JP2010048656A - Devie and methof of measuring battery deterioration - Google Patents

Devie and methof of measuring battery deterioration Download PDF

Info

Publication number
JP2010048656A
JP2010048656A JP2008212763A JP2008212763A JP2010048656A JP 2010048656 A JP2010048656 A JP 2010048656A JP 2008212763 A JP2008212763 A JP 2008212763A JP 2008212763 A JP2008212763 A JP 2008212763A JP 2010048656 A JP2010048656 A JP 2010048656A
Authority
JP
Japan
Prior art keywords
battery
voltage
time
value
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008212763A
Other languages
Japanese (ja)
Inventor
Kenji Tomita
健児 冨田
Shoji Sakai
昭治 堺
Masahiko Mitsui
正彦 三井
Kosuke Suzui
康介 鈴井
Yuji Nishi
勇二 西
Masaru Takagi
優 高木
Yoshiteru Kikuchi
義晃 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2008212763A priority Critical patent/JP2010048656A/en
Publication of JP2010048656A publication Critical patent/JP2010048656A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery deterioration measuring device and a measuring method capable of accurately measuring the battery deterioration. <P>SOLUTION: The one end of a battery 10 is connected to the one end of a discharge control unit 14 through an ammeter 12. The other end of the battery 10 is connected to the other end of the discharge control unit 14. The ammeter 12 measures the current flowing to the battery 10 and outputs the measured result to an analysis unit 18. A voltmeter 16 measures the output voltage of the battery 10 and outputs the measured result to the analysis unit 18. The discharge control unit 14 controls the current flowing in the battery 10 based on the control of the analysis unit 18. The analysis unit 18 discharges the battery 10 by the discharge control unit 14, and measures the deterioration of the battery 10 based on the ratio of the time integration value of the battery output voltage to the time integration value of the battery current. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池の出力電圧および電流に基づいて、電池の劣化度を測定する装置および方法に関する。   The present invention relates to an apparatus and a method for measuring the degree of deterioration of a battery based on the output voltage and current of the battery.

ハイブリッド自動車、電気自動車等のモータ駆動車両が広く用いられている。モータ駆動車両には、モータに電力を供給するための電池が搭載される。この電池には、リチウムイオン電池等、繰り返し充放電することが可能であるものが用いられる。モータ駆動車両に搭載された電池は、モータに電力を供給すると共に、モータの回生制動発電によって充電される。   Motor-driven vehicles such as hybrid vehicles and electric vehicles are widely used. A battery for supplying electric power to the motor is mounted on the motor-driven vehicle. As this battery, a lithium ion battery or the like that can be repeatedly charged and discharged is used. The battery mounted on the motor-driven vehicle supplies power to the motor and is charged by regenerative braking power generation of the motor.

特開2006−338944号公報JP 2006-338944 A

電池は、充放電を繰り返すことにより電解液中のイオンが偏在し、内部抵抗が増加することがある。これによって電池が出力することが可能な電力が低下し、車両の走行性能に影響を与えることがある。   In a battery, by repeatedly charging and discharging, ions in the electrolyte solution are unevenly distributed, and the internal resistance may increase. As a result, the electric power that can be output by the battery is reduced, which may affect the running performance of the vehicle.

そこで、電池電流の時間変化に対する電池出力電圧の時間変化の比を電池の内部抵抗として測定し、内部抵抗の増加に基づいて電池の劣化度を測定する方法が考え出されている。これによって、電池電流の変化に対して出力電圧が線形に変化しない場合であっても、電池の内部抵抗を定義し測定することができる。しかし、この方法では、電池電流が一定である期間では、内部抵抗を求める際の分母となる電池電流の時間変化が著しく小さくなり、内部抵抗を正確に求めることが困難となる。これによって、電池の劣化度を測定することが困難となる。   Therefore, a method has been devised in which the ratio of the time change of the battery output voltage to the time change of the battery current is measured as the internal resistance of the battery, and the degree of deterioration of the battery is measured based on the increase of the internal resistance. Thus, even when the output voltage does not change linearly with respect to changes in battery current, the internal resistance of the battery can be defined and measured. However, according to this method, during a period in which the battery current is constant, the time change of the battery current that becomes a denominator when the internal resistance is obtained becomes extremely small, and it is difficult to accurately obtain the internal resistance. This makes it difficult to measure the degree of deterioration of the battery.

本発明は、このような課題に対してなされたものである。すなわち、電池の劣化度を正確に測定することが可能な電池劣化度測定装置および測定方法を提供することを目的とする。   The present invention has been made for such a problem. That is, an object of the present invention is to provide a battery deterioration degree measuring device and a measuring method capable of accurately measuring the degree of battery deterioration.

本発明は、電池の劣化度を測定する電池劣化度測定装置において、基準電圧と前記電池の出力電圧との差違電圧を測定する差違電圧測定部と、前記差違電圧の時間積分値を求める電圧積算部と、前記電池に流れる電流を測定する電流測定部と、前記電圧積算部が時間積分を行う時間帯における、測定電流の時間積分値を求める電流積算部と、前記差違電圧の時間積分値に対する、その時間積分値が求められる時間帯における電池電流の時間積分値の比を、劣化前の前記電池について取得し、当該比を評価基準値として設定する評価基準値設定部と、前記電流積算部が求めた時間積分値に対する前記電圧積算部が求めた時間積分値の比と、前記評価基準値と、に基づいて、前記電池の劣化度を測定する測定部と、を備えることを特徴とする。   The present invention relates to a battery deterioration degree measuring apparatus for measuring a battery deterioration degree, a difference voltage measuring unit that measures a difference voltage between a reference voltage and an output voltage of the battery, and a voltage integration for obtaining a time integral value of the difference voltage. A current measuring unit that measures a current flowing through the battery, a current integrating unit that obtains a time integrated value of a measured current in a time zone in which the voltage integrating unit performs time integration, and a time integrated value of the difference voltage An evaluation reference value setting unit that obtains a ratio of the time integral value of the battery current in the time zone in which the time integral value is obtained for the battery before deterioration, and sets the ratio as an evaluation reference value; and the current integration unit A measurement unit that measures the degree of deterioration of the battery based on the ratio of the time integration value obtained by the voltage integration unit to the time integration value obtained by the method and the evaluation reference value. .

また、本発明に係る電池劣化度測定装置においては、前記電池の温度を検出する温度検出部を備え、前記評価基準値取得部は、前記電池の温度に対応した前記評価基準値を取得し、前記測定部は、前記電流積算部が求めた時間積分値に対する前記電圧積算部が求めた時間積分値の比と、前記温度検出部によって検出された温度に対応する前記評価基準値と、に基づく測定を行うことが好適である。   Further, in the battery deterioration degree measuring apparatus according to the present invention, the battery deterioration degree measuring apparatus includes a temperature detection unit that detects the temperature of the battery, and the evaluation reference value acquisition unit acquires the evaluation reference value corresponding to the temperature of the battery, The measurement unit is based on a ratio of the time integration value obtained by the voltage integration unit to the time integration value obtained by the current integration unit and the evaluation reference value corresponding to the temperature detected by the temperature detection unit. It is preferable to perform the measurement.

また、本発明に係る電池劣化度測定装置においては、前記電池の開放電圧を測定する開放電圧測定部を備え、前記基準電圧は、前記開放電圧測定部によって測定された開放電圧であり、前記差違電圧測定部は、前記開放電圧測定部によって測定された開放電圧から前記電池の出力電圧を減じた電圧を前記差違電圧として測定することが好適である。   The battery deterioration degree measuring apparatus according to the present invention further includes an open-circuit voltage measuring unit that measures the open-circuit voltage of the battery, wherein the reference voltage is an open-circuit voltage measured by the open-circuit voltage measuring unit, and the difference is determined. It is preferable that the voltage measuring unit measures a voltage obtained by subtracting the output voltage of the battery from the open voltage measured by the open voltage measuring unit as the difference voltage.

また、本発明に係る電池劣化度測定装置においては、前記電池の出力電圧を測定する出力電圧測定部を備え、前記開放電圧測定部は、前記電流測定部および前記出力電圧測定部の各測定結果に基づいて開放電圧を求めることが好適である。   The battery deterioration degree measuring apparatus according to the present invention further includes an output voltage measuring unit that measures the output voltage of the battery, and the open-circuit voltage measuring unit includes measurement results of the current measuring unit and the output voltage measuring unit. It is preferable to obtain the open-circuit voltage based on the above.

また、本発明は、電池の劣化度を測定する電池劣化度測定方法において、基準電圧と前記電池の出力電圧との差違電圧の時間積分値を求める電圧積算ステップと、前記差違電圧の時間積分を行う時間帯における、前記電池に流れる電流の時間積分値を求める電流積算ステップと、前記差違電圧の時間積分値に対する、その時間積分値が求められる時間帯における電池電流の時間積分値の比を、劣化前の前記電池について取得し、当該比を評価基準値として設定する評価基準値設定ステップと、前記電流積算ステップによって求められた時間積分値に対する前記電圧積算ステップによって求められた時間積分値の比と、前記評価基準値と、に基づいて、前記電池の劣化度を測定する測定ステップと、を含むことを特徴とする。   According to another aspect of the present invention, there is provided a battery degradation level measuring method for measuring a degradation level of a battery, a voltage integration step for obtaining a time integral value of a difference voltage between a reference voltage and the output voltage of the battery, and a time integration of the difference voltage. A current integration step for obtaining a time integral value of the current flowing through the battery in a time zone to be performed, and a ratio of the time integral value of the battery current in the time zone in which the time integral value is obtained with respect to the time integral value of the difference voltage, An evaluation reference value setting step for acquiring the battery before deterioration and setting the ratio as an evaluation reference value, and a ratio of the time integration value obtained by the voltage integration step to the time integration value obtained by the current integration step And a measuring step for measuring the degree of deterioration of the battery based on the evaluation reference value.

本発明によれば、電池の劣化度を正確に検出することが可能な電池劣化度測定装置および測定方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the battery deterioration degree measuring apparatus and measuring method which can detect the deterioration degree of a battery correctly can be provided.

図1に本発明の実施形態に係る電池劣化度測定装置の構成を示す。電池劣化度測定装置は、放電制御部14によって電池10を放電させ、電池電流の時間積分値に対する電池出力電圧の時間積分値の比に基づいて、電池10の劣化度を測定するものである。測定対象とする電池10は、リチウムイオン電池、ニッケル水素電池等の二次電池である。   FIG. 1 shows a configuration of a battery deterioration degree measuring apparatus according to an embodiment of the present invention. The battery deterioration degree measuring device discharges the battery 10 by the discharge controller 14 and measures the deterioration degree of the battery 10 based on the ratio of the time integral value of the battery output voltage to the time integral value of the battery current. The battery 10 to be measured is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.

電池10の一端は、電流計12を介して放電制御部14の一端に接続される。電池10の他端は、放電制御部14の他端に接続される。電流計12は電池10に流れる電流を測定し、測定結果を解析部18に出力する。電圧計16は、電池10の出力電圧を測定し、測定結果を解析部18に出力する。放電制御部14は、解析部18の制御に基づいて電池10に流れる電流を制御する。   One end of the battery 10 is connected to one end of the discharge control unit 14 via the ammeter 12. The other end of the battery 10 is connected to the other end of the discharge control unit 14. The ammeter 12 measures the current flowing through the battery 10 and outputs the measurement result to the analysis unit 18. The voltmeter 16 measures the output voltage of the battery 10 and outputs the measurement result to the analysis unit 18. The discharge controller 14 controls the current flowing through the battery 10 based on the control of the analyzer 18.

解析部18は、ある時刻t1〜時刻t2の間、所定の時間波形を有する電流が電池10に流れるよう、放電制御部14を制御する。図2(a)に電池電流の時間波形の例を示す。横軸は時間を示し、縦軸は電池10の正極端子に流入する方向を正としたときの電池電流を示す。図2(a)は、放電制御部14によって時刻t1〜時刻t2の間、−I0の電流が電池10に流れることを示す。モータ駆動車両に用いる電池の場合、例えば、I0=200Aとし、時刻t1〜時刻t2までの時間を、例えば、3秒から10秒とする。図2(b)は、図2(a)に示す電流が電池10に流れたときにおける電池10の出力電圧の時間波形を示す。図2(b)の横軸は時間を示し、縦軸は出力電圧を示す。電池10がモータ駆動車両に用いられるものであり、複数のセルから構成される場合には、1つのセルあたりの開放出力電圧は3V〜4Vであり、図2(b)の縦軸の範囲は、1つのセルに対する出力電圧を表すものとした場合、おおよそ、2.8V〜4Vである。ただし、本発明が対象とする電池の出力電圧は、この範囲に限定されない。電池10の内部抵抗がオームの法則に従わないことにより、電池10の出力電圧は、同一の電池電流値に対して必ずしも同一の値とはならない。   The analysis unit 18 controls the discharge control unit 14 so that a current having a predetermined time waveform flows through the battery 10 during a certain time t1 to time t2. FIG. 2A shows an example of a time waveform of the battery current. The horizontal axis represents time, and the vertical axis represents the battery current when the direction flowing into the positive electrode terminal of the battery 10 is positive. FIG. 2A shows that the current of −I0 flows to the battery 10 between time t1 and time t2 by the discharge control unit 14. In the case of a battery used for a motor-driven vehicle, for example, I0 = 200 A, and the time from time t1 to time t2 is, for example, 3 seconds to 10 seconds. FIG. 2B shows a time waveform of the output voltage of the battery 10 when the current shown in FIG. In FIG. 2B, the horizontal axis indicates time, and the vertical axis indicates output voltage. When the battery 10 is used for a motor-driven vehicle and is composed of a plurality of cells, the open output voltage per cell is 3 V to 4 V, and the range of the vertical axis in FIG. When the output voltage for one cell is expressed, it is approximately 2.8V to 4V. However, the output voltage of the battery targeted by the present invention is not limited to this range. Since the internal resistance of the battery 10 does not follow Ohm's law, the output voltage of the battery 10 does not necessarily have the same value for the same battery current value.

本実施形態に係る電池劣化測定装置が、電池の劣化度を測定する原理について説明する。一般に、図2(a)に示す時間波形を有する電流を電池に流した場合、劣化の程度が大きい電池は、劣化の程度が小さい電池に比べて出力電圧の変化が大きくなる傾向がある。図3は、その様子を示す。電圧波形L0は初期特性を示す。ここで、初期特性とは、電池が劣化していないときの特性、例えば、製造直後等、電池が設計特性を満足しているときの特性をいう。図3の電圧波形L1、L2、およびL3は、図2(a)に示す電流波形による時刻t1〜時刻t2に亘る放電を1回の放電として、放電回数を電圧波形L1、L2、L3の順に増加させた場合の特性である。これより、放電が繰り返され電池の劣化度が大きくなる程、出力電圧の変化が大きくなることが判る。   The principle by which the battery deterioration measuring device according to the present embodiment measures the degree of battery deterioration will be described. In general, when a current having a time waveform shown in FIG. 2A is supplied to a battery, a battery having a large degree of deterioration tends to have a larger change in output voltage than a battery having a small degree of deterioration. FIG. 3 shows this state. The voltage waveform L0 shows initial characteristics. Here, the initial characteristics refer to characteristics when the battery is not deteriorated, for example, characteristics when the battery satisfies the design characteristics such as immediately after manufacture. The voltage waveforms L1, L2, and L3 in FIG. 3 indicate that the discharge from time t1 to time t2 by the current waveform shown in FIG. 2A is one discharge, and the number of discharges is in the order of voltage waveforms L1, L2, and L3. This is a characteristic when increased. From this, it can be seen that the change in the output voltage increases as the discharge is repeated and the degree of deterioration of the battery increases.

本実施形態では、電池10を放電させると共に、電流積分値に対する電圧積分値の比を評価値として求める。ここで、電流積分値は、電池電流の大きさが所定の測定開始閾値Aを超えた時を積分開始時刻t0として、電池電流を時間積分した値である。電流積分値は、図2(a)の閾値−Aを示す直線と電流波形との間に挟まれた領域の面積を表す。また、電圧積分値は、電池電流の大きさが所定の測定開始閾値Aを超えた時を積分開始時刻t0として、電池10の出力電圧を基準電圧Vsから減じた差違電圧を時間積分した値である。ここで、基準電圧Vsは、電池10の劣化を求めるために設定される値であり、例えば、電池10の開放電圧(OCV:Open Circuit Voltage)が設定される。基準電圧Vsの設定については後述する。電圧積分値は、図3の基準電圧Vsを示す直線と出力電圧波形との間に挟まれた領域の面積を表す。   In the present embodiment, the battery 10 is discharged and the ratio of the voltage integral value to the current integral value is obtained as the evaluation value. Here, the current integration value is a value obtained by integrating the battery current over time with the integration start time t0 when the magnitude of the battery current exceeds a predetermined measurement start threshold A. The integrated current value represents the area of a region sandwiched between the straight line indicating the threshold value -A and the current waveform in FIG. The integrated voltage value is a value obtained by integrating the difference voltage obtained by subtracting the output voltage of the battery 10 from the reference voltage Vs with the integration start time t0 when the magnitude of the battery current exceeds a predetermined measurement start threshold A. is there. Here, the reference voltage Vs is a value set in order to determine the deterioration of the battery 10, and for example, an open circuit voltage (OCV) of the battery 10 is set. The setting of the reference voltage Vs will be described later. The voltage integral value represents the area of a region sandwiched between the straight line indicating the reference voltage Vs in FIG. 3 and the output voltage waveform.

図4は、横軸に積分時間をとり、縦軸に評価値をとった評価値−積分時間特性である。特性線E0は初期特性を示す。上記に例示した電池電流および出力電圧の値に基づき評価値を求めた場合、図4の縦軸の範囲は0〜6×10-3となる。特性線E2は、特性線E1を求める対象とした電池の放電回数より放電回数を多くした電池についての特性である。図4から判るように、放電が繰り返され電池の劣化度が大きくなるに従って評価値の値が大きくなる。したがって、電池の評価値を求め、初期評価値からの増加の程度を求めることで、電池の劣化度を測定することができる。評価値は、電流積分値に対する電圧積分値の比である。そのため、電流積分値が有意な値であれば、電流の時間変化が小さい場合であっても、誤差の小さい評価値を求めることができる。 FIG. 4 shows an evaluation value-integration time characteristic in which the horizontal axis represents the integration time and the vertical axis represents the evaluation value. A characteristic line E0 indicates an initial characteristic. When the evaluation value is obtained based on the values of the battery current and the output voltage exemplified above, the range of the vertical axis in FIG. 4 is 0 to 6 × 10 −3 . The characteristic line E2 is a characteristic for a battery in which the number of discharges is larger than the number of discharges of the battery for which the characteristic line E1 is obtained. As can be seen from FIG. 4, the evaluation value increases as the discharge is repeated and the deterioration degree of the battery increases. Therefore, the degree of deterioration of the battery can be measured by obtaining the evaluation value of the battery and obtaining the degree of increase from the initial evaluation value. The evaluation value is a ratio of the voltage integral value to the current integral value. Therefore, if the current integral value is a significant value, an evaluation value with a small error can be obtained even when the time change of the current is small.

なお、評価値は、電池電流が時刻t1〜時刻t2の間で変動した場合であっても、電池電流が時刻t1〜時刻t2の間で一定値をとった場合とほぼ同一の値が得られることが確かめられている。図5(a)の実線は、図2(a)と同一の電池電流波形を、図5(a)の破線は、時刻t1〜時刻t2の間、意図的に電流の値を変動させた場合の電池電流波形を示す。図5(b)の実線で示される特性は、図5(a)の実線で示される電池電流に対して求められた評価値−積分時間特性を示し、破線で示される特性は、図5(a)の破線で示される電池電流に対して求められた評価値−積分時間特性を示す。   In addition, even if the battery current fluctuates between time t1 and time t2, the evaluation value is almost the same value as when the battery current takes a constant value between time t1 and time t2. It has been confirmed. The solid line in FIG. 5 (a) shows the same battery current waveform as in FIG. 2 (a), and the broken line in FIG. 5 (a) shows the case where the current value is intentionally varied between time t1 and time t2. The battery current waveform of is shown. The characteristic indicated by the solid line in FIG. 5B shows the evaluation value-integral time characteristic obtained with respect to the battery current indicated by the solid line in FIG. 5A, and the characteristic indicated by the broken line in FIG. The evaluation value-integral time characteristic calculated | required with respect to the battery current shown with the broken line of a) is shown.

このような原理に基づき、電池劣化測定装置が実行する処理について説明する。図6は、解析部18が実行する処理を示すフローチャートである。解析部18は、電流計12が出力する測定電流値の大きさが測定開始閾値Aを超えたときは、その時を積分開始時刻t0として、電流計12が出力する測定電流値の積分を開始する。そして、積分時間に対する電流積分値を示す、電流積分値−積分時間特性を求める(S101)。さらに、解析部18は、電圧計16が出力する測定電圧値を基準電圧Vsから減じた差違電圧を求め、基準時刻t0からの差違電圧の積分を開始する。そして、積分時間に対する電圧積分値を示す、電圧積分値−積分時間特性を求める(S102)。   Based on such a principle, the process which a battery deterioration measuring apparatus performs is demonstrated. FIG. 6 is a flowchart showing processing executed by the analysis unit 18. When the magnitude of the measured current value output by the ammeter 12 exceeds the measurement start threshold A, the analysis unit 18 starts integration of the measured current value output by the ammeter 12 with the integration start time t0 as that time. . Then, a current integrated value-integral time characteristic indicating a current integrated value with respect to the integration time is obtained (S101). Further, the analysis unit 18 obtains a difference voltage obtained by subtracting the measured voltage value output from the voltmeter 16 from the reference voltage Vs, and starts integration of the difference voltage from the reference time t0. Then, a voltage integrated value-integral time characteristic indicating a voltage integrated value with respect to the integration time is obtained (S102).

解析部18は、電圧積分値−積分時間特性の各時刻における電圧積分値を、対応する時刻における電流積分値−積分時間特性の電流積分値で除した、評価値−積分時間特性を求める(S103)。   The analysis unit 18 obtains an evaluation value-integral time characteristic obtained by dividing the voltage integral value at each time of the voltage integral value-integral time characteristic by the current integral value of the current integral value-integral time characteristic at the corresponding time (S103). ).

初期特性記憶部20は、評価値−積分時間特性の初期特性を記憶する。この記憶内容は、電池劣化測定装置の製造時に予め記憶させておく。解析部18は、初期特性記憶部20から、評価値−積分時間特性の初期特性を読み込む(S104)。解析部18は、ステップS103で求められた評価値−積分時間特性における比較基準時刻tdでの評価値から、ステップS104で読み込んだ評価値−積分時間特性における比較基準時刻tdでの評価値を減算した判定値Dを求める(S105)。ここで、比較基準時刻tdは、積分時間範囲内において任意に設定することができる時刻である。比較基準時刻tdとしては、積分終了時刻が好適である。解析部18は、判定値Dが所定の閾値Bを超えるか否かを判定する(S106)。判定値Dが所定の閾値Bを超えるときは、表示部22に、電池10が劣化した旨の情報および判定値Dを出力する(S107、S108)。一方、判定値Dが所定の閾値B以下であるときは、表示部22に、判定値Dを出力する(S108)。表示部22は解析部18から出力された情報を表示する。   The initial characteristic storage unit 20 stores an initial characteristic of an evaluation value-integral time characteristic. This stored content is stored in advance when the battery deterioration measuring apparatus is manufactured. The analysis unit 18 reads the initial characteristic of the evaluation value-integral time characteristic from the initial characteristic storage unit 20 (S104). The analysis unit 18 subtracts the evaluation value at the comparison reference time td in the evaluation value-integration time characteristic read in step S104 from the evaluation value at the comparison reference time td in the evaluation value-integration time characteristic obtained in step S103. The determined determination value D is obtained (S105). Here, the comparison reference time td is a time that can be arbitrarily set within the integration time range. The integration end time is suitable as the comparison reference time td. The analysis unit 18 determines whether or not the determination value D exceeds a predetermined threshold B (S106). When the determination value D exceeds the predetermined threshold B, information indicating that the battery 10 has deteriorated and the determination value D are output to the display unit 22 (S107, S108). On the other hand, when the determination value D is less than or equal to the predetermined threshold B, the determination value D is output to the display unit 22 (S108). The display unit 22 displays the information output from the analysis unit 18.

このような処理によれば、比較基準時刻tdにおける評価値が、初期評価値よりも所定の閾値Bよりも大きいか否かに基づいて電池10の劣化を検出することができる。また、表示部22に判定値Dを表示することができる。判定値Dは、その値が大きい程電池の劣化度が大きいことを示す。モータ駆動車両のユーザ、保守点検者等は、判定値Dに基づいて電池10の劣化度を知ることができる。   According to such processing, it is possible to detect the deterioration of the battery 10 based on whether or not the evaluation value at the comparison reference time td is larger than the predetermined threshold B than the initial evaluation value. Further, the determination value D can be displayed on the display unit 22. The determination value D indicates that the greater the value, the greater the degree of deterioration of the battery. A user of the motor-driven vehicle, a maintenance inspector, and the like can know the degree of deterioration of the battery 10 based on the determination value D.

なお、ここでは、電流積分値−積分時間特性および電圧積分値−積分時間特性に基づいて評価値−積分時間特性を求め、評価値−積分時間特性の比較基準時刻tdにおける評価値に基づいて判定値Dを取得する処理について説明した。このような処理の他、電流計12が出力する測定電流値の大きさが測定開始閾値Aを超えた時から比較基準時刻tdまでの電流積分値および電圧積分値を求め、電圧積分値の電流積分値に対する比を評価値として求めてもよい。この場合、その評価値から初期評価値を減算した値を電池の劣化度を示す値とすればよい。   Here, the evaluation value-integration time characteristic is obtained based on the current integral value-integration time characteristic and the voltage integral value-integration time characteristic, and the determination is made based on the evaluation value at the comparison reference time td of the evaluation value-integration time characteristic. The process for acquiring the value D has been described. In addition to such processing, the current integrated value and voltage integrated value from the time when the magnitude of the measured current value output by the ammeter 12 exceeds the measurement start threshold A to the comparison reference time td are obtained, and the current of the voltage integrated value is obtained. A ratio to the integral value may be obtained as an evaluation value. In this case, a value obtained by subtracting the initial evaluation value from the evaluation value may be a value indicating the degree of deterioration of the battery.

上記のように、解析部18は、基準電圧Vsから電池10の出力電圧の測定値を減算した値を時間積分した値を用いて、電池10の劣化度を測定する。電池10の出力電圧は、解析部18の処理時における電池電流のみならず電池電流の履歴等、様々な条件によって変化する。そこで、基準電圧Vsを次のように設定することが好ましい。   As described above, the analysis unit 18 measures the degree of deterioration of the battery 10 using a value obtained by integrating the value obtained by subtracting the measured value of the output voltage of the battery 10 from the reference voltage Vs. The output voltage of the battery 10 varies depending on various conditions such as the battery current history as well as the battery current during the processing of the analysis unit 18. Therefore, it is preferable to set the reference voltage Vs as follows.

図7(a)は、横軸に時間をとり、縦軸に電圧計16の測定電圧値および電流計12の測定電流値をとったものである。電圧計16および電流計12は、時間に対して離散的に測定を行うものとする。図7(a)の黒丸は測定電圧値を示し、白丸は測定電流値を示す。黒丸を結ぶ実線および白丸を結ぶ破線は、離散的に測定された値を連続的なものとして把握するために、測定値を補間して示したものである。   In FIG. 7A, the horizontal axis represents time, and the vertical axis represents the measured voltage value of the voltmeter 16 and the measured current value of the ammeter 12. The voltmeter 16 and the ammeter 12 shall measure discretely with respect to time. The black circle in FIG. 7A indicates the measured voltage value, and the white circle indicates the measured current value. A solid line connecting black circles and a broken line connecting white circles are obtained by interpolating measured values in order to grasp discretely measured values as continuous ones.

解析部18は、測定電流値の大きさが測定開始閾値Aを超えたときの測定電流値−I1、および測定電流値−I1の直前に出力された測定電流値−I0、ならびに、測定電流値の大きさが測定開始閾値Aを超えたときの測定電圧値V1、および測定電圧値V1の直前に出力された測定電圧値V0に基づいて、図7(b)に示す出力電圧−電池電流特性の切片を基準電圧Vsとして求める。基準電圧Vsは、電池10の開放電圧に相当する。この特性は、電池10がオームの法則に従う内部抵抗を有するものと仮定した場合において、出力電圧−電池電流特性を求めたものである。出力電圧−電池電流特性は、出力電圧がV0であり電池電流が−I0である点と、出力電圧がV1であり電池電流が−I1である点とを結ぶ直線の式で表される。解析部18は、この直線の縦軸切片を、測定電流値−I0および−I1、ならびに測定電圧値V0およびV1を用いて求める。   The analysis unit 18 measures the measured current value −I1 when the measured current value exceeds the measurement start threshold A, the measured current value −I0 output immediately before the measured current value −I1, and the measured current value. Output voltage-battery current characteristics shown in FIG. 7 (b) based on the measured voltage value V1 when the magnitude exceeds the measurement start threshold A and the measured voltage value V0 output immediately before the measured voltage value V1. Is obtained as a reference voltage Vs. The reference voltage Vs corresponds to the open voltage of the battery 10. This characteristic is obtained from the output voltage-battery current characteristic when it is assumed that the battery 10 has an internal resistance according to Ohm's law. The output voltage-battery current characteristic is expressed by a linear equation connecting a point where the output voltage is V0 and the battery current is -I0 and a point where the output voltage is V1 and the battery current is -I1. The analysis unit 18 obtains the vertical axis intercept of this straight line using the measured current values -I0 and -I1 and the measured voltage values V0 and V1.

上記では、電池10の温度変化に基づく評価値−積分時間特性の変化を考慮しないものとした。しかしながら、より厳密な測定を行うためには、評価値−積分時間特性の電池10の温度に応じた変化を考慮することが好ましい。そこで、電池10の温度を考慮した測定を行う、応用例に係る電池劣化測定装置の構成を図8に示す。図1の電池劣化測定装置の構成部と同一の構成部については同一の符号を付してその説明を省略する。   In the above description, the change in the evaluation value-integral time characteristic based on the temperature change of the battery 10 is not considered. However, in order to perform more rigorous measurement, it is preferable to consider the change of the evaluation value-integration time characteristic according to the temperature of the battery 10. Therefore, FIG. 8 shows a configuration of a battery deterioration measuring apparatus according to an application example that performs measurement in consideration of the temperature of the battery 10. The same components as those of the battery deterioration measuring apparatus in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

電池温度計24は電池10の温度を測定し、測定結果を解析部18に出力する。初期特性記憶部20は、複数の温度について評価値−積分時間特性の初期特性を記憶する。この初期特性は製造時に予め記憶させておく。図9は、温度T1、T2およびT3について記憶された評価値−積分時間特性の例を示したものである。これらの温度にはT1<T2<T3の関係がある。図9に示されるように、電池の温度が高い程、評価値が小さくなる。   The battery thermometer 24 measures the temperature of the battery 10 and outputs the measurement result to the analysis unit 18. The initial characteristic storage unit 20 stores initial characteristics of evaluation value-integral time characteristics for a plurality of temperatures. This initial characteristic is stored in advance at the time of manufacture. FIG. 9 shows an example of evaluation value-integration time characteristics stored for temperatures T1, T2, and T3. These temperatures have a relationship of T1 <T2 <T3. As shown in FIG. 9, the evaluation value decreases as the temperature of the battery increases.

解析部18は、図6に示すステップS104においては、電池温度計24の測定結果に基づいて、電池10の温度に対応する評価値−積分時間特性の初期特性を読み込む。   In step S <b> 104 shown in FIG. 6, the analysis unit 18 reads the initial characteristic of the evaluation value-integral time characteristic corresponding to the temperature of the battery 10 based on the measurement result of the battery thermometer 24.

このような構成および処理によれば、電池10の温度に応じた評価値−積分時間特性の初期特性を用い、電池10の劣化度を測定することができる。これによって、より厳密な測定を行うことができる。   According to such a configuration and processing, it is possible to measure the degree of deterioration of the battery 10 using the initial characteristic of the evaluation value-integral time characteristic according to the temperature of the battery 10. As a result, more accurate measurement can be performed.

次に、本実施形態に係るハイブリッド車両駆動システムについて説明する。図10にハイブリッド車両駆動システムの構成を示す。この車両駆動システムは、電池劣化検出装置の測定結果をハイブリッド自動車の制御に用いるものである。図1の電池劣化測定装置の構成部と同一の構成部については同一の符号を付してその説明を省略する。   Next, the hybrid vehicle drive system according to the present embodiment will be described. FIG. 10 shows the configuration of the hybrid vehicle drive system. This vehicle drive system uses the measurement result of the battery deterioration detection device for control of a hybrid vehicle. The same components as those of the battery deterioration measuring apparatus in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

操作部34は、アクセル、ブレーキ、ギアチェンジレバーを含み、運転操作指令をコントロールユニット26に出力する。コントロールユニット26は、ハイブリッド自動車の走行状態および運転操作指令に基づいて、エンジン32およびモータ制御部28を制御する。   The operation unit 34 includes an accelerator, a brake, and a gear change lever, and outputs a driving operation command to the control unit 26. The control unit 26 controls the engine 32 and the motor control unit 28 based on the traveling state of the hybrid vehicle and the driving operation command.

エンジン32は、コントロールユニット26の制御に応じて、ハイブリッド自動車を駆動する。モータ制御部28は、コントロールユニット26の制御に応じて、電池10の電力をモータ30に供給し、モータ30の回生制動発電電力を電池10に供給する。モータ30はモータ制御部28の制御に応じて、ハイブリッド自動車を加速し、または回生制動する。   The engine 32 drives the hybrid vehicle according to the control of the control unit 26. The motor control unit 28 supplies the electric power of the battery 10 to the motor 30 and supplies the regenerative braking generated electric power of the motor 30 to the battery 10 under the control of the control unit 26. The motor 30 accelerates or regeneratively brakes the hybrid vehicle according to the control of the motor control unit 28.

このような構成によって、ハイブリッド車両駆動システムは、ハイブリッド自動車の走行状態および運転操作指令に基づいて、モータ30の車両駆動力への寄与、およびエンジン32の車両駆動力への寄与を調整し、エネルギー効率を高める。   With such a configuration, the hybrid vehicle drive system adjusts the contribution of the motor 30 to the vehicle drive force and the contribution of the engine 32 to the vehicle drive force based on the traveling state of the hybrid vehicle and the driving operation command, and energy Increase efficiency.

本実施形態に係るハイブリッド車両駆動システムでは、解析部18は、上記の判定値Dをコントロールユニット26に出力する。コントロールユニット26は、判定値Dに応じて、モータ30の車両駆動力への寄与、およびエンジン32の車両駆動力への寄与を調整する。すなわち、判定値Dが大きくなったときには、モータ30の車両駆動力への寄与が制限されるよう、モータ30およびエンジン32の車両駆動力への寄与を調整する。例えば、判定値Dが所定の値を超えたときには、電池10からモータ30に所定値以上の電力が供給されないよう、モータ制御部28を制御し、代わりにエンジン32の駆動力を増大させる。   In the hybrid vehicle drive system according to the present embodiment, the analysis unit 18 outputs the determination value D to the control unit 26. The control unit 26 adjusts the contribution of the motor 30 to the vehicle driving force and the contribution of the engine 32 to the vehicle driving force according to the determination value D. That is, when the determination value D increases, the contribution of the motor 30 and the engine 32 to the vehicle driving force is adjusted so that the contribution of the motor 30 to the vehicle driving force is limited. For example, when the determination value D exceeds a predetermined value, the motor control unit 28 is controlled so that electric power of a predetermined value or more is not supplied from the battery 10 to the motor 30, and the driving force of the engine 32 is increased instead.

このようなシステム構成によれば、電池10の劣化により電力供給性能が低下し、モータ駆動力が低下したとしても、エンジン32の駆動力でその低下分を補うことができる。これによって、ハイブリッド自動車の走行性能が低下することを回避することができる。   According to such a system configuration, even if the power supply performance is reduced due to deterioration of the battery 10 and the motor driving force is reduced, the driving force of the engine 32 can compensate for the reduction. As a result, it is possible to avoid a decrease in the running performance of the hybrid vehicle.

実施形態に係る電池劣化測定装置の構成を示す図である。It is a figure which shows the structure of the battery deterioration measuring apparatus which concerns on embodiment. 電池電流波形および電池の出力電圧を示す図である。It is a figure which shows a battery current waveform and the output voltage of a battery. 電池劣化時の出力電圧の傾向を示す図である。It is a figure which shows the tendency of the output voltage at the time of battery deterioration. 評価値−積分時間特性を示す図である。It is a figure which shows an evaluation value-integral time characteristic. 意図的に電流の値を変動させた場合の電池電流波形、および、それに対する評価値−積分時間特性を示す図である。It is a figure which shows the battery current waveform at the time of changing the value of an electric current intentionally, and the evaluation value-integral time characteristic with respect to it. 電池劣化測定に際して解析部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which an analysis part performs in a battery deterioration measurement. 基準電圧の設定について説明する図である。It is a figure explaining the setting of a reference voltage. 応用例に係る電池劣化測定装置の構成を示す図である。It is a figure which shows the structure of the battery deterioration measuring apparatus which concerns on an application example. 複数の温度について評価値−積分時間特性の初期特性を示す図である。It is a figure which shows the initial characteristic of the evaluation value-integral time characteristic about several temperature. 実施形態に係るハイブリッド車両駆動システムの構成を示す図である。It is a figure showing composition of a hybrid vehicle drive system concerning an embodiment.

符号の説明Explanation of symbols

10 電池、12 電流計、14 放電制御部、16 電圧計、18 解析部、20 初期特性記憶部、22 表示部、24 電池温度計、26 コントロールユニット、28 モータ制御部、30 モータ、32 エンジン、34 操作部。   10 battery, 12 ammeter, 14 discharge control unit, 16 voltmeter, 18 analysis unit, 20 initial characteristic storage unit, 22 display unit, 24 battery thermometer, 26 control unit, 28 motor control unit, 30 motor, 32 engine, 34 Operation unit.

Claims (5)

電池の劣化度を測定する電池劣化度測定装置において、
基準電圧と前記電池の出力電圧との差違電圧を測定する差違電圧測定部と、
前記差違電圧の時間積分値を求める電圧積算部と、
前記電池に流れる電流を測定する電流測定部と、
前記電圧積算部が時間積分を行う時間帯における、測定電流の時間積分値を求める電流積算部と、
前記差違電圧の時間積分値に対する、その時間積分値が求められる時間帯における電池電流の時間積分値の比を、劣化前の前記電池について取得し、当該比を評価基準値として設定する評価基準値設定部と、
前記電流積算部が求めた時間積分値に対する前記電圧積算部が求めた時間積分値の比と、前記評価基準値と、に基づいて、前記電池の劣化度を測定する測定部と、
を備えることを特徴とする電池劣化度測定装置。
In a battery deterioration measuring device that measures the deterioration of a battery,
A differential voltage measuring unit for measuring a differential voltage between a reference voltage and the output voltage of the battery;
A voltage integrating unit for obtaining a time integral value of the difference voltage;
A current measuring unit for measuring a current flowing through the battery;
A current integrating unit for obtaining a time integrated value of a measured current in a time zone in which the voltage integrating unit performs time integration;
An evaluation reference value for obtaining a ratio of the time integral value of the battery current in the time zone in which the time integral value is obtained with respect to the time integral value of the difference voltage for the battery before deterioration, and setting the ratio as an evaluation reference value A setting section;
A measurement unit that measures the degree of deterioration of the battery based on the ratio of the time integration value obtained by the voltage integration unit to the time integration value obtained by the current integration unit and the evaluation reference value;
A battery deterioration degree measuring apparatus comprising:
請求項1に記載の電池劣化度測定装置において、
前記電池の温度を検出する温度検出部を備え、
前記評価基準値取得部は、
前記電池の温度に対応した前記評価基準値を取得し、
前記測定部は、
前記電流積算部が求めた時間積分値に対する前記電圧積算部が求めた時間積分値の比と、前記温度検出部によって検出された温度に対応する前記評価基準値と、に基づく測定を行うことを特徴とする電池劣化度測定装置。
In the battery deterioration measuring device according to claim 1,
A temperature detection unit for detecting the temperature of the battery;
The evaluation reference value acquisition unit
Obtaining the evaluation reference value corresponding to the temperature of the battery;
The measuring unit is
Performing a measurement based on a ratio of the time integration value obtained by the voltage integration unit to the time integration value obtained by the current integration unit and the evaluation reference value corresponding to the temperature detected by the temperature detection unit. A battery deterioration degree measuring device.
請求項1または請求項2に記載の電池劣化度測定装置において、
前記電池の開放電圧を測定する開放電圧測定部を備え、
前記基準電圧は、
前記開放電圧測定部によって測定された開放電圧であり、
前記差違電圧測定部は、
前記開放電圧測定部によって測定された開放電圧から前記電池の出力電圧を減じた電圧を前記差違電圧として測定することを特徴とする電池劣化度測定装置。
In the battery deterioration measuring device according to claim 1 or 2,
An open-circuit voltage measuring unit for measuring the open-circuit voltage of the battery;
The reference voltage is
The open circuit voltage measured by the open circuit voltage measurement unit,
The differential voltage measurement unit includes:
A battery deterioration degree measuring apparatus that measures a voltage obtained by subtracting an output voltage of the battery from an open circuit voltage measured by the open circuit voltage measuring unit as the difference voltage.
請求項3に記載の電池劣化度測定装置において、
前記電池の出力電圧を測定する出力電圧測定部を備え、
前記開放電圧測定部は、
前記電流測定部および前記出力電圧測定部の各測定結果に基づいて開放電圧を求めることを特徴とする電池劣化度測定装置。
In the battery deterioration measuring device according to claim 3,
An output voltage measuring unit for measuring the output voltage of the battery;
The open-circuit voltage measurement unit
A battery deterioration degree measuring apparatus, wherein an open circuit voltage is obtained based on measurement results of the current measuring unit and the output voltage measuring unit.
電池の劣化度を測定する電池劣化度測定方法において、
基準電圧と前記電池の出力電圧との差違電圧の時間積分値を求める電圧積算ステップと、
前記差違電圧の時間積分を行う時間帯における、前記電池に流れる電流の時間積分値を求める電流積算ステップと、
前記差違電圧の時間積分値に対する、その時間積分値が求められる時間帯における電池電流の時間積分値の比を、劣化前の前記電池について取得し、当該比を評価基準値として設定する評価基準値設定ステップと、
前記電流積算ステップによって求められた時間積分値に対する前記電圧積算ステップによって求められた時間積分値の比と、前記評価基準値と、に基づいて、前記電池の劣化度を測定する測定ステップと、
を含むことを特徴とする電池劣化度測定方法。
In the battery deterioration degree measuring method for measuring the battery deterioration degree,
A voltage integration step for obtaining a time integral value of a difference voltage between a reference voltage and the output voltage of the battery;
A current integration step for obtaining a time integration value of a current flowing through the battery in a time zone for performing the time integration of the differential voltage;
An evaluation reference value for obtaining a ratio of the time integral value of the battery current in the time zone in which the time integral value is obtained with respect to the time integral value of the difference voltage for the battery before deterioration, and setting the ratio as an evaluation reference value Configuration steps;
A measurement step of measuring the degree of deterioration of the battery based on the ratio of the time integration value obtained by the voltage integration step to the time integration value obtained by the current integration step and the evaluation reference value;
A battery deterioration degree measuring method comprising:
JP2008212763A 2008-08-21 2008-08-21 Devie and methof of measuring battery deterioration Withdrawn JP2010048656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212763A JP2010048656A (en) 2008-08-21 2008-08-21 Devie and methof of measuring battery deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212763A JP2010048656A (en) 2008-08-21 2008-08-21 Devie and methof of measuring battery deterioration

Publications (1)

Publication Number Publication Date
JP2010048656A true JP2010048656A (en) 2010-03-04

Family

ID=42065859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212763A Withdrawn JP2010048656A (en) 2008-08-21 2008-08-21 Devie and methof of measuring battery deterioration

Country Status (1)

Country Link
JP (1) JP2010048656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058028A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Battery capacity calculation apparatus and battery capacity calculation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058028A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Battery capacity calculation apparatus and battery capacity calculation method

Similar Documents

Publication Publication Date Title
US9205750B2 (en) Method to estimate battery open-circuit voltage based on transient resistive effects
US10775438B2 (en) Methods to determine battery cell voltage relaxation time based on cell usage history and temperature
JP4864383B2 (en) Deterioration state estimation device for power storage device
US9634361B2 (en) Battery system and associated method for determining the internal resistance of battery cells or battery modules of said battery system
JP4670831B2 (en) Battery capacity detection method and apparatus for electric vehicle and electric vehicle maintenance method
JP2009257784A (en) Method for detecting charged state of battery
JP5846054B2 (en) Diagnostic device and diagnostic method
JP2007166789A (en) Method of determining fully charged capacity of secondary battery and determining device thereof
JP2010066229A (en) Device and method for detecting failure of battery
US20180246174A1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP2005083970A (en) State sensing device and state detection method of secondary battery
JP5568583B2 (en) Lithium ion secondary battery system, inspection method for lithium ion secondary battery, control method for lithium ion secondary battery
JP2009002691A (en) Method and apparatus for detecting state-of-charge of battery
CN110573370B (en) Apparatus and method for diagnosing battery deterioration
JP2007017357A (en) Method and device for detecting remaining capacity of battery
JP2008053126A (en) Battery deterioration judgement device
CN104950181B (en) Accumulator internal resistance measurement method and device based on charging current change
US20220385095A1 (en) Fast Charging Method
JP5566926B2 (en) Secondary battery state detection device and secondary battery state detection method
US10106037B2 (en) Battery control device
JP6350215B2 (en) Secondary battery diagnostic device
JP2010048656A (en) Devie and methof of measuring battery deterioration
US11899070B2 (en) Battery control device
KR101558696B1 (en) Method for monitoring aging of battery
US20240133964A1 (en) Method for determining a capacity of an hv battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101