の短絡電流およびT相の短絡電流の差電流とS相−T相の線間電圧VSTとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のT相に内部方向の短絡電流が流れるとともに、送配電線のR相に外部方向の短絡電流が流れる。したがって、第1の距離継電器201が、T相の短絡電流およびR相の短絡電流の差電流とT相−R相の線間電圧VTRとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
送配電線のR相、S相およびT相に内部方向の短絡電流がそれぞれ流れる。したがって、第1乃至第3の距離継電器201〜203がそれぞれ動作して、第1乃至第3の遮断器21〜23を一括遮断する。
As for the distance relay (DZ), as shown in FIG. 19, the first distance relay 20 1, of the first current transformer 3 1 and the power distribution wires installed in the R-phase of the transmission and distribution lines the third current transformer 3 3 R-phase and T-phase of the short circuit current from voltage transformer 6 installed to the bus together with the respectively input R phase and T-phase phase voltage V R of the installed in the T phase, V T is input, and the second distance relay 20 2 is supplied with the R phase and S from the first current transformer 3 1 and the second current transformer 3 2 installed in the S phase of the transmission and distribution line. The short-circuit current of the phase is input and the phase voltages V R and V S of the R phase and the S phase are input from the instrument transformer 6, and the second and third phase relays 20 3 are connected to the second and third phase relays 20 3. The S-phase and T-phase short-circuit currents are input from the current transformers 3 2 and 3 3 , respectively, and the S-phase phase voltage V S is input from the instrument transformer 6. And enter the phase voltage V T of the T-phase, when the short-circuit fault occurs in the transmission and distribution lines, as shown below, R-phase of the transmission and distribution lines according to the accident aspect, each S-phase and T-phase The installed first to third circuit breakers 2 1 to 2 3 are collectively disconnected by the first to third distance relays 20 1 to 20 3 .
(1) In the case of a short circuit accident between the R phase and the S phase A short circuit current in the internal direction flows in the R phase of the transmission and distribution line, and a short circuit current in the external direction flows in the S phase of the transmission and distribution line. Therefore, the second distance relay 20 2, operates on the basis of the line voltage V RS of the differential current and R-phase -S phase of the short circuit current of the short circuit current and the S-phase of the R-phase, the first to third All circuit breakers 2 1 to 2 3 are collectively shut off.
(2) In the case of a short-circuit accident between the S phase and the T phase An internal short circuit current flows in the S phase of the transmission and distribution line, and an external short circuit current flows in the T phase of the transmission and distribution line. Accordingly, the third distance relay 20 3 operates based on the S-phase short-circuit current, the difference current between the T-phase short-circuit currents, and the S-phase to T-phase line voltage V ST, and the first to third All circuit breakers 2 1 to 2 3 are collectively shut off.
(3) In the case of a short circuit accident between the T phase and the R phase An internal short circuit current flows in the T phase of the transmission and distribution line, and an external short circuit current flows in the R phase of the transmission and distribution line. Therefore, first distance relay 20 1 operates on the basis of the line voltage V TR of the differential current and the T phase -R phase of the short circuit current and short-circuit current of R-phase of T-phase, the first to third All circuit breakers 2 1 to 2 3 are collectively shut off.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase Short circuit currents in the internal direction flow in the R phase, the S phase, and the T phase of the transmission and distribution lines. Accordingly, the first to third distance relay 20 1 to 20 3 operate respectively, collectively blocking the first to third circuit breaker 2 1 to 2 3.

回線選択継電器(SS)についても、図20に示すように、第1の回線選択継電器301には、第1および第2の送配電線1L,2L(平衡2回線送配電線)のR相にそれぞれ設置された第1および第4の変流器31,34から第1および第2の送配電線1L,2LのR相の短絡電流を入力するとともに母線に設置された計器用変圧器6からR相の相電圧VRを入力し、また、第2の回線選択継電器302には、第1および第2の送配電線1L,2LのS相にそれぞれ設置された第2および第5の変流器32,35から第1および第2の送配電線1L,2LのS相の短絡電流を入力するとともに計器用変圧器6からS相の相電圧VSを入力し、さらに、第3の回線選択継電器303には、第1および第2の送配電線1L,2LのT相にそれぞれ設置された第3および第6の変流器33,36から第1および第2の送配電線1L,2LのT相の短絡電流を入力するとともに計器用変圧器6からT相の相電圧VTを入力して、第1または第2の送配電線1L,2Lにおいて短絡事故が発生したときには、以下に示すように、その事故様相に応じて、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を第1乃至第3の回線選択継電器301〜303で一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器21〜26を第1乃至第3の回線選択継電器301〜303で一括遮断している。
(1)R相−S相間の短絡事故の場合
たとえば第1の送配電線1LのR相−S相間において短絡事故が発生した場合には、第1および第2の送配電線1L,2LのR相に内部方向の短絡電流が流れるとともに、第1および第2の送配電線1L,2LのS相に外部方向の短絡電流が流れる。したがって、第1の回線選択継電器301が、第1および第2の送電線1L,2LのR相の短絡電流の差電流とR相の相電圧VRとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
たとえば第1の送配電線1LのS相−T相間において短絡事故が発生した場合には、第1および第2の送配電線1L,2LのS相に内部方向の短絡電流が流れるとともに、第1および第2の送配電線1L,2のT相に外部方向の短絡電流が流れる。したがって、第2の回線選択継電器302が、第1および第2の送電線1L,2LのS相の短絡電流の差電流とS相の相電圧VSとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
たとえば第1の送配電線1LのT相−R相間において短絡事故が発生した場合には、第1および第2の送配電線1L,2のT相に内部方向の短絡電流が流れるとともに、第1および第2の送配電線1L,2のR相に外部方向の短絡電流が流れる。したがって、第3の回線選択継電器303が、第1および第2の送配電線1L,2のT相の短絡電流の差電流とT相の相電圧VRとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
たとえば第1の送配電線1LのT相−R相間において短絡事故が発生した場合には、第1および第2の送配電線1L,2のR相、S相およびT相に内部方向の短絡電流がそれぞれ流れる。したがって、第1乃至第3の回線選択継電器301〜303がそれぞれ動作して、第1乃至第3の遮断器21〜23を一括遮断する。
特開2001−16767号公報
For even line selection relay (SS), as shown in FIG. 20, in the first line selection relay 30 1, the first and second transmission and distribution lines 1L, R-phase of 2L (equilibrium 2-line transmission and distribution lines) Is connected to the first and fourth current transformers 3 1 and 3 4 respectively installed in the first and second current transmission and distribution lines 1L and 2L, and the R phase short-circuit current is input thereto, and the instrument transformer is installed on the bus. enter the phase voltage V R of the R-phase from vessel 6, also in the second line selection relay 30 2, second and disposed respectively first and second transmission and distribution lines 1L, the S phase of 2L The S-phase short-circuit current of the first and second power transmission lines 1L, 2L is input from the fifth current transformers 3 2 , 3 5 and the S-phase phase voltage V S is input from the instrument transformer 6. , further, the third line selection relay 30 3, the first and second transmission and distribution lines 1L, respectively set to the T-phase of 2L Have been the third and sixth current transformer 3 3, 3 to 6 first and second transmission and distribution lines 1L, the phase voltage T-phase from the potential transformer 6 inputs the short-circuit current of the T-phase of 2L enter the V T, the first or second transmission and distribution lines 1L, when the short-circuit failure occurs in 2L, as shown below, depending on the accident aspect, short-circuit fault in the first transmission and distribution lines 1L If the first to third circuit breakers 2 1 to 2 3 are determined to be collectively disconnected by the first to third line selection relays 30 1 to 30 3 , and short-circuited to the second transmission / distribution line 2L. If it is determined that an accident has occurred, the fourth to sixth circuit breakers 2 1 to 2 6 are collectively disconnected by the first to third line selection relays 30 1 to 30 3 .
(1) In the case of a short circuit accident between the R phase and the S phase For example, when a short circuit accident occurs between the R phase and the S phase of the first transmission and distribution line 1L, the first and second transmission lines 1L and 2L While an internal short-circuit current flows in the R phase, an external short-circuit current flows in the S phase of the first and second transmission and distribution lines 1L and 2L. Thus, the first line selection relay 30 1, first and second transmission line 1L, operates on the basis of the phase voltage V R of the differential current and the R-phase of the short-circuit current of the R-phase of 2L, first To the third circuit breakers 2 1 to 2 3 are collectively cut off.
(2) In the case of a short circuit accident between the S phase and the T phase For example, when a short circuit accident occurs between the S phase and the T phase of the first transmission and distribution line 1L, the first and second transmission lines 1L and 2L A short-circuit current in the internal direction flows in the S phase, and a short-circuit current in the external direction flows in the T phase of the first and second power distribution lines 1L and 2. Accordingly, the second line selection relay 30 2 operates based on the difference current between the S-phase short-circuit currents of the first and second transmission lines 1L and 2L and the S-phase phase voltage V S, and the first To the third circuit breakers 2 1 to 2 3 are collectively cut off.
(3) In the case of a short circuit accident between the T phase and the R phase For example, when a short circuit accident occurs between the T phase and the R phase of the first transmission and distribution line 1L, the first and second transmission lines 1L and 2 While a short-circuit current in the internal direction flows in the T phase, a short-circuit current in the external direction flows in the R phase of the first and second transmission and distribution lines 1L and 2. Thus, the third line selection relay 30 3 operates on the basis of the phase voltage V R of the first and second transmission and distribution lines 1L, differential current 2 T-phase of the short-circuit current and T-phase, the 1 to the third circuit breakers 2 1 to 2 3 collectively blocking.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase For example, when a short circuit accident occurs between the T phase and the R phase of the first transmission and distribution line 1L, the first and second transmission and distribution lines 1L , 2 short-circuit currents flow in the R phase, S phase, and T phase, respectively. Accordingly, the first to third line selection relays 30 1 to 30 3 operate to collectively shut off the first to third circuit breakers 2 1 to 2 3 .
JP 2001-16767 A

しかしながら、送配電線につき変流器および方向保護継電器(短絡方向継電器、距離継電器および回線選択継電器)を3組設置しているため、変流器および方向保護継電器の設置台数を少なくして設備コストの削減を図りたいという要請がある。   However, since three sets of current transformers and direction protection relays (short-circuit direction relays, distance relays, and line selection relays) are installed for each transmission / distribution line, the installation cost is reduced by reducing the number of current transformers and direction protection relays installed. There is a request to reduce this.

本発明の目的は、短絡事故から三相交流回路を保護するための変流器および方向保護継電器の設置台数を削減することができる方向保護継電装置を提供することにある。   The objective of this invention is providing the direction protection relay apparatus which can reduce the installation number of the current transformer and direction protection relay for protecting a three-phase alternating current circuit from a short circuit accident.

本発明の方向保護継電装置は、短絡事故から三相交流回路を保護するための方向保護継電装置であって、2次コイルを巻装した環状鉄心に前記三相交流回路の任意の2相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器と、該クロス貫通変流器から入力される短絡電流と前記三相交流回路の線間電圧とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された遮断器を一括遮断する方向保護継電器とを具備することを特徴とする。
ここで、前記方向保護継電器が、前記クロス貫通変流器から入力される前記短絡電流に所定の倍数を掛けて補正短絡電流を算出し、該算出した補正短絡電流と前記三相交流回路の線間電圧とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された遮断器を一括遮断してもよい。
前記クロス貫通変流器(10)が送配電線に設置されており、該クロス貫通変流器の環状鉄心に前記送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記方向保護継電器が、前記クロス貫通変流器から入力される短絡電流(IRy)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて短絡事故を検出すると、該送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する短絡方向継電器(4)であってもよい。
前記クロス貫通変流器(10)が送配電線に設置されており、該クロス貫通変流器の環状鉄心に前記送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記方向保護継電器が、前記クロス貫通変流器から入力される短絡電流(IRy)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて短絡事故を検出すると、該送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する距離継電器(20)であってもよい。
前記クロス貫通変流器が、第1および第2の送配電線(1L,2L)にそれぞれ設置された第1および第2のクロス貫通変流器(101,102)であり、該第1のクロス貫通変流器の環状鉄心に前記第1の送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記第2のクロス貫通変流器の環状鉄心に前記第2の送配電線の前記第1の相および前記第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記方向保護継電器が、前記第1のクロス貫通変流器から入力される短絡電流および前記第2のクロス貫通変流器から入力される短絡電流の差電流である短絡電流(IRy)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて前記第1の送配電線に短絡事故が発生したことを検出すると、該第1の送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断し、前記短絡電流と前記送配電線の線間電圧とに基づいて前記第2の送配電線に短絡事故が発生したことを検出すると、該第2の送配電線の各相に設置された第4乃至第6の遮断器(24〜26)を一括遮断する回線選択継電器(30)であってもよい。
2次コイルを巻装した環状鉄心に前記三相交流回路の前記任意の2相のうちの1相と該任意の2相以外の他の1相とを逆向きにかつ任意の角度でクロスさせて貫通させた他のクロス貫通変流器と、該他のクロス貫通変流器から入力される他の短絡電流と前記三相交流回路の線間電圧とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された遮断器を一括遮断する他の方向保護継電器とをさらに具備してもよい。
前記他の方向保護継電器が、前記他のクロス貫通変流器から入力される前記他の短絡電流に所定の倍数を掛けて他の補正短絡電流を算出し、該算出した他の補正短絡電流と前記三相交流回路の線間電圧とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された遮断器を一括遮断してもよい。
前記クロス貫通変流器が、送配電線に設置された第1のクロス貫通変流器(101)であり、前記他のクロス貫通変流器が、前記送配電線に設置された第2のクロス貫通変流器(102)であり、前記第1のクロス貫通変流器の環状鉄心に前記送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記第2のクロス貫通変流器の環状鉄心に前記送配電線の前記第2の相および第3の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記方向保護継電器が、前記第1のクロス貫通変流器から入力される第1の短絡電流(IRy1)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて短絡事故を検出すると、該送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する第1の短絡方向継電器(41)であり、前記他の方向保護継電器が、前記第2のクロス貫通変流器から入力される第2の短絡電流(IRy2)と前記送配電線の線間電圧とに基づいて短絡事故を検出すると、前記第1乃至第3の遮断器を一括遮断する第2の短絡方向継電器(42)であってもよい。
前記クロス貫通変流器が、送配電線に設置された第1のクロス貫通変流器(101)であり、前記他のクロス貫通変流器が、前記送配電線に設置された第2のクロス貫通変流器(102)であり、前記第1のクロス貫通変流器の環状鉄心に前記送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記第2のクロス貫通変流器の環状鉄心に前記送配電線の前記第2の相および第3の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記方向保護継電器が、前記第1のクロス貫通変流器から入力される第1の短絡電流(IRy1)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて短絡事故を検出すると、前記送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する第1の距離継電器(201)であり、前記他の方向保護継電器が、前記第2のクロス貫通変流器から入力される第2の短絡電流(IRy2)と前記送配電線の線間電圧とに基づいて短絡事故を検出すると、前記第1乃至第3の遮断器を一括遮断する第2の距離継電器(202)であってもよい。
前記クロス貫通変流器が、第1および第2の送配電線(1L,2L)にそれぞれ設置された第1および第2のクロス貫通変流器(101,102)であり、
前記他のクロス貫通変流器が、前記第1および第2の送配電線にそれぞれ設置された第3および第4のクロス貫通変流器(103,104)であり、前記第1のクロス貫通変流器の環状鉄心に前記第1の送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記第2のクロス貫通変流器の環状鉄心に前記第2の送配電線の前記第1の相および前記第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記第3のクロス貫通変流器の環状鉄心に前記第1の送配電線の前記第2の相および第3の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記第4のクロス貫通変流器の環状鉄心に前記第2の送配電線の前記第2の相および前記第3の相が逆向きにかつ任意の角度でクロスされて貫通されており、前記方向保護継電器が、前記第1のクロス貫通変流器から入力される短絡電流および前記第2のクロス貫通変流器から入力される短絡電流の差電流である第1の短絡電流(IRy1)と前記第1および第2の送配電線の線間電圧(VRS,VST,VTR)とに基づいて前記第1の送配電線に短絡事故が発生したことを検出すると、該第1の送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断し、前記第1の短絡電流と前記第1および第2の送配電線の線間電圧とに基づいて前記第2の送配電線に短絡事故が発生したことを検出すると、該第2の送配電線の各相に設置された第4乃至第6の遮断器(24〜26)を一括遮断する第1の回線選択継電器(301)であり、前記他の方向保護継電器が、前記第3のクロス貫通変流器から入力される短絡電流および前記第4のクロス貫通変流器から入力される短絡電流の差電流である第2の短絡電流(IRy2)と前記第1および第2の送配電線の線間電圧とに基づいて前記第1の送配電線に短絡事故が発生したことを検出すると前記第1乃至第3の遮断器を一括遮断し、前記第2の短絡電流と前記第1および第2の送配電線の線間電圧とに基づいて前記第2の送配電線に短絡事故が発生したことを検出すると前記第4乃至第6の遮断器を一括遮断する第2の回線選択継電器(302)であってもよい。
The direction protection relay device of the present invention is a direction protection relay device for protecting a three-phase AC circuit from a short-circuit accident, and an arbitrary two of the three-phase AC circuit is mounted on an annular core wound with a secondary coil. A cross-through current transformer in which phases are crossed in reverse and at an arbitrary angle, and a short circuit based on a short-circuit current input from the cross-through current transformer and a line voltage of the three-phase AC circuit When an accident is detected, a directional protection relay is provided that collectively shuts off the circuit breakers installed in each phase of the three-phase AC circuit.
Here, the direction protection relay calculates a corrected short-circuit current by multiplying the short-circuit current input from the cross-through current transformer by a predetermined multiple, and the calculated corrected short-circuit current and the line of the three-phase AC circuit When a short-circuit accident is detected based on the voltage between the terminals, the circuit breakers installed in each phase of the three-phase AC circuit may be collectively disconnected.
The cross through current transformer (10) is installed in a power transmission / distribution line, and the first phase and the second phase of the transmission / distribution electric line are reversed in the annular iron core of the cross through current transformer and in any direction. The directional protection relay is crossed at an angle, and the direction protection relay is connected to the short circuit current (I Ry ) input from the cross through current transformer and the line voltage (V RS , V ST , V TR) ) And a short circuit direction relay (4) that collectively shuts off the first to third circuit breakers (2 1 to 2 3 ) installed in each phase of the transmission and distribution line. Also good.
The cross through current transformer (10) is installed in a power transmission / distribution line, and the first phase and the second phase of the transmission / distribution electric line are reversed in the annular iron core of the cross through current transformer and in any direction. The directional protection relay is crossed at an angle, and the direction protection relay is connected to the short circuit current (I Ry ) input from the cross through current transformer and the line voltage (V RS , V ST , V TR) ) And a distance relay (20) that collectively shuts off the first to third circuit breakers (2 1 to 2 3 ) installed in each phase of the transmission and distribution line. Good.
The cross-through current transformers are first and second cross-through current transformers (10 1 , 10 2 ) installed on the first and second transmission and distribution lines (1L, 2L), respectively. The first cross and the second phase of the first power transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular iron core of one cross-through current transformer, and the second cross The first phase and the second phase of the second transmission / distribution line are crossed in an opposite direction and crossed at an arbitrary angle through the annular iron core of the through-current transformer, and the direction protection relay is The short-circuit current (I Ry ), which is the difference between the short-circuit current input from the first cross-through current transformer and the short-circuit current input from the second cross-through current transformer, and the line between the transmission and distribution lines Based on the voltage (V RS , V ST , V TR ), a short circuit accident has occurred in the first transmission / distribution line. Is detected, the first to third circuit breakers (2 1 to 2 3 ) installed in each phase of the first transmission / distribution line are collectively disconnected, and the short-circuit current and the line between the transmission / distribution lines When it is detected that a short circuit accident has occurred in the second transmission / distribution line based on the voltage, fourth to sixth circuit breakers (2 4 to 2) installed in each phase of the second transmission / distribution line 6 ) A line selection relay (30) that cuts off all at once may be used.
One phase of the arbitrary two phases of the three-phase AC circuit and one other phase other than the arbitrary two phases are crossed in an opposite direction and at an arbitrary angle on an annular core around which a secondary coil is wound. Detecting a short-circuit fault based on another cross-through current transformer passed through, another short-circuit current input from the other cross-through current transformer, and a line voltage of the three-phase AC circuit, You may further comprise the other direction protection relay which interrupts | blocks the circuit breaker installed in each phase of a three-phase alternating current circuit collectively.
The other directional protection relay calculates another corrected short-circuit current by multiplying the other short-circuit current input from the other cross-through current transformer by a predetermined multiple, and the calculated other corrected short-circuit current and When a short circuit accident is detected based on the line voltage of the three-phase AC circuit, the circuit breakers installed in each phase of the three-phase AC circuit may be collectively shut off.
The cross-through current transformer is a first cross-through current transformer (10 1 ) installed on the transmission / distribution line, and the second cross-through current transformer is installed on the transmission / distribution line. A cross-through current transformer (10 2 ), wherein the first phase and the second phase of the transmission / distribution line are crossed in an opposite direction and at an arbitrary angle on the annular core of the first cross-through current transformer The second phase and the third phase of the transmission / distribution line are crossed in an opposite direction and at an arbitrary angle through the annular core of the second cross-through current transformer. cage, said direction protective relay is the first of the first short-circuit current (I Ry1) and the line voltage of the transmission and distribution lines to be input from the cross-through current transformer (V RS, V ST, V TR) and Upon detection of a short circuit on the basis of the first to third circuit breakers installed in each phase of said transmission power distribution line (2 1 to 2 3) A first short directional relay for interrupting Batch (4 1), wherein said another direction protective relays is a second short-circuit current which is input from the second cross through current transformer and (I Ry2) transmission and distribution When a short circuit accident is detected based on the line voltage of the electric wire, the second short circuit direction relay (4 2 ) that collectively shuts off the first to third circuit breakers may be used.
The cross-through current transformer is a first cross-through current transformer (10 1 ) installed on the transmission / distribution line, and the second cross-through current transformer is installed on the transmission / distribution line. A cross-through current transformer (10 2 ), wherein the first phase and the second phase of the transmission / distribution line are crossed in an opposite direction and at an arbitrary angle on the annular core of the first cross-through current transformer The second phase and the third phase of the transmission / distribution line are crossed in an opposite direction and at an arbitrary angle through the annular core of the second cross-through current transformer. And the direction protection relay includes a first short-circuit current (I Ry1 ) input from the first cross-through current transformer and a line voltage (V RS , V ST , V TR ) of the transmission / distribution line. Upon detection of a short circuit on the basis of the first to third circuit breakers installed in each phase of the transmission and distribution lines (2 1 to 2 3) A first distance relay for collectively blocking (20 1), said other direction protective relays is, the second second short-circuit current (I Ry2) and electric transmission input from the cross-through current transformer The second distance relay (20 2 ) that collectively shuts off the first to third circuit breakers when a short circuit accident is detected based on the line voltage.
The cross through current transformer is a first and second transmission and distribution lines (1L, 2L) to the first and second cross through current transformer installed respectively (10 1, 10 2),
The other cross through current transformers are third and fourth cross through current transformers (10 3 , 10 4 ) installed in the first and second transmission and distribution lines, respectively. A first phase and a second phase of the first transmission / distribution line are crossed in an opposite direction and at an arbitrary angle through the annular iron core of the cross-through current transformer, The first cross-phase and the second phase of the second power transmission and distribution line are crossed and penetrated in an opposite direction and at an arbitrary angle through the annular iron core of the flow device. The second phase and the third phase of the first transmission and distribution line are crossed in an opposite direction and at an arbitrary angle, and penetrated through the annular iron core of the device, and the fourth cross-through current transformer The second phase and the third phase of the second transmission / distribution line are connected to the annular iron core in the opposite direction and at an arbitrary angle. The directional protection relay is a difference current between a short-circuit current input from the first cross-through current transformer and a short-circuit current input from the second cross-through current transformer. A short circuit accident occurred in the first transmission / distribution line based on the short circuit current (I Ry1 ) of 1 and the line voltages (V RS , V ST , V TR ) of the first and second transmission lines. When this is detected, the first to third circuit breakers (2 1 to 2 3 ) installed in the respective phases of the first transmission and distribution line are collectively cut off, and the first short circuit current and the first and When it is detected that a short circuit accident has occurred in the second transmission / distribution line based on the line voltage of the second transmission / distribution line, the fourth to fourth installed in each phase of the second transmission / distribution line 6 is a first circuit selection relay (30 1 ) that collectively shuts off 6 circuit breakers (2 4 to 2 6 ), and the other direction protection relay is , The second short-circuit current (I Ry2 ) which is the difference between the short-circuit current input from the third cross-through current transformer and the short-circuit current input from the fourth cross-through current transformer, and the first And detecting the occurrence of a short-circuit accident in the first transmission / distribution line based on the line voltage of the second transmission / distribution line, the first to third circuit breakers are collectively cut off, and the second If it detects that the short circuit accident occurred in the 2nd transmission and distribution line based on the short circuit current and the line voltage of the 1st and 2nd transmission and distribution line, the 4th thru / or the 6th circuit breaker will be cut off collectively. The second line selection relay (30 2 ) may be used.

本発明の方向保護継電装置は、以下に示す効果を奏する。
(1)クロス貫通変流器を使用することにより、短絡事故から三相交流回路を保護するための変流器および方向保護継電器の設置台数を削減して、設備コストの削減を図ることができる。
(2)クロス貫通変流器および方向保護継電器を2組使用することにより、自回路および他回路にまたがる短絡事故であっても確実に検出して停電の範囲の拡大を防止することができる。
(3)クロス貫通変流器および方向保護継電器を2組使用することにより、1台の方向保護継電器が故障または点検によって使用できなくなっても、自回路の短絡事故は他の1台の方向保護継電器でバックアップして、短絡事故から三相交流回路を保護することができる。
The direction protection relay device of the present invention has the following effects.
(1) By using a cross-through current transformer, the installation cost can be reduced by reducing the number of installed current transformers and direction protection relays to protect the three-phase AC circuit from a short circuit accident. .
(2) By using two sets of cross-through current transformers and direction protection relays, it is possible to reliably detect even a short-circuit accident spanning the own circuit and other circuits and prevent the expansion of the range of power failure.
(3) By using two sets of cross-through current transformers and direction protection relays, even if one direction protection relay becomes unusable due to failure or inspection, the short circuit accident of its own circuit will protect the direction of the other one It can be backed up by a relay to protect the three-phase AC circuit from short circuit accidents.

上記の目的を、2次コイルを巻装した環状鉄心に三相交流回路の任意の2相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器を用いて、方向保護継電器が、クロス貫通変流器から入力される短絡電流と三相交流回路の線間電圧とに基づいて短絡事故を検出すると、三相交流回路の各相に設置された遮断器を一括遮断することにより実現した。   For the above purpose, direction protection is achieved by using a cross-through current transformer in which any two phases of a three-phase AC circuit are crossed in opposite directions and at an arbitrary angle through an annular core wound with a secondary coil. When the relay detects a short-circuit accident based on the short-circuit current input from the cross-through current transformer and the line voltage of the three-phase AC circuit, the circuit breakers installed in each phase of the three-phase AC circuit are collectively shut off. It was realized.

以下、本発明の方向保護継電装置の実施例について図面を参照して説明する。
本発明の第1の実施例による方向保護継電装置は、図1に示すように、送配電線のR相およびS相がクロスするように貫通されたクロス貫通変流器10と、母線に設置された計器用変圧器6と、クロス貫通変流器10から入力される短絡電流IRyと計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する短絡方向継電器4とを具備する。
Hereinafter, embodiments of the directional protection relay device of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the direction protection relay device according to the first embodiment of the present invention includes a cross-through current transformer 10 that is penetrated so that the R phase and the S phase of the transmission / distribution line cross, and a bus Short-circuit current I Ry input from the installed instrument transformer 6 and cross-through current transformer 10 and phase voltages V R and V S of R phase, S phase and T phase input from the instrument transformer 6 , V T , R phase-S phase line voltage V RS , S phase-T phase line voltage V ST and T phase-R phase line voltage V TR If an accident is detected, the short circuit direction relay 4 which cuts off the 1st thru | or 3rd circuit breakers 2 1 to 2 3 installed in the R phase, S phase and T phase of the transmission and distribution line, respectively, is provided.

ここで、クロス貫通変流器10は、2次コイルを巻装した環状鉄心に送配電線のR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、送配電線のR相はクロス貫通変流器10の極性方向(環状鉄心の第1の開口面から環状鉄心の第2の開口面への方向)に貫通されているが、送配電線のS相はクロス貫通変流器10の反極性方向(環状鉄心の第2の開口面から環状鉄心の第1の開口面への方向)に貫通されている。
Here, the cross-through current transformer 10 is a through-type current transformer in which an R-phase and an S-phase of a transmission / distribution wire are crossed in an opposite direction and at an arbitrary angle through an annular core around which a secondary coil is wound. It is.
That is, the R phase of the transmission / distribution line is penetrated in the polarity direction of the cross-through current transformer 10 (direction from the first opening surface of the annular core to the second opening surface of the annular core). The S phase of the cross through current transformer 10 is penetrated in the opposite polarity direction (direction from the second opening surface of the annular core to the first opening surface of the annular core).

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、R相の負荷電流IRとS相の負荷電流ISとは図2に示すように120°の位相差でクロス貫通変流器10の環状鉄心を逆向きに貫通して流れる(すなわち、R相の負荷電流IRはクロス貫通変流器10の環状鉄心を極性方向に貫通して流れ、S相の負荷電流ISはクロス貫通変流器10の環状鉄心を反極性方向に貫通して流れる)。そのため、クロス貫通変流器10から短絡方向継電器4に入力される負荷電流IはR相の負荷電流IRとS相の負荷電流ISとのベクトル差となり、負荷電流Iの振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となる。
I=IR−IS
|I|=|IR−IS|=31/2×|IR|=31/2×|IS
そこで、短絡方向継電器4は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される負荷電流の振幅と同じにするために、次式で示すように負荷電流Iを1/31/2倍して補正負荷電流I’を算出する。
I’=I×1/31/2
|I’|=|I|×1/31/2-=|IR|=|IS
Therefore, when the load currents flowing in the R-phase, S-phase, and T-phase of the transmission and distribution line when no short-circuit accident has occurred are represented by I R , I S , I T , the R-phase load current I R and the S-phase As shown in FIG. 2, the load current I S flows through the annular core of the cross-through current transformer 10 in a reverse direction with a phase difference of 120 ° (that is, the R-phase load current I R is cross-through variable). the toroids of Nagareki 10 flows through the polarity direction, the load current I S of the S-phase flows through the annular core of the cross through the current transformer 10 in the opposite polarity direction). Therefore, the load current I input from the cross-through current transformer 10 to the short-circuit direction relay 4 is a vector difference between the R-phase load current I R and the S-phase load current I S, and the amplitude of the load current I is R-phase. The load current I R (S-phase load current I S ) is 3 1/2 times the amplitude.
I = I R −I S
| I | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I S |
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the load current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The corrected load current I ′ is calculated by multiplying the load current I by 1/3 1/2 .
I ′ = I × 1/3 1/2
| I ′ | = | I | × 1/3 1/ 2- = | I R | = | I S |

また、送配電線に短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFT(インピーダンス角をθとする。)で表すと、短絡方向継電器4は、事故様相に応じて以下のように動作する。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図1に破線の矢印で示すように送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、クロス貫通変流器10から短絡方向継電器4に入力される短絡電流IRyは、図1に実線の太矢印で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図3(a)参照。なお、図3においては、送配電線の内部方向に流れる短絡電流IFR,IFS,IFTは実線の矢印で、送配電線の外部方向に流れる短絡電流IFR,IFS,IFTは一点鎖線の矢印で示している。)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=2×|IFR|=2×|IFS
そこで、短絡方向継電器4は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/2
|IRy’|=|IRy|×1/2-=|IFR|=|IFS
短絡方向継電器4は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて短絡電流IRyの大きさおよび方向を判別する。なお、送配電線のR相−S相間の短絡事故の場合には、図3(a)に示すように、算出した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて短絡電流IRyの大きさおよび方向が判別される。
短絡方向継電器4は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、図4に破線の矢印で示すように、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない。
したがって、クロス貫通変流器10から短絡方向継電器4に入力される短絡電流IRyは、図4に実線の太矢印で示すように極性が負のS相の短絡電流−IFSとなり、短絡電流IRyの振幅はS相の短絡電流IFSの振幅となる(図3(b)参照)。
Ry=−IFS
|IRy|=|IFS
そこで、短絡方向継電器4は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1
|IRy’|=|IRy|×1=|IFS
短絡方向継電器4は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて短絡電流IRyの大きさおよび方向を判別する。なお、送配電線のS相−T相間の短絡事故の場合には、図3(b)に示すように、算出した補正短絡電流IRy’とS相−T相の線間電圧VST(極性が負)とに基づいて短絡電流IRyの大きさおよび方向が判別される。
短絡方向継電器4は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、図5に破線の矢印で示すように、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない。
したがって、クロス貫通変流器10から短絡方向継電器4に入力される短絡電流IRyは、図5に実線の太矢印で示すようにR相の短絡電流IFRとなり、短絡電流IRyの振幅はR相の短絡電流IFRの振幅となる(図3(c)参照)。
Ry=IFR
|IRy|=|IFR
そこで、短絡方向継電器4は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1
|IRy’|=|IRy|×1=|IFR
短絡方向継電器4は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて短絡電流IRyの大きさおよび方向を判別する。なお、送配電線のT相−R相間の短絡事故の場合には、図3(c)に示すように、算出した補正短絡電流IRy’とT相−R相の線間電圧VTR(極性が負)とに基づいて短絡電流IRyの大きさおよび方向が判別される。
短絡方向継電器4は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、図6に破線の矢印で示すように、送配電線のR相,S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120度で内部方向にそれぞれ流れる。
したがって、クロス貫通変流器10から短絡方向継電器4に入力される短絡電流IRyは、図6に実線の太矢印で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図3(d)参照)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
そこで、短絡方向継電器4は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/31/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/31/2
|IRy’|=|IRy|×1/31/2-=|IFR|=|IFS
短絡方向継電器4は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて短絡電流IRyの大きさおよび方向を判別する。なお、送配電線のR相−S相−T相間の短絡事故の場合には、図3(d)に示すように、算出した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて短絡電流IRyの大きさおよび方向が判別される。
短絡方向継電器4は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
In addition, when a short circuit accident occurs in the transmission / distribution line, the short-circuit currents flowing in the R phase, S phase, and T phase of the transmission / distribution line are represented by I FR , I FS , I FT (impedance angle is θ). The short-circuit direction relay 4 operates as follows according to the accident aspect.
(1) In the case of a short circuit accident between the R phase and the S phase When a short circuit accident between the R phase and the S phase occurs, the short circuit current I FR of the R phase is generated in the R phase of the power transmission and distribution line as shown by the broken arrow in FIG. The S-phase short-circuit current I FS flows in the S-phase of the transmission / distribution line, and the S-phase short-circuit current I FS flows in the external direction. However, the T-phase short-circuit current I FT does not flow in the T-phase of the transmission / distribution line.
Accordingly, the short-circuit current I Ry input from the cross-through current transformer 10 to the short-circuit direction relay 4 is represented by the R-phase short-circuit current I FR and the S-phase short-circuit current I FS as indicated by the solid line thick arrow in FIG. Thus, the amplitude of the short-circuit current I Ry is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 3A). Short-circuit currents I FR , I FS , and I FT flowing in the internal direction of the transmission and distribution lines are indicated by solid arrows, and short-circuit currents I FR , I FS , and I FT flowing in the external direction of the transmission and distribution lines are indicated by dashed-dotted arrows Yes.)
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The short-circuit current I Ry is halved to calculate a corrected short-circuit current I Ry '.
I Ry '= I Ry × 1/2
| I Ry '| = | I Ry | × 1 / 2- = | I FR | = | I FS |
The short-circuit direction relay 4 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the magnitude and direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the R phase and the S phase of the transmission and distribution line, as shown in FIG. 3A, the calculated corrected short circuit current I Ry ′ and the line voltage V RS between the R phase and the S phase Is used to determine the magnitude and direction of the short-circuit current I Ry .
When it is determined that a short-circuit accident has occurred in the transmission / distribution line, the short-circuit direction relay 4 collectively shuts off the first to third circuit breakers 2 1 to 2 3 .
(2) In the case of a short-circuit accident between the S phase and the T phase When a short circuit accident occurs between the S phase and the T phase, as shown by the dashed arrows in FIG. 4, the S phase short circuit current I FS There flow inside direction, but the short-circuit current I FT T-phase to the T phase of the power distribution wires flows outward, the R-phase transmission and distribution lines does not flow a short-circuit current I FR of R-phase.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the short-circuit direction relay 4 becomes an S-phase short-circuit current −I FS having a negative polarity as shown by a solid line thick arrow in FIG. The amplitude of I Ry is the amplitude of the S-phase short-circuit current I FS (see FIG. 3B).
I Ry = −I FS
| I Ry | = | I FS |
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The corrected short-circuit current I Ry 'is calculated by multiplying the short-circuit current I Ry by 1.
I Ry '= I Ry × 1
| I Ry '| = | I Ry | × 1 = | I FS |
The short-circuit direction relay 4 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the magnitude and direction of the short-circuit current I Ry are determined. In the case of a short circuit accident S phase -T phase of transmission and distribution lines, as shown in FIG. 3 (b), the calculated correction circuit current I Ry 'and S phase -T phase of the line voltage V ST ( The magnitude and direction of the short-circuit current I Ry is determined based on the negative polarity.
When it is determined that a short-circuit accident has occurred in the transmission / distribution line, the short-circuit direction relay 4 collectively shuts off the first to third circuit breakers 2 1 to 2 3 .
(3) When T phase -R phase short fault when T-phase -R phase short-circuit accident occurs, as indicated by broken line arrow in FIG. 5, the short-circuit current of the T-phase to the T phase of the transmission and distribution lines I FT There flow inside direction, but the short-circuit current I FR of R-phase to R-phase of transmission and distribution lines to flow to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the short-circuit direction relay 4 becomes the R-phase short-circuit current I FR as shown by the solid line thick arrow in FIG. 5, and the amplitude of the short-circuit current I Ry is This is the amplitude of the R-phase short-circuit current I FR (see FIG. 3C).
I Ry = I FR
| I Ry | = | I FR |
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The corrected short-circuit current I Ry 'is calculated by multiplying the short-circuit current I Ry by 1.
I Ry '= I Ry × 1
| I Ry '| = | I Ry | × 1 = | I FR |
The short-circuit direction relay 4 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the magnitude and direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the T phase and the R phase of the transmission and distribution line, as shown in FIG. 3C, the calculated corrected short circuit current I Ry 'and the line voltage V TR (T phase to R phase) The magnitude and direction of the short-circuit current I Ry is determined based on the negative polarity.
When it is determined that a short-circuit accident has occurred in the transmission / distribution line, the short-circuit direction relay 4 collectively shuts off the first to third circuit breakers 2 1 to 2 3 .
(4) In the case of a short-circuit accident between R phase, S phase, and T phase When a short circuit accident between R phase, S phase, and T phase occurs, as shown by the dashed arrows in FIG. The R-phase short-circuit current I FR , the S-phase short-circuit current I FS, and the T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 degrees.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the short-circuit direction relay 4 is represented by the R-phase short-circuit current I FR and the S-phase short-circuit current I FS as shown by the solid thick arrows in FIG. Therefore, the amplitude of the short-circuit current I Ry is 3 1/2 times the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 3D).
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The short-circuit current I Ry is multiplied by 1/3 1/2 to calculate a corrected short-circuit current I Ry '.
I Ry '= I Ry × 1/3 1/2
| I Ry '| = | I Ry | × 1/3 1/2 - = | I FR | = | I FS |
The short-circuit direction relay 4 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the magnitude and direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the R phase, the S phase, and the T phase of the transmission / distribution line, as shown in FIG. 3D , the calculated corrected short circuit current I Ry ′ and the line voltage between the R phase and the S phase The magnitude and direction of the short circuit current I Ry is determined based on V RS .
When it is determined that a short-circuit accident has occurred in the transmission / distribution line, the short-circuit direction relay 4 collectively shuts off the first to third circuit breakers 2 1 to 2 3 .

なお、クロス貫通変流器10には送配電線のR相およびS相をクロスさせて貫通させたが、送配電線のS相およびT相をクロスさせて貫通させてもよいし、送配電線のT相およびR相をクロスさせて貫通させてもよい。   In addition, although the R phase and S phase of the transmission / distribution line are crossed and penetrated through the cross-through current transformer 10, the S phase and T phase of the transmission / distribution line may be crossed and penetrated. The T phase and R phase of the electric wire may be crossed and penetrated.

ただし、クロスさせる送配電線の相の組合せ(以下、「CT結線」と称する。)によって、短絡方向継電器4は、事故様相に応じて、表1に示す倍率で補正短絡電流IRy’を算出するとともに、算出した補正短絡電流IRy’と表2に示す線間電圧とに基づいて送配電線に短絡事故が発生したか否かを判定する。
なお、表1および表2において、CT結線の“+”はクロス貫通変流器の極性方向に貫通される相を示し、CT結線の“−”はクロス貫通変流器の反極性方向に貫通される相を示す。
However, the short-circuit direction relay 4 calculates the corrected short-circuit current I Ry ′ at the magnification shown in Table 1 according to the accident aspect, depending on the combination of phases of the transmission and distribution lines to be crossed (hereinafter referred to as “CT connection”). At the same time, based on the calculated corrected short-circuit current I Ry ′ and the line voltage shown in Table 2, it is determined whether or not a short-circuit accident has occurred in the transmission and distribution line.
In Tables 1 and 2, “+” in the CT connection indicates a phase that penetrates in the polarity direction of the cross-through current transformer, and “−” in the CT connection penetrates in the opposite polarity direction of the cross-through current transformer. The phase to be shown.

次に、本発明の第2の実施例による方向保護継電装置について、図7を参照して説明する。
本実施例による方向保護継電装置は、図7に示すように、送配電線のR相およびS相がクロスするように貫通されたクロス貫通変流器10と、母線に設置された計器用変圧器6と、クロス貫通変流器10から入力される短絡電流IRyと計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する距離継電器20とを具備する。
Next, a direction protection relay device according to a second embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 7, the direction protection relay device according to the present embodiment is for a cross-through current transformer 10 that is penetrated so that the R-phase and S-phase of the transmission and distribution lines cross each other, and an instrument installed on the bus. Calculated from the short-circuit current I Ry input from the transformer 6 and the cross-through current transformer 10 and the R-phase, S-phase, and T-phase phase voltages V R , V S , and V T input from the instrument transformer 6. When a short circuit accident of the transmission / distribution line is detected based on the line voltage V RS between the R phase and the S phase, the line voltage V ST between the S phase and the T phase, and the line voltage V TR between the T phase and the R phase, And a distance relay 20 that collectively shuts off the first to third circuit breakers 2 1 to 2 3 installed in the R phase, S phase, and T phase of the transmission and distribution line, respectively.

ここで、クロス貫通変流器10は、2次コイルを巻装した環状鉄心に送配電線のR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、送配電線のR相はクロス貫通変流器10の極性方向に貫通されているが、送配電線のS相はクロス貫通変流器10の反極性方向に貫通されている。
Here, the cross-through current transformer 10 is a through-type current transformer in which an R-phase and an S-phase of a transmission / distribution wire are crossed in an opposite direction and at an arbitrary angle through an annular core around which a secondary coil is wound. It is.
That is, the R phase of the transmission and distribution line is penetrated in the polarity direction of the cross-through current transformer 10, while the S phase of the transmission and distribution line is penetrated in the opposite polarity direction of the cross-through current transformer 10.

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、クロス貫通変流器10から距離継電器20に入力される負荷電流Iは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の負荷電流IRとS相の負荷電流ISとのベクトル差となり、負荷電流Iの振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となる。
I=IR−IS
|I|=|IR−IS|=31/2×|IR|=31/2×|IS
そこで、距離継電器20は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される負荷電流の振幅と同じにするために、次式で示すように負荷電流Iを2/31/2倍して補正負荷電流I’を算出する。
I’=I×2/31/2
|I’|=|I|×2/31/2-=2×|IR|=2×|IS
Therefore, when the load currents flowing in the R phase, S phase, and T phase of the transmission and distribution line when no short-circuit accident has occurred are represented by I R , I S , and I T , the distance relay 20 from the cross through current transformer 10 Is the vector difference between the R-phase load current I R and the S-phase load current I S in the same manner as in the case of the short-circuit direction relay 4 in the first embodiment described above. The amplitude of the current I is 3 1/2 times the amplitude of the R-phase load current I R (S-phase load current I S ).
I = I R −I S
| I | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I S |
Therefore, in order to make the distance relay 20 the same as the amplitude of the load current input to the conventional first to third distance relays 20 1 to 20 3 shown in FIG. The corrected load current I ′ is calculated by multiplying I by 2/3 1/2 .
I ′ = I × 2/3 1/2
| I ′ | = | I | × 2/3 1/2 − = 2 × | I R | = 2 × | I S |

また、送配電線に短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFT(インピーダンス角をθとする。)で表すと、距離継電器20は、事故様相に応じて以下のように動作する。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図7に破線の矢印で示すように、送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、クロス貫通変流器10から距離継電器20に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図3(a)参照)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=2×|IFR|=2×|IFS
そこで、距離継電器20は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1
|IRy’|=|IRy|×1-=2×|IFR|=2×|IFS
距離継電器20は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および短絡電流IRyの方向を判別する。なお、送配電線のR相−S相間の短絡事故の場合には、算出した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて事故点の距離および短絡電流IRyの方向が判別される(図3(a)参照)。
距離継電器20は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない(図4参照)。
したがって、クロス貫通変流器10から距離継電器20に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、極性が負のS相の短絡電流−IFSとなり、短絡電流IRyの振幅はS相の短絡電流IFSの振幅となる(図3(b)参照)。
Ry=−IFS
|IRy|=|IFS
そこで、距離継電器20は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×2
|IRy’|=|IRy|×2=2×|IFS
距離継電器20は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および短絡電流IRyの方向を判別する。なお、送配電線のS相−T相間の短絡事故の場合には、算出した補正短絡電流IRy’とS相−T相の線間電圧VST(極性が負)とに基づいて事故点の距離および短絡電流IRyの方向が判別される(図3(b)参照)。
距離継電器20は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない(図5参照)。
したがって、クロス貫通変流器10から距離継電器20に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFRとなり、短絡電流IRyの振幅はR相の短絡電流IFRの振幅となる(図3(c)参照)。
Ry=IFR
|IRy|=|IFR
そこで、距離継電器20は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×2
|IRy’|=|IRy|×2=2×|IFR
距離継電器20は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および短絡電流IRyの方向を判別する。なお、送配電線のT相−R相間の短絡事故の場合には、算出した補正短絡電流IRy’とT相−R相の線間電圧VTR(極性が負)とに基づいて事故点の距離および短絡電流IRyの方向が判別される(図3(c)参照)。
距離継電器20は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、送配電線のR相,S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120度で内部方向にそれぞれ流れる(図6参照)。
したがって、クロス貫通変流器10から距離継電器20に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図3(d)参照)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
そこで、距離継電器20は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを2/31/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×2/31/2
|IRy’|=|IRy|×2/31/2-=2×|IFR|=2×|IFS
距離継電器20は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および短絡電流IRyの方向を判別する。なお、送配電線のR相−S相−T相間の短絡事故の場合には、算出した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて事故点の距離および短絡電流IRyの方向が判別される(図3(d)参照)。
距離継電器20は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
In addition, when a short circuit accident occurs in the transmission / distribution line, the short-circuit currents flowing in the R phase, S phase, and T phase of the transmission / distribution line are represented by I FR , I FS , I FT (impedance angle is θ). The distance relay 20 operates as follows according to the accident aspect.
(1) When the short circuit in the case of a short-circuit accident R phase -S phase R phase -S phase occurs, as indicated by broken line arrow in FIG. 7, the short-circuit current of the R-phase to R-phase of transmission and distribution lines I FR There flow inside direction, but the short-circuit current I FS of S phase to the S phase of the transmission and distribution lines to flow to the outside direction, the T-phase of the transmission and distribution lines does not flow a short-circuit current I FT T-phase.
Accordingly, the short-circuit current I Ry input from the cross-through current transformer 10 to the distance relay 20 is the same as that of the short-circuit direction relay 4 in the first embodiment described above, and the R-phase short-circuit currents I FR and S This is a vector difference from the phase short-circuit current I FS, and the amplitude of the short-circuit current I Ry is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 3A). .
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
Therefore, distance relay 20, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 19, the short-circuit current as shown by the following formula The corrected short-circuit current I Ry ′ is calculated by multiplying I Ry by 1.
I Ry '= I Ry × 1
| I Ry '| = | I Ry | × 1− = 2 × | I FR | = 2 × | I FS |
The distance relay 20 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR Based on the above, the distance of the accident point and the direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the R phase and the S phase of the transmission and distribution line, the distance of the fault point and the short circuit current based on the calculated corrected short circuit current I Ry ′ and the line voltage V RS between the R phase and the S phase. The direction of I Ry is determined (see FIG. 3A).
The distance relay 20 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.
(2) In the case of a short-circuit accident between the S phase and the T phase When a short circuit accident between the S phase and the T phase occurs, the S phase short circuit current I FS flows in the S phase of the transmission and distribution line in the internal direction, and the T of the transmission and distribution line Although the T-phase short-circuit current I FT flows outward in the phase, the R-phase short-circuit current I FR does not flow in the R-phase of the transmission and distribution line (see FIG. 4).
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the distance relay 20 is the same as the short-circuit direction relay 4 in the first embodiment described above, and the S-phase short-circuit current having a negative polarity. −I FS and the amplitude of the short-circuit current I Ry becomes the amplitude of the S-phase short-circuit current I FS (see FIG. 3B).
I Ry = −I FS
| I Ry | = | I FS |
Therefore, distance relay 20, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 19, the short-circuit current as shown by the following formula by doubling the I Ry to calculate a correction circuit current I Ry '.
I Ry '= I Ry × 2
| I Ry '| = | I Ry | × 2 = 2 × | I FS |
The distance relay 20 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR Based on the above, the distance of the accident point and the direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the S phase and the T phase of the transmission / distribution line, the accident point is based on the calculated corrected short circuit current I Ry ′ and the line voltage V ST (negative polarity) between the S phase and the T phase. And the direction of the short-circuit current I Ry are determined (see FIG. 3B).
The distance relay 20 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, a T phase short circuit current I FT flows in the T phase of the transmission and distribution line, and the R of the transmission and distribution line. While the short-circuit current I FR of R-phase to phase flows to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase (see FIG. 5).
Accordingly, the short-circuit current I Ry input from the cross-through current transformer 10 to the distance relay 20 becomes the R-phase short-circuit current I FR in the same manner as the short-circuit direction relay 4 in the first embodiment described above. The amplitude of the short-circuit current I Ry is the amplitude of the R-phase short-circuit current I FR (see FIG. 3C).
I Ry = I FR
| I Ry | = | I FR |
Therefore, distance relay 20, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 19, the short-circuit current as shown by the following formula by doubling the I Ry to calculate a correction circuit current I Ry '.
I Ry '= I Ry × 2
| I Ry '| = | I Ry | × 2 = 2 × | I FR |
The distance relay 20 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR Based on the above, the distance of the accident point and the direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the T phase and the R phase of the transmission and distribution line, the accident point is based on the calculated corrected short circuit current I Ry ′ and the line voltage V TR (negative polarity) between the T phase and the R phase. And the direction of the short-circuit current I Ry are determined (see FIG. 3C).
The distance relay 20 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.
(4) In the case of a short circuit accident between R phase, S phase, and T phase When a short circuit accident between R phase, S phase, and T phase occurs, short circuit current I of R phase to R phase, S phase, and T phase of the transmission and distribution line FR , S-phase short-circuit current I FS and T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 degrees (see FIG. 6).
Accordingly, the short-circuit current I Ry input from the cross-through current transformer 10 to the distance relay 20 is the same as that of the short-circuit direction relay 4 in the first embodiment described above, and the R-phase short-circuit currents I FR and S becomes a vector difference between the short-circuit current I FS phase, short-circuit current amplitude I Ry is three half the amplitude of the short-circuit current I FR of R-phase (short-circuit current I FS of S phase) (FIG. 3 (d )reference).
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |
Therefore, distance relay 20, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 19, the short-circuit current as shown by the following formula The corrected short-circuit current I Ry 'is calculated by multiplying I Ry by 2/3 1/2 .
I Ry '= I Ry × 2/3 1/2
| I Ry '| = | I Ry | × 2/3 1 /2-= 2 × | I FR | = 2 × | I FS |
The distance relay 20 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR Based on the above, the distance of the accident point and the direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the R-phase, S-phase, and T-phase of the transmission / distribution line, the distance of the accident point is based on the calculated corrected short-circuit current I Ry ′ and the R-S-phase line voltage V RS. Then, the direction of the short-circuit current I Ry is determined (see FIG. 3D ).
The distance relay 20 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.

なお、クロス貫通変流器10には送配電線のR相およびS相をクロスさせて貫通させたが、送配電線のS相およびT相をクロスさせて貫通させてもよいし、送配電線のT相およびR相をクロスさせて貫通させてもよい。   In addition, although the R phase and S phase of the transmission / distribution line are crossed and penetrated through the cross-through current transformer 10, the S phase and T phase of the transmission / distribution line may be crossed and penetrated. The T phase and R phase of the electric wire may be crossed and penetrated.

ただし、CT結線によって、距離継電器20は、事故様相に応じて、表3に示す倍率で補正短絡電流IRy’を算出するとともに、算出した補正短絡電流IRy’と表2に示した線間電圧とに基づいて事故点の距離および短絡電流IRyの方向を判別して、送配電線に短絡事故が発生したか否かを判定する。
However, according to the CT connection, the distance relay 20 calculates the corrected short-circuit current I Ry ′ at the magnification shown in Table 3 according to the accident situation, and between the calculated corrected short-circuit current I Ry ′ and the line shown in Table 2 Based on the voltage, the distance of the fault point and the direction of the short-circuit current I Ry are discriminated to determine whether or not a short-circuit fault has occurred in the transmission and distribution line.

次に、本発明の第3の実施例による方向保護継電装置について、図8を参照して説明する。
本実施例による方向保護継電装置は、図8に示すように、平衡2回線送配電線の第1の送配電線1LのR相およびS相がクロスするように貫通された第1のクロス貫通変流器101と、平衡2回線送配電線の第2の送配電線2LのR相およびS相がクロスするように貫通された第2のクロス貫通変流器102と、母線に設置された計器用変圧器6と、第1のクロス貫通変流器101から入力される短絡電流および第2のクロス貫通変流器102から入力される短絡電流の差電流(以下、「短絡電流IRy」と称する。)と計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第1または第2の送配電線1L,2Lの短絡事故を検出すると、第1および第2の送配電線1L,2Lのうち短絡事故が発生した方(以下、「事故回線」と称する。)のR相、S相およびT相にそれぞれ設置された遮断器(第1の送配電線1LのR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23、または第2の送配電線2LのR相、S相およびT相にそれぞれ設置された第4乃至第6の遮断器24〜26)を一括遮断する回線選択継電器30とを具備する。
Next, a directional protection relay device according to a third embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 8, the directional protection relay device according to the present embodiment has a first cross that is penetrated so that the R phase and the S phase of the first transmission / distribution line 1L of the balanced two-line transmission / distribution line cross each other. through a current transformer 10 1, and the second cross through current transformer 10 2 that penetrate to R-phase and S-phase of the second transmission and distribution lines 2L equilibrium two-line transmission and distribution lines to cross, the bus The difference between the short-circuit current input from the installed instrument transformer 6 and the first cross-through current transformer 10 1 and the short-circuit current input from the second cross-through current transformer 10 2 (hereinafter, “ referred to as short-circuit current I Ry ".) and the R-phase input from the potential transformer 6, S-phase and phase voltage V R of the T-phase, V S, the line voltage of the R phase -S phase determined from V T V RS, S phase -T phase line voltage V ST and T-phase -R phase line voltage V TR and the first or second transmission and distribution lines 1L based on the When a 2L short-circuit accident is detected, the R-phase, S-phase, and T-phase of the first and second transmission / distribution lines 1L, 2L in which the short-circuit accident has occurred (hereinafter referred to as “accident line”) are respectively detected. Installed circuit breakers ( first to third circuit breakers 2 1 to 2 3 installed in the R phase, S phase and T phase of the first transmission and distribution line 1L, respectively, or the second transmission and distribution line 2L And a line selection relay 30 that collectively shuts off the fourth to sixth circuit breakers 2 4 to 2 6 ) respectively installed in the R phase, the S phase, and the T phase.

ここで、第1のクロス貫通変流器101は、2次コイルを巻装した環状鉄心に第1の送配電線1LのR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、第1の送配電線1LのR相は第1のクロス貫通変流器101の極性方向に貫通されているが、第1の送配電線1LのS相は第1のクロス貫通変流器101の反極性方向に貫通されている。
また、第2のクロス貫通変流器102は、第1のクロス貫通変流器101と同様に構成されているが、第2のクロス貫通変流器102から回線選択継電器30に入力される短絡電流の極性が第1のクロス貫通変流器101から回線選択継電器30に入力される短絡電流の極性の逆となるように回線選択継電器30と接続されている。
Here, the first cross through the current transformer 10 1 is the toroids were wound secondary coil are crossed at any angle and the R-phase and S-phase of the first transmission and distribution lines 1L reversed This is a penetrating through-type current transformer.
Ie, R-phase of the first transmission and distribution lines 1L is through the first polarity direction of the cross through the current transformer 10 1 but, S phase of the first transmission and distribution lines 1L is first cross through varying It is penetrated in the opposite polarity direction of Nagareki 10 1.
The second cross-through current transformer 10 2 is configured in the same manner as the first cross-through current transformer 10 1 , but is input to the line selection relay 30 from the second cross-through current transformer 10 2. the polarity of the short-circuit current is connected to the line selection relay 30 so that the opposite polarity of the short-circuit current which is input from the first cross through current transformer 10 1 for line selection relay 30.

したがって、短絡事故が発生していないときに第1の送配電線1LのR相、S相およびT相に流れる負荷電流をIR1,IS1,IT1で表すとともに第2の送配電線2LのR相、S相およびT相に流れる負荷電流をIR2,IS2,IT2で表すと、第1のクロス貫通変流器101から回線選択継電器30に入力される負荷電流i1は、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の負荷電流IR1とS相の負荷電流IS1とのベクトル差となり、負荷電流i1の振幅はR相の負荷電流IR1(S相の負荷電流IS1)の振幅の31/2倍となる。
1=IR1−IS1
|i1|=|IR1−IS1|=31/2×|IR1|=31/2×|IS1
同様に、第2のクロス貫通変流器102から回線選択継電器30に入力される負荷電流i2はR相の負荷電流IR2とS相の負荷電流IS2とのベクトル差の極性を反転したものとなり、負荷電流i2の振幅はR相の負荷電流IR2(S相の負荷電流IS2)の振幅の31/2倍となる。
2=IR2−IS2
|i2|=|IR2−IS2|=31/2×|IR2|=31/2×|IS2
その結果、回線選択継電器30に入力される負荷電流Iは負荷電流i1と負荷電流i2とのベクトル和となり、負荷電流Iの振幅は“0”となる(I=i1+i2=0)。
なお、回線選択継電器30は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される負荷電流の振幅と同じにするために、次式で示すように負荷電流Iを1/31/2倍して補正負荷電流I’を算出する。
I’=I×1/31/2
|I’|=|I|×1/31/2-
Therefore, the load current flowing in the R phase, S phase, and T phase of the first transmission / distribution line 1L when no short circuit accident has occurred is represented by I R1 , I S1 , I T1 and the second transmission / distribution line 2L. When the load currents flowing in the R-phase, S-phase, and T-phase are represented by I R2 , I S2 , and I T2 , the load current i 1 input from the first cross-through current transformer 10 1 to the line selection relay 30 is As in the case of the short-circuit direction relay 4 in the first embodiment, the vector difference between the R-phase load current I R1 and the S-phase load current I S1 is obtained, and the amplitude of the load current i 1 is R-phase. The load current I R1 (S-phase load current I S1 ) is 3 1/2 times the amplitude.
i 1 = I R1 −I S1
| I 1 | = | I R1 −I S1 | = 3 1/2 × | I R1 | = 3 1/2 × | I S1 |
Similarly, the load current i 2 input from the second cross-through current transformer 10 2 to the line selection relay 30 inverts the polarity of the vector difference between the R-phase load current I R2 and the S-phase load current I S2. Thus, the amplitude of the load current i 2 is 3 1/2 times the amplitude of the R-phase load current I R2 (S-phase load current I S2 ).
i 2 = I R2 −I S2
| I 2 | = | I R2 −I S2 | = 3 1/2 × | I R2 | = 3 1/2 × | I S2 |
As a result, the load current I input to the line selection relay 30 is a vector sum of the load current i 1 and the load current i 2, and the amplitude of the load current I is “0” (I = i 1 + i 2 = 0). ).
In order to make the line selection relay 30 the same as the amplitude of the load current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The corrected load current I ′ is calculated by multiplying the load current I by 1/3 1/2 .
I ′ = I × 1/3 1/2
| I '| = | I | × 1/3 1/ 2-

また、第1または第2の送配電線1L,2Lに短絡事故が発生したときに第1および第2の送配電線1L,2LのR相、S相およびT相に流れる短絡電流をIFR,IFS,IFT(インピーダンス角をθとする。)で表すと、回線選択継電器30は、事故様相に応じて以下のように動作する。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図8に破線の矢印で示すように、第1および第2の送配電線1L,2LのR相にR相の短絡電流IFRが内部方向に流れ、第1および第2の送配電線1L,2LのS相にS相の短絡電流IFSが外部方向に流れるが、第1および第2の送配電線1L,2LのT相にはT相の短絡電流IFTが流れない。
したがって、回線選択継電器30に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFR(第1の送配電線1LのR相に流れる短絡電流と第2の送配電線2LのR相に流れる短絡電流との差電流)とS相の短絡電流IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流)とのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図3(a)参照)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=2×|IFR|=2×|IFS
そこで、回線選択継電器30は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/2
|IRy’|=|IRy|×1/2-=|IFR|=|IFS
回線選択継電器30は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのR相−S相間の短絡事故の場合には、算出した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて事故回線が判別される(図3(a)参照)。
回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、第1および第2の送配電線1L,2LのS相にS相の短絡電流IFSが内部方向に流れ、第1および第2の送配電線1L,2LのT相にT相の短絡電流IFTが外部方向に流れるが、第1および第2の送配電線1L,2LのR相にはR相の短絡電流IFRが流れない(図4参照)。
したがって、回線選択継電器30に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、極性が負のS相の短絡電流−IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流の極性を反転したもの)となり、短絡電流IRyの振幅はS相の短絡電流IFSの振幅となる(図3(b)参照)。
Ry=−IFS
|IRy|=|IFS
そこで、回線選択継電器30は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1
|IRy’|=|IRy|×1=|IFS
回線選択継電器30は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのS相−T相間の短絡事故の場合には、算出した補正短絡電流IRy’とS相−T相の線間電圧VST(極性が負)とに基づいて事故回線が判別される(図3(b)参照)。
回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、第1および第2の送配電線1L,2LのT相にT相の短絡電流IFTが内部方向に流れ、第1および第2の送配電線1L,2LのR相にR相の短絡電流IFRが外部方向に流れるが、第1および第2の送配電線1L,2LのS相にはS相の短絡電流IFSが流れない(図5参照)。
したがって、回線選択継電器30に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFR(第1の送配電線1LのR相に流れる短絡電流と第2の送配電線2LのR相に流れる短絡電流との差電流)となり、短絡電流IRyの振幅はR相の短絡電流IFRの振幅となる(図3(c)参照)。
Ry=IFR
|IRy|=|IFR
そこで、回線選択継電器30は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1
|IRy’|=|IRy|×1=|IFR
回線選択継電器30は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのT相−R相間の短絡事故の場合には、算出した補正短絡電流IRy’とT相−R相の線間電圧VTR(極性が負)とに基づいて事故回線が判別される(図3(c)参照)。
回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、第1および第2の送配電線1L,2LのR相,S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる(図6参照)。
したがって、回線選択継電器30に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFR(第1の送配電線1LのR相に流れる短絡電流と第2の送配電線2LのR相に流れる短絡電流との差電流)とS相の短絡電流IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流)とのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図3(d)参照)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
そこで、回線選択継電器30は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/31/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/31/2
|IRy’|=|IRy|×1/31/2-=|IFR|=|IFS
回線選択継電器30は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのR相−S相−T相間の短絡事故の場合には、算出した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて事故回線が判別される(図3(d)参照)。
回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
In addition, when a short circuit accident occurs in the first or second transmission / distribution lines 1L, 2L, the short-circuit current flowing in the R phase, S phase, and T phase of the first and second transmission / distribution lines 1L, 2L is expressed as I FR , I FS , I FT (impedance angle is θ), the line selection relay 30 operates as follows according to the aspect of the accident.
(1) In the case of a short circuit accident between the R phase and the S phase When a short circuit accident between the R phase and the S phase occurs, the R of the first and second transmission / distribution lines 1L and 2L, as shown by the dashed arrows in FIG. An R-phase short-circuit current IFR flows in the internal direction, and an S-phase short-circuit current IFS flows in the S-phase of the first and second transmission and distribution lines 1L and 2L. The T-phase short circuit current I FT does not flow in the T-phase of the transmission and distribution lines 1L and 2L.
Therefore, the short-circuit current I Ry input to the line selection relay 30 is the same as that of the short-circuit direction relay 4 in the first embodiment described above, and the R-phase short-circuit current I FR (the first transmission / distribution line 1L). The short-circuit current flowing in the R phase of the second and the short-circuit current flowing in the R-phase of the second transmission and distribution line 2L) and the S-phase short-circuit current I FS (short-circuit current flowing in the S-phase of the first transmission and distribution line 1L) And the amplitude of the short-circuit current I Ry is the R-phase short-circuit current I FR (S-phase short-circuit current I FS ). It becomes twice the amplitude (see FIG. 3A).
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
Therefore, in order to make the line selection relay 30 the same as the amplitude of the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The short-circuit current I Ry is halved to calculate a corrected short-circuit current I Ry '.
I Ry '= I Ry × 1/2
| I Ry '| = | I Ry | × 1 / 2- = | I FR | = | I FS |
The line selection relay 30 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the accident line is determined. In the case of a short-circuit accident between the R-phase and S-phase of the first or second transmission and distribution lines 1L, 2L, the calculated corrected short-circuit current I Ry ′ and the R-phase to S-phase line voltage V RS Based on this, an accident line is determined (see FIG. 3A).
When the line selection relay 30 determines that a short-circuit accident has occurred in the first transmission / distribution line 1L, the line selection relay 30 disconnects the first to third circuit breakers 2 1 to 2 3 all together, and the second transmission / distribution line 2L If it is determined that a short circuit accident has occurred, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
(2) In the case of a short circuit accident between the S phase and the T phase When a short circuit accident between the S phase and the T phase occurs, the S phase short circuit current I FS is internally contained in the S phase of the first and second power transmission lines 1L and 2L. The T-phase short circuit current I FT flows outward in the T phase of the first and second transmission / distribution lines 1L, 2L, but the R phase of the first and second transmission / distribution lines 1L, 2L. No R-phase short-circuit current I FR flows (see FIG. 4).
Accordingly, the short-circuit current I Ry input to the line selection relay 30 is the same as the short-circuit direction relay 4 in the first embodiment described above, and the S-phase short-circuit current −I FS (first The polarity of the difference current between the short-circuit current flowing in the S-phase of the transmission / distribution line 1L and the short-circuit current flowing in the S-phase of the second transmission / distribution line 2L is inverted), and the amplitude of the short-circuit current I Ry is The amplitude of the short-circuit current I FS (see FIG. 3B).
I Ry = −I FS
| I Ry | = | I FS |
Therefore, in order to make the line selection relay 30 the same as the amplitude of the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The corrected short-circuit current I Ry 'is calculated by multiplying the short-circuit current I Ry by 1.
I Ry '= I Ry × 1
| I Ry '| = | I Ry | × 1 = | I FS |
The line selection relay 30 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the accident line is determined. In the case of a short circuit accident between the S phase and the T phase of the first or second transmission / distribution lines 1L, 2L, the calculated corrected short circuit current I Ry ′ and the line voltage V ST (polarity between the S phase and the T phase) Is negative), the accident line is determined (see FIG. 3B).
When the line selection relay 30 determines that a short-circuit accident has occurred in the first transmission / distribution line 1L, the line selection relay 30 disconnects the first to third circuit breakers 2 1 to 2 3 all together, and the second transmission / distribution line 2L If it is determined that a short circuit accident has occurred, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, the T phase short circuit current I FT is internally generated in the T phase of the first and second power transmission lines 1L and 2L. The R-phase short-circuit current IFR flows to the R phase of the first and second transmission and distribution lines 1L and 2L, but flows to the S phase of the first and second transmission and distribution lines 1L and 2L. No S-phase short-circuit current I FS flows (see FIG. 5).
Therefore, the short-circuit current I Ry input to the line selection relay 30 is the same as that of the short-circuit direction relay 4 in the first embodiment described above, and the R-phase short-circuit current I FR (the first transmission / distribution line 1L). 3) and the amplitude of the short-circuit current I Ry is the amplitude of the R-phase short-circuit current I FR (FIG. 3). (See (c)).
I Ry = I FR
| I Ry | = | I FR |
Therefore, in order to make the line selection relay 30 the same as the amplitude of the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The corrected short-circuit current I Ry 'is calculated by multiplying the short-circuit current I Ry by 1.
I Ry '= I Ry × 1
| I Ry '| = | I Ry | × 1 = | I FR |
The line selection relay 30 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the accident line is determined. In the case of a short-circuit accident between the T-phase and R-phase of the first or second transmission / distribution lines 1L, 2L, the calculated corrected short-circuit current I Ry ′ and the T-phase-R phase line voltage V TR (polarity Is negative), the accident line is determined (see FIG. 3C).
When the line selection relay 30 determines that a short-circuit accident has occurred in the first transmission / distribution line 1L, the line selection relay 30 disconnects the first to third circuit breakers 2 1 to 2 3 all together, and the second transmission / distribution line 2L If it is determined that a short circuit accident has occurred, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase When a short circuit accident between the R phase, the S phase, and the T phase occurs, the R phase, the S phase, and the first and second power transmission lines 1L and 2L An R-phase short-circuit current I FR , an S-phase short-circuit current I FS and a T-phase short-circuit current I FT flow in the T phase in the internal direction with a phase difference of 120 ° (see FIG. 6).
Therefore, the short-circuit current I Ry input to the line selection relay 30 is the same as that of the short-circuit direction relay 4 in the first embodiment described above, and the R-phase short-circuit current I FR (the first transmission / distribution line 1L). The short-circuit current flowing in the R phase of the second and the short-circuit current flowing in the R-phase of the second transmission and distribution line 2L) and the S-phase short-circuit current I FS (the short-circuit current flowing in the S-phase of the first transmission and distribution line 1L) And the amplitude of the short-circuit current I Ry is the R-phase short-circuit current I FR (S-phase short-circuit current I FS ). 3 1/2 times the amplitude (see FIG. 3D).
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |
Therefore, in order to make the line selection relay 30 the same as the amplitude of the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The short-circuit current I Ry is multiplied by 1/3 1/2 to calculate a corrected short-circuit current I Ry '.
I Ry '= I Ry × 1/3 1/2
| I Ry '| = | I Ry | × 1/3 1/2 - = | I FR | = | I FS |
The line selection relay 30 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the accident line is determined. In the case of a short-circuit accident between the R-phase, S-phase, and T-phase of the first or second transmission / distribution lines 1L, 2L, the calculated corrected short-circuit current I Ry 'and the R-phase-S-phase line voltage V An accident line is determined based on the RS (see FIG. 3D).
When the line selection relay 30 determines that a short-circuit accident has occurred in the first transmission / distribution line 1L, the line selection relay 30 disconnects the first to third circuit breakers 2 1 to 2 3 all together, and the second transmission / distribution line 2L If it is determined that a short circuit accident has occurred, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.

なお、第1のクロス貫通変流器101には第1の送配電線1LのR相およびS相をクロスさせて貫通させたが、第1の送配電線1LのS相およびT相をクロスさせて貫通させてもよいし、第1の送配電線1LのT相およびR相をクロスさせて貫通させてもよい。
第2のクロス貫通変流器102についても同様である。
Note that the first cross through the current transformer 10 1 has been passed through by cross the R-phase and S-phase of the first transmission and distribution lines 1L, the S phase and T-phase of the first transmission and distribution lines 1L It may be crossed and penetrated, or the T phase and R phase of the first power transmission and distribution line 1L may be crossed and penetrated.
The same applies to the second cross-through current transformer 10 2 .

ただし、CT結線によって、回線選択継電器30は、事故様相に応じて、表1に示した倍率で補正短絡電流IRy’を算出するとともに、算出した補正短絡電流IRy’と表2に示した線間電圧とに基づいて事故回線を判別して、第1または第2の送配電線1L,2Lに短絡事故が発生したか否かを判定する。 However, according to the CT connection, the line selection relay 30 calculates the corrected short-circuit current I Ry ′ at the magnification shown in Table 1 according to the accident aspect, and the calculated corrected short-circuit current I Ry ′ and the table shown in Table 2. The fault line is determined based on the line voltage, and it is determined whether or not a short-circuit fault has occurred in the first or second transmission / distribution lines 1L, 2L.

次に、本発明の第4の実施例による方向保護継電装置について、図9乃至図15を参照して説明する。
本実施例による方向保護継電装置は、図9に示すように、送配電線のR相およびS相がクロスするように貫通された第1のクロス貫通変流器101と、送配電線のS相およびT相がクロスするように貫通された第2のクロス貫通変流器102と、母線に設置された計器用変圧器6と、第1のクロス貫通変流器101から入力される第1の短絡電流IRy1と計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する第1の短絡方向継電器41と、第2のクロス貫通変流器102から入力される第2の短絡電流IRy2と計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて送配電線の短絡事故を検出すると、第1乃至第3の遮断器21〜23を一括遮断する第2の短絡方向継電器42とを具備する。
Next, a directional protection relay device according to a fourth embodiment of the present invention will be described with reference to FIGS.
Direction protective relay apparatus according to this embodiment, as shown in FIG. 9, the first cross through current transformer 10 1 R-phase and S-phase of the transmission and distribution lines are through to cross, transmission and distribution lines the second cross through current transformer 10 2 that penetrate to S-phase and T-phase is cross, the instrument transformer 6 installed to the bus, the first cross through input from current transformer 10 1 R-S phase line voltage obtained from the first short-circuit current I Ry1 and the R-phase, S-phase, and T-phase voltages V R , V S , V T input from the instrument transformer 6 When a short circuit fault is detected on the transmission / distribution line based on V RS , S-phase / T-phase line voltage V ST and T-phase / R-phase line voltage V TR , the R-phase, S-phase and a first short directional relay 4 1 collectively blocking the first to third circuit breaker 2 1 to 2 3 of which are respectively installed on the T-phase, a second cross through current transformer 1 The second short-circuit current I Ry2 and R-phase inputted from the potential transformer 6 which is input from the 2, S-phase and T-phase phase voltage V R of, V S, the R-phase -S phase determined from V T If a short circuit accident of the transmission / distribution line is detected based on the line voltage V RS , the S-phase / T-phase line voltage V ST and the T-phase / R-phase line voltage V TR , the first to third interruptions are detected. vessels to 2 1 to 2 3 comprises a second and short directional relay 4 2 for collectively blocking.

ここで、第1のクロス貫通変流器101は、2次コイルを巻装した環状鉄心に送配電線のR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器であり、第2のクロス貫通変流器102は、2次コイルを巻装した環状鉄心に送配電線のS相およびT相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、送配電線のR相は第1のクロス貫通変流器101の極性方向に貫通されているが、送配電線のS相は第1のクロス貫通変流器101の反極性方向に貫通されている。同様に、送配電線のS相は第2のクロス貫通変流器102の極性方向に貫通されているが、送配電線のT相は第2のクロス貫通変流器102の反極性方向に貫通されている。
Here, the first cross through the current transformer 10 1, through which is passed through by a cross at any angle and R-phase and S-phase of the transmission and distribution lines to the annular core formed by winding a secondary coil in the opposite direction It forms a current transformer, a second cross through current transformer 10 2, by the cross at any angle and S-phase and T-phase of the transmission and distribution lines to the annular core formed by winding a secondary coil in the opposite direction This is a penetrating through-type current transformer.
Ie, R-phase of the electric transmission has been through the first polarity direction of the cross through the current transformer 10 1, S-phase first opposite polarity direction of the cross through the current transformer 10 first transmission and distribution lines It is penetrated by. Similarly, S-phase of the electric transmission has been through the second polarity direction of the cross through the current transformer 10 2, T-phase of the electric transmission a second opposite polarity cross the through current transformer 10 2 Penetrated in the direction.

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、図10に示すようにR相の負荷電流IRとS相の負荷電流ISとが120°の位相差で第1のクロス貫通変流器101の環状鉄心を逆向きに貫通して流れる(すなわち、R相の負荷電流IRは第1のクロス貫通変流器101の環状鉄心を極性方向に貫通して流れ、S相の負荷電流ISは第1のクロス貫通変流器101の環状鉄心を反極性方向に貫通して流れる)ため、第1のクロス貫通変流器101から第1の短絡方向継電器41に入力される第1の負荷電流I1はR相の負荷電流IRとS相の負荷電流ISとのベクトル差となり、第1の負荷電流I1の振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となる。
1=IR−IS
|I1|=|IR−IS|=31/2×|IR|=31/2×|IS
そこで、第1の短絡方向継電器41は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される負荷電流の振幅と同じにするために、次式で示すように第1の負荷電流I1を1/31/2倍して第1の補正負荷電流I1’を算出する。
1’=I1×1/31/2
|I1’|=|I1|×1/31/2-=|IR|=|IS
同様に、図10に示すようにS相の負荷電流ISとT相の負荷電流ITとが120°の位相差で第2のクロス貫通変流器102の環状鉄心を逆向きに貫通して流れる(すなわち、S相の負荷電流ISは第2のクロス貫通変流器102の環状鉄心を極性方向に貫通して流れ、T相の負荷電流ITは第2のクロス貫通変流器102の環状鉄心を反極性方向に貫通して流れる)ため、第2のクロス貫通変流器102から第2の短絡方向継電器42に入力される第2の負荷電流I2はS相の負荷電流ISとT相の負荷電流ITとのベクトル差となり、第2の負荷電流I2の振幅はS相の負荷電流IS(T相の負荷電流IT)の振幅の31/2倍となる。
2=IS−IT
|I2|=|IS−IT|=31/2×|IS|=31/2×|IT
そこで、第2の短絡方向継電器42は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される負荷電流の振幅と同じにするために、次式で示すように第2の負荷電流I2を1/31/2倍して第2の補正負荷電流I2’を算出する。
2’=I2×1/31/2
|I2’|=|I2|×1/31/2-=|IS|=|IT
Therefore, when the load currents flowing in the R phase, S phase, and T phase of the transmission / distribution line when no short circuit accident has occurred are represented by I R , I S , and I T , as shown in FIG. The current I R and the S-phase load current I S flow through the annular core of the first cross-through current transformer 101 1 in a reverse direction with a phase difference of 120 ° (that is, the R-phase load current I R Flows through the annular iron core of the first cross-through current transformer 10 1 in the polarity direction, and the S-phase load current I S penetrates the annular iron core of the first cross-through current transformer 10 1 in the opposite polarity direction. to flow), the first load current I 1 is the load of the R-phase current I R and S phases of the load current inputted from the first cross through current transformer 10 1 in the first short directional relay 4 1 It becomes a vector difference between the I S, a first amplitude of the load current I 1 is a 3 1/2 times the amplitude of the load R-phase current I R (load current I S of the S-phase) Become.
I 1 = I R −I S
| I 1 | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I S |
Therefore, in order first short directional relay 4 1, be the same as the amplitude of the load current inputted to the first to third short directional relay 41 to 3 of prior art shown in FIG. 18, the following equation As shown in FIG. 1, the first corrected load current I 1 ′ is calculated by multiplying the first load current I 1 by 1/3 1/2 .
I 1 '= I 1 × 1/3 1/2
| I 1 '| = | I 1 | × 1/3 1/ 2- = | I R | = | I S |
Similarly, through the load current I S and T phases of the load current I T and the second cross through current transformer 10 and second annular core with a phase difference of 120 ° in the S-phase, as shown in FIG. 10 in the opposite direction (That is, the S-phase load current I S flows through the annular core of the second cross-through current transformer 102 2 in the polarity direction, and the T-phase load current I T is the second cross-through current change). Nagareki 10 2 toroid flows through the opposite polarity direction), the second load current I 2 which is input from the second cross through current transformer 10 2 in the second short directional relay 4 2 It becomes a vector difference between the S-phase load current I S and the T-phase load current I T, and the amplitude of the second load current I 2 is the amplitude of the S-phase load current I S (T-phase load current I T ). 3 1/2 times.
I 2 = I S −I T
| I 2 | = | I S -I T | = 3 1/2 × | I S | = 3 1/2 × | I T |
Therefore, in order to make the second short-circuit direction relay 4 2 have the same amplitude as the load current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. As shown, the second load current I 2 ′ is calculated by multiplying the second load current I 2 by 1/3 1/2 .
I 2 '= I 2 × 1/3 1/2
| I 2 '| = | I 2 | × 1/3 1/2 - = | I S | = | I T |

また、送配電線において短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFT(インピーダンス角をθとする。)で表すと、第1および第2の短絡方向継電器41,42は、事故様相に応じて以下のように動作する。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図9に破線の矢印で示すように、送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、第1のクロス貫通変流器101から第1の短絡方向継電器41に入力される第1の短絡電流IRy1は、図9に実線の太矢印で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図11(a−1)参照。なお、図11および図12においては、送配電線の内部方向に流れる短絡電流IFR,IFS,IFTは実線の矢印で、送配電線の外部方向に流れる短絡電流IFR,IFS,IFTは一点鎖線の矢印で示している。))。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=2×|IFR|=2×|IFS
そこで、第1の短絡方向継電器41は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を1/2倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×1/2
|IRy1’|=|IRy1|×1/2-=|IFR|=|IFS
第1の短絡方向継電器41は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第1の短絡電流IRy1の大きさおよび方向を判別する。なお、送配電線のR相−S相間の短絡事故の場合には、図11(a−1)に示すように、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRSとに基づいて第1の短絡電流IRy1の大きさおよび方向が判別される。
第1の短絡方向継電器41は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
また、第2のクロス貫通変流器102から第2の短絡方向継電器42に入力される第2の短絡電流IRy2は、図9に破線の太矢印で示すようにS相の短絡電流IFSとなり、第2の短絡電流IRy2の振幅はS相の短絡電流IFSの振幅となる(図11(a−2)参照)。
Ry2=IFS
|IRy2|=|IFS
そこで、第2の短絡方向継電器42は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を1倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×1
|IRy2’|=|IRy2|×1-=|IFS
第2の短絡方向継電器42は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第2の短絡電流IRy2の大きさおよび方向を判別する。なお、送配電線のR相−S相間の短絡事故の場合には、図11(a−2)に示すように、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS(極性が負)とに基づいて第2の短絡電流IRy2の大きさおよび方向が判別される。
第2の短絡方向継電器42は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、図13に破線の矢印で示すように、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない。
したがって、第1のクロス貫通変流器101から第1の短絡方向継電器41に入力される第1の短絡電流IRy1は、図13に実線の太矢印で示すように極性が負のS相の短絡電流−IFSとなり、第1の短絡電流IRy1の振幅はS相の短絡電流IFSの振幅となる(図11(b−1)参照)。
Ry1=−IFS
|IRy1|=|IFS
そこで、第1の短絡方向継電器41は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を1倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×1
|IRy1’|=|IRy1|×1=|IFS
第1の短絡方向継電器41は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第1の短絡電流IRy1の大きさおよび方向を判別する。なお、送配電線のS相−T相間の短絡事故の場合には、図11(b−1)に示すように、算出した第1の補正短絡電流IRy1’とS相−T相の線間電圧VST(極性が負)とに基づいて第1の短絡電流IRy1の大きさおよび方向が判別される。
第1の短絡方向継電器41は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
また、第2のクロス貫通変流器102から第2の短絡方向継電器42に入力される第2の短絡電流IRy2は、図13に破線の太矢印で示すようにS相の短絡電流IFSとT相の短絡電流IFTとのベクトル差となり、第2の短絡電流IRy2の振幅はS相の短絡電流IFS(T相の短絡電流IFT)の振幅の2倍となる(図11(b−2)参照)。
Ry2=IFS−IFT
|IRy2|=|IFS−IFT|=2×|IFS|=2×|IFT
そこで、第2の短絡方向継電器42は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を1/2倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×1/2
|IRy2’|=|IRy2|×1/2-=|IFS|=|IFT
第2の短絡方向継電器42は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第2の短絡電流IRy2の大きさおよび方向を判別する。なお、送配電線のS相−T相間の短絡事故の場合には、図11(b−2)に示すように、算出した第2の補正短絡電流IRy2’とS相−T相の線間電圧VSTとに基づいて第2の短絡電流IRy2の大きさおよび方向が判別される。
第2の短絡方向継電器42は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、図14に破線の矢印で示すように、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない。
したがって、第1のクロス貫通変流器101から第1の短絡方向継電器41に入力される第1の短絡電流IRy1は、図14に実線の太矢印で示すようにR相の短絡電流IFRとなり、第1の短絡電流IRy1の振幅はR相の短絡電流IFRの振幅となる(図12(a−1)参照)。
Ry1=IFR
|IRy1|=|IFR
そこで、第1の短絡方向継電器41は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を1倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×1
|IRy1’|=|IRy1|×1=|IFR
第1の短絡方向継電器41は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第1の短絡電流IRy1の大きさおよび方向を判別する。なお、送配電線のT相−R相間の短絡事故の場合には、図12(a−1)に示すように、算出した第1の補正短絡電流IRy1’とT相−R相の線間電圧VTR(極性が負)とに基づいて第1の短絡電流IRy1の大きさおよび方向が判別される。
第1の短絡方向継電器41は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
また、第2のクロス貫通変流器102から第2の短絡方向継電器42に入力される第2の短絡電流IRy2は、図14に破線の太矢印で示すように極性が負のT相の短絡電流−IFTとなり、第2の短絡電流IRy2の振幅はT相の短絡電流IFTの振幅となる(図12(a−2)参照)。
Ry2=−IFT
|IRy2|=|IFT
そこで、第2の短絡方向継電器42は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を1倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×1
|IRy2’|=|IRy2|×1=|IFT
第2の短絡方向継電器42は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第2の短絡電流IRy2の大きさおよび方向を判別する。なお、送配電線のT相−R相間の短絡事故の場合には、図12(a−2)に示すように、算出した第2の補正短絡電流IRy2’とT相−R相の線間電圧VTR(極性が負)とに基づいて第2の短絡電流IRy2の大きさおよび方向が判別される。
第2の短絡方向継電器42は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、図15に破線の矢印で示すように、送配電線のR相,S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる。
したがって、第1のクロス貫通変流器101から第1の短絡方向継電器41に入力される第1の短絡電流IRy1は、図15に実線の太矢印で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図12(b−1)参照)。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
そこで、第1の短絡方向継電器41は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を1/31/2倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×1/31/2
|IRy1’|=|IRy1|×1/31/2-=|IFR|=|IFS
第1の短絡方向継電器41は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第1の短絡電流IRy1の大きさおよび方向を判別する。なお、送配電線のR相−S相−T相間の短絡事故の場合には、図12(b−1)に示すように、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRSとに基づいて第1の短絡電流IRy1の大きさおよび方向が判別される。
第1の短絡方向継電器41は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
また、第2のクロス貫通変流器102から第2の短絡方向継電器42に入力される第2の短絡電流IRy2は、図15に破線の太矢印で示すようにS相の短絡電流IFSとT相の短絡電流IFTとのベクトル差となり、第2の短絡電流IRy2の振幅はS相の短絡電流IFS(T相の短絡電流IFT)の振幅の31/2倍となる(図12(b−2)参照)。
Ry2=IFS−IFT
|IRy2|=|IFS−IFT|=31/2×|IFS|=31/2×|IFT
そこで、第2の短絡方向継電器42は、図18に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を1/31/2倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×1/31/2
|IRy2’|=|IRy2|×1/31/2-=|IFS|=|IFT
第2の短絡方向継電器42は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第2の短絡電流IRy2の大きさおよび方向を判別する。なお、送配電線のR相−S相−T相間の短絡事故の場合には、図12(b−2)に示すように、算出した第2の補正短絡電流IRy2’とS相−T相の線間電圧VSTとに基づいて第2の短絡電流IRy2の大きさおよび方向が判別される。
第2の短絡方向継電器42は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
In addition, when a short circuit accident occurs in the transmission / distribution line, the short-circuit currents flowing in the R phase, S phase, and T phase of the transmission / distribution line are expressed as I FR , I FS , I FT (impedance angle is θ) The first and second short-circuit direction relays 4 1 and 4 2 operate as follows according to the accident aspect.
(1) When the short circuit in the case of a short-circuit accident R phase -S phase R phase -S phase occurs, as indicated by broken line arrow in FIG. 9, the short-circuit current of the R-phase to R-phase of transmission and distribution lines I FR There flow inside direction, but the short-circuit current I FS of S phase to the S phase of the transmission and distribution lines to flow to the outside direction, the T-phase of the transmission and distribution lines does not flow a short-circuit current I FT T-phase.
Accordingly, the first short-circuit current I Ry1 inputted from the first cross through current transformer 10 1 in the first short directional relay 4 1, short-circuit current of the R-phase as shown by the solid line in bold arrow in FIG. 9 The vector difference between I FR and the S-phase short-circuit current I FS, and the amplitude of the first short-circuit current I Ry1 is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) ( 11 (a-1) In addition, in Fig. 11 and Fig. 12, the short-circuit currents I FR , I FS , I FT flowing in the inner direction of the transmission / distribution line are solid arrows, The flowing short-circuit currents I FR , I FS , and I FT are indicated by dashed-dotted arrows)).
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
Therefore, in order to make the first short-circuit direction relay 4 1 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. As shown in FIG. 1, the first corrected short-circuit current I Ry1 ′ is calculated by multiplying the first short-circuit current I Ry1 by ½.
I Ry1 '= I Ry1 × 1/2
| I Ry1 '| = | I Ry1 | × 1 / 2- = | I FR | = | I FS |
The first short directional relay 4 1, the first correction circuit current I Ry1 'and R phase -S phase line voltage V RS of, S interphase -T phase of the line voltage V ST and T phases calculated -R The magnitude and direction of the first short-circuit current I Ry1 are determined based on the phase line voltage V TR . In the case of a short circuit accident between the R phase and the S phase of the transmission and distribution line, as shown in FIG. 11 (a-1), the calculated first corrected short circuit current I Ry1 ′ and the R phase to S phase line The magnitude and direction of the first short-circuit current I Ry1 is determined based on the inter-voltage V RS .
The first short-circuit direction relay 4 1 collectively cuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short-circuit accident has occurred in the transmission and distribution line.
Further, the second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second short-circuit direction relay 4 2 is an S-phase short-circuit current as indicated by a broken thick arrow in FIG. I FS , and the amplitude of the second short-circuit current I Ry2 is the amplitude of the S-phase short-circuit current I FS (see FIG. 11A-2).
I Ry2 = I FS
| I Ry2 | = | I FS |
Therefore, in order to make the second short-circuit direction relay 4 2 have the same amplitude as the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. As shown, the second corrected short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by one.
I Ry2 '= I Ry2 × 1
| I Ry2 '| = | I Ry2 | × 1- = | I FS |
Second short directional relay 4 2, the second correction circuit current I Ry2 'and R phase -S phase line voltage V RS of the line voltage of the S-phase -T phase V ST and T phases -R calculated The magnitude and direction of the second short-circuit current I Ry2 are determined based on the phase line voltage V TR . In the case of a short circuit accident between the R phase and the S phase of the transmission and distribution line, as shown in FIG. 11 (a-2), the calculated second corrected short circuit current I Ry2 ′ and the R phase to S phase line The magnitude and direction of the second short-circuit current I Ry2 are determined based on the inter-voltage V RS (polarity is negative).
The second short circuit direction relay 4 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.
(2) S-phase -T For short circuit between the phases when the short circuit of the S-phase -T phase occurs, as indicated by broken line arrow in FIG. 13, the short-circuit current of the S-phase to the S phase of the transmission and distribution lines I FS There flow inside direction, but the short-circuit current I FT T-phase to the T phase of the transmission and distribution lines to flow to the outside direction, the R-phase of the transmission and distribution lines does not flow a short-circuit current I FR of R-phase.
Accordingly, the first short-circuit current I Ry1 inputted from the first cross through current transformer 10 1 in the first short directional relay 4 1, polar, as indicated by the solid line in bold arrow in FIG. 13 is negative S The short-circuit current −I FS of the phase is obtained, and the amplitude of the first short-circuit current I Ry1 is the amplitude of the S-phase short-circuit current I FS (see FIG. 11B-1).
I Ry1 = -I FS
| I Ry1 | = | I FS |
Therefore, in order to make the first short-circuit direction relay 4 1 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. As shown, the first short-circuit current I Ry1 is multiplied by 1 to calculate the first corrected short-circuit current I Ry1 ′.
I Ry1 '= I Ry1 × 1
| I Ry1 '| = | I Ry1 | × 1 = | I FS |
The first short directional relay 4 1, the first correction circuit current I Ry1 'and R phase -S phase line voltage V RS of, S interphase -T phase of the line voltage V ST and T phases calculated -R The magnitude and direction of the first short-circuit current I Ry1 are determined based on the phase line voltage V TR . In the case of a short circuit accident between the S phase and the T phase of the power transmission and distribution line, as shown in FIG. 11 (b-1), the calculated first corrected short circuit current I Ry1 ′ and the S phase-T phase line The magnitude and direction of the first short-circuit current I Ry1 is determined based on the inter-voltage V ST (polarity is negative).
The first short-circuit direction relay 4 1 collectively cuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short-circuit accident has occurred in the transmission and distribution line.
Further, the second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second short-circuit direction relay 4 2 is an S-phase short-circuit current as indicated by a broken thick arrow in FIG. The vector difference between I FS and the T-phase short-circuit current I FT, and the amplitude of the second short-circuit current I Ry2 is twice the amplitude of the S-phase short-circuit current I FS (T-phase short-circuit current I FT ) ( (Refer FIG.11 (b-2)).
I Ry2 = I FS -I FT
| I Ry2 | = | I FS −I FT | = 2 × | I FS | = 2 × | I FT |
Therefore, in order to make the second short-circuit direction relay 4 2 have the same amplitude as the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. As shown in FIG. 2, the second short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by ½.
I Ry2 '= I Ry2 × 1/2
| I Ry2 '| = | I Ry2 | × 1 / 2- = | I FS | = | I FT |
Second short directional relay 4 2, the second correction circuit current I Ry2 'and R phase -S phase line voltage V RS of the line voltage of the S-phase -T phase V ST and T phases -R calculated The magnitude and direction of the second short-circuit current I Ry2 are determined based on the phase line voltage V TR . In the case of a short circuit accident between the S phase and the T phase of the transmission and distribution line, as shown in FIG. 11 (b-2), the calculated second corrected short circuit current I Ry2 ′ and the line between the S phase and the T phase The magnitude and direction of the second short-circuit current I Ry2 is determined based on the inter-voltage V ST .
The second short circuit direction relay 4 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.
(3) When T phase -R phase short fault when T-phase -R phase short-circuit accident occurs, as indicated by broken line arrow in FIG. 14, the short-circuit current of the T-phase to the T phase of the transmission and distribution lines I FT There flow inside direction, but the short-circuit current I FR of R-phase to R-phase of transmission and distribution lines to flow to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase.
Accordingly, the first short-circuit current I Ry1 inputted from the first cross through current transformer 10 1 in the first short directional relay 4 1, short-circuit current of the R-phase as shown by the solid line in bold arrow in FIG. 14 I FR , and the amplitude of the first short-circuit current I Ry1 is the amplitude of the R-phase short-circuit current I FR (see FIG. 12A-1).
I Ry1 = I FR
| I Ry1 | = | I FR
Therefore, in order to make the first short-circuit direction relay 4 1 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. As shown, the first short-circuit current I Ry1 is multiplied by 1 to calculate the first corrected short-circuit current I Ry1 ′.
I Ry1 '= I Ry1 × 1
| I Ry1 '| = | I Ry1 | × 1 = | I FR |
The first short directional relay 4 1, the first correction circuit current I Ry1 'and R phase -S phase line voltage V RS of, S interphase -T phase of the line voltage V ST and T phases calculated -R The magnitude and direction of the first short-circuit current I Ry1 are determined based on the phase line voltage V TR . In addition, in the case of a short circuit accident between the T phase and the R phase of the transmission and distribution line, as shown in FIG. 12 (a-1), the calculated first corrected short circuit current I Ry1 ′ and the T phase-R phase line The magnitude and direction of the first short-circuit current I Ry1 is determined based on the inter-voltage V TR (polarity is negative).
The first short-circuit direction relay 4 1 collectively cuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short-circuit accident has occurred in the transmission and distribution line.
Further, the second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second short-circuit direction relay 4 2 has a negative polarity T as shown by the broken thick arrow in FIG. The short-circuit current −I FT of the phase is obtained, and the amplitude of the second short-circuit current I Ry2 is the amplitude of the short-circuit current I FT of the T-phase (see FIG. 12A-2).
I Ry2 = −I FT
| I Ry2 | = | I FT |
Therefore, in order to make the second short-circuit direction relay 4 2 have the same amplitude as the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. As shown, the second corrected short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by one.
I Ry2 '= I Ry2 × 1
| I Ry2 '| = | I Ry2 | × 1 = | I FT |
Second short directional relay 4 2, the second correction circuit current I Ry2 'and R phase -S phase line voltage V RS of the line voltage of the S-phase -T phase V ST and T phases -R calculated The magnitude and direction of the second short-circuit current I Ry2 are determined based on the phase line voltage V TR . In the case of a short circuit accident between the T phase and the R phase of the transmission and distribution line, as shown in FIG. 12 (a-2), the calculated second corrected short circuit current I Ry2 ′ and the T phase to R phase line The magnitude and direction of the second short-circuit current I Ry2 are determined based on the inter-voltage V TR (polarity is negative).
The second short circuit direction relay 4 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.
(4) In the case of a short circuit accident between R phase, S phase, and T phase When a short circuit accident occurs between R phase, S phase, and T phase, as indicated by the dashed arrows in FIG. The R-phase short-circuit current I FR , the S-phase short-circuit current I FS, and the T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 ° in the phase and the T phase, respectively.
Accordingly, a first short-circuit current I Ry1 inputted from the first cross through current transformer 10 1 in the first short directional relay 4 1, short-circuit current of the R-phase as shown by the solid line in bold arrow in FIG. 15 The vector difference between I FR and S-phase short-circuit current I FS, and the amplitude of first short-circuit current I Ry1 is 3 1/2 times the amplitude of R-phase short-circuit current I FR (S-phase short-circuit current I FS ) (See FIG. 12B-1).
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |
Therefore, in order to make the first short-circuit direction relay 4 1 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. As shown in FIG. 1, the first corrected short-circuit current I Ry1 ′ is calculated by multiplying the first short-circuit current I Ry1 by 1/3 1/2 .
I Ry1 '= I Ry1 × 1/3 1/2
| I Ry1 '| = | I Ry1 | × 1/3 1/2 - = | I FR | = | I FS |
The first short directional relay 4 1, the first correction circuit current I Ry1 'and R phase -S phase line voltage V RS of, S interphase -T phase of the line voltage V ST and T phases calculated -R The magnitude and direction of the first short-circuit current I Ry1 are determined based on the phase line voltage V TR . In the case of a short circuit accident R phase -S phase -T phase of electric transmission, FIG. 12 (b-1) as shown in, the first correction circuit current I Ry1 'and R phase -S calculated The magnitude and direction of the first short-circuit current I Ry1 are determined based on the phase line voltage V RS .
The first short-circuit direction relay 4 1 collectively cuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short-circuit accident has occurred in the transmission and distribution line.
Further, the second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second short-circuit direction relay 4 2 is the S-phase short-circuit current as indicated by the broken thick arrow in FIG. The vector difference between I FS and T-phase short-circuit current I FT, and the amplitude of second short-circuit current I Ry2 is 3 1/2 times the amplitude of S-phase short-circuit current I FS (T-phase short-circuit current I FT ) (See FIG. 12B-2).
I Ry2 = I FS -I FT
| I Ry2 | = | I FS −I FT | = 3 1/2 × | I FS | = 3 1/2 × | I FT |
Therefore, in order to make the second short-circuit direction relay 4 2 have the same amplitude as the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. As shown in FIG. 2, the second corrected short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by 1/3 1/2 .
I Ry2 '= I Ry2 × 1/3 1/2
| I Ry2 '| = | I Ry2 | × 1/3 1/2 - = | I FS | = | I FT |
Second short directional relay 4 2, the second correction circuit current I Ry2 'and R phase -S phase line voltage V RS of the line voltage of the S-phase -T phase V ST and T phases -R calculated The magnitude and direction of the second short-circuit current I Ry2 are determined based on the phase line voltage V TR . In the case of a short circuit accident between the R phase, the S phase, and the T phase of the transmission and distribution line, as shown in FIG. 12B-2, the calculated second corrected short circuit current I Ry2 ′ and the S phase-T The magnitude and direction of the second short-circuit current I Ry2 are determined based on the phase line voltage V ST .
The second short circuit direction relay 4 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.

なお、第1のクロス貫通変流器101には送配電線のR相およびS相をクロスさせて貫通させるとともに第2のクロス貫通変流器102には送配電線のS相およびT相をクロスさせて貫通させたが、第1および第2のクロス貫通変流器101,102にクロスさせて貫通させる送配電線の2相は他の組合せでもよい。 The first cross through current transformer 10 1 crosses and penetrates the R phase and S phase of the power transmission and distribution line, and the second cross through current transformer 10 2 has the S phase and T of the power transmission and distribution line. While phases were allowed to penetrate by the cross, two phases of transmission and distribution lines to penetrate by cross the first and second cross through current transformer 10 1, 10 2 may be other combinations.

ただし、CT結線によって、第1および第2の短絡方向継電器41,42は、事故様相に応じて、表1に示した倍率で第1および第2の補正短絡電流IRy1’,IRy2’を算出するとともに、算出した第1および第2の補正短絡電流IRy1’,IRy2’と表2に示した線間電圧とに基づいて第1および第2の短絡電流IRy1,IRy2の大きさおよび方向を判別して、送配電線に短絡事故が発生したか否かを判定する。 However, due to the CT connection, the first and second short-circuit direction relays 4 1 and 4 2 have the first and second corrected short-circuit currents I Ry1 ′ and I Ry2 at the magnification shown in Table 1 according to the accident situation. 'calculates the first and second correction circuit current I Ry1 calculated', first and second short-circuit current I Ry1 on the basis of the line voltage shown as in Table 2 I Ry2 ', I Ry2 It is determined whether or not a short circuit accident has occurred in the transmission and distribution line.

次に、本発明の第5の実施例による方向保護継電装置について、図16を参照して説明する。
本実施例による方向保護継電装置は、図16に示すように、送配電線のR相およびS相がクロスするように貫通された第1のクロス貫通変流器101と、送配電線のS相およびT相がクロスするように貫通された第2のクロス貫通変流器102と、母線に設置された計器用変圧器6と、第1のクロス貫通変流器101から入力される第1の短絡電流IRy1と計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する第1の距離継電器201と、第2のクロス貫通変流器102から入力される第2の短絡電流IRy2と計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて送配電線の短絡事故を検出すると、第1乃至第3の遮断器21〜23を一括遮断する第2の距離継電器202とを具備する。
Next, a directional protection relay device according to a fifth embodiment of the present invention will be described with reference to FIG.
Direction protective relay apparatus according to this embodiment, as shown in FIG. 16, a first cross through current transformer 10 1 R-phase and S-phase of the transmission and distribution lines are through to cross, transmission and distribution lines The second cross-through current transformer 10 2 penetrated so that the S phase and the T phase cross each other, the instrument transformer 6 installed on the bus, and the first cross-through current transformer 10 1. the first short-circuit current I Ry1 and R-phase input from the potential transformer 6, S-phase and phase voltage V R of the T-phase, V S, the line voltage of the R phase -S phase determined from V T to be When a short circuit fault is detected on the transmission / distribution line based on V RS , S-phase / T-phase line voltage V ST and T-phase / R-phase line voltage V TR , the R-phase, S-phase and first distance relay 20 1 for collectively blocking the first to third circuit breaker 2 1 to 2 3 of which are respectively installed on the T-phase, a second cross through current transformer 1 The second short-circuit current I Ry2 and R-phase inputted from the potential transformer 6 which is input from the 2, S-phase and T-phase phase voltage V R of, V S, the R-phase -S phase determined from V T If a short circuit accident of the transmission / distribution line is detected based on the line voltage V RS , the S-phase / T-phase line voltage V ST and the T-phase / R-phase line voltage V TR , the first to third interruptions are detected. And a second distance relay 20 2 that collectively shuts off the devices 2 1 to 2 3 .

ここで、第1のクロス貫通変流器101は、2次コイルを巻装した環状鉄心に送配電線のR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器であり、第2のクロス貫通変流器102は、2次コイルを巻装した環状鉄心に送配電線のS相およびT相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、送配電線のR相は第1のクロス貫通変流器101の極性方向に貫通されているが、送配電線のS相は第1のクロス貫通変流器101の反極性方向に貫通されている。同様に、送配電線のS相は第2のクロス貫通変流器102の極性方向に貫通されているが、送配電線のT相は第2のクロス貫通変流器102の反極性方向に貫通されている。
Here, the first cross through the current transformer 10 1, through which is passed through by a cross at any angle and R-phase and S-phase of the transmission and distribution lines to the annular core formed by winding a secondary coil in the opposite direction It forms a current transformer, a second cross through current transformer 10 2, by the cross at any angle and S-phase and T-phase of the transmission and distribution lines to the annular core formed by winding a secondary coil in the opposite direction This is a penetrating through-type current transformer.
Ie, R-phase of the electric transmission has been through the first polarity direction of the cross through the current transformer 10 1, S-phase first opposite polarity direction of the cross through the current transformer 10 first transmission and distribution lines It is penetrated by. Similarly, S-phase of the electric transmission has been through the second polarity direction of the cross through the current transformer 10 2, T-phase of the electric transmission a second opposite polarity cross the through current transformer 10 2 Penetrated in the direction.

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、第1のクロス貫通変流器101から第1の距離継電器201に入力される第1の負荷電流I1は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、R相の負荷電流IRとS相の負荷電流ISとのベクトル差となり、第1の負荷電流I1の振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となる。
1=IR−IS
|I1|=|IR−IS|=31/2×|IR|=31/2×|IS
そこで、第1の距離継電器201は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される負荷電流の振幅と同じにするために、次式で示すように第1の負荷電流I1を2/31/2倍して第1の補正負荷電流I1’を算出する。
1’=I1×2/31/2
|I1’|=|I1|×2/31/2-=2×|IR|=2×|IS
同様に、第2のクロス貫通変流器102から第2の距離継電器202に入力される第2の負荷電流I2は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、S相の負荷電流ISとT相の負荷電流ITとのベクトル差となり、第2の負荷電流I2の振幅はS相の負荷電流IS(T相の負荷電流IT)の振幅の31/2倍となる。
2=IS−IT
|I2|=|IS−IT|=31/2×|IS|=31/2×|IT
そこで、第2の距離継電器202は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される負荷電流の振幅と同じにするために、次式で示すように第2の負荷電流I2を2/31/2倍して第2の補正負荷電流I2’を算出する。
2’=I2×2/31/2
|I2’|=|I2|×2/31/2-=2×|IS|=2×|IT
Therefore, when the load currents flowing in the R-phase, S-phase, and T-phase of the transmission / distribution line when no short circuit accident has occurred are represented by I R , I S , I T , the first cross-through current transformer 10 1 from the first load current I 1 which is input to the first distance relay 20 1, as in the case of the fourth embodiment the first short directional relay in example 4 1 described above, the R-phase load current I The vector difference between the R and S phase load currents I S, and the amplitude of the first load current I 1 is 3 1/2 times the amplitude of the R phase load current I R (S phase load current I S ). Become.
I 1 = I R −I S
| I 1 | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I S |
Therefore, first distance relay 20 1, to the same as the amplitude of the load current inputted to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 19, indicated by the following formula Thus, the first corrected load current I 1 ′ is calculated by multiplying the first load current I 1 by 2/3 1/2 .
I 1 '= I 1 × 2/3 1/2
| I 1 ′ | = | I 1 | × 2/3 1/2 − = 2 × | I R | = 2 × | I S |
Similarly, the second load current I 2 input from the second cross-through current transformer 10 2 to the second distance relay 20 2 is the second short-circuit direction relay 4 2 in the fourth embodiment described above. In the same manner as described above, the vector difference between the S-phase load current I S and the T-phase load current I T results in the amplitude of the second load current I 2 being the S-phase load current I S (the T-phase load 3 1/2 times the amplitude of the current I T ).
I 2 = I S −I T
| I 2 | = | I S -I T | = 3 1/2 × | I S | = 3 1/2 × | I T |
Therefore, the second distance relay 20 2 is expressed by the following equation in order to make it the same as the amplitude of the load current input to the conventional first to third distance relays 20 1 to 20 3 shown in FIG. Thus, the second corrected load current I 2 ′ is calculated by multiplying the second load current I 2 by 2/3 1/2 .
I 2 '= I 2 × 2/3 1/2
| I 2 '| = | I 2 | × 2/3 1 /2-= 2 × | I S | = 2 × | I T |

また、送配電線において短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFT(インピーダンス角をθとする。)で表すと、第1および第2の距離継電器201,202は、事故様相に応じて以下のように動作する。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図16に破線の矢印で示すように、送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、第1のクロス貫通変流器101から第1の距離継電器201に入力される第1の短絡電流IRy1は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、R相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図11(a−1)参照)。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=2×|IFR|=2×|IFS
そこで、第1の距離継電器201は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を1倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×1
|IRy1’|=|IRy1|-×1=2×|IFR|=2×|IFS
第1の距離継電器201は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および第1の短絡電流IRy1の方向を判別する。なお、送配電線のR相−S相間の短絡事故の場合には、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRSとに基づいて事故点の距離および第1の短絡電流IRy1の方向が判別される(図11(a−1)参照)。
第1の距離継電器201は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
また、第2のクロス貫通変流器102から第2の距離継電器202に入力される第2の短絡電流IRy2は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、S相の短絡電流IFSとなり、第2の短絡電流IRy2の振幅はS相の短絡電流IFSの振幅となる(図11(a−2)参照)。
Ry2=IFS
|IRy2|=|IFS
そこで、第2の距離継電器202は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を2倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×2
|IRy2’|=|IRy2|×2-=2×|IFS
第2の距離継電器202は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および第2の短絡電流IRy2の方向を判別する。なお、送配電線のR相−S相間の短絡事故の場合には、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS(極性が負)とに基づいて事故点の距離および第2の短絡電流IRy2の方向が判別される(図11(a−2)参照)。
第2の距離継電器202は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない(図13参照)。
したがって、第1のクロス貫通変流器101から第1の距離継電器201に入力される第1の短絡電流IRy1は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、極性が負のS相の短絡電流−IFSとなり、第1の短絡電流IRy1の振幅はS相の短絡電流IFSの振幅となる(図11(b−1)参照)。
Ry1=−IFS
|IRy1|=|IFS
そこで、第1の距離継電器201は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を2倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×2
|IRy1’|=|IRy1|×2=2×|IFS
第1の距離継電器201は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および第1の短絡電流IRy1の方向を判別する。なお、送配電線のS相−T相間の短絡事故の場合には、算出した第1の補正短絡電流IRy1’とS相−T相の線間電圧VST(極性が負)とに基づいて事故点の距離および第1の短絡電流IRy1の方向が判別される(図11(b−1)参照)。
第1の距離継電器201は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
また、第2のクロス貫通変流器102から第2の距離継電器202に入力される第2の短絡電流IRy2は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、S相の短絡電流IFSとT相の短絡電流IFTとのベクトル差となり、第2の短絡電流IRy2の振幅はS相の短絡電流IFS(T相の短絡電流IFT)の振幅の2倍となる(図11(b−2)参照)。
Ry2=IFS−IFT
|IRy2|=|IFS−IFT|=2×|IFS|=2×|IFT
そこで、第2の距離継電器202は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を1倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×1-
|IRy2’|=|IRy2|×1-=2×|IFS|=2×|IFT
第2の距離継電器202は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および第2の短絡電流IRy2の方向を判別する。なお、送配電線のS相−T相間の短絡事故の場合には、算出した第2の補正短絡電流IRy2’とS相−T相の線間電圧VSTとに基づいて事故点の距離および第2の短絡電流IRy2の方向が判別される(図11(b−2)参照)。
第2の距離継電器202は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない(図14参照)。
したがって、第1のクロス貫通変流器101から第1の距離継電器201に入力される第1の短絡電流IRy1は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、R相の短絡電流IFRとなり、第1の短絡電流IRy1の振幅はR相の短絡電流IFRの振幅となる(図12(a−1)参照)。
Ry1=IFR
|IRy1|=|IFR
そこで、第1の距離継電器201は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を2倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×2
|IRy1’|=|IRy1|×2=2×|IFR
第1の距離継電器201は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および第1の短絡電流IRy1の方向を判別する。なお、送配電線のT相−R相間の短絡事故の場合には、算出した第1の補正短絡電流IRy1’とT相−R相の線間電圧VTR(極性が負)とに基づいて事故点の距離および第1の短絡電流IRy1の方向が判別される(図12(a−1)参照)。
第1の距離継電器201は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
また、第2のクロス貫通変流器102から第2の距離継電器202に入力される第2の短絡電流IRy2は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、極性が負のT相の短絡電流−IFTとなり、第2の短絡電流IRy2の振幅はT相の短絡電流IFTの振幅となる(図12(a−2)参照)。
Ry2=−IFT
|IRy2|=|IFT
そこで、第2の距離継電器202は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を2倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×2
|IRy2’|=|IRy2|×2=2×|IFT
第2の距離継電器202は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および第2の短絡電流IRy2の方向を判別する。なお、送配電線のT相−R相間の短絡事故の場合には、算出した第2の補正短絡電流IRy2’とT相−R相の線間電圧VTR(極性が負)とに基づいて事故点の距離および第2の短絡電流IRy2の方向が判別される(図12(a−2)参照)。
第2の距離継電器202は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、送配電線のR相,S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる(図15参照)。
したがって、第1のクロス貫通変流器101から第1の距離継電器201に入力される第1の短絡電流IRy1は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、R相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図12(b−1)参照)。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
そこで、第1の距離継電器201は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を2/31/2倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×2/31/2
|IRy1’|=|IRy1|×2/31/2-=2×|IFR|=2×|IFS
第1の距離継電器201は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および第1の短絡電流IRy1の方向を判別する。なお、送配電線のR相−S相−T相間の短絡事故の場合には、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRSとに基づいて事故点の距離および第1の短絡電流IRy1の方向が判別される(図12(a−1)参照)。
第1の距離継電器201は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
また、第2のクロス貫通変流器102から第2の距離継電器202に入力される第2の短絡電流IRy2は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、S相の短絡電流IFSとT相の短絡電流IFTとのベクトル差となり、第2の短絡電流IRy2の振幅はS相の短絡電流IFS(T相の短絡電流IFT)の振幅の31/2倍となる(図12(b−2)参照)。
Ry2=IFS−IFT
|IRy2|=|IFS−IFT|=31/2×|IFS|=31/2×|IFT
そこで、第2の距離継電器202は、図19に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を2/31/2倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×2/31/2
|IRy2’|=|IRy2|×2/31/2-=2×|IFS|=2×|IFT
第2の距離継電器202は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および第2の短絡電流IRy2の方向を判別する。なお、送配電線のR相−S相−T相間の短絡事故の場合には、算出した第2の補正短絡電流IRy2’とS相−T相の線間電圧VSTとに基づいて事故点の距離および第2の短絡電流IRy2の方向が判別される(図12(b−2)参照)。
第2の距離継電器202は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
In addition, when a short circuit accident occurs in the transmission / distribution line, the short-circuit currents flowing in the R phase, S phase, and T phase of the transmission / distribution line are expressed as I FR , I FS , I FT (impedance angle is θ). The first and second distance relays 20 1 and 20 2 operate as follows according to the accident aspect.
(1) If a short circuit accident R phase -S phase R phase -S phase short accident occurs, as indicated by broken line arrow in FIG. 16, the short-circuit current of the R-phase to R-phase of transmission and distribution lines I FR There flow inside direction, but the short-circuit current I FS of S phase to the S phase of the transmission and distribution lines to flow to the outside direction, the T-phase of the transmission and distribution lines does not flow a short-circuit current I FT T-phase.
Thus, the first cross through current transformer 10 1 first short-circuit current I Ry1 which is input to the first distance relay 20 1, the first in the fourth embodiment described above short directional relay 4 1 As in the case, the vector difference between the R-phase short-circuit current I FR and the S-phase short-circuit current I FS is obtained, and the amplitude of the first short-circuit current I Ry1 is the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) is twice the amplitude (see FIG. 11 (a-1)).
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
Therefore, first distance relay 20 1, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 19, indicated by the following formula Thus, the first corrected short circuit current I Ry1 ′ is calculated by multiplying the first short circuit current I Ry1 by one.
I Ry1 '= I Ry1 × 1
| I Ry1 '| = | I Ry1 |-× 1 = 2 × | I FR | = 2 × | I FS |
First distance relay 20 1, a first correction circuit current I Ry1 'and line voltage V RS of the R-phase -S phase, S phase -T phase line voltage V ST and T-phase -R phase calculated Based on the line voltage V TR , the distance of the fault point and the direction of the first short-circuit current I Ry1 are determined. In the case of a short circuit accident between the R phase and S phase of the transmission / distribution line, the distance of the fault point is based on the calculated first corrected short circuit current I Ry1 ′ and the line voltage V RS between the R phase and the S phase. And the direction of 1st short circuit current IRy1 is discriminate | determined (refer FIG. 11 (a-1)).
First distance relay 20 1, short circuit to the electric transmission is collectively cut off to the first to third circuit breaker 2 1 to 2 3 determined to have occurred.
The second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second distance relay 20 2 is the same as that of the second short-circuit direction relay 4 2 in the fourth embodiment described above. Similarly to the case, the S-phase short-circuit current I FS is obtained , and the amplitude of the second short-circuit current I Ry2 is the amplitude of the S-phase short-circuit current I FS (see FIG. 11A-2).
I Ry2 = I FS
| I Ry2 | = | I FS |
Therefore, the second distance relay 20 2 is expressed by the following equation in order to make it the same as the amplitude of the short-circuit current input to the conventional first to third distance relays 20 1 to 20 3 shown in FIG. a second short-circuit current I Ry2 calculating a second correction circuit current I Ry2 'is doubled as.
I Ry2 '= I Ry2 × 2
| I Ry2 '| = | I Ry2 | × 2− = 2 × | I FS |
Second distance relay 20 2, the second correction circuit current I Ry2 'and line voltage V RS of the R-phase -S phase, S phase -T phase line voltage V ST and T-phase -R phase calculated determine the direction of the distance of the fault point and the second short-circuit current I Ry2 based inter line to the voltage V TR. In the case of a short-circuit accident between the R phase and S phase of the transmission and distribution line, based on the calculated second corrected short circuit current I Ry2 ′ and the R-S phase line voltage V RS (negative polarity). Thus, the distance of the accident point and the direction of the second short-circuit current I Ry2 are determined (see FIG. 11 (a-2)).
The second distance relay 20 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.
(2) In the case of a short-circuit accident between the S phase and the T phase When a short circuit accident between the S phase and the T phase occurs, the S phase short circuit current I FS flows in the S phase of the transmission and distribution line in the internal direction, and the T of the transmission and distribution line Although the T-phase short-circuit current I FT flows in the external direction in the phase, the R-phase short-circuit current I FR does not flow in the R-phase of the transmission and distribution line (see FIG. 13).
Thus, the first cross through current transformer 10 1 first short-circuit current I Ry1 which is input to the first distance relay 20 1, the first in the fourth embodiment described above short directional relay 4 1 Similarly to the case, the negative polarity S-phase short-circuit current −I FS is obtained , and the amplitude of the first short-circuit current I Ry1 is the amplitude of the S-phase short-circuit current I FS (see FIG. 11B-1). ).
I Ry1 = -I FS
| I Ry1 | = | I FS |
Therefore, first distance relay 20 1, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 19, indicated by the following formula the first short-circuit current I Ry1 to calculate a first correction circuit current I Ry1 'is doubled as.
I Ry1 '= I Ry1 × 2
| I Ry1 '| = | I Ry1 | × 2 = 2 × | I FS |
First distance relay 20 1, a first correction circuit current I Ry1 'and line voltage V RS of the R-phase -S phase, S phase -T phase line voltage V ST and T-phase -R phase calculated Based on the line voltage V TR , the distance of the fault point and the direction of the first short-circuit current I Ry1 are determined. In the case of a short circuit accident between the S phase and the T phase of the transmission and distribution line, based on the calculated first corrected short circuit current I Ry1 ′ and the line voltage V ST (negative polarity) between the S phase and the T phase. Thus, the distance of the accident point and the direction of the first short-circuit current I Ry1 are determined (see FIG. 11B-1).
First distance relay 20 1, short circuit to the electric transmission is collectively cut off to the first to third circuit breaker 2 1 to 2 3 determined to have occurred.
The second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second distance relay 20 2 is the same as that of the second short-circuit direction relay 4 2 in the fourth embodiment described above. As in the case, the vector difference between the S-phase short-circuit current I FS and the T-phase short-circuit current I FT is obtained, and the amplitude of the second short-circuit current I Ry2 is the S-phase short-circuit current I FS (T-phase short-circuit current I FT ) is twice the amplitude (see FIG. 11B-2).
I Ry2 = I FS -I FT
| I Ry2 | = | I FS −I FT | = 2 × | I FS | = 2 × | I FT |
Therefore, the second distance relay 20 2 is expressed by the following equation in order to make it the same as the amplitude of the short-circuit current input to the conventional first to third distance relays 20 1 to 20 3 shown in FIG. Thus, the second corrected short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by 1.
I Ry2 '= I Ry2 × 1-
| I Ry2 '| = | I Ry2 | × 1− = 2 × | I FS | = 2 × | I FT |
Second distance relay 20 2, the second correction circuit current I Ry2 'and line voltage V RS of the R-phase -S phase, S phase -T phase line voltage V ST and T-phase -R phase calculated determine the direction of the distance of the fault point and the second short-circuit current I Ry2 based inter line to the voltage V TR. In the case of a short circuit accident between the S phase and the T phase of the transmission / distribution line, the distance of the accident point based on the calculated second corrected short circuit current I Ry2 ′ and the line voltage V ST between the S phase and the T phase. And the direction of 2nd short circuit current IRy2 is discriminate | determined (refer FIG.11 (b-2)).
The second distance relay 20 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, a T phase short circuit current I FT flows in the T phase of the transmission and distribution line, and the R of the transmission and distribution line. While the short-circuit current I FR of R-phase to phase flows to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S-phase (see Figure 14).
Thus, the first cross through current transformer 10 1 first short-circuit current I Ry1 which is input to the first distance relay 20 1, the first in the fourth embodiment described above short directional relay 4 1 Similarly to the case, the R-phase short-circuit current I FR is obtained , and the amplitude of the first short-circuit current I Ry1 is the amplitude of the R-phase short-circuit current I FR (see FIG. 12A-1).
I Ry1 = I FR
| I Ry1 | = | I FR
Therefore, first distance relay 20 1, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 19, indicated by the following formula the first short-circuit current I Ry1 to calculate a first correction circuit current I Ry1 'is doubled as.
I Ry1 '= I Ry1 × 2
| I Ry1 '| = | I Ry1 | × 2 = 2 × | I FR |
First distance relay 20 1, a first correction circuit current I Ry1 'and line voltage V RS of the R-phase -S phase, S phase -T phase line voltage V ST and T-phase -R phase calculated Based on the line voltage V TR , the distance of the fault point and the direction of the first short-circuit current I Ry1 are determined. In the case of a short circuit accident between the T phase and the R phase of the transmission and distribution line, based on the calculated first corrected short circuit current I Ry1 ′ and the T-R phase line voltage V TR (polarity is negative). Thus, the distance of the accident point and the direction of the first short-circuit current I Ry1 are determined (see FIG. 12 (a-1)).
First distance relay 20 1, short circuit to the electric transmission is collectively cut off to the first to third circuit breaker 2 1 to 2 3 determined to have occurred.
The second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second distance relay 20 2 is the same as that of the second short-circuit direction relay 4 2 in the fourth embodiment described above. Similarly to the case, the T-phase short-circuit current −I FT having a negative polarity is obtained, and the amplitude of the second short-circuit current I Ry2 is the amplitude of the T-phase short-circuit current I FT (see FIG. 12A-2). ).
I Ry2 = −I FT
| I Ry2 | = | I FT |
Therefore, the second distance relay 20 2 is expressed by the following equation in order to make it the same as the amplitude of the short-circuit current input to the conventional first to third distance relays 20 1 to 20 3 shown in FIG. a second short-circuit current I Ry2 calculating a second correction circuit current I Ry2 'is doubled as.
I Ry2 '= I Ry2 × 2
| I Ry2 '| = | I Ry2 | × 2 = 2 × | I FT |
Second distance relay 20 2, the second correction circuit current I Ry2 'and line voltage V RS of the R-phase -S phase, S phase -T phase line voltage V ST and T-phase -R phase calculated determine the direction of the distance of the fault point and the second short-circuit current I Ry2 based inter line to the voltage V TR. In the case of a short-circuit accident between the T-phase and R-phase of the power transmission and distribution line, based on the calculated second corrected short-circuit current I Ry2 ′ and the T-phase-R line voltage V TR (negative polarity). Thus, the distance of the accident point and the direction of the second short-circuit current I Ry2 are determined (see FIG. 12A-2).
The second distance relay 20 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.
(4) In the case of a short circuit accident between R phase, S phase, and T phase When a short circuit accident between R phase, S phase, and T phase occurs, short circuit current I of R phase to R phase, S phase, and T phase of the transmission and distribution line FR , S-phase short-circuit current I FS and T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 ° (see FIG. 15).
Thus, the first cross through current transformer 10 1 first short-circuit current I Ry1 which is input to the first distance relay 20 1, the first in the fourth embodiment described above short directional relay 4 1 As in the case, the vector difference between the R-phase short-circuit current I FR and the S-phase short-circuit current I FS is obtained, and the amplitude of the first short-circuit current I Ry1 is the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) is 3 1/2 times the amplitude (see FIG. 12B-1).
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |
Therefore, first distance relay 20 1, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 19, indicated by the following formula Thus, the first corrected short-circuit current I Ry1 ′ is calculated by multiplying the first short-circuit current I Ry1 by 2/3 1/2 .
I Ry1 '= I Ry1 × 2/3 1/2
| I Ry1 '| = | I Ry1 | × 2/3 1 /2-= 2 × | I FR | = 2 × | I FS |
First distance relay 20 1, a first correction circuit current I Ry1 'and line voltage V RS of the R-phase -S phase, S phase -T phase line voltage V ST and T-phase -R phase calculated Based on the line voltage V TR , the distance of the fault point and the direction of the first short-circuit current I Ry1 are determined. In the case of a short circuit accident between the R phase, the S phase, and the T phase of the transmission and distribution line, the accident is based on the calculated first corrected short circuit current I Ry1 ′ and the line voltage V RS between the R phase and the S phase. The distance between the points and the direction of the first short-circuit current I Ry1 are determined (see FIG. 12A-1).
First distance relay 20 1, short circuit to the electric transmission is collectively cut off to the first to third circuit breaker 2 1 to 2 3 determined to have occurred.
The second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second distance relay 20 2 is the same as that of the second short-circuit direction relay 4 2 in the fourth embodiment described above. As in the case, the vector difference between the S-phase short-circuit current I FS and the T-phase short-circuit current I FT is obtained, and the amplitude of the second short-circuit current I Ry2 is the S-phase short-circuit current I FS (T-phase short-circuit current I FT ) is 3 1/2 times the amplitude (see FIG. 12B-2).
I Ry2 = I FS -I FT
| I Ry2 | = | I FS −I FT | = 3 1/2 × | I FS | = 3 1/2 × | I FT |
Therefore, the second distance relay 20 2 is expressed by the following equation in order to make it the same as the amplitude of the short-circuit current input to the conventional first to third distance relays 20 1 to 20 3 shown in FIG. Thus, the second corrected short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by 2/3 1/2 .
I Ry2 '= I Ry2 × 2/3 1/2
| I Ry2 '| = | I Ry2 | × 2/3 1 /2-= 2 × | I FS | = 2 × | I FT |
Second distance relay 20 2, the second correction circuit current I Ry2 'and line voltage V RS of the R-phase -S phase, S phase -T phase line voltage V ST and T-phase -R phase calculated determine the direction of the distance of the fault point and the second short-circuit current I Ry2 based inter line to the voltage V TR. In the case of a short circuit accident between the R phase, the S phase, and the T phase of the transmission and distribution line, the accident is based on the calculated second corrected short circuit current I Ry2 ′ and the line voltage V ST between the S phase and the T phase. The distance between the points and the direction of the second short-circuit current I Ry2 are determined (see FIG. 12B-2).
The second distance relay 20 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3 when it is determined that a short circuit accident has occurred in the transmission and distribution line.

なお、第1のクロス貫通変流器101には送配電線のR相およびS相をクロスさせて貫通させるとともに第2のクロス貫通変流器102には送配電線のS相およびT相をクロスさせて貫通させたが、第1および第2のクロス貫通変流器101,102にクロスさせて貫通させる送配電線の2相は他の組合せでもよい。 The first cross through current transformer 10 1 crosses and penetrates the R phase and S phase of the power transmission and distribution line, and the second cross through current transformer 10 2 has the S phase and T of the power transmission and distribution line. While phases were allowed to penetrate by the cross, two phases of transmission and distribution lines to penetrate by cross the first and second cross through current transformer 10 1, 10 2 may be other combinations.

ただし、CT結線によって、第1および第2の距離継電器201,202は、事故様相に応じて、表3に示した倍率で第1および第2の補正短絡電流IRy1’,IRy2’を算出するとともに、算出した第1および第2の補正短絡電流IRy1’,IRy2’と表2に示した線間電圧とに基づいて事故点の距離および第1および第2の短絡電流IRy1,IRy2の方向を判別して、送配電線に短絡事故が発生したか否かを判定する。 However, the CT connection, first and second distance relay 20 1, 20 2, depending on the accident aspect, the magnification at the first and second correction circuit current I Ry1 shown in Table 3 ', I Ry2' calculates the first and second correction circuit current I calculated Ry1 ', I Ry2' the distance of the accident point on the basis of the line voltage as shown in tables 2 and first and second short-circuit current I Ry1, to determine the direction of the I Ry2, determines whether the short-circuit fault occurs in the transmission and distribution lines.

次に、本発明の第6の実施例による方向保護継電装置について、図17を参照して説明する。
本実施例による方向保護継電装置は、図17に示すように、平衡2回線送配電線の第1の送配電線1LのR相およびS相がクロスするように貫通された第1のクロス貫通変流器101と、平衡2回線送配電線の第2の送配電線2LのR相およびS相がクロスするように貫通された第2のクロス貫通変流器102と、第1の送配電線1Lの送配電線のS相およびT相がクロスするように貫通された第3のクロス貫通変流器103と、第2の送配電線2Lの送配電線のS相およびT相がクロスするように貫通された第4のクロス貫通変流器104と、母線に設置された計器用変圧器6と、第1のクロス貫通変流器101から入力される短絡電流および第2のクロス貫通変流器102から入力される短絡電流の差電流(以下、「第1の短絡電流IRy1」と称する。)と計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第1または第2の送配電線1L,2Lの短絡事故を検出すると、第1および第2の送配電線1L,2Lのうち短絡事故が発生した方(以下、「事故回線」と称する。)のR相、S相およびT相にそれぞれ設置された遮断器(第1の送電線1LのR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23、または第2の送電線2LのR相、S相およびT相にそれぞれ設置された第4乃至第6の遮断器24〜26)を一括遮断する第1の回線選択継電器301と、第3のクロス貫通変流器103から入力される短絡電流および第4のクロス貫通変流器104から入力される短絡電流の差電流(以下、「第2の短絡電流IRy2」と称する。)と計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第1または第2の送配電線1L,2Lの短絡事故を検出すると、事故回線のR相、S相およびT相にそれぞれ設置された遮断器(第1乃至第3の遮断器21〜23または第4乃至第6の遮断器24〜26)を一括遮断する第2の回線選択継電器302とを具備する。
Next, a directional protection relay device according to a sixth embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 17, the directional protection relay device according to the present embodiment has a first cross that is penetrated so that the R phase and the S phase of the first transmission / distribution line 1L of the balanced two-line transmission / distribution line cross each other. through a current transformer 10 1, and the second cross through current transformer 10 2 that penetrate to R-phase and S-phase of the second transmission and distribution lines 2L equilibrium two-line transmission and distribution lines to cross, the first A third cross-penetrating current transformer 10 3 penetrated so that the S phase and the T phase of the transmission / distribution line 1L cross, and the S phase of the transmission / distribution line of the second transmission / distribution line 2L and a fourth cross through current transformer 10 4 T-phase is through to cross, the instrument transformer 6 placed bus, short-circuit current which is input from the first cross through current transformer 10 1 and a second difference between the short-circuit current input from the cross through current transformer 10 2 current (hereinafter, "first short-circuit current I Ry1" . Referred to) and R-phase input from the potential transformer 6, S-phase and T-phase phase voltage V R of, V S, the line voltage than obtained R-phase -S phase V T V RS, S phase - the first or second transmission and distribution lines 1L based on the line voltage V TR of the T-phase line voltage V ST and T-phase -R phase, upon detecting a short circuit of 2L, feeding of the first and second Circuit breakers (R phase of the first transmission line 1L) installed in the R phase, S phase, and T phase of the distribution line 1L, 2L where the short circuit accident occurred (hereinafter referred to as "accident line") , First to third circuit breakers 2 1 to 2 3 installed in S phase and T phase, respectively, or fourth to fourth circuit breakers installed in R phase, S phase and T phase of second transmission line 2L, respectively. first the line selection relay 30 1 for collectively blocking 6 breaker 2 4-2 6) of the short-circuit current which is input from the third cross through current transformer 10 3 Preliminary fourth difference of the short circuit current that is input from the cross-through current transformer 10 4 current (hereinafter, referred to as a "second short-circuit current I Ry2".) And the R-phase input from the potential transformer 6, S R-phase to S-phase line voltage V RS , S-phase to T-phase line voltage V ST and T-phase to R-phase line voltage obtained from phase voltages T R , V S , and V T the first or second transmission and distribution lines 1L on the basis of the voltage V TR, upon detecting a short circuit of 2L, R-phase of the accident line breaker installed respectively in S-phase and T-phase (first to third And a second circuit selection relay 30 2 that collectively cuts off the circuit breakers 2 1 to 2 3 or the fourth to sixth circuit breakers 2 4 to 2 6 ).

ここで、第1のクロス貫通変流器101は、2次コイルを巻装した環状鉄心に第1の送配電線1LのR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器であり、第2のクロス貫通変流器102は、2次コイルを巻装した環状鉄心に第1の送配電線1LのS相およびT相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器であり、第3のクロス貫通変流器103は、2次コイルを巻装した環状鉄心に第2の送配電線2LのR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器であり、第4のクロス貫通変流器104は、2次コイルを巻装した環状鉄心に第2の送配電線2LのS相およびT相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、第1の送配電線1LのR相は第1のクロス貫通変流器101の極性方向に貫通されているが、第1の送配電線1LのS相は第1のクロス貫通変流器101の反極性方向に貫通されている。
第2のクロス貫通変流器102は、第1のクロス貫通変流器101と同様に構成されているが、第2のクロス貫通変流器102から第1の回線選択継電器301に入力される短絡電流の極性が第1のクロス貫通変流器101から第1の回線選択継電器301に入力される短絡電流の極性の逆となるように第1の回線選択継電器301と接続されている。
また、第1の送配電線1LのS相は第3のクロス貫通変流器103の極性方向に貫通されているが、第1の送配電線1LのT相は第3のクロス貫通変流器103の反極性方向に貫通されている。
第4のクロス貫通変流器104は、第3のクロス貫通変流器103と同様に構成されているが、第4のクロス貫通変流器104から第2の回線選択継電器302に入力される短絡電流の極性が第3のクロス貫通変流器103から第2の回線選択継電器302に入力される短絡電流の極性の逆となるように第2の回線選択継電器302と接続されている。
Here, the first cross through the current transformer 10 1 is the toroids were wound secondary coil are crossed at any angle and the R-phase and S-phase of the first transmission and distribution lines 1L reversed a through-type current transformer which is passed through the second cross through current transformer 10 2, the annular core formed by winding a secondary coil of S-phase and T-phase of the first transmission and distribution lines 1L reversed The third cross-through current transformer 10 3 is a through-type current transformer crossed at an arbitrary angle, and the third cross-through current transformer 10 3 has an R of the second power transmission and distribution line 2L around an annular core around which a secondary coil is wound. a phase and a through type current transformer which is penetrated by a cross at any angle and the S-phase in the opposite direction, a fourth cross through current transformer 104 of the first to toroids were wound secondary coil 2 is a through-type current transformer in which the S phase and the T phase of the second transmission / distribution line 2L are crossed in an opposite direction and crossed at an arbitrary angle.
Ie, R-phase of the first transmission and distribution lines 1L is through the first polarity direction of the cross through the current transformer 10 1 but, S phase of the first transmission and distribution lines 1L is first cross through varying It is penetrated in the opposite polarity direction of Nagareki 10 1.
The second cross through current transformer 10 2 is configured in the same manner as the first cross through current transformer 10 1 , but from the second cross through current transformer 10 2 to the first line selection relay 30 1. The first line selection relay 30 1 is such that the polarity of the short-circuit current input to the first line-through current transformer 10 1 is opposite to the polarity of the short-circuit current input to the first line selection relay 30 1. Connected with.
In addition, the S phase of the first transmission / distribution line 1L is penetrated in the polarity direction of the third cross-through current transformer 10 3 , but the T-phase of the first transmission / distribution line 1L is the third cross-penetration change. It penetrates in the opposite direction of the flow device 10 3 .
The fourth cross through current transformer 10 4 is configured in the same manner as the third cross through current transformer 10 3 , but the fourth cross through current transformer 10 4 is connected to the second line selection relay 30 2. the polarity of the short-circuit current to be input first to the third cross through current transformer 103 from the second line selection relay 30 so that the opposite polarity of the short circuit current that is input to the 2 second line selection relay 30 2 Connected with.

したがって、短絡事故が発生していないときに第1の送配電線1LのR相、S相およびT相に流れる負荷電流をIR1,IS1,IT1で表すとともに第2の送配電線2LのR相、S相およびT相に流れる負荷電流をIR2,IS2,IT2で表すと、第1のクロス貫通変流器101から第1の回線選択継電器301に入力される負荷電流i11は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、R相の負荷電流IR1とS相の負荷電流IS1とのベクトル差となり、負荷電流i11の振幅はR相の負荷電流IR1(S相の負荷電流IS1)の振幅の31/2倍となる。
11=IR1−IS1
|i11|=|IR1−IS1|=31/2×|IR1|=31/2×|IS1
同様に、第2のクロス貫通変流器102から第1の回線選択継電器301に入力される負荷電流i12はR相の負荷電流IR2とS相の負荷電流IS2とのベクトル差の極性を反転したものとなり、負荷電流i12の振幅はR相の負荷電流IR2(S相の負荷電流IS2)の振幅の31/2倍となる。
12=IR2−IS2
|i12|=|IR2−IS2|=31/2×|IR2|=31/2×|IS2
その結果、第1および第2のクロス貫通変流器101,102から第1の回線選択継電器301に入力される第1の負荷電流I1は負荷電流i11と負荷電流i12とのベクトル和となり、第1の負荷電流I1の振幅は“0”となる(I1=i11+i12=0)。
なお、第1の回線選択継電器301は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される負荷電流の振幅と同じにするために、次式で示すように第1の負荷電流I1を1/31/2倍して第1の補正負荷電流I1’を算出する。
1’=I1×1/31/2
|I1’|=|I1|×1/31/2-
また、第3のクロス貫通変流器103から第2の回線選択継電器302に入力される負荷電流i21は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、S相の負荷電流IS1とT相の負荷電流IT1とのベクトル差となり、負荷電流i21の振幅はS相の負荷電流IS1(T相の負荷電流IT1)の振幅の31/2倍となる。
21=IS1−IT1
|i21|=|IS1−IT1|=31/2×|IS1|=31/2×|IT1
同様に、第4のクロス貫通変流器104から第2の回線選択継電器302に入力される負荷電流i22はS相の負荷電流IS2とT相の負荷電流IT2とのベクトル差の極性を反転したものとなり、負荷電流i22の振幅はS相の負荷電流IS2(T相の負荷電流IT2)の振幅の31/2倍となる。
22=IS2−IT2
|i22|=|IS2−IT2|=31/2×|IS2|=31/2×|IT2
その結果、第3および第4のクロス貫通変流器103,104から第2の回線選択継電器302に入力される第2の負荷電流I2は負荷電流i21と負荷電流i22とのベクトル和となり、第2の負荷電流I2の振幅は“0”となる(I2=i21+i22=0)。
なお、第2の回線選択継電器302は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように第2の負荷電流I2を1/31/2倍して第2の補正負荷電流I2’を算出する。
2’=I2×1/31/2
|I2’|=|I2|×1/31/2
Accordingly, the load current flowing in the R phase, S phase, and T phase of the first transmission / distribution line 1L when no short circuit accident has occurred is represented by I R1 , I S1 , I T1 and the second transmission / distribution line 2L. When the load currents flowing in the R phase, S phase, and T phase are represented by I R2 , I S2 , and I T2 , the load that is input from the first cross-through current transformer 10 1 to the first line selection relay 30 1 current i 11, as in the case of the first short directional relay 4 1 of the fourth embodiment described above, it is the vector difference between the load current I S1 of the R-phase load current I R1 and S-phase, load The amplitude of the current i 11 is 3 1/2 times the amplitude of the R-phase load current I R1 (S-phase load current I S1 ).
i 11 = I R1 −I S1
| I 11 | = | I R1 -I S1 | = 3 1/2 × | I R1 | = 3 1/2 × | I S1 |
Similarly, the load current i 12 input from the second cross-through current transformer 10 2 to the first line selection relay 30 1 is the vector difference between the R-phase load current I R2 and the S-phase load current I S2. The amplitude of the load current i 12 is 3 1/2 times the amplitude of the R-phase load current I R2 (S-phase load current I S2 ).
i 12 = I R2 −I S2
| I 12 | = | I R2 −I S2 | = 3 1/2 × | I R2 | = 3 1/2 × | I S2 |
As a result, the first load current I 1 which is input from the first and second cross through current transformer 10 1, 10 2 to the first line selection relay 30 1 of the load current i 11 and the load current i 12 The amplitude of the first load current I 1 is “0” (I 1 = i 11 + i 12 = 0).
In order to make the first line selection relay 30 1 the same as the amplitude of the load current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. As shown in FIG. 1, the first corrected load current I 1 ′ is calculated by multiplying the first load current I 1 by 1/3 1/2 .
I 1 '= I 1 × 1/3 1/2
| I 1 '| = | I 1 | × 1/3 1/ 2-
In addition, the load current i 21 input from the third cross-through current transformer 10 3 to the second line selection relay 30 2 is the same as that of the second short-circuit direction relay 4 2 in the fourth embodiment described above. Similarly, the vector difference between the S-phase load current I S1 and the T-phase load current I T1 is obtained, and the amplitude of the load current i 21 is the amplitude of the S-phase load current I S1 (T-phase load current I T1 ). 3 1/2 times as much.
i 21 = I S1 −I T1
| I 21 | = | I S1 −I T1 | = 3 1/2 × | I S1 | = 3 1/2 × | I T1 |
Similarly, the load current i 22 input from the fourth cross-through current transformer 10 4 to the second line selection relay 30 2 is a vector difference between the S-phase load current I S2 and the T-phase load current I T2. The amplitude of the load current i 22 is 3 1/2 times the amplitude of the S-phase load current I S2 (T-phase load current I T2 ).
i 22 = I S2 −I T2
| I 22 | = | I S2 −I T2 | = 3 1/2 × | I S2 | = 3 1/2 × | I T2 |
As a result, the second load current I 2 that is input from the third and fourth cross through current transformer 103, 104 to the second line selection relay 30 2 of the load current i 21 and the load current i 22 The amplitude of the second load current I 2 is “0” (I 2 = i 21 + i 22 = 0).
In order to make the second line selection relay 30 2 have the same amplitude as the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. As shown, the second load current I 2 ′ is calculated by multiplying the second load current I 2 by 1/3 1/2 .
I 2 '= I 2 × 1/3 1/2
| I 2 '| = | I 2 | × 1/3 1/2

また、第1または第2の送配電線1L,2Lにおいて短絡事故が発生したときに第1および第2の送配電線1L,2LのR相、S相およびT相に流れる短絡電流をIFR,IFS,IFT(インピーダンス角をθとする。)で表すと、第1および第2の回線選択継電器301,302は、事故様相に応じて以下のように動作する。
・ R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図17に破線の矢印で示すように、第1および第2の送配電線1L,2LのR相にR相の短絡電流IFRが内部方向に流れ、第1および第2の送配電線1L,2LのS相にS相の短絡電流IFSが外部方向に流れるが、第1および第2の送配電線1L,2LのT相にはT相の短絡電流IFTが流れない。
したがって、第1の回線選択継電器301に入力される第1の短絡電流IRy1は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、R相の短絡電流IFR(第1の送配電線1LのR相に流れる短絡電流と第2の送配電線2LのR相に流れる短絡電流との差電流)とS相の短絡電流IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流)とのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図11(a−1)参照)。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=2×|IFR|=2×|IFS
そこで、第1の回線選択継電器301は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を1/2倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×1/2
|IRy1’|=|IRy1|-×1/2=|IFR|=|IFS
第1の回線選択継電器301は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送電線1L,2LのR相−S相間の短絡事故の場合には、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRSとに基づいて事故回線が判別される(図11(a−1)参照)。
第1の回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
また、第2の回線選択継電器302に入力される第2の短絡電流IRy2は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、S相の短絡電流IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流)となり、第2の短絡電流IRy2の振幅はS相の短絡電流IFSの振幅となる(図11(a−2)参照)。
Ry2=IFS
|IRy2|=|IFS
そこで、第2の回線選択継電器302は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を1倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×1
|IRy2’|=|IRy2|×1-=|IFS
第2の回線選択継電器302は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのR相−S相間の短絡事故の場合には、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS(極性が負)とに基づいて事故回線が判別される(図11(a−2)参照)。
第2の回線選択継電器302は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、第1および第2の送配電線1L,2LのS相にS相の短絡電流IFSが内部方向に流れ、第1および第2の送配電線1L,2LのT相にT相の短絡電流IFTが外部方向に流れるが、第1および第2の送配電線1L,2LのR相にはR相の短絡電流IFRが流れない(図13参照)。
したがって、第1の回線選択継電器301に入力される第1の短絡電流IRy1は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、極性が負のS相の短絡電流−IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流の極性を反転したもの)となり、第1の短絡電流IRy1の振幅はS相の短絡電流IFSの振幅となる(図11(b−1)参照)。
Ry1=−IFS
|IRy1|=|IFS
そこで、第1の回線選択継電器301は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を1倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×1
|IRy1’|=|IRy1|×1=|IFS
第1の回線選択継電器301は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送電線1L,2LのS相−T相間の短絡事故の場合には、算出した第1の補正短絡電流IRy1’とS相−T相の線間電圧VST(極性が負)とに基づいて事故回線が判別される(図11(b−1)参照)。
第1の回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
また、第2の回線選択継電器302に入力される第2の短絡電流IRy2は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、S相の短絡電流IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流)とT相の短絡電流IFT(第1の送配電線1LのT相に流れる短絡電流と第2の送配電線2LのT相に流れる短絡電流との差電流)とのベクトル差となり、第2の短絡電流IRy2の振幅はS相の短絡電流IFS(T相の短絡電流IFT)の振幅の2倍となる(図11(b−2)参照)。
Ry2=IFS−IFT
|IRy2|=|IFS−IFT|=2×|IFS|=2×|IFT
そこで、第2の回線選択継電器302は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を1/2倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×1/2-
|IRy2’|=|IRy2|×1/2-=|IFS|=|IFT
第2の回線選択継電器302は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのS相−T相間の短絡事故の場合には、算出した第2の補正短絡電流IRy2’とS相−T相の線間電圧VSTとに基づいて事故回線が判別される(図11(b−2)参照)。
第2の回線選択継電器302は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、第1および第2の送配電線1L,2LのT相にT相の短絡電流IFTが内部方向に流れ、第1および第2の送配電線1L,2LのR相にR相の短絡電流IFRが外部方向に流れるが、第1および第2の送配電線1L,2LのS相にはS相の短絡電流IFSが流れない(図14参照)。
したがって、第1の回線選択継電器301に入力される第1の短絡電流IRy1は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、R相の短絡電流IFR(第1の送配電線1LのR相に流れる短絡電流と第2の送配電線2LのR相に流れる短絡電流との差電流)となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFRの振幅となる(図12(a−1)参照)。
Ry1=IFR
|IRy1|=|IFR
そこで、第1の回線選択継電器301は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を1倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×1
|IRy1’|=|IRy1|×1=|IFR
第1の回線選択継電器301は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送電線1L,2LのT相−R相間の短絡事故の場合には、算出した第1の補正短絡電流IRy1’とT相−R相の線間電圧VTR(極性が負)とに基づいて事故回線が判別される(図12(a−1)参照)。
第1の回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
また、第2の回線選択継電器302に入力される第2の短絡電流IRy2は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、極性が負のT相の短絡電流−IFT(第1の送配電線1LのT相に流れる短絡電流と第2の送配電線2LのT相に流れる短絡電流との差電流の極性を反転したもの)となり、第2の短絡電流IRy2の振幅はT相の短絡電流IFTの振幅となる。
Ry2=−IFT
|IRy2|=|IFT
そこで、第2の回線選択継電器302は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を1倍して第2の補正短絡電流IRy2’を算出する(図12(a−2)参照)。
Ry2’=IRy2×1
|IRy2’|=|IRy2|×1=|IFT
第2の回線選択継電器302は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのT相−R相間の短絡事故の場合には、算出した第2の補正短絡電流IRy2’とT相−R相の線間電圧VTR(極性が負)とに基づいて事故回線が判別される(図12(a−2)参照)。
第2の回線選択継電器302は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、第1および第2の送配電線1L,2LのR相,S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる(図15参照)。
したがって、第1の回線選択継電器301に入力される第1の短絡電流IRy1は、上述した第4の実施例における第1の短絡方向継電器41の場合と同様にして、R相の短絡電流IFR(第1の送配電線1LのR相に流れる短絡電流と第2の送配電線2LのR相に流れる短絡電流との差電流)とS相の短絡電流IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流)とのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図12(b−1)参照)。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
そこで、第1の回線選択継電器301は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように第1の短絡電流IRy1を1/31/2倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1×1/31/2
|IRy1’|=|IRy1|×1/31/2-=|IFR|=|IFS
第1の回線選択継電器301は、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送電線1L,2LのR相−S相−T相間の短絡事故の場合には、算出した第1の補正短絡電流IRy1’とR相−S相の線間電圧VRSとに基づいて事故回線が判別される(図12(b−1)参照)。
第1の回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
また、第2の回線選択継電器302に入力される第2の短絡電流IRy2は、上述した第4の実施例における第2の短絡方向継電器42の場合と同様にして、S相の短絡電流IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流)とT相の短絡電流IFT(第1の送配電線1LのT相に流れる短絡電流と第2の送配電線2LのT相に流れる短絡電流との差電流)とのベクトル差となり、第2の短絡電流IRy2の振幅はS相の短絡電流IFS(T相の短絡電流IFT)の振幅の31/2倍となる(図12(b−2)参照)。
Ry2=IFS−IFT
|IRy2|=|IFS−IFT|=31/2×|IFS|=31/2×|IFT
そこで、第2の回線選択継電器302は、図20に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように第2の短絡電流IRy2を1/31/2倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2×1/31/2
|IRy2’|=|IRy2|×1/31/2-=|IFS|=|IFT
第2の回線選択継電器302は、算出した第2の補正短絡電流IRy2’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのR相−S相−T相間の短絡事故の場合には、算出した第2の補正短絡電流IRy2’とS相−T相の線間電圧VSTとに基づいて事故回線が判別される(図12(b−2)参照)。
第2の回線選択継電器302は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
Further, when a short circuit accident occurs in the first or second transmission / distribution lines 1L, 2L, the short-circuit current flowing in the R phase, S phase, and T phase of the first and second transmission / distribution lines 1L, 2L is expressed as I FR , I FS , I FT (impedance angle is θ), the first and second line selection relays 30 1 , 30 2 operate as follows according to the accident aspect.
In the case of a short circuit accident between the R phase and the S phase When a short circuit accident between the R phase and the S phase occurs, the R phase of the first and second transmission / distribution lines 1L and 2L is changed as shown by the broken arrows in FIG. The R-phase short-circuit current I FR flows in the internal direction, and the S-phase short-circuit current I FS flows in the S-phase of the first and second transmission and distribution lines 1L and 2L. The T-phase short circuit current I FT does not flow in the T-phase of the distribution lines 1L and 2L.
Accordingly, the first short-circuit current I Ry1 input to the first line selection relay 30 1 is short-circuited in the R phase in the same manner as the first short-circuit direction relay 41 in the fourth embodiment described above. The current I FR (the difference between the short-circuit current flowing in the R phase of the first transmission / distribution line 1L and the short-circuit current flowing in the R phase of the second transmission / distribution line 2L) and the S-phase short-circuit current I FS (first Vector difference between the short-circuit current flowing in the S phase of the transmission / distribution line 1L and the short-circuit current flowing in the S-phase of the second transmission / distribution line 2L), and the amplitude of the first short-circuit current I Ry1 is R-phase This is twice the amplitude of the short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 11 (a-1)).
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
Therefore, in order to make the first line selection relay 30 1 have the same amplitude as the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. As shown in FIG. 1, the first corrected short-circuit current I Ry1 ′ is calculated by multiplying the first short-circuit current I Ry1 by ½.
I Ry1 '= I Ry1 × 1/2
| I Ry1 '| = | I Ry1 |-× 1/2 = | I FR | = | I FS |
The first line selecting relay 30 1, a first correction circuit current I Ry1 'and R phase -S phase line voltage V RS of, S interphase -T phase of the line voltage V ST and T phases calculated -R The fault line is determined based on the phase line voltage VTR . In the case of a short circuit accident between the R phase and the S phase of the first or second power transmission line 1L, 2L, the calculated first corrected short circuit current I Ry1 ′ and the R phase to S phase line voltage V RS. Based on the above, the accident line is determined (see FIG. 11 (a-1)).
If the first line selection relay 30 determines that a short circuit accident has occurred in the first transmission / distribution line 1L, the first circuit breaker 2 1 -2 3 are collectively disconnected, and the second transmission / distribution When it is determined that a short circuit accident has occurred in the electric wire 2L, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
The second short-circuit current I Ry2 input to the second line selection relay 30 2 is short-circuited in the S phase in the same manner as the second short-circuit direction relay 4 2 in the fourth embodiment described above. The current I FS (the difference between the short circuit current flowing in the S phase of the first transmission / distribution line 1L and the short circuit current flowing in the S phase of the second transmission / distribution line 2L), and the amplitude of the second short circuit current I Ry2 is The amplitude of the S-phase short-circuit current I FS (see FIG. 11A-2).
I Ry2 = I FS
| I Ry2 | = | I FS |
Therefore, in order to make the second line selection relay 30 2 have the same amplitude as the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. As shown, the second corrected short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by one.
I Ry2 '= I Ry2 × 1
| I Ry2 '| = | I Ry2 | × 1- = | I FS |
The second line selection relay 30 2, the second correction circuit current I Ry2 'and R phase -S phase line voltage V RS of the line voltage of the S-phase -T phase V ST and T phases -R calculated The fault line is determined based on the phase line voltage VTR . In the case of a short circuit accident between the R phase and the S phase of the first or second transmission / distribution lines 1L and 2L, the calculated second corrected short circuit current I Ry2 ′ and the line voltage V between the R phase and the S phase are calculated. The fault line is determined based on RS (negative polarity) (see FIG. 11 (a-2)).
When the second line selection relay 30 2 determines that a short circuit accident has occurred in the first transmission / distribution line 1L, the second circuit selection relay 30 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3, and When it is determined that a short circuit accident has occurred in the distribution line 2L, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
(2) In the case of a short circuit accident between the S phase and the T phase When a short circuit accident occurs between the S phase and the T phase, the S phase short circuit current I FS is internally generated in the S phase of the first and second power transmission lines 1L and 2L. The T-phase short circuit current I FT flows outward in the T phase of the first and second transmission / distribution lines 1L, 2L, but the R phase of the first and second transmission / distribution lines 1L, 2L. No R-phase short circuit current I FR flows (see FIG. 13).
Therefore, the first short-circuit current I Ry1 input to the first line selection relay 30 1 is negative in polarity as in the case of the first short-circuit direction relay 4 1 in the fourth embodiment described above. S-phase short-circuit current -I FS (the polarity of the difference current between the short-circuit current flowing in the S-phase of the first transmission / distribution line 1L and the short-circuit current flowing in the S-phase of the second transmission / distribution line 2L) The amplitude of the first short-circuit current I Ry1 is the amplitude of the S-phase short-circuit current I FS (see FIG. 11B-1).
I Ry1 = -I FS
| I Ry1 | = | I FS |
Therefore, in order to make the first line selection relay 30 1 have the same amplitude as the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. As shown, the first short-circuit current I Ry1 is multiplied by 1 to calculate the first corrected short-circuit current I Ry1 ′.
I Ry1 '= I Ry1 × 1
| I Ry1 '| = | I Ry1 | × 1 = | I FS |
The first line selecting relay 30 1, a first correction circuit current I Ry1 'and R phase -S phase line voltage V RS of, S interphase -T phase of the line voltage V ST and T phases calculated -R The fault line is determined based on the phase line voltage VTR . In the case of a short circuit accident between the S phase and the T phase of the first or second power transmission line 1L, 2L, the calculated first corrected short circuit current I Ry1 ′ and the line voltage V ST between the S phase and the T phase. The accident line is determined based on (the polarity is negative) (see FIG. 11B-1).
If the first line selection relay 30 determines that a short circuit accident has occurred in the first transmission / distribution line 1L, the first circuit breaker 2 1 -2 3 are collectively disconnected, and the second transmission / distribution When it is determined that a short circuit accident has occurred in the electric wire 2L, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
Further, the second short-circuit current I Ry2 input to the second line selection relay 30 2 is short-circuited in the S phase in the same manner as the second short-circuit direction relay 4 2 in the fourth embodiment described above. The current I FS (the difference between the short-circuit current flowing in the S phase of the first transmission / distribution line 1L and the short-circuit current flowing in the S phase of the second transmission / distribution line 2L) and the T-phase short-circuit current I FT (first Vector difference between the short-circuit current flowing in the T phase of the transmission and distribution line 1L and the short-circuit current flowing in the T phase of the second transmission and distribution line 2L), and the amplitude of the second short-circuit current I Ry2 is This is twice the amplitude of the short-circuit current I FS (T-phase short-circuit current I FT ) (see FIG. 11B-2).
I Ry2 = I FS -I FT
| I Ry2 | = | I FS −I FT | = 2 × | I FS | = 2 × | I FT |
Therefore, in order to make the second line selection relay 30 2 have the same amplitude as the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. As shown in FIG. 2, the second short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by ½.
I Ry2 '= I Ry2 × 1 / 2-
| I Ry2 '| = | I Ry2 | × 1 / 2- = | I FS | = | I FT |
The second line selection relay 30 2, the second correction circuit current I Ry2 'and R phase -S phase line voltage V RS of the line voltage of the S-phase -T phase V ST and T phases -R calculated The fault line is determined based on the phase line voltage VTR . In the case of a short circuit accident between the S phase and the T phase of the first or second transmission / distribution lines 1L, 2L, the calculated second corrected short circuit current I Ry2 ′ and the line voltage V between the S phase and the T phase The accident line is determined based on the ST (see FIG. 11B-2).
When the second line selection relay 30 2 determines that a short circuit accident has occurred in the first transmission / distribution line 1L, the second circuit selection relay 30 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3, and When it is determined that a short circuit accident has occurred in the distribution line 2L, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, the T phase short circuit current I FT is internally generated in the T phase of the first and second power transmission lines 1L and 2L. The R-phase short-circuit current IFR flows to the R phase of the first and second transmission and distribution lines 1L and 2L, but flows to the S phase of the first and second transmission and distribution lines 1L and 2L. No S-phase short-circuit current IFS flows (see FIG. 14).
Accordingly, the first short-circuit current I Ry1 input to the first line selection relay 30 1 is short-circuited in the R phase in the same manner as the first short-circuit direction relay 41 in the fourth embodiment described above. The current I FR (the difference between the short-circuit current flowing in the R phase of the first transmission / distribution line 1L and the short-circuit current flowing in the R-phase of the second transmission / distribution line 2L), and the amplitude of the first short-circuit current I Ry1 is This is the amplitude of the R-phase short-circuit current I FR (see FIG. 12A-1).
I Ry1 = I FR
| I Ry1 | = | I FR
Therefore, in order to make the first line selection relay 30 1 have the same amplitude as the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. As shown, the first short-circuit current I Ry1 is multiplied by 1 to calculate the first corrected short-circuit current I Ry1 ′.
I Ry1 '= I Ry1 × 1
| I Ry1 '| = | I Ry1 | × 1 = | I FR |
The first line selecting relay 30 1, a first correction circuit current I Ry1 'and R phase -S phase line voltage V RS of, S interphase -T phase of the line voltage V ST and T phases calculated -R The fault line is determined based on the phase line voltage VTR . In the case of a short circuit accident between the T phase and the R phase of the first or second power transmission line 1L, 2L, the calculated first corrected short circuit current I Ry1 ′ and the line voltage V TR between the T phase and the R phase. The accident line is determined based on (the polarity is negative) (see FIG. 12A-1).
If the first line selection relay 30 determines that a short circuit accident has occurred in the first transmission / distribution line 1L, the first circuit breaker 2 1 -2 3 are collectively disconnected, and the second transmission / distribution When it is determined that a short circuit accident has occurred in the electric wire 2L, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
The second short-circuit current I Ry2 input to the second line selection relay 30 2 is negative in polarity as in the case of the second short-circuit direction relay 4 2 in the fourth embodiment described above. T-phase short-circuit current −I FT (the polarity of the difference current between the short-circuit current flowing in the T-phase of the first transmission / distribution line 1L and the short-circuit current flowing in the T-phase of the second transmission / distribution line 2L) The amplitude of the second short-circuit current I Ry2 is the amplitude of the T-phase short-circuit current I FT .
I Ry2 = −I FT
| I Ry2 | = | I FT |
Therefore, in order to make the second line selection relay 30 2 have the same amplitude as the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. a second short-circuit current I Ry2 1 times as shown by calculating a second correction circuit current I Ry2 'with (see FIG. 12 (a-2)).
I Ry2 '= I Ry2 × 1
| I Ry2 '| = | I Ry2 | × 1 = | I FT |
The second line selection relay 30 2, the second correction circuit current I Ry2 'and R phase -S phase line voltage V RS of the line voltage of the S-phase -T phase V ST and T phases -R calculated The fault line is determined based on the phase line voltage VTR . In the case of a short circuit accident between the T phase and the R phase of the first or second transmission and distribution lines 1L and 2L, the calculated second corrected short circuit current I Ry2 ′ and the line voltage V between the T phase and the R phase are calculated. The fault line is determined based on TR (negative polarity) (see FIG. 12 (a-2)).
When the second line selection relay 30 2 determines that a short circuit accident has occurred in the first transmission / distribution line 1L, the second circuit selection relay 30 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3, and When it is determined that a short circuit accident has occurred in the distribution line 2L, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase When a short circuit accident between the R phase, the S phase, and the T phase occurs, the R phase, the S phase, and the first and second power transmission lines 1L and 2L An R-phase short-circuit current I FR , an S-phase short-circuit current I FS, and a T-phase short-circuit current I FT flow in the T phase in the internal direction with a phase difference of 120 ° (see FIG. 15).
Accordingly, the first short-circuit current I Ry1 input to the first line selection relay 30 1 is short-circuited in the R phase in the same manner as the first short-circuit direction relay 41 in the fourth embodiment described above. The current I FR (the difference between the short-circuit current flowing in the R phase of the first transmission / distribution line 1L and the short-circuit current flowing in the R phase of the second transmission / distribution line 2L) and the S-phase short-circuit current I FS (first Vector difference between the short-circuit current flowing in the S phase of the transmission / distribution line 1L and the short-circuit current flowing in the S-phase of the second transmission / distribution line 2L), and the amplitude of the first short-circuit current I Ry1 is R-phase This is 3 1/2 times the amplitude of the short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 12B-1).
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |
Therefore, in order to make the first line selection relay 30 1 have the same amplitude as the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. As shown in FIG. 1, the first corrected short-circuit current I Ry1 ′ is calculated by multiplying the first short-circuit current I Ry1 by 1/3 1/2 .
I Ry1 '= I Ry1 × 1/3 1/2
| I Ry1 '| = | I Ry1 | × 1/3 1/2 - = | I FR | = | I FS |
The first line selecting relay 30 1, a first correction circuit current I Ry1 'and R phase -S phase line voltage V RS of, S interphase -T phase of the line voltage V ST and T phases calculated -R The fault line is determined based on the phase line voltage VTR . In the case of a short circuit accident between the R phase, the S phase, and the T phase of the first or second transmission lines 1L, 2L, the calculated first corrected short circuit current I Ry1 ′ and the line between the R phase and the S phase line An accident line is determined based on the voltage V RS (see FIG. 12B-1).
If the first line selection relay 30 determines that a short circuit accident has occurred in the first transmission / distribution line 1L, the first circuit breaker 2 1 -2 3 are collectively disconnected, and the second transmission / distribution When it is determined that a short circuit accident has occurred in the electric wire 2L, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
Further, the second short-circuit current I Ry2 input to the second line selection relay 30 2 is short-circuited in the S phase in the same manner as the second short-circuit direction relay 4 2 in the fourth embodiment described above. The current I FS (the difference between the short-circuit current flowing in the S phase of the first transmission / distribution line 1L and the short-circuit current flowing in the S phase of the second transmission / distribution line 2L) and the T-phase short-circuit current I FT (first Vector difference between the short-circuit current flowing in the T phase of the transmission and distribution line 1L and the short-circuit current flowing in the T phase of the second transmission and distribution line 2L), and the amplitude of the second short-circuit current I Ry2 is This is 3 1/2 times the amplitude of the short-circuit current I FS (T-phase short-circuit current I FT ) (see FIG. 12B-2).
I Ry2 = I FS -I FT
| I Ry2 | = | I FS −I FT | = 3 1/2 × | I FS | = 3 1/2 × | I FT |
Therefore, in order to make the second line selection relay 30 2 have the same amplitude as the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. As shown in FIG. 2, the second corrected short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by 1/3 1/2 .
I Ry2 '= I Ry2 × 1/3 1/2
| I Ry2 '| = | I Ry2 | × 1/3 1/2 - = | I FS | = | I FT |
The second line selection relay 30 2, the second correction circuit current I Ry2 'and R phase -S phase line voltage V RS of the line voltage of the S-phase -T phase V ST and T phases -R calculated The fault line is determined based on the phase line voltage VTR . In the case of a short-circuit accident between the R phase, the S phase, and the T phase of the first or second transmission and distribution lines 1L, 2L, the calculated second corrected short circuit current I Ry2 ′ and the S phase-T phase line The fault line is determined based on the inter-voltage V ST (see FIG. 12B-2).
When the second line selection relay 30 2 determines that a short circuit accident has occurred in the first transmission / distribution line 1L, the second circuit selection relay 30 2 collectively shuts off the first to third circuit breakers 2 1 to 2 3, and When it is determined that a short circuit accident has occurred in the distribution line 2L, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.

なお、第1のクロス貫通変流器101には第1の送配電線1LのR相およびS相をクロスさせて貫通させるとともに第3のクロス貫通変流器103には第1の送配電線1LのS相およびT相をクロスさせて貫通させたが、第1および第3のクロス貫通変流器101,103にクロスさせて貫通させる送配電線の2相は他の組合せでもよい。
第2および第4のクロス貫通変流器102,104についても同様である。
Note that the first cross through the current transformer 10 1 in the first transmission and distribution lines 1L of R-phase and S-phase third cross through current transformer 103 causes penetrate by cross the feed first The S phase and the T phase of the distribution line 1L are crossed and penetrated, but the two phases of the transmission and distribution lines crossed and penetrated by the first and third cross through current transformers 10 1 and 10 3 are in other combinations. But you can.
The same applies to the second and fourth cross-through current transformers 10 2 and 10 4 .

ただし、CT結線によって、第1および第2の回線選択継電器301,302は、事故様相に応じて、表1に示した倍率で第1および第2の補正短絡電流IRy1’,IRy2’を算出するとともに、算出した第1および第2の補正短絡電流IRy1’,IRy2’と表2に示した線間電圧とに基づいて事故回線を判別して、第1または第2の送配電線1L,2Lに短絡事故が発生したか否かを判定する。 However, due to the CT connection, the first and second line selection relays 30 1 and 30 2 have the first and second corrected short-circuit currents I Ry1 ′ and I Ry2 at the magnification shown in Table 1 according to the accident situation. 'calculates the, the first and second calculated correction circuit current I Ry1', to determine the accident line based on the line voltage, indicated as I Ry2 'in Table 2, the first or second It is determined whether or not a short circuit accident has occurred in the transmission and distribution lines 1L and 2L.

上述したように第4乃至第6の実施例では、送配電線につきクロス貫通変流器および方向保護継電器を2組使用することにより、自回路および他回路にまたがる短絡事故であっても確実に検出することができるとともに、1台の方向保護継電器が故障または点検によって使用できなくなっても、自回路の短絡事故は他の1台の方向性短絡保護継電器でバックアップすることができる。   As described above, in the fourth to sixth embodiments, by using two sets of cross-through current transformers and directional protection relays for transmission and distribution lines, it is possible to ensure even a short-circuit accident extending over the own circuit and other circuits. Even if one directional protection relay can be detected and becomes unusable due to a failure or inspection, the short circuit accident of its own circuit can be backed up by another directional short circuit protection relay.

以上では、送配電線において使用される方向保護継電器との組合せでクロス貫通変流器について説明したが、クロス貫通変流器は、送配電線以外の三相交流回路において使用されている方向保護装置と組み合わせても、同様の効果を得ることができる。
また、クロス貫通変流器の環状鉄心には三相交流回路の任意の2相を逆向きに1回クロスさせて貫通させたが、三相交流回路の任意の2相が2回以上クロスしてクロス貫通変流器を貫通するように、三相交流回路の任意の2相をクロス貫通変流器の環状鉄心に同じ回数または異なる回数だけ巻いてもよい。
In the above, the cross-through current transformer has been described in combination with the direction protection relay used in the transmission and distribution lines. However, the cross-through current transformer is used for the direction protection used in the three-phase AC circuit other than the transmission and distribution lines. Even when combined with an apparatus, the same effect can be obtained.
In addition, any two phases of the three-phase AC circuit are crossed once in the opposite direction through the annular core of the cross-through current transformer, but any two phases of the three-phase AC circuit cross two or more times. Thus, any two phases of the three-phase AC circuit may be wound around the annular core of the cross-through current transformer the same number or different times so as to penetrate the cross-through current transformer.

事故様相については、たとえば、表4に示すように3つの線間電圧に基づいて判別することができる。なお、表4において、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された線間電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった線間電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
The accident aspect can be determined based on, for example, three line voltages as shown in Table 4. In Table 4, a circle indicates a line voltage at which a voltage drop is detected based on voltage information from an undervoltage relay installed on the bus, and a cross indicates a voltage from the undervoltage relay. The line voltage in which no voltage drop was detected based on the information is shown (the voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

本発明の第1の実施例による方向保護継電装置について説明するための図である。It is a figure for demonstrating the direction protection relay apparatus by 1st Example of this invention. 短絡事故が発生していないときに図1に示したクロス貫通変流器10から短絡方向継電器4に入力される負荷電流について説明するための図である。It is a figure for demonstrating the load current input into the short circuit direction relay 4 from the cross penetration current transformer 10 shown in FIG. 1 when the short circuit accident has not occurred. 短絡事故が発生したときに図1に示したクロス貫通変流器10から短絡方向継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy inputted into short circuit direction relay 4 from cross penetration current transformer 10 shown in Drawing 1 when a short circuit accident occurs. 図1に示した送配電線のS相−T相間に短絡事故が発生したときにクロス貫通変流器10から短絡方向継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating the short circuit current IRy input into the short circuit direction relay 4 from the cross penetration current transformer 10 when the short circuit accident generate | occur | produces between the S phase-T phases of the power transmission and distribution line shown in FIG. 図1に示した送配電線のT相−R相間に短絡事故が発生したときにクロス貫通変流器10から短絡方向継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating the short circuit current IRy input into the short circuit direction relay 4 from the cross penetration current transformer 10 when the short circuit accident generate | occur | produces between the T phase-R phases of the power transmission and distribution line shown in FIG. 図1に示した送配電線のR相−S相−T相間に短絡事故が発生したときにクロス貫通変流器10から短絡方向継電器4に入力される短絡電流IRyについて説明するための図である。The figure for demonstrating the short circuit current IRy input into the short circuit direction relay 4 from the cross penetration current transformer 10 when the short circuit accident generate | occur | produces between the R phase-S phase-T phase of the power transmission and distribution line shown in FIG. It is. 本発明の第2の実施例による方向保護継電装置について説明するための図である。It is a figure for demonstrating the direction protection relay apparatus by 2nd Example of this invention. 本発明の第3の実施例による方向保護継電装置について説明するための図である。It is a figure for demonstrating the direction protection relay apparatus by the 3rd Example of this invention. 本発明の第4の実施例による方向保護継電装置について説明するための図である。It is a figure for demonstrating the direction protection relay apparatus by the 4th Example of this invention. 短絡事故が発生したときに図9に示した第1および第2のクロス貫通変流器101,102から第1および第2の短絡方向継電器41,42にそれぞれ入力される第1および第2の負荷電流I1,I2について説明するための図である。The first and second short-circuiting current transformers 10 1 and 10 2 shown in FIG. 9 and the first and second short-circuit direction relays 4 1 and 4 2 are respectively input to the first and second short-circuit direction relays 4 1 and 4 2 when a short-circuit accident occurs. and is a diagram for explaining the second load current I 1, I 2 for. 短絡事故が発生したときに図9に示した第1および第2のクロス貫通変流器101,102から第1および第2の短絡方向継電器41,42にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。The first and second short-circuiting current transformers 10 1 and 10 2 shown in FIG. 9 and the first and second short-circuit direction relays 4 1 and 4 2 are respectively input to the first and second short-circuit direction relays 4 1 and 4 2 when a short circuit accident occurs. and second short-circuit current I Ry1, is a diagram for explaining I Ry2. 短絡事故が発生したときに図9に示した第1および第2のクロス貫通変流器101,102から第1および第2の短絡方向継電器41,42にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。The first and second short-circuiting current transformers 10 1 and 10 2 shown in FIG. 9 and the first and second short-circuit direction relays 4 1 and 4 2 are respectively input to the first and second short-circuit direction relays 4 1 and 4 2 when a short circuit accident occurs. and second short-circuit current I Ry1, is a diagram for explaining I Ry2. 図9に示した送配電線のS相−T相間に短絡事故が発生したときに第1および第2のクロス貫通変流器101,102から第1および第2の短絡方向継電器41,42にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。When a short circuit accident occurs between the S phase and the T phase of the transmission and distribution line shown in FIG. 9, the first and second cross through current transformers 10 1 and 10 2 to the first and second short circuit direction relays 4 1. is a diagram for explaining a first and second short-circuit current I Ry1, I Ry2 which are input to the 4 2. 図9に示した送配電線のT相−R相間に短絡事故が発生したときに第1および第2のクロス貫通変流器101,102から第1および第2の短絡方向継電器41,42にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。When a short circuit accident occurs between the T phase and the R phase of the power transmission and distribution line shown in FIG. 9, the first and second cross through current transformers 10 1 and 10 2 to the first and second short circuit direction relays 4 1. is a diagram for explaining a first and second short-circuit current I Ry1, I Ry2 which are input to the 4 2. 図9に示した送配電線のR相−S相−T相間に短絡事故が発生したときに第1および第2のクロス貫通変流器101,102から第1および第2の短絡方向継電器41,42にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。First and second short-circuit directions from the first and second cross-through current transformers 10 1 and 10 2 when a short-circuit accident occurs between the R-phase, S-phase, and T-phase of the power transmission and distribution line shown in FIG. relay 4 1 is a diagram for explaining a 4 first and are input to the 2 second short-circuit current I Ry1, I Ry2. 本発明の第5の実施例による方向保護継電装置について説明するための図である。It is a figure for demonstrating the direction protection relay apparatus by the 5th Example of this invention. 本発明の第6の実施例による方向保護継電装置について説明するための図である。It is a figure for demonstrating the direction protection relay apparatus by the 6th Example of this invention. 従来の短絡方向継電器について説明するための図である。It is a figure for demonstrating the conventional short circuit direction relay. 従来の距離継電器について説明するための図である。It is a figure for demonstrating the conventional distance relay. 従来の回線選択継電器について説明するための図である。It is a figure for demonstrating the conventional line selection relay.

符号の説明Explanation of symbols

1 電源
1〜26 第1乃至第6の遮断器
1〜36 第1乃至第6の変流器
4 短絡方向継電器
1〜43 第1乃至第3の短絡方向継電器
6 計器用変圧器
10 クロス貫通変流器
101〜104 第1乃至第4のクロス貫通変流器
20 距離継電器
201〜203 第1乃至第3の距離継電器
30 回線選択継電器
301〜303 第1乃至第3の回線選択継電器
1L,2L 第1および第2の送配電線
I,IR,IS,IT,IR1,IS1,IT1,IR2,IS2,IT2,i1,i2,i11,i12,i21,i22 負荷電流
I’ 補正負荷電流
1,I2 第1および第2の負荷電流
1’,I2’ 第1および第2の補正負荷電流
Ry,IFR,IFS,IFT 短絡電流
Ry’ 補正短絡電流
Ry1,IRy2 第1および第2の短絡電流
Ry1’,IRy2’ 第1および第2の補正短絡電流
R,VS,VT 相電圧
RS,VST,VTR 線間電圧
θ インピーダンス角
1 Power supply 2 1 to 2 6 1st to 6th circuit breakers 3 1 to 3 6 1st to 6th current transformers 4 Short circuit direction relays 4 1 to 4 3 1st to 3rd short circuit direction relays 6 Transformer 10 Cross-through current transformers 10 1 to 10 4 First to fourth cross-through current transformers 20 Distance relays 20 1 to 20 3 First to third distance relays 30 Line selection relays 30 1 to 30 3 1 to 3 line selection relays 1L, 2L The first and second transmission and distribution lines I, I R , I S , I T , I R1 , I S1 , I T1 , I R2 , I S2 , I T2 , i 1 , i 2 , i 11 , i 12 , i 21 , i 22 Load current I ′ correction Load current I 1 , I 2 First and second load currents I 1 ′, I 2 ′ First and second correction load current I Ry, I FR, I FS , I FT short-circuit current I Ry 'correction circuit current I Ry1, I Ry2 first and second short-circuit current I Ry1', I Ry2 'first and second correction short conductive V R, V S, V T-phase voltage V RS, V ST, V TR line voltage θ impedance angle

Claims (10)

短絡事故から三相交流回路を保護するための方向保護継電装置であって、
2次コイルを巻装した環状鉄心に前記三相交流回路の任意の2相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器と、
該クロス貫通変流器から入力される短絡電流と前記三相交流回路の線間電圧とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された遮断器を一括遮断する方向保護継電器と、
を具備することを特徴とする、方向保護継電装置。
A directional protection relay device for protecting a three-phase AC circuit from a short circuit accident,
A cross through current transformer in which an arbitrary two phases of the three-phase AC circuit are crossed in an opposite direction and at an arbitrary angle through an annular iron core wound with a secondary coil;
When a short circuit fault is detected based on the short circuit current input from the cross-through current transformer and the line voltage of the three-phase AC circuit, the circuit breakers installed in each phase of the three-phase AC circuit are collectively shut off. A directional protection relay,
A directional protection relay device comprising:
前記方向保護継電器が、前記クロス貫通変流器から入力される前記短絡電流に所定の倍数を掛けて補正短絡電流を算出し、該算出した補正短絡電流と前記三相交流回路の線間電圧とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された遮断器を一括遮断することを特徴とする、請求項1記載の方向保護継電装置。   The direction protection relay calculates a corrected short-circuit current by multiplying the short-circuit current input from the cross-through current transformer by a predetermined multiple, and calculates the corrected short-circuit current and the line voltage of the three-phase AC circuit. 2. The direction protection relay device according to claim 1, wherein when a short circuit accident is detected based on the circuit breaker, the circuit breakers installed in each phase of the three-phase AC circuit are collectively disconnected. 前記クロス貫通変流器(10)が送配電線に設置されており、
該クロス貫通変流器の環状鉄心に前記送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記方向保護継電器が、前記クロス貫通変流器から入力される短絡電流(IRy)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて短絡事故を検出すると、該送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する短絡方向継電器(4)である、
ことを特徴とする、請求項1または2記載の方向保護継電装置。
The cross-through current transformer (10) is installed in the transmission and distribution line,
The first phase and the second phase of the transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular core of the cross-through current transformer,
When the direction protection relay detects a short-circuit accident based on a short-circuit current (I Ry ) input from the cross-through current transformer and a line voltage (V RS , V ST , V TR ) of the transmission and distribution line , A short-circuit direction relay (4) that collectively shuts off the first to third circuit breakers (2 1 to 2 3 ) installed in each phase of the transmission and distribution line.
The direction protection relay device according to claim 1 or 2, characterized in that.
前記クロス貫通変流器(10)が送配電線に設置されており、
該クロス貫通変流器の環状鉄心に前記送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記方向保護継電器が、前記クロス貫通変流器から入力される短絡電流(IRy)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて短絡事故を検出すると、該送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する距離継電器(20)である、
ことを特徴とする、請求項1または2記載の方向保護継電装置。
The cross-through current transformer (10) is installed in the transmission and distribution line,
The first phase and the second phase of the transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular core of the cross-through current transformer,
The directional protection relay is the cross through the short-circuit current which is input from the current transformer (I Ry) and the line voltage of the transmission and distribution lines (V RS, V ST, V TR) upon detecting a short circuit based on the , A distance relay (20) that collectively shuts off the first to third circuit breakers (2 1 to 2 3 ) installed in each phase of the transmission and distribution line.
The direction protection relay device according to claim 1 or 2, characterized in that.
前記クロス貫通変流器が、第1および第2の送配電線(1L,2L)にそれぞれ設置された第1および第2のクロス貫通変流器(101,102)であり、
該第1のクロス貫通変流器の環状鉄心に前記第1の送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記第2のクロス貫通変流器の環状鉄心に前記第2の送配電線の前記第1の相および前記第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記方向保護継電器が、前記第1のクロス貫通変流器から入力される短絡電流および前記第2のクロス貫通変流器から入力される短絡電流の差電流である短絡電流(IRy)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて前記第1の送配電線に短絡事故が発生したことを検出すると、該第1の送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断し、前記短絡電流と前記送配電線の線間電圧とに基づいて前記第2の送配電線に短絡事故が発生したことを検出すると、該第2の送配電線の各相に設置された第4乃至第6の遮断器(24〜26)を一括遮断する回線選択継電器(30)である、
ことを特徴とする、請求項1または2記載の方向保護継電装置。
The cross through current transformer is a first and second transmission and distribution lines (1L, 2L) to the first and second cross through current transformer installed respectively (10 1, 10 2),
The first phase and the second phase of the first transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular iron core of the first cross-through current transformer;
The first phase and the second phase of the second transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular iron core of the second cross-penetrating current transformer,
The direction protection relay includes a short-circuit current (I Ry ) that is a difference between a short-circuit current input from the first cross-through current transformer and a short-circuit current input from the second cross-through current transformer; When it is detected that a short circuit accident has occurred in the first transmission / distribution line based on the line voltages (V RS , V ST , V TR ) of the transmission / distribution line, each phase of the first transmission / distribution line is detected. The installed first to third circuit breakers (2 1 to 2 3 ) are collectively cut off, and a short circuit accident occurs in the second transmission and distribution line based on the short circuit current and the line voltage of the transmission and distribution line. A line selection relay (30) that collectively shuts off the fourth to sixth circuit breakers (2 4 to 2 6 ) installed in each phase of the second transmission / distribution line when it is detected that they have occurred.
The direction protection relay device according to claim 1 or 2, characterized in that.
2次コイルを巻装した環状鉄心に前記三相交流回路の前記任意の2相のうちの1相と該任意の2相以外の他の1相とを逆向きにかつ任意の角度でクロスさせて貫通させた他のクロス貫通変流器と、
該他のクロス貫通変流器から入力される他の短絡電流と前記三相交流回路の線間電圧とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された遮断器を一括遮断する他の方向保護継電器と、
をさらに具備することを特徴とする、請求項1または2記載の方向保護継電装置。
One annular phase of the three-phase AC circuit and one other phase other than the arbitrary two phases are crossed in an opposite direction and at an arbitrary angle on an annular core around which a secondary coil is wound. With other cross-penetrating current transformers,
When a short-circuit fault is detected based on another short-circuit current input from the other cross-through current transformer and a line voltage of the three-phase AC circuit, a circuit breaker installed in each phase of the three-phase AC circuit With other directional protection relay that cuts off at once,
The directional protection relay device according to claim 1, further comprising:
前記他の方向保護継電器が、前記他のクロス貫通変流器から入力される前記他の短絡電流に所定の倍数を掛けて他の補正短絡電流を算出し、該算出した他の補正短絡電流と前記三相交流回路の線間電圧とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された遮断器を一括遮断することを特徴とする、請求項6記載の方向保護継電装置。   The other directional protection relay calculates another corrected short-circuit current by multiplying the other short-circuit current input from the other cross-through current transformer by a predetermined multiple, and the calculated other corrected short-circuit current and 7. The direction protection according to claim 6, wherein when a short-circuit accident is detected based on a line voltage of the three-phase AC circuit, circuit breakers installed in each phase of the three-phase AC circuit are collectively shut off. Relay device. 前記クロス貫通変流器が、送配電線に設置された第1のクロス貫通変流器(101)であり、
前記他のクロス貫通変流器が、前記送配電線に設置された第2のクロス貫通変流器(102)であり、
前記第1のクロス貫通変流器の環状鉄心に前記送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記第2のクロス貫通変流器の環状鉄心に前記送配電線の前記第2の相および第3の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記方向保護継電器が、前記第1のクロス貫通変流器から入力される第1の短絡電流(IRy1)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて短絡事故を検出すると、該送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する第1の短絡方向継電器(41)であり、
前記他の方向保護継電器が、前記第2のクロス貫通変流器から入力される第2の短絡電流(IRy2)と前記送配電線の線間電圧とに基づいて短絡事故を検出すると、前記第1乃至第3の遮断器を一括遮断する第2の短絡方向継電器(42)である、
ことを特徴とする、請求項6または7記載の方向保護継電装置。
The cross-through current transformer is a first cross-through current transformer (10 1 ) installed on a transmission and distribution line,
The other cross-through current transformer is a second cross-through current transformer (10 2 ) installed in the transmission and distribution line;
The first phase and the second phase of the transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular core of the first cross-through current transformer;
The second phase and the third phase of the power transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular core of the second cross-through current transformer;
The direction protection relay is based on a first short-circuit current (I Ry1 ) input from the first cross-through current transformer and a line voltage (V RS , V ST , V TR ) of the transmission and distribution line. When a short circuit accident is detected, the first short circuit direction relay (4 1 ) that collectively shuts off the first to third circuit breakers (2 1 to 2 3 ) installed in each phase of the transmission and distribution line,
When the other directional protection relay detects a short-circuit accident based on the second short-circuit current (I Ry2 ) input from the second cross-through current transformer and the line voltage of the transmission and distribution line, A second short-circuit direction relay (4 2 ) that collectively shuts off the first to third circuit breakers;
The direction protection relay device according to claim 6 or 7, characterized by the above.
前記クロス貫通変流器が、送配電線に設置された第1のクロス貫通変流器(101)であり、
前記他のクロス貫通変流器が、前記送配電線に設置された第2のクロス貫通変流器(102)であり、
前記第1のクロス貫通変流器の環状鉄心に前記送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記第2のクロス貫通変流器の環状鉄心に前記送配電線の前記第2の相および第3の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記方向保護継電器が、前記第1のクロス貫通変流器から入力される第1の短絡電流(IRy1)と前記送配電線の線間電圧(VRS,VST,VTR)とに基づいて短絡事故を検出すると、前記送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する第1の距離継電器(201)であり、
前記他の方向保護継電器が、前記第2のクロス貫通変流器から入力される第2の短絡電流(IRy2)と前記送配電線の線間電圧とに基づいて短絡事故を検出すると、前記第1乃至第3の遮断器を一括遮断する第2の距離継電器(202)である、
ことを特徴とする、請求項6または7記載の方向保護継電装置。
The cross-through current transformer is a first cross-through current transformer (10 1 ) installed on a transmission and distribution line,
The other cross-through current transformer is a second cross-through current transformer (10 2 ) installed in the transmission and distribution line;
The first phase and the second phase of the transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular core of the first cross-through current transformer;
The second phase and the third phase of the power transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular core of the second cross-through current transformer;
The direction protection relay is based on a first short-circuit current (I Ry1 ) input from the first cross-through current transformer and a line voltage (V RS , V ST , V TR ) of the transmission and distribution line. Upon detection of a short circuit Te, a first distance relay for collectively blocking the first to third circuit breakers installed in each phase of the transmission and distribution lines (2 1 to 2 3) (20 1),
When the other directional protection relay detects a short-circuit accident based on the second short-circuit current (I Ry2 ) input from the second cross-through current transformer and the line voltage of the transmission and distribution line, A second distance relay (20 2 ) that collectively shuts off the first to third circuit breakers;
The direction protection relay device according to claim 6 or 7, characterized by the above.
前記クロス貫通変流器が、第1および第2の送配電線(1L,2L)にそれぞれ設置された第1および第2のクロス貫通変流器(101,102)であり、
前記他のクロス貫通変流器が、前記第1および第2の送配電線にそれぞれ設置された第3および第4のクロス貫通変流器(103,104)であり、
前記第1のクロス貫通変流器の環状鉄心に前記第1の送配電線の第1の相および第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記第2のクロス貫通変流器の環状鉄心に前記第2の送配電線の前記第1の相および前記第2の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記第3のクロス貫通変流器の環状鉄心に前記第1の送配電線の前記第2の相および第3の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記第4のクロス貫通変流器の環状鉄心に前記第2の送配電線の前記第2の相および前記第3の相が逆向きにかつ任意の角度でクロスされて貫通されており、
前記方向保護継電器が、前記第1のクロス貫通変流器から入力される短絡電流および前記第2のクロス貫通変流器から入力される短絡電流の差電流である第1の短絡電流(IRy1)と前記第1および第2の送配電線の線間電圧(VRS,VST,VTR)とに基づいて前記第1の送配電線に短絡事故が発生したことを検出すると、該第1の送配電線の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断し、前記第1の短絡電流と前記第1および第2の送配電線の線間電圧とに基づいて前記第2の送配電線に短絡事故が発生したことを検出すると、該第2の送配電線の各相に設置された第4乃至第6の遮断器(24〜26)を一括遮断する第1の回線選択継電器(301)であり、
前記他の方向保護継電器が、前記第3のクロス貫通変流器から入力される短絡電流および前記第4のクロス貫通変流器から入力される短絡電流の差電流である第2の短絡電流(IRy2)と前記第1および第2の送配電線の線間電圧とに基づいて前記第1の送配電線に短絡事故が発生したことを検出すると前記第1乃至第3の遮断器を一括遮断し、前記第2の短絡電流と前記第1および第2の送配電線の線間電圧とに基づいて前記第2の送配電線に短絡事故が発生したことを検出すると前記第4乃至第6の遮断器を一括遮断する第2の回線選択継電器(302)である、
ことを特徴とする、請求項6または7記載の方向保護継電装置。
The cross through current transformer is a first and second transmission and distribution lines (1L, 2L) to the first and second cross through current transformer installed respectively (10 1, 10 2),
The other cross through current transformers are third and fourth cross through current transformers (10 3 , 10 4 ) installed in the first and second transmission and distribution lines, respectively.
The first phase and the second phase of the first transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular iron core of the first cross-through current transformer;
The first phase and the second phase of the second transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular iron core of the second cross-penetrating current transformer,
The second phase and the third phase of the first power transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular core of the third cross-through current transformer,
The second phase and the third phase of the second power transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through the annular iron core of the fourth cross-through current transformer,
The directional protection relay has a first short-circuit current (I Ry1) that is a difference between a short-circuit current input from the first cross-through current transformer and a short-circuit current input from the second cross-through current transformer. ) And the line voltages (V RS , V ST , V TR ) of the first and second transmission / reception lines, it is detected that a short-circuit accident has occurred in the first transmission / distribution line. First to third circuit breakers (2 1 to 2 3 ) installed in each phase of one transmission / distribution line are collectively cut off, and the first short circuit current and the first and second transmission / distribution lines When it is detected that a short circuit accident has occurred in the second transmission / distribution line based on the line voltage, the fourth to sixth circuit breakers (2 4 ) installed in each phase of the second transmission / distribution line. to 2 6) is a first line selection relay for collectively blocking the (30 1),
The other short-circuit protection relay is a second short-circuit current (a difference current between a short-circuit current input from the third cross-through current transformer and a short-circuit current input from the fourth cross-through current transformer). I Ry2 ) and the line voltage of the first and second transmission / distribution lines, when it is detected that a short circuit accident has occurred in the first transmission / distribution line, the first to third circuit breakers are collectively When the second and short-circuit currents are detected and a short-circuit accident has occurred in the second transmission and distribution line based on the second short-circuit current and the line voltage of the first and second transmission and distribution lines, the fourth to fourth The second circuit selection relay (30 2 ) that collectively shuts off the 6 circuit breakers.
The direction protection relay device according to claim 6 or 7, characterized by the above.
JP2008214363A 2008-08-22 2008-08-22 Direction protective relay device Withdrawn JP2010051124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214363A JP2010051124A (en) 2008-08-22 2008-08-22 Direction protective relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214363A JP2010051124A (en) 2008-08-22 2008-08-22 Direction protective relay device

Publications (1)

Publication Number Publication Date
JP2010051124A true JP2010051124A (en) 2010-03-04

Family

ID=42067732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214363A Withdrawn JP2010051124A (en) 2008-08-22 2008-08-22 Direction protective relay device

Country Status (1)

Country Link
JP (1) JP2010051124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209462A (en) * 2011-03-30 2012-10-25 Lintec Corp Protective sheet for solar cell, manufacturing method thereof, and solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209462A (en) * 2011-03-30 2012-10-25 Lintec Corp Protective sheet for solar cell, manufacturing method thereof, and solar cell module

Similar Documents

Publication Publication Date Title
Tumilty et al. Approaches to network protection for inverter dominated electrical distribution systems
WO2006130722A2 (en) An apparatus and method for determining a faulted phase of a three-phase ungrounded power system
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
JP2009077562A (en) Two-phase bushing current transformer and protective relay device
JPS5893422A (en) Protecting device for high voltage transmission line
KR101986036B1 (en) Protection relay device
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
JP2009198442A (en) Voltage abnormality detection device and voltage protection relay device
JP2010051124A (en) Direction protective relay device
JP2010166784A (en) Different-line different-phase cross through current transformer and line selecting relay device
Wilson et al. Detecting open phase conductors
CN115236380A (en) Zero sequence current detection device of power system
Ciontea et al. A feeder protection method against the phase-phase fault using symmetrical components
JP2010051122A (en) Direction protective relay device
JP2010051123A (en) Direction protective relay device
JP2009044954A (en) Cross-through current transformer and protective relay system
JP2010166772A (en) In-phase cross through current transformer and line selecting relay device
JP2010148269A (en) Protective relay system
JP2009027825A (en) Protective relay device
JP2009027826A (en) Protective relay device
JP2010166774A (en) Directional power relay device
JP2009295839A (en) Cross through current transformer, terminal block, and protective relay device
JP2010166783A (en) Directional protective relay device and directional power relay device
JP2010051121A (en) Direction protective relay device
JP2010166778A (en) Directional protective relay device and directional power relay device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101