JP2010050020A - Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery using the same - Google Patents

Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP2010050020A
JP2010050020A JP2008215169A JP2008215169A JP2010050020A JP 2010050020 A JP2010050020 A JP 2010050020A JP 2008215169 A JP2008215169 A JP 2008215169A JP 2008215169 A JP2008215169 A JP 2008215169A JP 2010050020 A JP2010050020 A JP 2010050020A
Authority
JP
Japan
Prior art keywords
battery
group
aqueous electrolyte
nonaqueous
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008215169A
Other languages
Japanese (ja)
Inventor
Yasuo Horikawa
泰郎 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008215169A priority Critical patent/JP2010050020A/en
Publication of JP2010050020A publication Critical patent/JP2010050020A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte for a battery capable of giving excellent high-temperature storage characteristics and high safety to the battery. <P>SOLUTION: The nonaqueous electrolyte for a battery includes a ring phosphazen compound expressed by formula (I) of (NPR<SP>1</SP><SB>2</SB>)<SB>n</SB>, a nonaqueous solvent, an unsaturated ester compound expressed by formula (II), and supporting salt. Here, R<SP>1</SP>in formula (I) each independently shows fluorine, alkoxy, or aryloxy which; and n shows 3-4. R<SP>2</SP>in formula (II) is 1-2C alkyl; and R<SP>3</SP>is 2-4C alkenyl or propargyl. However, R<SP>2</SP>and R<SP>3</SP>may form a ring by combining each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池用非水電解液及びそれを備えた非水電解液二次電池に関し、特には、不燃性を有する電池用非水電解液、及び高温での保存特性に優れ、高い安全性能を有する非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte for a battery and a non-aqueous electrolyte secondary battery including the same, and in particular, a non-aqueous electrolyte for a non-flammable battery, and excellent storage characteristics at high temperatures, and high safety performance. The present invention relates to a non-aqueous electrolyte secondary battery having

非水電解液は、リチウム電池やリチウムイオン二次電池、電気二重層キャパシタ等の電解質として使用されており、これらデバイスは、高電圧、高エネルギー密度を有することから、パソコン及び携帯電話等の駆動電源として広く用いられている。そして、これら非水電解液としては、一般にエステル化合物及びエーテル化合物等の非プロトン性有機溶媒に、LiPF6等の支持塩を溶解させたものが用いられている。しかしながら、非プロトン性有機溶媒は、可燃性であるため、上記デバイスから漏液した際に引火・燃焼する可能性があり、安全面での問題を有している。 Non-aqueous electrolytes are used as electrolytes for lithium batteries, lithium-ion secondary batteries, electric double layer capacitors, etc., and these devices have high voltage and high energy density, so they drive personal computers and mobile phones. Widely used as a power source. As these nonaqueous electrolytic solutions, generally used are solutions in which a supporting salt such as LiPF 6 is dissolved in an aprotic organic solvent such as an ester compound and an ether compound. However, since the aprotic organic solvent is flammable, it may ignite and burn when it leaks from the device, and has a safety problem.

この問題に対して、非水電解液を難燃化する方法が検討されており、例えば、非水電解液にリン酸トリメチル等のリン酸エステル類を用いたり、非プロトン性有機溶媒にリン酸エステル類を添加したりする方法が提案されている(特許文献1〜3参照)。しかしながら、これらリン酸エステル類は、耐還元性が低いため、リン酸エステルを用いた電池を充電状態で保存した場合、高い電池電圧によってリン酸エステルの分解反応が進行してしまうため、自己放電が大きく保存後の容量が大きく低下してしまうという問題がある。   To solve this problem, methods for making non-aqueous electrolytes flame-retardant have been studied. For example, phosphoric acid esters such as trimethyl phosphate are used for non-aqueous electrolytes, or phosphoric acid is used for aprotic organic solvents. Methods for adding esters have been proposed (see Patent Documents 1 to 3). However, since these phosphate esters have low reduction resistance, when a battery using a phosphate ester is stored in a charged state, the decomposition reaction of the phosphate ester proceeds due to a high battery voltage. There is a problem that the capacity after storage is greatly reduced.

また、特開平6−13108号公報(特許文献4)には、非水電解液に難燃性を付与するために、非水電解液にホスファゼン化合物を添加する方法が開示されている。該ホスファゼン化合物は、その種類によっては高い不燃性を示し、非水電解液への添加量を増量するに従い、非水電解液の難燃性が向上する傾向がある。該ホスファゼン化合物は、概して熱に対して安定性は高いものの、支持塩の溶解性が低く、添加量を多くすると、他の電解液成分の含量が少なくなり、その成分に溶解している支持塩の相対的な濃度が高くなる。このため、温度環境や電池作動電圧条件によっては、電解液成分や支持塩の分解、劣化が起こり易くなり、結果として保存特性が悪くなることがある。   Japanese Patent Application Laid-Open No. 6-13108 (Patent Document 4) discloses a method of adding a phosphazene compound to a nonaqueous electrolytic solution in order to impart flame retardancy to the nonaqueous electrolytic solution. The phosphazene compound exhibits high nonflammability depending on the type, and the flame retardancy of the nonaqueous electrolyte tends to improve as the amount added to the nonaqueous electrolyte increases. The phosphazene compound generally has high stability to heat, but the solubility of the supporting salt is low. When the addition amount is increased, the content of other electrolyte components decreases, and the supporting salt dissolved in the component is reduced. The relative concentration of increases. For this reason, depending on the temperature environment and battery operating voltage conditions, decomposition and deterioration of the electrolyte component and the supporting salt are likely to occur, and as a result, the storage characteristics may be deteriorated.

電池デバイスは、安全性が高いことはもとより、より広範囲の温度領域で安定した性能を確保できることが求められ、保存特性としても広範囲の温度領域でできるだけ自己放電が少ないリチウム二次電池用電解液が望まれている。これらの点で従来技術は必ずしも十分に満足できるレベルに達しているとはいえない。
特開平4−184870号公報 特開平8−22839号公報 特開2000−182669号公報 特開平6−13108号公報
Battery devices are required not only to have high safety but also to ensure stable performance over a wider temperature range, and as a storage characteristic, an electrolyte solution for lithium secondary batteries that has as little self-discharge as possible over a wide temperature range. It is desired. In these respects, it cannot be said that the prior art has reached a sufficiently satisfactory level.
JP-A-4-184870 JP-A-8-22839 JP 2000-182669 A JP-A-6-13108

そこで、本発明の目的は、上記従来技術の問題を解決し、不燃性を有する電池用非水電解液と、該電池用非水電解液を備え、高温保存特性に優れ、高い安全性を有する非水電解液二次電池を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a non-flammable battery non-aqueous electrolyte and the battery non-aqueous electrolyte, which have excellent high-temperature storage characteristics and high safety. The object is to provide a non-aqueous electrolyte secondary battery.

本発明者は、上記目的を達成するために鋭意検討した結果、特定の環状ホスファゼン化合物と非水溶媒に、さらに特定の不飽和エステル化合物を組み合わせて非水電解液を構成することにより、電解液に高い難燃性を付与することができ、また、該電解液を用いた非水電解液二次電池が高温環境下で長期間放置しても高い電池容量を維持できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor has constructed a non-aqueous electrolyte by combining a specific cyclic phosphazene compound and a non-aqueous solvent with a specific unsaturated ester compound, thereby forming an electrolyte solution. And found that a non-aqueous electrolyte secondary battery using the electrolyte can maintain a high battery capacity even when left in a high temperature environment for a long period of time. It came to complete.

即ち、本発明の電池用非水電解液は、
・下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物と、
・非水溶媒と、
・下記一般式(II):

Figure 2010050020
[式中、R2は炭素数1〜2のアルキル基であり;R3は炭素数2〜4のアルケニル基又はプロパルギル基であり、但し、R2及びR3は互いに結合して環を形成してもよい]で表される不飽和エステル化合物と、
・支持塩と
を含むことを特徴とする。なお、式(I)で表される環状ホスファゼン化合物、非水溶媒、式(II)で表される不飽和エステル化合物及び支持塩のみからなる電池用非水電解液は、本発明の電池用非水電解液の好適一態様である。 That is, the non-aqueous electrolyte for a battery of the present invention is
-The following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein R 1 independently represents a fluorine, an alkoxy group or an aryloxy group; n represents 3 to 4], and a cyclic phosphazene compound represented by:
A non-aqueous solvent,
-The following general formula (II):
Figure 2010050020
[Wherein R 2 is an alkyl group having 1 to 2 carbon atoms; R 3 is an alkenyl group or propargyl group having 2 to 4 carbon atoms, provided that R 2 and R 3 are bonded to each other to form a ring. An unsaturated ester compound represented by:
-It is characterized by including supporting salt. Note that the nonaqueous electrolytic solution for a battery consisting only of the cyclic phosphazene compound represented by the formula (I), the nonaqueous solvent, the unsaturated ester compound represented by the formula (II) and the supporting salt is a non-aqueous electrolyte for a battery of the present invention. This is a preferred embodiment of the water electrolyte.

本発明の電池用非水電解液において、前記環状ホスファゼン化合物としては、前記一般式(I)において、R1のうち少なくとも4つがフッ素である化合物が好ましい。 In the non-aqueous electrolyte for a battery of the present invention, the cyclic phosphazene compound is preferably a compound in which at least four of R 1 in the general formula (I) are fluorine.

本発明の電池用非水電解液の好適例においては、前記一般式(I)で表される環状ホスファゼン化合物の含有量が電池用非水電解液全体の10〜60体積%である。   In a preferred example of the battery non-aqueous electrolyte of the present invention, the content of the cyclic phosphazene compound represented by the general formula (I) is 10 to 60% by volume of the whole battery non-aqueous electrolyte.

本発明の電池用非水電解液の他の好適例においては、前記不飽和エステル化合物の含有量が電池用非水電解液全体の0.2〜1質量%である。   In another preferred embodiment of the battery non-aqueous electrolyte of the present invention, the content of the unsaturated ester compound is 0.2 to 1% by mass of the whole battery non-aqueous electrolyte.

本発明の電池用非水電解液の他の好適例においては、前記非水溶媒が、非プロトン性有機溶媒であり、該非プロトン性有機溶媒としてエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びプロピオン酸メチルからなる群から選択される少なくとも1種を含むことが更に好ましい。   In another preferred embodiment of the battery non-aqueous electrolyte of the present invention, the non-aqueous solvent is an aprotic organic solvent, and the aprotic organic solvent includes ethylene carbonate (EC), ethyl methyl carbonate (EMC), and More preferably, it contains at least one selected from the group consisting of methyl propionate.

また、本発明の非水電解液二次電池は、上記電池用非水電解液と、正極と、負極とを備えることを特徴とする。   Moreover, the non-aqueous electrolyte secondary battery of the present invention comprises the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode.

本発明によれば、非水溶媒に特定の環状ホスファゼン化合物を加え、好ましくは10体積%以上加えることにより高い難燃性を有し、さらに特定の不飽和エステル化合物を組み合わせて用いることにより、非水電解液二次電池に使用した際に高温環境下でも自己放電が少なく、高い電池容量を維持することが可能な非水電解液を提供することができる。また、該非水電解液を備えた、高い安全性と優れた電池特性を有する非水電解液二次電池を提供することができる。   According to the present invention, a specific cyclic phosphazene compound is added to a non-aqueous solvent, and preferably has a high flame retardancy by adding 10% by volume or more, and further, a specific unsaturated ester compound is used in combination. When used in a water electrolyte secondary battery, it is possible to provide a non-aqueous electrolyte capable of maintaining a high battery capacity with little self-discharge even in a high temperature environment. Moreover, the nonaqueous electrolyte secondary battery provided with this nonaqueous electrolyte and having high safety and excellent battery characteristics can be provided.

本発明の電池用非水電解液においては、環状ホスファゼン化合物の反応、熱分解により生じる高不燃性ガス成分が、高い難燃性を発現するものと考えられる。また、理由は必ずしも明らかではないが、上記環状ホスファゼン化合物と不飽和エステル化合物との2つの化合物の相乗効果により生じる電極表面の皮膜が、広い温度範囲で電解液と電池極材との接触分解を抑制するため、高温環境下でも分解による自己放電が少なく、長期保存後も高い放電容量を維持できるものと考えられる。   In the non-aqueous electrolyte for batteries of the present invention, it is considered that a highly incombustible gas component produced by reaction and thermal decomposition of a cyclic phosphazene compound exhibits high flame retardancy. Moreover, although the reason is not necessarily clear, the film on the electrode surface generated by the synergistic effect of the two compounds of the cyclic phosphazene compound and the unsaturated ester compound causes the catalytic decomposition of the electrolyte and the battery electrode material in a wide temperature range. In order to suppress it, it is considered that self-discharge due to decomposition is small even in a high temperature environment, and a high discharge capacity can be maintained even after long-term storage.

<電池用非水電解液>
以下に、本発明の電池用非水電解液を詳細に説明する。本発明に係る電池用非水電解液は、上記一般式(I)で表される環状ホスファゼン化合物と、非水溶媒と、上記一般式(II)で表される不飽和エステル化合物とを含むことを特徴とし、更に、非水溶媒として、非プロトン性有機溶媒を含有することが好ましい。
<Non-aqueous electrolyte for batteries>
Below, the non-aqueous electrolyte for batteries of the present invention will be described in detail. The nonaqueous electrolytic solution for a battery according to the present invention contains a cyclic phosphazene compound represented by the general formula (I), a nonaqueous solvent, and an unsaturated ester compound represented by the general formula (II). Further, it is preferable to contain an aprotic organic solvent as the non-aqueous solvent.

本発明の電池用非水電解液に含まれる環状ホスファゼン化合物は、上記一般式(I)で表される。式(I)中のR1は、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し、nは3〜4を表す。 The cyclic phosphazene compound contained in the nonaqueous electrolytic solution for batteries of the present invention is represented by the above general formula (I). R 1 in formula (I) each independently represent fluorine, an alkoxy group or an aryloxy radical, n represents 3-4.

式(I)のR1におけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等、またはメトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられる。更に、R1におけるアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、キシレノキシ基(即ち、キシリルオキシ基)、メトキシフェノキシ基等が挙げられる。上記アルコキシ基及びアリールオキシ基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。また、式(I)中のR1は他のR1と連結していてもよく、この場合、2つのR1は、互いに結合して、アルキレンジオキシ基、アリーレンジオキシ基又はオキシアルキレンアリーレンオキシ基を形成し、かかる二価の基としては、エチレンジオキシ基、プロピレンジオキシ基、フェニレンジオキシ基等が挙げられる。 Examples of the alkoxy group in R 1 of the formula (I) include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an allyloxy group containing a double bond, or an alkoxy-substituted alkoxy such as a methoxyethoxy group and a methoxyethoxyethoxy group. Groups and the like. Furthermore, examples of the aryloxy group in R 1 include a phenoxy group, a methylphenoxy group, a xylenoxy group (that is, a xylyloxy group), a methoxyphenoxy group, and the like. The hydrogen element in the alkoxy group and aryloxy group may be substituted with a halogen element, and is preferably substituted with fluorine. R 1 in formula (I) may be linked to other R 1, and in this case, two R 1 are bonded to each other to form an alkylenedioxy group, an aryleneoxy group or an oxyalkylene arylene. Examples of the divalent group that forms an oxy group include an ethylenedioxy group, a propylenedioxy group, and a phenylenedioxy group.

上記一般式(I)中のR1は、同一でも異なってもよい。また、式(I)のR1は、不燃性及び低粘性の両立の点で、R1のうち4つ以上がフッ素であることが好ましい。 R 1 in the general formula (I) may be the same or different. Further, R 1 in the formula (I) is preferably 4 or more of R 1 in terms of both nonflammability and low viscosity.

また、式(I)のnは、3〜4であり、上記環状ホスファゼン化合物は、1種単独で使用してもよいし、2種以上を混合して用いてもよい。   Moreover, n of Formula (I) is 3-4, The said cyclic phosphazene compound may be used individually by 1 type, and may mix and use 2 or more types.

本発明の電池用非水電解液において、上記環状ホスファゼン化合物の含有量は、電池用非水電解液全体の5〜70体積%であることが好ましく、安全性と電池特性のバランスの観点から、10〜60体積%の範囲が更に好ましい。環状ホスファゼン化合物の含有量が70体積%を超えると、電池の容量や負荷特性が低下してしまうため好ましくなく、一方、5体積%未満では、引火点の低い有機溶媒を電解液に使用した場合に、不燃性を発現できないことがある。   In the battery non-aqueous electrolyte of the present invention, the content of the cyclic phosphazene compound is preferably 5 to 70% by volume of the whole battery non-aqueous electrolyte, from the viewpoint of the balance between safety and battery characteristics, A range of 10 to 60% by volume is more preferable. When the content of the cyclic phosphazene compound exceeds 70% by volume, the battery capacity and load characteristics are deteriorated, which is not preferable. In addition, incombustibility may not be exhibited.

本発明の電池用非水電解液は、更に上記一般式(II)で表わされる不飽和エステル化合物を含むことを特徴とする。式(II)において、R2は炭素数1〜2のアルキル基であり、R3は炭素数2〜4のアルケニル基又はプロパルギル基であり、但し、R2及びR3は互いに結合して環を形成してもよい。ここで、R2におけるアルキル基としては、メチル基、エチル基が挙げられ、R3におけるアルケニル基としては、ビニル基、アリル基、イソプロペニル基等が挙げられ、R2及びR3が結合して形成する基としては、メチリデンエチレン基[−C(=CH2)CH2−]等の二価の基が挙げられる。 The nonaqueous electrolytic solution for a battery of the present invention is characterized by further containing an unsaturated ester compound represented by the above general formula (II). In the formula (II), R 2 is an alkyl group having 1 to 2 carbon atoms, R 3 is an alkenyl group or propargyl group having 2 to 4 carbon atoms, provided that R 2 and R 3 are bonded to each other to form a ring. May be formed. Here, as the alkyl group in R 2, a methyl group, and ethyl group, the alkenyl group in R 3, a vinyl group, an allyl group, isopropenyl group, etc., R 2 and R 3 are bonded Examples of the group formed in this way include a divalent group such as a methylideneethylene group [—C (═CH 2 ) CH 2 —].

式(II)の不飽和エステル化合物の具体例としては、酢酸ビニル、酢酸アリル、酢酸メタリル、酢酸イソプロペニル、酢酸プロパルギル、プロピオン酸ビニル、プロピオン酸アリル、プロピオン酸メタリル、プロピオン酸イソプロペニル、プロピオン酸プロパルギル、ジケテン等が挙げられる。これらの中でも、酢酸アリル、プロピオン酸ビニル、酢酸プロパルギル、ジケテンが好ましい。これら不飽和エステル化合物は、1種単独で使用してもよく、2種以上を混合して使用してもよい。   Specific examples of unsaturated ester compounds of formula (II) include vinyl acetate, allyl acetate, methallyl acetate, isopropenyl acetate, propargyl acetate, vinyl propionate, allyl propionate, methallyl propionate, isopropenyl propionate, propionic acid Examples include propargyl and diketene. Among these, allyl acetate, vinyl propionate, propargyl acetate, and diketene are preferable. These unsaturated ester compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.

上記不飽和エステル化合物の含有量は、電池用非水電解液全体の0.1〜2質量%の範囲が好ましく、電池性能のバランスの観点から、0.2〜1質量%の範囲が更に好ましい。   The content of the unsaturated ester compound is preferably in the range of 0.1 to 2% by mass, and more preferably in the range of 0.2 to 1% by mass, based on the balance of battery performance.

本発明の電池用非水電解液において、非水溶媒としては、本発明の目的を損なわない範囲で従来より二次電池用非水電解液に使用されている種々の非プロトン性有機溶媒を使用することができる。なお、非水溶媒の含有量は、電池用非水電解液全体の30〜95体積%であることが好ましく、安全性と電池特性のバランスの観点から、40〜90体積%の範囲が更に好ましい。   In the non-aqueous electrolyte for batteries of the present invention, various non-protonic organic solvents conventionally used in non-aqueous electrolytes for secondary batteries are used as the non-aqueous solvent as long as the object of the present invention is not impaired. can do. The content of the non-aqueous solvent is preferably 30 to 95% by volume of the entire non-aqueous electrolyte for batteries, and more preferably in the range of 40 to 90% by volume from the viewpoint of the balance between safety and battery characteristics. .

上記非プロトン性有機溶媒として具体的には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等のカーボネート類、酢酸メチル、プロピオン酸メチル、酪酸メチル等のカルボン酸エステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジエチルエーテル(DEE)等のエーテル類、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホン類、エチレンスルフィド等のスルフィド類等が挙げられる。これらの中でも、環状ホスファゼン化合物との相溶性、および電池性能のバランスの点で、炭酸エステル類、カルボン酸エステル類を用いることが好ましく、中でもエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、プロピオン酸メチルを用いることがより好ましい。これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を混合して用いてもよい。   Specific examples of the aprotic organic solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC). ), Carbonates such as methyl acetate, methyl propionate and methyl butyrate, ethers such as 1,2-dimethoxyethane (DME), tetrahydrofuran (THF) and diethyl ether (DEE), and γ-butyrolactone (GBL), lactones such as γ-valerolactone, nitriles such as acetonitrile, amides such as dimethylformamide, sulfones such as dimethyl sulfoxide, sulfides such as ethylene sulfide, and the like. Among these, it is preferable to use carbonic acid esters and carboxylic acid esters from the viewpoint of compatibility with the cyclic phosphazene compound and battery performance. Among them, ethylene carbonate (EC), ethyl methyl carbonate (EMC), propion are preferable. More preferably, methyl acid is used. These aprotic organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.

本発明の電池用非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiBC48、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(FSO2)2N、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これらの中でも、不燃性および電池性能に優れる点で、LiPF6、Li(FSO2)2N、Li(CF3SO2)2Nがより好ましい。これら支持塩は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。 As the supporting salt used in the non-aqueous electrolyte for a battery of the present invention, a supporting salt serving as a lithium ion source is preferable. The supporting salt is not particularly limited. For example, LiClO 4 , LiBF 4 , LiBC 4 O 8 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (FSO 2 ) 2 N Suitable examples include lithium salts such as Li (CF 3 SO 2 ) 2 N and Li (C 2 F 5 SO 2 ) 2 N. Among these, LiPF 6 , Li (FSO 2 ) 2 N, and Li (CF 3 SO 2 ) 2 N are more preferable in terms of excellent nonflammability and battery performance. These supporting salts may be used alone or in combination of two or more.

上記非水電解液中の支持塩の総濃度としては、0.3〜2.5 mol/L(M)が好ましく、0.8〜2.0 mol/L(M)が更に好ましい。支持塩の総濃度が0.3 mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、2.5 mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。   The total concentration of the supporting salt in the non-aqueous electrolyte is preferably 0.3 to 2.5 mol / L (M), more preferably 0.8 to 2.0 mol / L (M). If the total concentration of the supporting salt is less than 0.3 mol / L, the conductivity of the electrolyte cannot be sufficiently secured, which may hinder battery discharge characteristics and charge characteristics. As the viscosity of the electrolyte increases and the mobility of lithium ions cannot be sufficiently secured, the conductivity of the electrolyte cannot be sufficiently secured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. is there.

また、非水電解液二次電池の形成に際して、本発明の電池用非水電解液は、そのまま用いることも可能であるが、例えば、適当なポリマーや多孔性支持体、或いはゲル状物質に含浸させる等して保持させる方法等で用いることもできる。   Further, when forming a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte for a battery of the present invention can be used as it is. For example, an appropriate polymer, a porous support, or a gel material is impregnated. It can also be used by a method of holding it.

<非水電解液二次電池>
次に、本発明の非水電解液二次電池を詳細に説明する。本発明の非水電解液二次電池は、上述の電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液二次電池の技術分野で通常使用されている他の部材を備える。なお、本発明の非水電解液二次電池には、非水電解液二次電池の他に、正極に分極性炭素電極、負極に予めリチウムイオンを吸蔵し、リチウムイオンを可逆的に吸蔵・脱離し得る非分極性炭素電極を用いた電気二重層キャパシタ(リチウムイオンキャパシタ又はハイブリッドキャパシタ)も含まれる。
<Nonaqueous electrolyte secondary battery>
Next, the nonaqueous electrolyte secondary battery of the present invention will be described in detail. The non-aqueous electrolyte secondary battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of a non-aqueous electrolyte secondary battery such as a separator as necessary. It includes other members that are used. In addition to the non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery of the present invention includes a polarizable carbon electrode in the positive electrode and lithium ions in the negative electrode in advance and reversibly occludes lithium ions. An electric double layer capacitor (lithium ion capacitor or hybrid capacitor) using a nonpolarizable carbon electrode that can be detached is also included.

本発明の非水電解液二次電池の正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー、活性炭等の炭素材料等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co、Al及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiMnxCoyNi(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiMnxNi(1-x)2[式中、0≦x<1]、LiMnxCo(1-x)2[式中、0≦x<1]、LiCoxNi(1-x)2[式中、0≦x<1]、LiCoxNiyAl(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiFexCoyNi(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、或いはLiMnxFey2-x-y等で表される。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO Preferred examples include lithium-containing composite oxides such as 2 and LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , conductive polymers such as polyaniline, and carbon materials such as activated carbon. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, Al, and Ni. In this case, the composite oxide LiMn x Co y Ni (1-xy) O 2 [where 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], LiMn x Ni (1-x) O 2 [wherein , 0 ≦ x <1], LiMn x Co (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni y Al [wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1] (1-xy) O 2, LiFe x Co y Ni (1-xy) O 2 [ wherein , 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], or LiMn x Fe y O 2 -xy . These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解液二次電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Sn、Si、Pb又はZn等との合金、リチウムイオンをドープしたTiO2等の金属酸化物、TiO2−P24等の金属酸化物複合材料、黒鉛等の炭素材料等が好適に挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the negative electrode active material of the non-aqueous electrolyte secondary battery of the present invention, lithium metal itself, an alloy of lithium and Al, In, Sn, Si, Pb, Zn or the like, metal oxide such as TiO 2 doped with lithium ions And metal oxide composite materials such as TiO 2 —P 2 O 4 , carbon materials such as graphite, and the like. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

本発明の非水電解液二次電池に使用できる他の部材としては、非水電解液二次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらは、単体でも、混合物でも、共重合体でもよい。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常二次電池に使用されている公知の各部材が好適に使用できる。   Other members that can be used in the non-aqueous electrolyte secondary battery of the present invention include a separator interposed in the non-aqueous electrolyte secondary battery between positive and negative electrodes to prevent current short-circuit due to contact between both electrodes. It is done. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. These may be a single substance, a mixture or a copolymer. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in secondary batteries can be suitably used.

以上に説明した本発明の非水電解液二次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液二次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これにシート状の負極を重ね合わせて巻き上げる等して、非水電解液二次電池を作製することができる。   The form of the non-aqueous electrolyte secondary battery of the present invention described above is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery are available. Preferably mentioned. In the case of the button type, a non-aqueous electrolyte secondary battery can be manufactured by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte secondary battery is manufactured by, for example, preparing a sheet-like positive electrode, sandwiching a current collector, and superimposing and winding up the sheet-like negative electrode on the current collector. Can do.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
上記一般式(I)においてnが3であって、全R1のうち1つがトリフルオロエトキシ基で、5つがフッ素である環状ホスファゼン化合物 10体積%と、エチレンカーボネート 18体積%と、ジエチルカーボネート 52体積%と、プロピオン酸メチル 20体積%とからなる混合溶媒に、LiPF6を1.2 mol/Lになるように溶解させて、これに酢酸アリル 0.2質量%を添加して非水電解液を調製した。次に、得られた非水電解液の難燃性を下記の方法で評価し、表1に示す結果を得た。
Example 1
In the above general formula (I), n is 3, 10% by volume of cyclic phosphazene compound in which one of all R 1 is a trifluoroethoxy group and 5 is fluorine, 18% by volume of ethylene carbonate, 52% of diethyl carbonate LiPF 6 was dissolved in a mixed solvent consisting of 20% by volume and 20% by volume of methyl propionate so as to be 1.2 mol / L, and 0.2% by mass of allyl acetate was added thereto to prepare a non-aqueous electrolyte. . Next, the flame retardancy of the obtained non-aqueous electrolyte was evaluated by the following method, and the results shown in Table 1 were obtained.

(1)難燃性の評価
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼長及び燃焼時間を測定・評価した。具体的には、UL試験基準に基づき、127 mm×12.7 mmのSiO2シートに上記電解液1.0 mLを染み込ませて試験片を作製して評価を行った。以下に不燃性・難燃性・自己消火性・燃焼性の評価基準を示す。
<不燃性の評価>試験炎を点火しても全く着火しなかった場合(燃焼長:0 mm)を不燃性ありと評価した。
<難燃性の評価>着火した炎が、装置の25 mmラインまで到達せず且つ網からの落下物にも着火が認められなかった場合を難燃性ありと評価した。
<自己消火性の評価>着火した炎が25〜100 mmラインで消火し且つ網からの落下物にも着火が認められなかった場合を自己消火性ありと評価した。
<燃焼性の評価>着火した炎が、100 mmラインを超えた場合を燃焼性と評価した。
(1) Flame Retardancy Evaluation The combustion length and combustion time of a flame ignited in an atmospheric environment were measured and evaluated by a method in which the UL94HB method of UL (Underwriting Laboratory) standard was arranged. Specifically, based on the UL test standard, a 127 mm × 12.7 mm SiO 2 sheet was impregnated with 1.0 mL of the electrolytic solution, and a test piece was prepared and evaluated. The evaluation criteria for nonflammability, flame retardancy, self-extinguishing properties, and flammability are shown below.
<Evaluation of nonflammability> When the test flame was ignited, it was not ignited at all (burning length: 0 mm).
<Evaluation of Flame Retardancy> The case where the ignited flame did not reach the 25 mm line of the apparatus and the fallen object from the net was not ignited was evaluated as flame retardant.
<Evaluation of self-extinguishing property> When the ignited flame was extinguished on the 25 to 100 mm line and no ignition was observed on the falling object from the net, it was evaluated as having self-extinguishing property.
<Evaluation of flammability> The case where the ignited flame exceeded the 100 mm line was evaluated as flammability.

(2)電池の作製
正極活物質としてLiMn1/3Co1/3Ni1/32を用い、該酸化物と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、質量比94:3:3で混合し、これをN-メチルピロリドンに分散させてスラリーとしたものを、正極集電体としてのアルミニウム箔に塗布した後、乾燥・プレスを施すことで、厚さ70μmの正極シートを得た。これを矩形(4 cm×50 cm)に切り取り、アルミニウム箔の集電タブを溶接して正極を作製した。また、負極活物質として人造グラファイトを用い、該人造グラファイトと、結着剤であるポリフッ化ビニリデンとを質量比90:10で混合し、これを有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)に分散させてスラリーとしたものを、負極集電体としての銅箔に塗布した後、乾燥・プレスを施すことで、厚さ50μmの負極シートを得た。これを矩形(4 cm×50 cm)に切り取り、ニッケル箔の集電タブを溶接して負極を作製した。次いで、セパレーター(微孔性フィルム:ポリエチレン製)を矩形(4 cm×50 cm)に切り取り、これを正極と負極とを介して挟み込み、4 cm×3 cmのスペーサーをベースに平巻きにした後、熱融着アルミラミネートフィルム(ポリエチレンテレフタレート/アルミニウム/ポリプロピレン)からなる外装材の中に挿入し、電解液を注入後、真空にしてすばやくヒートシールすることにより平板状ラミネート電池(非水電解液二次電池)を作製した。
(2) Production of Battery Using LiMn 1/3 Co 1/3 Ni 1/3 O 2 as a positive electrode active material, the oxide, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder The mixture was mixed at a mass ratio of 94: 3: 3 and dispersed in N-methylpyrrolidone to form a slurry, which was applied to an aluminum foil as a positive electrode current collector, and then dried and pressed. A positive electrode sheet having a thickness of 70 μm was obtained. This was cut into a rectangle (4 cm × 50 cm), and an aluminum foil current collecting tab was welded to produce a positive electrode. Further, artificial graphite is used as the negative electrode active material, and the artificial graphite and polyvinylidene fluoride as a binder are mixed at a mass ratio of 90:10, and this is mixed with an organic solvent (50/50 mass of ethyl acetate and ethanol). % Mixed solvent) was applied to a copper foil as a negative electrode current collector, followed by drying and pressing to obtain a negative electrode sheet having a thickness of 50 μm. This was cut into a rectangle (4 cm × 50 cm), and a nickel foil current collecting tab was welded to produce a negative electrode. Next, the separator (microporous film: made of polyethylene) is cut into a rectangle (4 cm x 50 cm), sandwiched between the positive electrode and the negative electrode, and flattened using a 4 cm x 3 cm spacer as a base Inserted into a heat-sealed aluminum laminate film (polyethylene terephthalate / aluminum / polypropylene) exterior material, injected the electrolyte, vacuumed and quickly heat-sealed to obtain a flat laminate battery (non-aqueous electrolyte 2 Secondary battery).

(3)高温保存特性評価
上記のようにして作製したラミネート電池を用い、20℃の環境下で、上限電圧4.2V、下限電圧3.0V、0.25 mA/cm2の電流密度による充放電サイクルを2回繰り返し、この時の放電容量を既知の正極重量で除することにより初期放電容量(mAh/g)を求めた。さらに4.2Vまで充電を行った後、電池を60℃の環境下で、40日間放置した。その後20℃の環境に取り出した後、同様の放電条件で放電を行ったときの放電容量を求め、下記の式:
容量残存率=放置後放電容量/初期放電容量×100(%)
に従って容量残存率を算出し、高温保存特性の指標とした。結果を表1に示す。
(3) Evaluation of high-temperature storage characteristics Using the laminate battery produced as described above, 2 charge / discharge cycles with an upper limit voltage of 4.2 V, a lower limit voltage of 3.0 V, and a current density of 0.25 mA / cm 2 in an environment of 20 ° C. The initial discharge capacity (mAh / g) was determined by repeating this operation and dividing the discharge capacity at this time by the known positive electrode weight. After further charging to 4.2 V, the battery was left in an environment at 60 ° C. for 40 days. Then, after taking out to 20 degreeC environment, the discharge capacity when discharging under the same discharge conditions is obtained, and the following formula:
Capacity remaining rate = discharge capacity after standing / initial discharge capacity × 100 (%)
The capacity remaining rate was calculated according to the above and used as an index of high temperature storage characteristics. The results are shown in Table 1.

(4)過充電安全性試験
上記と同じラミネート電池を作製し、過充電条件による電池安全性試験を行った。過充電試験の方法は、20℃の環境下で、4.2〜3.0Vの電圧範囲で、0.25 mA/cm2の電流密度による充放電サイクルを2回繰り返し、さらに4.2Vまで充電を行った後、該電池を温度調節機能つき電池ホルダー(ステンレス製)上に置き、20℃の電池温度条件で5.0 mA/cm2の電流密度により12.0Vまで充電を行い、同電圧でさらに0.25 mA/cm2の電流密度になるまで充電を継続し、破裂、発火の有無を調べた。結果を表1に示す。
(4) Overcharge safety test The same laminated battery as the above was produced, and the battery safety test by overcharge conditions was conducted. In the overcharge test method, a charge / discharge cycle with a current density of 0.25 mA / cm 2 was repeated twice in a voltage range of 4.2 to 3.0 V in an environment of 20 ° C., and further charged to 4.2 V. Place the cell on temperature control with battery holders (stainless steel), 20 by the current density of the battery temperature 5.0 mA / cm 2 of ℃ was charged to 12.0 V, yet 0.25 mA / cm 2 at the same voltage Charging was continued until the current density reached, and the presence or absence of rupture or ignition was examined. The results are shown in Table 1.

(実施例2)
上記一般式(I)においてnが3であって、全R1のうち1つがアリルオキシ基で、5つがフッ素である環状ホスファゼン化合物 5体積%と、上記一般式(I)においてnが3であって、全R1のうち2つがメトキシ基で、4つがフッ素である環状ホスファゼン化合物 25体積%と、エチレンカーボネート 14体積%と、エチルメチルカーボネート 56体積%とからなる混合溶媒に、LiTFSI[Li(CF3SO2)2N]を0.5 mol/Lになるように溶解させて、これにプロピオン酸ビニル 1質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温保存特性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 2)
In the above general formula (I), n is 3, and 5% by volume of the cyclic phosphazene compound in which one of all R 1 is an allyloxy group and 5 is fluorine, and in the above general formula (I), n is 3. In addition, LiTFSI [Li (2) is added to a mixed solvent composed of 25% by volume of a cyclic phosphazene compound in which two of the total R 1 are methoxy groups and four are fluorine, 14% by volume of ethylene carbonate, and 56% by volume of ethyl methyl carbonate. CF 3 SO 2 ) 2 N] is dissolved to 0.5 mol / L, and 1% by mass of vinyl propionate is added thereto to prepare a non-aqueous electrolyte. The difficulty of the obtained non-aqueous electrolyte Flammability was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and the high temperature storage characteristic evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.

(実施例3)
上記一般式(I)においてnが3であって、全R1のうち1つがブトキシ基で、5つがフッ素である環状ホスファゼン化合物 40体積%と、エチレンカーボネート 10体積%と、エチルメチルカーボネート 50体積%とからなる混合溶媒に、LiPF6を1.0 mol/Lになるように溶解させて、これに酢酸プロパルギル 1質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温保存特性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 3)
In the above general formula (I), n is 3, cyclic phosphazene compound 40% by volume of ethylene, 10% by volume of ethylene carbonate, 50% by volume of ethyl methyl carbonate, one of which is butoxy group and 5 is fluorine. % Of LiPF 6 is dissolved in a mixed solvent consisting of 1% by weight of 1% by weight of propargyl acetate to prepare a non-aqueous electrolyte solution. Flame retardancy was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and the high temperature storage characteristic evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.

(実施例4)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、エチルメチルカーボネート 25体積%と、プロピオン酸メチル 10体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これにジケテン 0.5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温保存特性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
Example 4
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of all R 1 is ethoxy group and seven is fluorine 60 volume%, ethylene carbonate 5 volume%, ethyl methyl carbonate 25 volume LiPF 6 [1.0 mol / L] and LiTFSI [Li (CF 3 SO 2 ) 2 N] at 1.0 mol / L in a mixed solvent consisting of 10% by volume and 10% by volume of methyl propionate. Diketene 0.5% by mass was added to prepare a nonaqueous electrolytic solution, and the flame retardancy of the obtained nonaqueous electrolytic solution was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and the high temperature storage characteristic evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.

(比較例1)
エチレンカーボネート 20体積%と、ジエチルカーボネート 60体積%と、プロピオン酸メチル 20体積%とからなる混合溶媒に、LiPF6を1.2 mol/Lになるように溶解させて非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温保存特性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Comparative Example 1)
A non-aqueous electrolyte was prepared by dissolving LiPF 6 in a mixed solvent consisting of 20% by volume of ethylene carbonate, 60% by volume of diethyl carbonate, and 20% by volume of methyl propionate so as to be 1.2 mol / L. The non-aqueous electrolyte obtained was evaluated for flame retardancy. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and the high temperature storage characteristic evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.

(比較例2)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、エチルメチルカーボネート 25体積%と、プロピオン酸メチル 10体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温保存特性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Comparative Example 2)
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of all R 1 is ethoxy group and seven is fluorine 60 volume%, ethylene carbonate 5 volume%, ethyl methyl carbonate 25 volume % and, in a mixed solvent consisting of 10 vol% methyl propionate, a LiPF 6 1.0 mol / L and LiTFSI [Li (CF 3 sO 2 ) 2 N] dissolved so that 1.0 mol / L in a non-aqueous An electrolyte solution was prepared, and the flame retardancy of the obtained nonaqueous electrolyte solution was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and the high temperature storage characteristic evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.

(実施例5)
上記一般式(I)においてnが3であって、全R1のうち1つがトリフルオロエトキシ基で、5つがフッ素である環状ホスファゼン化合物 4体積%と、エチレンカーボネート 18体積%と、ジエチルカーボネート 58体積%と、プロピオン酸メチル 20体積%とからなる混合溶媒に、LiPF6を1.2 mol/Lになるように溶解させて、これに酢酸アリル 0.5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温保存特性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 5)
In the above general formula (I), n is 3, cyclic phosphazene compound in which one of all R 1 is a trifluoroethoxy group and five is fluorine, 4 volume%, ethylene carbonate 18 volume%, diethyl carbonate 58 LiPF 6 was dissolved in a mixed solvent consisting of 20% by volume and 20% by volume of methyl propionate so as to be 1.2 mol / L, and 0.5% by mass of allyl acetate was added thereto to prepare a non-aqueous electrolyte. The flame retardancy of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and the high temperature storage characteristic evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.

(実施例6)
上記一般式(I)においてnが3であって、全R1のうち1つがブトキシ基で、5つがフッ素である環状ホスファゼン化合物 73体積%と、エチレンカーボネート 2体積%と、エチルメチルカーボネート 25体積%とからなる混合溶媒に、LiPF6を0.8 mol/Lになるように溶解させて、これに酢酸プロパルギル 1質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温保存特性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 6)
In the above general formula (I), n is 3 and one of all R 1 is butoxy group and 5 is fluorine 73% by volume of cyclic phosphazene compound 2% by volume of ethylene carbonate 25% by volume of ethyl methyl carbonate in% consisting of mixed solvent by dissolving LiPF 6 to be 0.8 mol / L, which in the non-aqueous electrolyte solution was prepared by adding 1 wt% acetic acid propargyl, resulting nonaqueous electrolytic solution of Flame retardancy was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and the high temperature storage characteristic evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.

(実施例7)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、エチルメチルカーボネート 25体積%と、プロピオン酸メチル 10体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これにジケテン 0.05質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温保存特性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 7)
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of all R 1 is ethoxy group and seven is fluorine 60 volume%, ethylene carbonate 5 volume%, ethyl methyl carbonate 25 volume LiPF 6 [1.0 mol / L] and LiTFSI [Li (CF 3 SO 2 ) 2 N] at 1.0 mol / L in a mixed solvent consisting of 10% by volume and 10% by volume of methyl propionate. A non-aqueous electrolyte was prepared by adding 0.05% by mass of diketene, and the flame retardancy of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and the high temperature storage characteristic evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.

(実施例8)
上記一般式(I)においてnが4であって、全R1のうち1つがエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、エチルメチルカーボネート 25体積%と、プロピオン酸メチル 10体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これにジケテン 3.0質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温保存特性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 8)
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of all R 1 is ethoxy group and seven is fluorine 60 volume%, ethylene carbonate 5 volume%, ethyl methyl carbonate 25 volume LiPF 6 [1.0 mol / L] and LiTFSI [Li (CF 3 SO 2 ) 2 N] at 1.0 mol / L in a mixed solvent consisting of 10% by volume and 10% by volume of methyl propionate. Diketene (3.0% by mass) was added to the mixture to prepare a non-aqueous electrolyte, and the flame retardancy of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and the high temperature storage characteristic evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.

Figure 2010050020
Figure 2010050020

表1の実施例1〜4に示すように、式(I)の化合物と式(II)で表され不飽和エステル化合物を含む非水電解液が不燃性を示すと共に、該非水電解液を用いた電池が、満充電条件で高温保存した後も、高い放電容量を維持しており、また過充電における高い安全性を有していることが分かる。このように、本発明の非水電解液により、不燃性を発現しつつ、高温保存特性及び安全性に優れた非水電解液二次電池が得られることが確認された。   As shown in Examples 1 to 4 in Table 1, the non-aqueous electrolyte containing the compound of the formula (I) and the unsaturated ester compound represented by the formula (II) exhibits nonflammability, and the non-aqueous electrolyte is used. It can be seen that the stored battery maintains a high discharge capacity even after being stored at high temperature under full charge conditions, and has high safety in overcharging. As described above, it was confirmed that the nonaqueous electrolyte solution of the present invention can provide a nonaqueous electrolyte secondary battery exhibiting nonflammability and excellent in high-temperature storage characteristics and safety.

なお、比較例2に示すように、式(II)の不飽和カーボネート化合物を添加しない場合においては、実施例4と比較して、高温保存後の容量残存率が劣っていることが分かる。   In addition, as shown in Comparative Example 2, it can be seen that when the unsaturated carbonate compound of the formula (II) is not added, the capacity remaining rate after high-temperature storage is inferior compared with Example 4.

更に、実施例5に示すように、式(I)で表される化合物の含有量が5体積%未満では、不燃性が発現されず、過充電安全性試験においても破裂を抑制できなかった。   Furthermore, as shown in Example 5, when the content of the compound represented by the formula (I) is less than 5% by volume, nonflammability was not exhibited, and bursting could not be suppressed even in the overcharge safety test.

一方、実施例6に示すように、式(I)で表される化合物の含有量が70体積%を超える場合には、不燃性や電池安全性に問題はないものの、初期容量が小さくなる傾向が認められた。従って、式(I)の環状ホスファゼン化合物の含有量は、10〜60体積%程度が好ましいことが分かる。   On the other hand, as shown in Example 6, when the content of the compound represented by the formula (I) exceeds 70% by volume, there is no problem in nonflammability and battery safety, but the initial capacity tends to be small. Was recognized. Therefore, it can be seen that the content of the cyclic phosphazene compound of the formula (I) is preferably about 10 to 60% by volume.

また、実施例7に示すように、式(II)で表される不飽和エステル化合物の添加量が0.1質量%未満の場合には、高温保存特性評価における改善効果が小さく、実施例8に示すように、2質量%を超える場合には、初期容量が低下する傾向が認められた。従って、式(II)で表される不飽和エステル化合物の添加量は、0.2〜1質量%程度が好ましいことが分かる。   Further, as shown in Example 7, when the amount of the unsaturated ester compound represented by the formula (II) is less than 0.1% by mass, the improvement effect in high-temperature storage property evaluation is small, and as shown in Example 8. Thus, when it exceeded 2 mass%, the tendency for the initial capacity to decrease was recognized. Therefore, it can be seen that the amount of the unsaturated ester compound represented by the formula (II) is preferably about 0.2 to 1% by mass.

以上の結果から、式(I)で表される環状ホスファゼン化合物と式(II)で表される不飽和エステル化合物を含有することを特徴とする非水電解液を用いることにより、高温保存特性と安全性能を両立させた非水電解液二次電池を提供できることが分かる。   From the above results, by using a non-aqueous electrolyte characterized by containing a cyclic phosphazene compound represented by the formula (I) and an unsaturated ester compound represented by the formula (II), high-temperature storage characteristics and It can be seen that a non-aqueous electrolyte secondary battery having both safety performance can be provided.

Claims (7)

下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物と、非水溶媒と、下記一般式(II):
Figure 2010050020
[式中、R2は炭素数1〜2のアルキル基であり;R3は炭素数2〜4のアルケニル基又はプロパルギル基であり、但し、R2及びR3は互いに結合して環を形成してもよい]で表される不飽和エステル化合物と、支持塩とを含むことを特徴とする電池用非水電解液。
The following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein R 1 independently represents fluorine, an alkoxy group or an aryloxy group; n represents 3 to 4], a non-aqueous solvent, the following general formula (II ):
Figure 2010050020
[Wherein R 2 is an alkyl group having 1 to 2 carbon atoms; R 3 is an alkenyl group or propargyl group having 2 to 4 carbon atoms, provided that R 2 and R 3 are bonded to each other to form a ring. A non-aqueous electrolyte for a battery, comprising: an unsaturated ester compound represented by the formula:
前記一般式(I)において、R1のうち少なくとも4つがフッ素であることを特徴とする請求項1に記載の電池用非水電解液。 2. The battery non-aqueous electrolyte according to claim 1, wherein in the general formula (I), at least four of R 1 are fluorine. 前記一般式(I)で表される環状ホスファゼン化合物の含有量が前記電池用非水電解液全体の10〜60体積%であることを特徴とする請求項1に記載の電池用非水電解液。   2. The nonaqueous electrolytic solution for a battery according to claim 1, wherein the content of the cyclic phosphazene compound represented by the general formula (I) is 10 to 60% by volume of the entire nonaqueous electrolytic solution for the battery. . 前記一般式(II)で表される不飽和エステル化合物の含有量が前記電池用非水電解液全体の0.2〜1質量%であることを特徴とする請求項1に記載の電池用非水電解液。   2. The nonaqueous electrolysis for battery according to claim 1, wherein the content of the unsaturated ester compound represented by the general formula (II) is 0.2 to 1% by mass of the entire nonaqueous electrolyte for battery. liquid. 前記非水溶媒が非プロトン性有機溶媒であることを特徴とする請求項1に記載の電池用非水電解液。   The battery nonaqueous electrolyte solution according to claim 1, wherein the nonaqueous solvent is an aprotic organic solvent. 前記非プロトン性有機溶媒が、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びプロピオン酸メチルからなる群から選択される少なくとも1種を含むことを特徴とする請求項5に記載の電池用非水電解液。   The battery for non-battery according to claim 5, wherein the aprotic organic solvent contains at least one selected from the group consisting of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and methyl propionate. Water electrolyte. 請求項1〜6のいずれかに記載の電池用非水電解液と、正極と、負極とを備えた非水電解液二次電池。   A nonaqueous electrolyte secondary battery comprising the battery nonaqueous electrolyte solution according to claim 1, a positive electrode, and a negative electrode.
JP2008215169A 2008-08-25 2008-08-25 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery using the same Withdrawn JP2010050020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215169A JP2010050020A (en) 2008-08-25 2008-08-25 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215169A JP2010050020A (en) 2008-08-25 2008-08-25 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2010050020A true JP2010050020A (en) 2010-03-04

Family

ID=42066924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215169A Withdrawn JP2010050020A (en) 2008-08-25 2008-08-25 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2010050020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522970A (en) * 2013-05-14 2016-08-04 ハロップ、メイソン、カート Fluorinated phosphazenes for use in lithium ion batteries as electrolyte additives and cosolvents
US10923768B2 (en) 2017-01-23 2021-02-16 Lg Chem, Ltd. Alkynyl-containing compound additive for non-aqueous electrolyte solution, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522970A (en) * 2013-05-14 2016-08-04 ハロップ、メイソン、カート Fluorinated phosphazenes for use in lithium ion batteries as electrolyte additives and cosolvents
US10923768B2 (en) 2017-01-23 2021-02-16 Lg Chem, Ltd. Alkynyl-containing compound additive for non-aqueous electrolyte solution, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same

Similar Documents

Publication Publication Date Title
JP5314885B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP5379688B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
JP2008053211A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
WO2006038614A1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
WO2006109443A1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte secondary battery comprising same
JP2006179458A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
US20100062345A1 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2006286570A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2006286277A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101