JP2010048649A - Semiconductor integrated circuit device and method for testing the semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device and method for testing the semiconductor integrated circuit device Download PDF

Info

Publication number
JP2010048649A
JP2010048649A JP2008212617A JP2008212617A JP2010048649A JP 2010048649 A JP2010048649 A JP 2010048649A JP 2008212617 A JP2008212617 A JP 2008212617A JP 2008212617 A JP2008212617 A JP 2008212617A JP 2010048649 A JP2010048649 A JP 2010048649A
Authority
JP
Japan
Prior art keywords
power supply
current source
variable current
supply wiring
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008212617A
Other languages
Japanese (ja)
Other versions
JP5098889B2 (en
Inventor
Atsushi Muramatsu
篤 村松
Tomio Sato
富夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008212617A priority Critical patent/JP5098889B2/en
Publication of JP2010048649A publication Critical patent/JP2010048649A/en
Application granted granted Critical
Publication of JP5098889B2 publication Critical patent/JP5098889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit device which can make a noise immunity evaluation of a circuit to be subjected to noise immunity evaluation with high precision. <P>SOLUTION: When the noise immunity of the circuit to be subjected to noise immunity evaluation 16 is measured, a control circuit 21 controls variable current sources 19 20 under the control of an external noise control signal, allows the sum of the current value of a current passed by the variable current source 19 and the current value of a current passed by the variable current source 20 to be maintained at a constant value, and causes increase/decrease changes, in the opposite directions for the current passed by the variable current source 19 and the current passed by the variable current source 20. When an increase/decrease change occurs in the current passed by the variable current source 19, increase/decrease changes in voltage drop is produced in resistors 18A, 18B. The increase/decrease change in voltage drop occurring in the resistor 18A is supplied to the circuit to be subjected to noise immunity evaluation 16 as high-potential side power supply noise, while the increase/decrease change in voltage drop occurring in the resistor 18B is supplied to the circuit which is to be subjected to noise immunity evaluation 16 as low-potential side power supply noise. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、テスト用の電源ノイズ発生回路を搭載した半導体集積回路装置及び半導体集積回路装置の試験方法に関する。   The present invention relates to a semiconductor integrated circuit device equipped with a power supply noise generating circuit for testing and a method for testing the semiconductor integrated circuit device.

半導体集積回路装置は、電源ノイズによって性能が劣化する。しかし、この性能劣化の度合いを事前に知るための一般的な手法は知られていない。従来、この性能劣化の度合いを調べるために、実際に作成したノイズ耐性評価対象回路に電源ノイズを与えて特性を測定することが一般に行われている。   The performance of a semiconductor integrated circuit device is degraded by power supply noise. However, a general method for knowing in advance the degree of performance degradation is not known. Conventionally, in order to investigate the degree of performance degradation, it is common practice to measure the characteristics by applying power supply noise to an actually created noise tolerance evaluation target circuit.

図10は従来の半導体集積回路装置の一例を外部電源と共に示す回路図である。図10中、1は従来の半導体集積回路装置の一例、2は半導体集積回路装置1に電源電圧を供給する外部電源である。半導体集積回路装置1において、3はノイズ耐性評価対象回路、4Aは高電位側の電源供給配線、4Bは低電位側の電源供給配線、5は電源ノイズ発生回路をなす可変電流源、6〜8はNMOSトランジスタ、9〜11はデジタル信号からなるノイズ制御信号SA1〜SA3を入力するための入力端子である。   FIG. 10 is a circuit diagram showing an example of a conventional semiconductor integrated circuit device together with an external power supply. In FIG. 10, 1 is an example of a conventional semiconductor integrated circuit device, and 2 is an external power supply for supplying a power supply voltage to the semiconductor integrated circuit device 1. In the semiconductor integrated circuit device 1, 3 is a noise tolerance evaluation target circuit, 4A is a power supply wiring on the high potential side, 4B is a power supply wiring on the low potential side, 5 is a variable current source forming a power noise generation circuit, and 6-8. Are NMOS transistors, and 9 to 11 are input terminals for inputting noise control signals SA1 to SA3 comprising digital signals.

この半導体集積回路装置1は、ノイズ耐性評価対象回路3のノイズ耐性測定時には、ノイズ制御信号SA1〜SA3によりNMOSトランジスタ6〜8のON、OFFを制御して可変電流源5が流す電流に増減変化を起こさせ、これにより発生する電源ノイズを含む電源電圧をノイズ耐性評価対象回路3に与えるというものである。
特開2001−264394号公報 特開2003−50264号公報 特開2003−216682号公報
In the semiconductor integrated circuit device 1, when measuring the noise tolerance of the noise tolerance evaluation target circuit 3, the NMOS transistors 6 to 8 are turned on and off by the noise control signals SA1 to SA3 to increase or decrease the current flowing through the variable current source 5. And the power supply voltage including the power supply noise generated thereby is given to the noise tolerance evaluation target circuit 3.
JP 2001-264394 A JP 2003-50264 A JP 2003-216682 A

この半導体集積回路装置1では、電源ノイズ量は、可変電流源5と、ノイズ制御信号SA1〜SA3と、電源供給配線4A、4Bの寄生インピーダンスによって定まる。電源供給配線4A、4Bの寄生インピーダンスには、ボンディングワイヤ等、半導体パッケージ内の電源配線や測定プローブ等の寄生インピーダンスが含まれるが、この寄生インピーダンスの正確な値を事前に知ることは困難である。このため、ノイズ耐性評価対象回路3に与える電源ノイズを含む電源電圧の電圧値を正確に知ることができず、ノイズ耐性評価対象回路3のノイズ耐性評価を高精度に行うことができないという問題点があった。   In the semiconductor integrated circuit device 1, the amount of power supply noise is determined by the variable current source 5, the noise control signals SA1 to SA3, and the parasitic impedances of the power supply wirings 4A and 4B. The parasitic impedances of the power supply wirings 4A and 4B include parasitic impedances such as bonding wires and power wirings in the semiconductor package and measurement probes. However, it is difficult to know the exact value of the parasitic impedance in advance. . For this reason, the voltage value of the power supply voltage including the power supply noise given to the noise tolerance evaluation target circuit 3 cannot be accurately known, and the noise tolerance evaluation of the noise tolerance evaluation target circuit 3 cannot be performed with high accuracy. was there.

本発明は、かかる点に鑑み、ノイズ耐性評価対象回路のノイズ耐性評価を高精度に行うことができる半導体集積回路装置及び半導体集積回路装置の試験方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a semiconductor integrated circuit device and a test method for the semiconductor integrated circuit device that can perform noise tolerance evaluation of a noise tolerance evaluation target circuit with high accuracy.

第1の半導体集積回路装置は、ノイズ耐性評価対象回路と、第1の抵抗と、第2の抵抗と、第1の可変電流源と、第2の可変電流源と、制御回路とを有するものである。前記第1の抵抗は、前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続されたものである。前記第2の抵抗は、前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続されたものである。   The first semiconductor integrated circuit device includes a noise tolerance evaluation target circuit, a first resistor, a second resistor, a first variable current source, a second variable current source, and a control circuit. It is. The first resistor is connected between a first power supply line and a first power supply line of the noise tolerance evaluation target circuit. The second resistor is connected between a second power supply line and a second power supply line of the noise tolerance evaluation target circuit.

第1の半導体集積回路装置によれば、前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第1の抵抗に発生する電圧降下の増減変化を高電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。また、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第2の抵抗に発生する電圧降下の増減変化を低電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。   According to the first semiconductor integrated circuit device, a voltage drop generated in the first resistor due to an increase / decrease change in the current flowing through the first variable current source during noise tolerance measurement of the noise tolerance evaluation target circuit. The increase / decrease change can be given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the high potential side. Further, an increase / decrease change in the voltage drop generated in the second resistor due to an increase / decrease change in the current flowing through the first variable current source is given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the low potential side. be able to.

ここで開示する第1の半導体集積回路装置は、ノイズ耐性評価対象回路と、第1の抵抗と、第2の抵抗と、第1の可変電流源と、第2の可変電流源と、制御回路とを有するものである。前記第1の抵抗は、前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続されたものである。前記第2の抵抗は、前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続されたものである。   A first semiconductor integrated circuit device disclosed herein includes a noise tolerance evaluation target circuit, a first resistor, a second resistor, a first variable current source, a second variable current source, and a control circuit. It has. The first resistor is connected between a first power supply line and a first power supply line of the noise tolerance evaluation target circuit. The second resistor is connected between a second power supply line and a second power supply line of the noise tolerance evaluation target circuit.

前記第1の可変電流源は、前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続されたものである。前記第2の可変電流源は、前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続されたものである。   The first variable current source is connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring. Is. The second variable current source is connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistor and the second power supply wiring. It has been done.

前記制御回路は、前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせるものである。   The control circuit controls the first variable current source and the second variable current source at the time of noise tolerance measurement of the noise tolerance evaluation target circuit, and a current value of a current flowing through the first variable current source And the current value of the current flowing through the second variable current source are maintained at a constant value, and the change is increased or decreased between the current flowing through the first variable current source and the current flowing through the second variable current source. Is something that causes

ここで開示する第2の半導体集積回路装置は、ノイズ耐性評価対象回路と、第1の抵抗と、第1の可変電流源と、第2の可変電流源と、制御回路とを有するものである。前記第1の抵抗は、前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続されたものである。   The second semiconductor integrated circuit device disclosed herein includes a noise tolerance evaluation target circuit, a first resistor, a first variable current source, a second variable current source, and a control circuit. . The first resistor is connected between a first power supply line and a first power supply line of the noise tolerance evaluation target circuit.

前記第1の可変電流源は、前記第1の抵抗と前記第1の電源配線との接続部分と、前記ノイズ耐性評価対象回路の第2の電源配線との間に接続されたものである。前記第2の可変電流源は、前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の電源配線との間に接続されたものである。   The first variable current source is connected between a connection portion between the first resistor and the first power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit. The second variable current source is connected between a connection portion between the first resistor and the first power supply wiring and the second power supply wiring.

前記制御回路は、前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせるものである。   The control circuit controls the first variable current source and the second variable current source at the time of noise tolerance measurement of the noise tolerance evaluation target circuit, and a current value of a current flowing through the first variable current source And the current value of the current flowing through the second variable current source are maintained at a constant value, and the change is increased or decreased between the current flowing through the first variable current source and the current flowing through the second variable current source. Is something that causes

ここで開示する第3の半導体集積回路装置は、ノイズ耐性評価対象回路と、第2の抵抗と、第1の可変電流源と、第2の可変電流源と、制御回路とを有するものである。前記第2の抵抗は、前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続されたものである。   The third semiconductor integrated circuit device disclosed herein includes a noise tolerance evaluation target circuit, a second resistor, a first variable current source, a second variable current source, and a control circuit. . The second resistor is connected between a second power supply line and a second power supply line of the noise tolerance evaluation target circuit.

前記第1の可変電流源は、前記ノイズ耐性評価対象回路の第1の電源配線と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続されたものである。前記第2の可変電流源は、前記第1の電源配線と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続されたものである。   The first variable current source is connected between a first power supply wiring of the noise tolerance evaluation target circuit and a connection portion between the second resistor and the second power supply wiring. The second variable current source is connected between the first power supply wiring and a connection portion between the second resistor and the second power supply wiring.

前記制御回路は、前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせるものである。   The control circuit controls the first variable current source and the second variable current source at the time of noise tolerance measurement of the noise tolerance evaluation target circuit, and a current value of a current flowing through the first variable current source And the current value of the current flowing through the second variable current source are maintained at a constant value, and the change is increased or decreased between the current flowing through the first variable current source and the current flowing through the second variable current source. Is something that causes

ここで開示する第4の半導体集積回路装置は、ノイズ耐性評価対象回路と、第1の抵抗と、第2の抵抗と、第3の可変電流源と、第4の可変電流源と、第5の可変電流源と、制御回路とを有するものである。前記第1の抵抗は、前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続されたものである。前記第2の抵抗は、前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続されたものである。   A fourth semiconductor integrated circuit device disclosed herein includes a noise tolerance evaluation target circuit, a first resistor, a second resistor, a third variable current source, a fourth variable current source, and a fifth A variable current source and a control circuit. The first resistor is connected between a first power supply line and a first power supply line of the noise tolerance evaluation target circuit. The second resistor is connected between a second power supply line and a second power supply line of the noise tolerance evaluation target circuit.

前記第3の可変電流源は、前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続されたものである。前記第4の可変電流源は、前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続されたものである。前記第5の可変電流源は、前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続されたものである。   The third variable current source is connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring. It is a thing. The fourth variable current source is connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring. It is a thing. The fifth variable current source is connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistor and the second power supply wiring. It has been done.

前記制御回路は、前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第3の可変電流源と前記第4の可変電流源と前記第5の可変電流源とを制御し、前記第3の可変電流源が流す電流の電流値と前記第4の可変電流源が流す電流の電流値と前記第5の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第3の可変電流源が流す電流と前記第4の可変電流源が流す電流とのいずれか一方又は両方と、前記第5の可変電流源が流す電流とに増減変化を起こさせるものである。   The control circuit controls the third variable current source, the fourth variable current source, and the fifth variable current source to measure the third variable current source when the noise tolerance measurement of the noise tolerance evaluation target circuit is performed. The total value of the current value of the current flowing through the current source, the current value of the current flowing through the fourth variable current source, and the current value of the current flowing through the fifth variable current source is maintained at a constant value. The variable current source causes a change in the current flowing from the fifth variable current source and / or the current from the fourth variable current source.

ここで開示する第1の半導体集積回路装置の試験方法は、ノイズ耐性評価対象回路と、前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第1の可変電流源と、前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第2の可変電流源とを有する半導体集積回路装置の試験方法である。   The first semiconductor integrated circuit device testing method disclosed herein includes a noise tolerance evaluation target circuit and a first power supply wiring connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit. 1 resistor, a second resistor connected between the second power supply wiring and the second power supply wiring of the noise tolerance evaluation target circuit, the first resistance, and the first power supply wiring A first variable current source connected between a connection portion between the second resistor and the second power supply wiring, the first resistance, and the first power supply wiring. And a second variable current source connected between the connection portion of the second resistor and the second power supply wiring. The method of testing a semiconductor integrated circuit device.

第1の半導体集積回路装置の試験方法は、前記第1の電源供給配線と前記第2の電源供給配線との間に外部から電源電圧を供給する工程と、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる工程とを含むものである。   A test method for a first semiconductor integrated circuit device includes a step of supplying a power supply voltage from the outside between the first power supply wiring and the second power supply wiring, the first variable current source, Controlling a second variable current source, and maintaining a total value of a current value of a current flowing through the first variable current source and a current value of a current flowing through the second variable current source at a constant value, And a step of causing an increase / decrease change in the current flowing through the first variable current source and the current flowing through the second variable current source.

ここで開示する第2の半導体集積回路装置の試験方法は、ノイズ耐性評価対象回路と、前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、前記第1の抵抗と前記第1の電源配線との接続部分と、前記ノイズ耐性評価対象回路の第2の電源配線との間に接続された第1の可変電流源と、前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の電源配線との間に接続された第2の可変電流源とを有する半導体集積回路装置の試験方法である。   The second semiconductor integrated circuit device testing method disclosed herein includes a noise tolerance evaluation target circuit, a first power supply wiring connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit. A first variable current source connected between a first resistor, a connection portion between the first resistor and the first power supply wiring, and a second power supply wiring of the noise tolerance evaluation target circuit; A test method for a semiconductor integrated circuit device, comprising: a connection portion between the first resistor and the first power supply wiring; and a second variable current source connected between the second power supply wiring. .

第2の半導体集積回路装置の試験方法は、前記第1の電源供給配線と前記第2の電源供給配線との間に外部から電源電圧を供給する工程と、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる工程とを含むものである。   The second semiconductor integrated circuit device testing method includes a step of supplying a power supply voltage between the first power supply wiring and the second power supply wiring from the outside, the first variable current source, Controlling a second variable current source, and maintaining a total value of a current value of a current flowing through the first variable current source and a current value of a current flowing through the second variable current source at a constant value, And a step of causing an increase / decrease change in the current flowing through the first variable current source and the current flowing through the second variable current source.

ここで開示する第3の半導体集積回路装置の試験方法は、ノイズ耐性評価対象回路と、前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、前記ノイズ耐性評価対象回路の第1の電源配線と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第1の可変電流源と、前記第1の電源配線と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第2の可変電流源とを有する半導体集積回路装置の試験方法である。   The third method for testing a semiconductor integrated circuit device disclosed herein is a noise immunity evaluation target circuit and a second power supply wiring connected between the second power supply wiring and the second power supply wiring of the noise immunity evaluation target circuit. 2, a first variable current source connected between the first power supply wiring of the noise tolerance evaluation target circuit, and a connection portion between the second resistance and the second power supply wiring; A test method for a semiconductor integrated circuit device comprising: the first power supply wiring; and a second variable current source connected between a connection portion between the second resistor and the second power supply wiring. .

第3の半導体集積回路装置の試験方法は、前記第1の電源供給配線と前記第2の電源供給配線との間に外部から電源電圧を供給する工程と、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる工程とを含むものである。   According to a third method for testing a semiconductor integrated circuit device, a step of supplying a power supply voltage from the outside between the first power supply wiring and the second power supply wiring, the first variable current source, Controlling a second variable current source, and maintaining a total value of a current value of a current flowing through the first variable current source and a current value of a current flowing through the second variable current source at a constant value, And a step of causing an increase / decrease change in the current flowing through the first variable current source and the current flowing through the second variable current source.

ここで開示する第4の半導体集積回路装置の試験方法は、ノイズ耐性評価対象回路と、前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第3の可変電流源と、前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第4の可変電流源と、前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第5の可変電流源とを有する半導体集積回路装置の試験方法である。   A fourth semiconductor integrated circuit device testing method disclosed herein is a noise immunity evaluation target circuit and a first power supply wiring connected between the first power supply wiring and the first power supply wiring of the noise immunity evaluation target circuit. 1 resistor, a second resistor connected between the second power supply wiring and the second power supply wiring of the noise tolerance evaluation target circuit, the first resistance, and the first power supply wiring , A third variable current source connected between the connection portion of the second resistor and the second power supply wiring, the first resistor and the first power supply wiring A fourth variable current source connected between a connection portion between the second resistor and the second power supply wiring, the first resistance, and the first power supply wiring Connected between the connecting portion between the second resistor and the second power supply wiring. The semiconductor integrated circuit device having a variable current source is a method of testing.

第4の半導体集積回路装置の試験方法は、前記第1の電源供給配線と前記第2の電源供給配線との間に外部から電源電圧を供給する工程と、前記第3の可変電流源と前記第4の可変電流源と前記第5の可変電流源とを制御し、前記第3の可変電流源が流す電流の電流値と前記第4の可変電流源が流す電流の電流値と前記第5の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第3の可変電流源が流す電流と前記第4の可変電流源が流す電流とのいずれか一方又は両方と、前記第5の可変電流源が流す電流とに増減変化を起こさせる工程を含むものである。   According to a fourth method for testing a semiconductor integrated circuit device, a step of supplying a power supply voltage from the outside between the first power supply wiring and the second power supply wiring, the third variable current source, The fourth variable current source and the fifth variable current source are controlled, the current value of the current flowing through the third variable current source, the current value of the current flowing through the fourth variable current source, and the fifth A total value of the current values of the currents supplied by the variable current source is maintained at a constant value, and one or both of the current supplied by the third variable current source and the current supplied by the fourth variable current source are And a step of causing an increase / decrease change in the current flowing through the fifth variable current source.

開示した第1の半導体集積回路装置によれば、前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第1の抵抗に発生する電圧降下の増減変化を高電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。また、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第2の抵抗に発生する電圧降下の増減変化を低電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。   According to the disclosed first semiconductor integrated circuit device, when the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the current flowing through the first variable current source is changed or increased, which is generated in the first resistor. The increase / decrease change of the voltage drop can be given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the high potential side. Further, an increase / decrease change in the voltage drop generated in the second resistor due to an increase / decrease change in the current flowing through the first variable current source is given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the low potential side. be able to.

この場合、前記制御回路は、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせるので、前記第1の電源供給配線及び前記第2の電源供給配線に流れる電流の電流値を一定値に保ち、前記第1の電源供給配線及び前記第2の電源供給配線の寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、前記ノイズ耐性評価対象回路に与えるノイズを含む電源電圧の電圧値を正確に知ることができるので、前記ノイズ耐性評価対象回路のノイズ耐性評価を高精度に行うことができる。   In this case, the control circuit keeps the total value of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source at a constant value. The current value of the current flowing through the power supply wiring and the second power supply wiring is kept constant, and the voltage drop due to the parasitic impedance of the first power supply wiring and the second power supply wiring is reduced only by the resistance component. It can be a voltage drop. As a result, it is possible to accurately know the voltage value of the power supply voltage including noise applied to the noise tolerance evaluation target circuit, so that the noise tolerance evaluation of the noise tolerance evaluation target circuit can be performed with high accuracy.

開示した第2の半導体集積回路装置によれば、前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第1の抵抗に発生する電圧降下の増減変化を高電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。   According to the disclosed second semiconductor integrated circuit device, when the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the current flowing through the first variable current source is changed or increased, which is generated in the first resistor. The increase / decrease change of the voltage drop can be given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the high potential side.

この場合、前記制御回路は、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせるので、前記第1の電源供給配線及び前記第2の電源供給配線に流れる電流の電流値を一定値に保ち、前記第1の電源供給配線及び前記第2の電源供給配線の寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、前記ノイズ耐性評価対象回路に与えるノイズを含む電源電圧の電圧値を正確に知ることができるので、前記ノイズ耐性評価対象回路のノイズ耐性評価を高精度に行うことができる。   In this case, the control circuit keeps the total value of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source at a constant value. The current value of the current flowing through the power supply wiring and the second power supply wiring is kept constant, and the voltage drop due to the parasitic impedance of the first power supply wiring and the second power supply wiring is reduced only by the resistance component. It can be a voltage drop. As a result, it is possible to accurately know the voltage value of the power supply voltage including noise applied to the noise tolerance evaluation target circuit, so that the noise tolerance evaluation of the noise tolerance evaluation target circuit can be performed with high accuracy.

開示した第3の半導体集積回路装置によれば、前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第2の抵抗に発生する電圧降下の増減変化を低電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。   According to the disclosed third semiconductor integrated circuit device, when the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the current flowing through the first variable current source is changed or increased, which is generated in the second resistor. An increase / decrease change of the voltage drop can be given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the low potential side.

この場合、前記制御回路は、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせるので、前記第1の電源供給配線及び前記第2の電源供給配線に流れる電流の電流値を一定値に保ち、前記第1の電源供給配線及び前記第2の電源供給配線の寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、前記ノイズ耐性評価対象回路に与えるノイズを含む電源電圧の電圧値を正確に知ることができるので、前記ノイズ耐性評価対象回路のノイズ耐性評価を高精度に行うことができる。   In this case, the control circuit keeps the total value of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source at a constant value. The current value of the current flowing through the power supply wiring and the second power supply wiring is kept constant, and the voltage drop due to the parasitic impedance of the first power supply wiring and the second power supply wiring is reduced only by the resistance component. It can be a voltage drop. As a result, it is possible to accurately know the voltage value of the power supply voltage including noise applied to the noise tolerance evaluation target circuit, so that the noise tolerance evaluation of the noise tolerance evaluation target circuit can be performed with high accuracy.

開示した第4の半導体集積回路装置によれば、前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第3の可変電流源が流す電流に増減変化が起こることにより前記第1の抵抗に発生する電圧降下の増減変化を高電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。また、前記第4の可変電流源が流す電流に増減変化が起こることにより前記第2の抵抗に発生する電圧降下の増減変化を低電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。   According to the disclosed fourth semiconductor integrated circuit device, when the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the current flowing through the third variable current source is changed or increased, which is generated in the first resistor. The increase / decrease change of the voltage drop can be given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the high potential side. Further, an increase / decrease change in the voltage drop generated in the second resistor due to an increase / decrease change in the current flowing through the fourth variable current source is given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the low potential side. be able to.

この場合、前記制御回路は、前記第3の可変電流源が流す電流の電流値と前記第4の可変電流源が流す電流の電流値と前記第5の可変電流源が流す電流の電流値との合計値を一定値に保たせるので、前記第1の電源供給配線及び前記第2の電源供給配線の寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、前記ノイズ耐性評価対象回路に与えるノイズを含む電源電圧の電圧値を正確に知ることができるので、前記ノイズ耐性評価対象回路のノイズ耐性評価を高精度に行うことができる。   In this case, the control circuit includes a current value of a current flowing through the third variable current source, a current value of a current flowing through the fourth variable current source, and a current value of a current flowing through the fifth variable current source. Therefore, the voltage drop due to the parasitic impedance of the first power supply wiring and the second power supply wiring can be made the voltage drop of only the resistance component. As a result, it is possible to accurately know the voltage value of the power supply voltage including noise applied to the noise tolerance evaluation target circuit, so that the noise tolerance evaluation of the noise tolerance evaluation target circuit can be performed with high accuracy.

開示した第1の半導体集積回路装置の試験方法によれば、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第1の抵抗に発生する電圧降下の増減変化を高電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。また、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第2の抵抗に発生する電圧降下の増減変化を低電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。   According to the disclosed test method of the first semiconductor integrated circuit device, the increase / decrease change of the voltage drop generated in the first resistor due to the increase / decrease change in the current flowing through the first variable current source is changed to the high potential side. The noise tolerance evaluation target circuit can be given as noise of the power supply voltage. Further, an increase / decrease change in the voltage drop generated in the second resistor due to an increase / decrease change in the current flowing through the first variable current source is given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the low potential side. be able to.

この場合、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせるので、前記第1の電源供給配線及び前記第2の電源供給配線に流れる電流の電流値を一定値に保ち、前記第1の電源供給配線及び前記第2の電源供給配線の寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、前記ノイズ耐性評価対象回路に与えるノイズを含む電源電圧の電圧値を正確に知ることができるので、前記ノイズ耐性評価対象回路のノイズ耐性評価を高精度に行うことができる。   In this case, since the total value of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source is kept constant, the first power supply wiring and The current value of the current flowing through the second power supply wiring is kept constant, and the voltage drop due to the parasitic impedance of the first power supply wiring and the second power supply wiring is a voltage drop of only the resistance component. Can do. As a result, it is possible to accurately know the voltage value of the power supply voltage including noise applied to the noise tolerance evaluation target circuit, so that the noise tolerance evaluation of the noise tolerance evaluation target circuit can be performed with high accuracy.

開示した第2の半導体集積回路装置の試験方法によれば、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第1の抵抗に発生する電圧降下の増減変化を高電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。   According to the disclosed test method of the second semiconductor integrated circuit device, the increase / decrease change of the voltage drop generated in the first resistor due to the increase / decrease change in the current flowing through the first variable current source is changed to the high potential side. The noise tolerance evaluation target circuit can be given as noise of the power supply voltage.

この場合、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせるので、前記第1の電源供給配線及び前記第2の電源供給配線に流れる電流の電流値を一定値に保ち、前記第1の電源供給配線及び前記第2の電源供給配線の寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、前記ノイズ耐性評価対象回路に与えるノイズを含む電源電圧の電圧値を正確に知ることができるので、前記ノイズ耐性評価対象回路のノイズ耐性評価を高精度に行うことができる。   In this case, since the total value of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source is kept constant, the first power supply wiring and The current value of the current flowing through the second power supply wiring is kept constant, and the voltage drop due to the parasitic impedance of the first power supply wiring and the second power supply wiring is a voltage drop of only the resistance component. Can do. As a result, it is possible to accurately know the voltage value of the power supply voltage including noise applied to the noise tolerance evaluation target circuit, so that the noise tolerance evaluation of the noise tolerance evaluation target circuit can be performed with high accuracy.

開示した第3の半導体集積回路装置の試験方法によれば、前記第1の可変電流源が流す電流に増減変化が起こることにより前記第2の抵抗に発生する電圧降下の増減変化を低電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。   According to the disclosed test method of the third semiconductor integrated circuit device, the increase / decrease change of the voltage drop generated in the second resistor due to the increase / decrease change in the current flowing through the first variable current source is reduced to the low potential side. The noise tolerance evaluation target circuit can be given as noise of the power supply voltage.

この場合、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせるので、前記第1の電源供給配線及び前記第2の電源供給配線に流れる電流の電流値を一定値に保ち、前記第1の電源供給配線及び前記第2の電源供給配線の寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、前記ノイズ耐性評価対象回路に与えるノイズを含む電源電圧の電圧値を正確に知ることができるので、前記ノイズ耐性評価対象回路のノイズ耐性評価を高精度に行うことができる。   In this case, since the total value of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source is kept constant, the first power supply wiring and The current value of the current flowing through the second power supply wiring is kept constant, and the voltage drop due to the parasitic impedance of the first power supply wiring and the second power supply wiring is a voltage drop of only the resistance component. Can do. As a result, it is possible to accurately know the voltage value of the power supply voltage including noise applied to the noise tolerance evaluation target circuit, so that the noise tolerance evaluation of the noise tolerance evaluation target circuit can be performed with high accuracy.

開示した第4の半導体集積回路装置の試験方法によれば、前記第3の可変電流源が流す電流に増減変化が起こることにより前記第1の抵抗に発生する電圧降下の増減変化を高電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。また、前記第4の可変電流源が流す電流に増減変化が起こることにより前記第2の抵抗に発生する電圧降下の増減変化を低電位側の電源電圧のノイズとして前記ノイズ耐性評価対象回路に与えることができる。   According to the disclosed test method of the fourth semiconductor integrated circuit device, the increase / decrease change of the voltage drop generated in the first resistor due to the increase / decrease change in the current flowing through the third variable current source is changed to the high potential side. The noise tolerance evaluation target circuit can be given as noise of the power supply voltage. Further, an increase / decrease change in the voltage drop generated in the second resistor due to an increase / decrease change in the current flowing through the fourth variable current source is given to the noise tolerance evaluation target circuit as noise of the power supply voltage on the low potential side. be able to.

この場合、前記第3の可変電流源が流す電流の電流値と前記第4の可変電流源が流す電流の電流値と前記第5の可変電流源が流す電流の電流値との合計値を一定値に保たせるので、前記第1の電源供給配線及び前記第2の電源供給配線の寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、前記ノイズ耐性評価対象回路に与えるノイズを含む電源電圧の電圧値を正確に知ることができるので、前記ノイズ耐性評価対象回路のノイズ耐性評価を高精度に行うことができる。   In this case, the total value of the current value of the current flowing through the third variable current source, the current value of the current flowing through the fourth variable current source, and the current value of the current flowing through the fifth variable current source is constant. Since the value is maintained, the voltage drop due to the parasitic impedance of the first power supply wiring and the second power supply wiring can be a voltage drop of only the resistance component. As a result, it is possible to accurately know the voltage value of the power supply voltage including noise applied to the noise tolerance evaluation target circuit, so that the noise tolerance evaluation of the noise tolerance evaluation target circuit can be performed with high accuracy.

以下、図1〜図9を参照して、本発明の半導体集積回路装置及び半導体集積回路装置の試験方法の第1実施形態〜第4実施形態について説明する。本発明は、本発明の半導体集積回路装置及び半導体集積回路装置の試験方法の第1実施形態〜第4実施形態に限定されるものではない。   A semiconductor integrated circuit device and a semiconductor integrated circuit device testing method according to first to fourth embodiments of the present invention will be described below with reference to FIGS. The present invention is not limited to the first to fourth embodiments of the semiconductor integrated circuit device and the semiconductor integrated circuit device testing method of the present invention.

(第1実施形態)
図1は本発明の半導体集積回路装置の第1実施形態を外部電源と共に示す回路図である。図1中、14は本発明の半導体集積回路装置の第1実施形態、15は本発明の半導体集積回路装置の第1実施形態14に電源電圧を供給する外部電源である。本発明の半導体集積回路装置の第1実施形態14において、16はノイズ耐性評価対象回路、17Aは高電位側の電源供給配線、17Bは低電位側の電源供給配線である。電源供給配線17A、17Bには、ボンディングワイヤ等、半導体パッケージ内の電源配線や、外部電源15と本発明の半導体集積回路装置の第1実施形態14との接続部分の電源配線などが含まれる。
(First embodiment)
FIG. 1 is a circuit diagram showing a first embodiment of a semiconductor integrated circuit device of the present invention together with an external power supply. In FIG. 1, 14 is a first embodiment of the semiconductor integrated circuit device of the present invention, and 15 is an external power supply for supplying a power supply voltage to the first embodiment 14 of the semiconductor integrated circuit device of the present invention. In the semiconductor integrated circuit device according to the first embodiment 14 of the present invention, reference numeral 16 denotes a noise tolerance evaluation target circuit, 17A denotes a high potential side power supply wiring, and 17B denotes a low potential side power supply wiring. The power supply wirings 17A and 17B include a power supply wiring in the semiconductor package such as a bonding wire, and a power supply wiring at a connection portion between the external power supply 15 and the first embodiment 14 of the semiconductor integrated circuit device of the present invention.

18Aは電源供給配線17Aとノイズ耐性評価対象回路16の高電位側の電源配線(VDD電源配線)との間に接続された抵抗、18Bは電源供給配線17Bとノイズ耐性評価対象回路16の低電位側の電源配線(VSS電源配線)との間に接続された抵抗である。   Reference numeral 18A denotes a resistor connected between the power supply wiring 17A and the power supply wiring (VDD power supply wiring) on the high potential side of the noise tolerance evaluation target circuit 16, and 18B denotes a low potential of the power supply wiring 17B and the noise tolerance evaluation target circuit 16. It is a resistor connected to the power supply wiring (VSS power supply wiring) on the side.

19は電源ノイズ発生用の可変電流源である。この可変電流源19は、抵抗18Aとノイズ耐性評価対象回路16の高電位側の電源配線との接続部分と、抵抗18Bとノイズ耐性評価対象回路16の低電位側の電源配線との接続部分との間に接続されている。   Reference numeral 19 denotes a variable current source for generating power supply noise. The variable current source 19 includes a connection portion between the resistor 18A and the power supply wiring on the high potential side of the noise tolerance evaluation target circuit 16, and a connection portion between the resistor 18B and the power supply wiring on the low potential side of the noise tolerance evaluation target circuit 16. Connected between.

20は消費電流安定用の可変電流源であり、この可変電流源20は、抵抗18Aと電源供給配線17Aとの接続部分と、抵抗18Bと電源供給配線17Bとの接続部分との間に接続されている。   Reference numeral 20 denotes a variable current source for stabilizing current consumption. This variable current source 20 is connected between a connection portion between the resistor 18A and the power supply wiring 17A and a connection portion between the resistor 18B and the power supply wiring 17B. ing.

21は制御回路である。制御回路21は、外部から与えられるノイズ制御信号に制御されて可変電流源19、20を制御し、可変電流源19が流す電流の電流値と可変電流源20が流す電流の電流値との合計値を一定値に保たせ、可変電流源19が流す電流と可変電流源20が流す電流とに逆方向の増減変化を起こさせるものである。22はデカップリング容量であり、場合によっては、電源供給配線17A、17Bに発生してしまうインダクタンス成分による電源ノイズを軽減するためのものである。   21 is a control circuit. The control circuit 21 is controlled by a noise control signal given from the outside to control the variable current sources 19 and 20, and the sum of the current value of the current flowing through the variable current source 19 and the current value of the current flowing through the variable current source 20. By keeping the value constant, the current flowing from the variable current source 19 and the current flowing from the variable current source 20 are caused to increase or decrease in opposite directions. Reference numeral 22 denotes a decoupling capacitor for reducing power supply noise due to an inductance component generated in the power supply wirings 17A and 17B in some cases.

本発明の半導体集積回路装置の試験方法の第1実施形態は、本発明の半導体集積回路装置の第1実施形態14を対象とするものであり、電源供給配線17A、17B間に外部電源15から電源電圧を供給する工程と、可変電流源19、20を制御し、可変電流源19が流す電流の電流値と可変電流源20が流す電流の電流値との合計値を一定値に保たせ、可変電流源19が流す電流と可変電流源20が流す電流とに増減変化を起こさせる工程とを含むものである。   The first embodiment of the method for testing a semiconductor integrated circuit device of the present invention is directed to the first embodiment 14 of the semiconductor integrated circuit device of the present invention. From the external power supply 15 between the power supply wirings 17A and 17B. A step of supplying a power supply voltage, and the variable current sources 19 and 20 are controlled, and the total value of the current value of the current flowing through the variable current source 19 and the current value of the current flowing through the variable current source 20 is kept constant. And a step of causing an increase / decrease change in the current flowing through the variable current source 19 and the current flowing through the variable current source 20.

可変電流源19が流す電流に増減変化を発生させると、抵抗18A、18Bに電圧降下(IRドロップ)の増減変化が発生する。抵抗18Aに発生する電圧降下の増減変化は、高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路16に与えられる。抵抗18Bに発生する電圧降下の増減変化は、低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路16に与えられる。   When an increase / decrease change is generated in the current flowing through the variable current source 19, an increase / decrease change in voltage drop (IR drop) occurs in the resistors 18A, 18B. The increase / decrease change of the voltage drop generated in the resistor 18A is given to the noise tolerance evaluation target circuit 16 as noise of the power supply voltage on the high potential side. The increase / decrease change of the voltage drop generated in the resistor 18B is given to the noise tolerance evaluation target circuit 16 as noise of the power supply voltage on the low potential side.

ここで、可変電流源19が流す電流の電流値をI1、可変電流源20が流す電流の電流値をI2とすると、制御回路21は、電流値I2が式(1)で示す値となるように可変電流源20を制御する。但し、電流値Iconstは、ノイズ耐性評価対象回路16が消費する電流より十分大きな値とする。 Here, assuming that the current value of the current flowing from the variable current source 19 is I 1 and the current value of the current flowing from the variable current source 20 is I 2 , the control circuit 21 indicates that the current value I 2 is a value represented by the equation (1). The variable current source 20 is controlled so that However, the current value Iconst is a value sufficiently larger than the current consumed by the noise tolerance evaluation target circuit 16.

Figure 2010048649
Figure 2010048649

また、抵抗18Aに発生する電圧降下Vdeltaは、抵抗18Aの抵抗値をRとすると、式(2)に示すようになる。   Further, the voltage drop Vdelta generated in the resistor 18A is as shown in Expression (2), where R is the resistance value of the resistor 18A.

Figure 2010048649
Figure 2010048649

また、電源供給配線17Aの寄生インピーダンスの抵抗成分をRp、インダクタンス成分をLpとすると、電源供給配線17Aに電流値Iの電流が流れた場合に、電源供給配線17Aに発生する電圧降下Vdropは、式(3)に示すようになる。   If the resistance component of the parasitic impedance of the power supply wiring 17A is Rp and the inductance component is Lp, the voltage drop Vdrop generated in the power supply wiring 17A when the current of the current value I flows in the power supply wiring 17A is As shown in equation (3).

Figure 2010048649
Figure 2010048649

電源供給配線17Aを流れる電流は式(1)に示すようにIconstであり、Iconstは時間変動しないので、式(3)の第二項は常に0となる。したがって、ノイズ耐性評価対象回路16に与えられる電源電圧Vmacroは、抵抗18Bの抵抗値を抵抗18Aと同一、電源供給配線17Bに発生する電圧降下を電源供給配線17Aに発生する電圧降下と同一とし、外部電源15が出力する電圧をVsupplyとすると、式(4)に示すようになる。   The current flowing through the power supply wiring 17A is Iconst as shown in Expression (1), and Iconst does not vary with time, so the second term of Expression (3) is always zero. Therefore, the power supply voltage Vmacro supplied to the noise tolerance evaluation target circuit 16 is set so that the resistance value of the resistor 18B is the same as that of the resistor 18A, the voltage drop generated in the power supply wiring 17B is the same as the voltage drop generated in the power supply wiring 17A, Assuming that the voltage output from the external power supply 15 is Vsupply, the following expression (4) is obtained.

Figure 2010048649
Figure 2010048649

このように、電源供給配線17A、17Bの寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができるので、ノイズ耐性評価対象回路16に与えるノイズを含む電源電圧の電圧値を正確に知ることができる。   As described above, since the voltage drop due to the parasitic impedance of the power supply wirings 17A and 17B can be a voltage drop of only the resistance component, the voltage value of the power supply voltage including noise given to the noise tolerance evaluation target circuit 16 is accurately known. be able to.

そこで、ノイズ耐性評価対象回路16のノイズ耐性を測定する場合には、まず、可変電流源19が流す電流の電流値I1を許容範囲内の或る一定の値にし、ノイズ耐性評価対象回路16に与える電源電圧Vmacroの電圧値を測定し、ノイズ耐性評価対象回路16に与える電源電圧Vmacroよりも2Rp・Iconstだけ電圧が高くなるように、外部電源15の出力電圧Vsupplyを設定する。次に、ノイズ耐性評価対象回路16に与える電源ノイズ量を決め、ノイズ耐性評価対象回路16に与える電源電圧Vmacroがそのノイズが乗った電源電圧波形となるように、電流値I1、I2を変化させるようにする。 Therefore, when measuring the noise immunity of the noise immunity evaluation target circuit 16, first, the current value I 1 of the current flowing through the variable current source 19 is set to a certain value within the allowable range, and the noise immunity evaluation target circuit 16. Is measured, and the output voltage Vsupply of the external power supply 15 is set so that the voltage becomes 2Rp · Iconst higher than the power supply voltage Vmacro applied to the noise tolerance evaluation target circuit 16. Next, the amount of power supply noise given to the noise tolerance evaluation target circuit 16 is determined, and the current values I 1 and I 2 are set so that the power supply voltage Vmacro given to the noise tolerance evaluation target circuit 16 has a power supply voltage waveform with the noise. Try to change.

なお、可変電流源20を流れる電流が、式(1)から外れると、電源供給配線17A、17Bに流れる電流に時間変動が発生し、電源供給配線17A、17Bの寄生インピーダンスのインダクタンス成分Lpによる電源ノイズが発生してしまう。このインダクタンス成分Lpにより発生する電源ノイズを少なくするために、本発明の半導体集積回路装置の第1実施形態14では、可変電流源20に並列にデカップリング容量22を接続している。   If the current flowing through the variable current source 20 deviates from the equation (1), the current flowing through the power supply wirings 17A and 17B will vary with time, and the power supply due to the inductance component Lp of the parasitic impedance of the power supply wirings 17A and 17B. Noise is generated. In the first embodiment 14 of the semiconductor integrated circuit device of the present invention, a decoupling capacitor 22 is connected in parallel to the variable current source 20 in order to reduce power supply noise generated by the inductance component Lp.

(本発明の半導体集積回路装置の第1実施形態の第1具体例)
図2は本発明の半導体集積回路装置の第1実施形態の第1具体例を外部電源と共に示す回路図である。可変電流源19は、PMOSトランジスタ23で構成されている。PMOSトランジスタ23は、ソースを抵抗18Aとノイズ耐性評価対象回路16の高電位側の電源配線との接続部分に接続し、ドレインを抵抗18Bとノイズ耐性評価対象回路16の低電位側の電源配線との接続部分に接続している。
(First Specific Example of First Embodiment of Semiconductor Integrated Circuit Device of the Present Invention)
FIG. 2 is a circuit diagram showing a first specific example of the first embodiment of the semiconductor integrated circuit device of the present invention together with an external power supply. The variable current source 19 is composed of a PMOS transistor 23. The PMOS transistor 23 has a source connected to the connection portion between the resistor 18A and the power supply wiring on the high potential side of the noise tolerance evaluation target circuit 16, and a drain connected to the resistor 18B and the power supply wiring on the low potential side of the noise tolerance evaluation target circuit 16. It is connected to the connecting part.

可変電流源20は、NMOSトランジスタ24と、抵抗25、26とで構成されている。NMOSトランジスタ24は、ドレインを抵抗25を介して抵抗18Aと電源供給配線17Aとの接続部分に接続し、ソースを抵抗26を介して抵抗18Bと電源供給配線17Bとの接続部分に接続している。   The variable current source 20 includes an NMOS transistor 24 and resistors 25 and 26. The NMOS transistor 24 has a drain connected to a connection portion between the resistor 18A and the power supply wiring 17A via a resistor 25, and a source connected to a connection portion between the resistor 18B and the power supply wiring 17B via a resistor 26. .

制御回路21は、NMOSトランジスタ27と、電源28と、電流源29と、アナログ信号からなるノイズ制御信号SBを入力するための入力端子30と、基板電位供給回路31とを有している。NMOSトランジスタ27は、ゲートを入力端子30に接続し、電源28を電源とし、電流源29を負荷素子とし、ソースフォロア回路を構成し、ソースをPMOSトランジスタ23のゲート、NMOSトランジスタ24のゲート及び基板電位供給回路31の入力ノードに接続している。   The control circuit 21 includes an NMOS transistor 27, a power supply 28, a current source 29, an input terminal 30 for inputting a noise control signal SB composed of an analog signal, and a substrate potential supply circuit 31. The NMOS transistor 27 has a gate connected to the input terminal 30, a power source 28 as a power source, a current source 29 as a load element, and a source follower circuit. The source is the gate of the PMOS transistor 23, the gate of the NMOS transistor 24, and the substrate. It is connected to the input node of the potential supply circuit 31.

基板電位供給回路31は、PMOSトランジスタ23及びNMOSトランジスタ24のゲート電圧を変化させた場合においても、PMOSトランジスタ23のソース・ドレイン間電流とNMOSトランジスタ24のドレイン・ソース間電流との合計値が正確に一定値となるように調整された基板電位をNMOSトランジスタ24に供給するものである。   Even when the gate voltages of the PMOS transistor 23 and the NMOS transistor 24 are changed, the substrate potential supply circuit 31 accurately calculates the total value of the source-drain current of the PMOS transistor 23 and the drain-source current of the NMOS transistor 24. The substrate potential adjusted to a constant value is supplied to the NMOS transistor 24.

図3は基板電位供給回路31の構成を示す回路図である。図3中、32は高電位側の電源配線、33は低電位側の電源配線、34は入力ノード、35はPMOSトランジスタ、36〜38はNMOSトランジスタ、39、40は抵抗、41は差動増幅器、42は出力ノードである。入力ノード34にはNMOSトランジスタ27のソース電圧が供給され、出力ノード42に出力される電圧VOがNMOSトランジスタ24に基板電位として供給される。   FIG. 3 is a circuit diagram showing a configuration of the substrate potential supply circuit 31. In FIG. 3, 32 is a high potential side power supply wiring, 33 is a low potential side power supply wiring, 34 is an input node, 35 is a PMOS transistor, 36 to 38 are NMOS transistors, 39 and 40 are resistors, and 41 is a differential amplifier. , 42 are output nodes. The source voltage of the NMOS transistor 27 is supplied to the input node 34, and the voltage VO output to the output node 42 is supplied to the NMOS transistor 24 as the substrate potential.

本例では、PMOSトランジスタ35とNMOSトランジスタ38とのサイズ比が、PMOSトランジスタ23とNMOSトランジスタ24とのサイズ比と同一となるように設計する。また、基板電位供給回路31が基板電位調整動作をしない場合(入力ノード34の電位=0Vの場合)、PMOSトランジスタ35に流れる電流Ipと、NMOSトランジスタ38に流れる電流Inとの大小関係が、Ip>Inとなるように、PMOSトランジスタ35、NMOSトランジスタ38、PMOSトランジスタ23、NMOSトランジスタ24のサイズを決定する。   In this example, the size ratio between the PMOS transistor 35 and the NMOS transistor 38 is designed to be the same as the size ratio between the PMOS transistor 23 and the NMOS transistor 24. Further, when the substrate potential supply circuit 31 does not perform the substrate potential adjustment operation (when the potential of the input node 34 is 0 V), the magnitude relationship between the current Ip flowing through the PMOS transistor 35 and the current In flowing through the NMOS transistor 38 is expressed as Ip The sizes of the PMOS transistor 35, the NMOS transistor 38, the PMOS transistor 23, and the NMOS transistor 24 are determined so that> In.

ここで、入力ノード34に電圧を加えると、Ip>Inであることから、差動増幅器41の反転入力端子の電圧をVp、差動増幅器41の非反転入力端子の電圧をVnとすると、Vp<Vnとなり、出力ノード42の電位VOが高くなる。出力ノード42の電圧VOの電位が高くなると、基板効果によって、NMOSトランジスタ38のオン抵抗値が減少し、NMOSトランジスタ38に流れる電流Inが増加する。最終的に、出力ノード42の電位VOの増加は、Vp=Vnとなる時点、つまり、Ip=Inとなった時点で止まり、出力ノード42の電圧VOは、PMOSトランジスタ35とNMOSトランジスタ38の電流値が等しくなるような電位となる。   Here, if a voltage is applied to the input node 34, Ip> In, so that the voltage at the inverting input terminal of the differential amplifier 41 is Vp, and the voltage at the non-inverting input terminal of the differential amplifier 41 is Vn. <Vn, and the potential VO of the output node 42 increases. When the voltage VO at the output node 42 increases, the on-resistance value of the NMOS transistor 38 decreases due to the substrate effect, and the current In flowing through the NMOS transistor 38 increases. Eventually, the increase in the potential VO of the output node 42 stops when Vp = Vn, that is, when Ip = In, and the voltage VO of the output node 42 is the current of the PMOS transistor 35 and the NMOS transistor 38. The potentials are equal to each other.

本発明の半導体集積回路装置の第1実施形態の第1具体例においては、ノイズ制御信号SBの電位を増減変化させることにより、PMOSトランジスタ23が流す電流に増減変化を発生させることができ、これにより抵抗18A、18Bに発生する電圧降下の増減変化を電源ノイズとしてノイズ耐性評価対象回路16に与えることができる。   In the first specific example of the first embodiment of the semiconductor integrated circuit device of the present invention, by increasing or decreasing the potential of the noise control signal SB, the current flowing through the PMOS transistor 23 can be increased or decreased. Thus, the increase / decrease change of the voltage drop generated in the resistors 18A, 18B can be given to the noise tolerance evaluation target circuit 16 as power supply noise.

この場合において、ノイズ制御信号SBの電位が高くなる場合は、PMOSトランジスタ23に流れる電流が減少し、NMOSトランジスタ24に流れる電流が増加する。ノイズ制御信号SBの電位が低くなる場合は、PMOSトランジスタ23に流れる電流が増加し、NMOSトランジスタ24に流れる電流が減少する。また、この場合、PMOSトランジスタ23及びNMOSトランジスタ24の電流変化の絶対値が等しくなるように、ノイズ制御信号SBの電位に応じたNMOSトランジスタ24の基板電位VOが基板電位供給回路31により供給される。   In this case, when the potential of the noise control signal SB increases, the current flowing through the PMOS transistor 23 decreases and the current flowing through the NMOS transistor 24 increases. When the potential of the noise control signal SB decreases, the current flowing through the PMOS transistor 23 increases and the current flowing through the NMOS transistor 24 decreases. In this case, the substrate potential supply circuit 31 supplies the substrate potential VO of the NMOS transistor 24 according to the potential of the noise control signal SB so that the absolute values of the current changes of the PMOS transistor 23 and the NMOS transistor 24 are equal. .

ここで、例えば、ノイズ耐性評価対象回路16に与える標準の電源電圧を1.2Vとし、電源ノイズが高電位側及び低電位側のそれぞれに最大で±100mVで発生するとする。また、電源供給配線17A、17Bの寄生インピーダンスのインダクタンス成分Lpを数百〜数千ピコ・ヘンリーとし、電源ノイズは100psで100mVの早さでステップ状に変動するものとする。   Here, for example, it is assumed that the standard power supply voltage applied to the noise tolerance evaluation target circuit 16 is 1.2 V, and power supply noise occurs at a maximum of ± 100 mV on each of the high potential side and the low potential side. Further, it is assumed that the inductance component Lp of the parasitic impedance of the power supply wirings 17A and 17B is several hundred to several thousand pico-henry, and the power supply noise fluctuates in steps at a speed of 100 mV at 100 ps.

そこで、ノイズ耐性評価対象回路16に対して、100mV/100psで変化する信号を与えると、電源供給配線17A、17Bに流れる電流Iの時間変化は、dI/dt=1×109となる。したがって、電源供給配線17A、17Bで発生する電圧変動は、それぞれ、Lp(dI/dt)=0.1〜1.0[V]程度となる。これは、電源電圧や電源ノイズに比べて無視できない大きさの電圧変動であり、何らの対策も講じない場合には、電源供給配線17A、17Bの寄生インピーダンスによって起こる電圧変動により、ノイズ耐性評価対象回路16に目的の電源ノイズを与えることは困難である。 Therefore, when a signal that changes at 100 mV / 100 ps is given to the noise tolerance evaluation target circuit 16, the time change of the current I flowing through the power supply wirings 17A and 17B is dI / dt = 1 × 10 9 . Accordingly, voltage fluctuations generated in the power supply wirings 17A and 17B are about Lp (dI / dt) = 0.1 to 1.0 [V], respectively. This is a voltage fluctuation that is not negligible compared to the power supply voltage and power supply noise. If no countermeasures are taken, the noise tolerance evaluation target is caused by the voltage fluctuation caused by the parasitic impedance of the power supply wirings 17A and 17B. It is difficult to give the target power supply noise to the circuit 16.

本発明の半導体集積回路装置の第1実施形態14の第1具体例において、抵抗18A、18B、25、26の抵抗値を1Ω、PMOSトランジスタ23に流れる電流及びNMOSトランジスタ24に流れる電流を0〜200mA、外部電源15の出力電圧を1.4Vとし、ノイズ耐性評価対象回路16に、1.0〜1.4Vの間の任意の電源変動を起こさせるとすると、電源供給配線17A、17Bに流れる電流値は200mAで一定のため、電源供給配線17A、17Bの寄生インピーダンスによって発生する電圧変動を無視することができる。   In the first specific example of the first embodiment 14 of the semiconductor integrated circuit device of the present invention, the resistance values of the resistors 18A, 18B, 25 and 26 are 1Ω, the current flowing through the PMOS transistor 23 and the current flowing through the NMOS transistor 24 are When 200 mA and the output voltage of the external power supply 15 are set to 1.4 V and the noise tolerance evaluation target circuit 16 is caused to cause arbitrary power supply fluctuations between 1.0 to 1.4 V, the current flows to the power supply wirings 17A and 17B. Since the current value is constant at 200 mA, voltage fluctuations caused by the parasitic impedance of the power supply wirings 17A and 17B can be ignored.

本発明の半導体集積回路装置の第1実施形態14の第1具体例においては、アナログ信号からなるノイズ制御信号SBの増減変化の程度を変えることにより、電源ノイズ量を変化させることができるので、図10に示す従来の半導体集積回路装置の場合よりも多くの種類の電源ノイズをノイズ耐性評価対象回路16に与えることができる。   In the first specific example of the first embodiment 14 of the semiconductor integrated circuit device of the present invention, the amount of power supply noise can be changed by changing the degree of increase / decrease change of the noise control signal SB made of an analog signal. More types of power supply noise can be given to the noise tolerance evaluation target circuit 16 than in the case of the conventional semiconductor integrated circuit device shown in FIG.

(本発明の半導体集積回路装置の第1実施形態の第2具体例)
図4は本発明の半導体集積回路装置の第1実施形態の第2具体例を外部電源と共に示す回路図である。可変電流源19は、NMOSトランジスタ45〜47で構成されている。NMOSトランジスタ45〜47は、ドレインを抵抗18Aとノイズ耐性評価対象回路16の高電位側の電源配線との接続部分に接続し、ソースを抵抗18Bとノイズ耐性評価対象回路16の低電位側の電源配線との接続部分に接続している。
(Second Specific Example of the First Embodiment of the Semiconductor Integrated Circuit Device of the Present Invention)
FIG. 4 is a circuit diagram showing a second specific example of the first embodiment of the semiconductor integrated circuit device of the present invention together with an external power supply. The variable current source 19 includes NMOS transistors 45 to 47. The NMOS transistors 45 to 47 have their drains connected to the connection portion between the resistor 18A and the power supply wiring on the high potential side of the noise tolerance evaluation target circuit 16, and their sources connected to the power supply on the low potential side of the resistor 18B and the noise tolerance evaluation target circuit 16. Connected to the connection with the wiring.

可変電流源20は、NMOSトランジスタ48〜50で構成されている。NMOSトランジスタ48〜50は、ドレインを抵抗18Aと電源供給配線17Aとの接続部分に接続し、ソースを抵抗18Bと電源供給配線17Bとの接続部分に接続している。NMOSトランジスタ45〜50は、全て同一の電流値を流すものでも良いし、流す電流に重み付けをしても良い。   The variable current source 20 includes NMOS transistors 48-50. The NMOS transistors 48 to 50 have drains connected to a connection portion between the resistor 18A and the power supply wiring 17A, and sources connected to a connection portion between the resistor 18B and the power supply wiring 17B. All of the NMOS transistors 45 to 50 may flow the same current value, or may weight the flowing current.

制御回路21は、デジタル信号からなるノイズ制御信号SC1〜SC3を入力するための入力端子51〜53と、ノイズ制御信号SC1〜SC3を反転するインバータ54〜56とを有している。入力端子51は、NMOSトランジスタ45のゲート及びインバータ54の入力端子に接続されている。入力端子52は、NMOSトランジスタ46のゲート及びインバータ55の入力端子に接続されている。入力端子53は、NMOSトランジスタ47のゲート及びインバータ56の入力端子に接続されている。   The control circuit 21 has input terminals 51 to 53 for inputting noise control signals SC1 to SC3 made of digital signals, and inverters 54 to 56 for inverting the noise control signals SC1 to SC3. The input terminal 51 is connected to the gate of the NMOS transistor 45 and the input terminal of the inverter 54. The input terminal 52 is connected to the gate of the NMOS transistor 46 and the input terminal of the inverter 55. The input terminal 53 is connected to the gate of the NMOS transistor 47 and the input terminal of the inverter 56.

インバータ54の出力端子は、NMOSトランジスタ48のゲートに接続されている。インバータ55の出力端子は、NMOSトランジスタ49のゲートに接続されている。インバータ56の出力端子は、NMOSトランジスタ50のゲートに接続されている。   The output terminal of the inverter 54 is connected to the gate of the NMOS transistor 48. The output terminal of the inverter 55 is connected to the gate of the NMOS transistor 49. The output terminal of the inverter 56 is connected to the gate of the NMOS transistor 50.

ノイズ制御信号SC1〜SC3により、NMOSトランジスタ45〜47中の1以上のNMOSトランジスタと、NMOSトランジスタ48〜50中の1以上のNMOSトランジスタとをスイッチングさせることにより電源ノイズを発生させることができる。NMOSトランジスタ45〜47中のスイッチングさせるNMOSトランジスタの数と、NMOSトランジスタ48〜50中のスイッチングさせるNMOSトランジスタの数は同数となるので、外部電源15から見ると、ONとなっているNMOSトランジスタの数は常に一定であり、電源供給配線17A、17Bに流れる電流の電流値は一定値となる。   Power supply noise can be generated by switching one or more of the NMOS transistors 45 to 47 and one or more of the NMOS transistors 48 to 50 by the noise control signals SC1 to SC3. Since the number of NMOS transistors to be switched in the NMOS transistors 45 to 47 is the same as the number of NMOS transistors to be switched in the NMOS transistors 48 to 50, the number of NMOS transistors that are turned on when viewed from the external power supply 15. Is always constant, and the current value of the current flowing through the power supply wirings 17A and 17B is a constant value.

また、NMOSトランジスタ45〜50のサイズを同一とする場合には、スイッチングさせるNMOSトランジスタの数を変えることにより、変動レベルの異なる電源ノイズを発生させることができる。また、NMOSトランジスタ45〜50が流す電流に重み付けをする場合には、スイッチングするNMOSトランジスタの数を変える場合のみならず、スイッチングさせるNMOSトランジスタの数が1個の場合でも、スイッチングさせるNMOSトランジスタを変えることにより、変動レベルの異なる電源ノイズを発生させることができる。したがって、図10に示す従来の半導体集積回路装置の場合よりも多くの種類の電源ノイズをノイズ耐性評価対象回路16に与えることができる。   Further, when the sizes of the NMOS transistors 45 to 50 are the same, it is possible to generate power supply noise having different fluctuation levels by changing the number of NMOS transistors to be switched. Further, when weighting the current flowing through the NMOS transistors 45 to 50, the NMOS transistor to be switched is changed not only when the number of NMOS transistors to be switched is changed but also when the number of NMOS transistors to be switched is one. As a result, it is possible to generate power supply noise having different fluctuation levels. Therefore, more types of power supply noise can be given to the noise tolerance evaluation target circuit 16 than in the case of the conventional semiconductor integrated circuit device shown in FIG.

また、ノイズ制御信号SC1〜SC3の電位を本発明の半導体集積回路装置の第1実施形態14が使用する基本クロックの周期で変化させれば、基本クロックに同期した電源ノイズをノイズ耐性評価対象回路16に与えることができる。また、ノイズ制御信号SC1〜SC3の電位を基本クロックの周期より遅い周期で変化させれば、基本クロックより遅い周期の電源ノイズをノイズ耐性評価対象回路16に与えることができる。また、ノイズ制御信号SC1〜SC3の電位を基本クロックよりも早い周期で変化させれば、基本クロック内で変動する電源ノイズを与えることができる。   Further, if the potentials of the noise control signals SC1 to SC3 are changed in the period of the basic clock used by the first embodiment 14 of the semiconductor integrated circuit device of the present invention, the power supply noise synchronized with the basic clock is changed to the noise tolerance evaluation target circuit. 16 can be given. Further, if the potentials of the noise control signals SC1 to SC3 are changed at a cycle slower than the cycle of the basic clock, power supply noise having a cycle slower than that of the basic clock can be given to the noise tolerance evaluation target circuit 16. Further, if the potentials of the noise control signals SC1 to SC3 are changed at a period earlier than that of the basic clock, power supply noise that varies within the basic clock can be given.

以上のように、本発明の半導体集積回路装置の第1実施形態14によれば、可変電流源19が流す電流に増減変化を起こさせることにより抵抗18Aに発生する電圧変化の増減変化を高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路16に与えることができる。また、可変電流源20が流す電流に増減変化を起こさせることにより抵抗18Bに発生する電圧降下の増減変化を低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路16に与えることができる。   As described above, according to the first embodiment 14 of the semiconductor integrated circuit device of the present invention, an increase / decrease change of the voltage change generated in the resistor 18A by causing the current flowing through the variable current source 19 to increase / decrease is increased to a high potential. The noise tolerance evaluation target circuit 16 can be given as noise of the power supply voltage on the side. In addition, by causing the current flowing from the variable current source 20 to increase or decrease, the increase or decrease of the voltage drop generated in the resistor 18B can be given to the noise tolerance evaluation target circuit 16 as noise of the power supply voltage on the low potential side.

この場合、制御回路21は、可変電流源19、20を制御し、可変電流源19が流す電流の電流値と可変電流源20が流す電流の電流値との合計値を一定値に保たせるので、電源供給配線17A、17Bに流れる電流の電流値を一定値にし、電源供給配線17A、17Bの寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、ノイズ耐性評価対象回路16に与える電源ノイズを含む電源電圧の電圧値を正確に知ることができるので、ノイズ耐性評価対象回路16のノイズ耐性評価を高精度に行うことができる。   In this case, the control circuit 21 controls the variable current sources 19 and 20, and maintains the total value of the current value of the current flowing through the variable current source 19 and the current value of the current flowing through the variable current source 20 at a constant value. The current value of the current flowing through the power supply wirings 17A and 17B can be set to a constant value, and the voltage drop due to the parasitic impedance of the power supply wirings 17A and 17B can be a voltage drop of only the resistance component. As a result, since the voltage value of the power supply voltage including the power supply noise given to the noise tolerance evaluation target circuit 16 can be accurately known, the noise tolerance evaluation of the noise tolerance evaluation target circuit 16 can be performed with high accuracy.

(第2実施形態)
図5は本発明の半導体集積回路装置の第2実施形態を外部電源と共に示す回路図である。本発明の半導体集積回路装置の第2実施形態57は、本発明の半導体集積回路装置の第1実施形態14が設ける低電位側の抵抗18Bを削除し、その他については、本発明の半導体集積回路装置の第1実施形態14と同様に構成したものである。可変電流源19、20及び制御回路21は、図2又は図4に示す場合と同様に構成することができる。
(Second Embodiment)
FIG. 5 is a circuit diagram showing a second embodiment of the semiconductor integrated circuit device of the present invention together with an external power supply. In the second embodiment 57 of the semiconductor integrated circuit device according to the present invention, the low-potential-side resistor 18B provided in the first embodiment 14 of the semiconductor integrated circuit device according to the present invention is deleted. The apparatus is configured in the same manner as in the first embodiment. The variable current sources 19 and 20 and the control circuit 21 can be configured similarly to the case shown in FIG. 2 or FIG.

本発明の半導体集積回路装置の試験方法の第2実施形態は、本発明の半導体集積回路装置の第2実施形態57を対象とするものであり、電源供給配線17A、17Bとの間に外部電源15から電源電圧を供給する工程と、可変電流源19、20を制御し、可変電流源19が流す電流の電流値と可変電流源20が流す電流の電流値との合計値を一定値に保たせ、可変電流源19が流す電流と可変電流源20が流す電流とに増減変化を起こさせる工程とを含むものである。   The second embodiment of the method for testing a semiconductor integrated circuit device according to the present invention is directed to the second embodiment 57 of the semiconductor integrated circuit device according to the present invention, and an external power source is provided between the power supply wirings 17A and 17B. 15, the power supply voltage is supplied from the control circuit 15 and the variable current sources 19 and 20 are controlled, and the total value of the current value of the current flowing through the variable current source 19 and the current value of the current flowing through the variable current source 20 is kept constant. In addition, the method includes a step of causing an increase / decrease change in the current flowing through the variable current source 19 and the current flowing through the variable current source 20.

本発明の半導体集積回路装置の第2実施形態57によれば、可変電流源19が流す電流に増減変化を起こさせることにより抵抗18Aに発生する電圧降下の増減変化を高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路16に与えることができる。   According to the second embodiment 57 of the semiconductor integrated circuit device of the present invention, an increase / decrease change in the voltage drop generated in the resistor 18A by causing an increase / decrease change in the current flowing through the variable current source 19 is reduced to the power supply voltage on the high potential side. It can be given to the noise tolerance evaluation target circuit 16 as noise.

この場合、制御回路21は、可変電流源19、20を制御し、可変電流源19が流す電流の電流値と可変電流源20が流す電流の電流値との合計値を一定値に保たせるので、電源供給配線17A、17Bに流れる電流の電流値を一定値にし、電源供給配線17A、17Bの寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、ノイズ耐性評価対象回路16に与える電源ノイズを含む電源電圧の電圧値を正確に知ることができるので、ノイズ耐性評価対象回路16のノイズ耐性評価を高精度に行うことができる。   In this case, the control circuit 21 controls the variable current sources 19 and 20, and maintains the total value of the current value of the current flowing through the variable current source 19 and the current value of the current flowing through the variable current source 20 at a constant value. The current value of the current flowing through the power supply wirings 17A and 17B can be set to a constant value, and the voltage drop due to the parasitic impedance of the power supply wirings 17A and 17B can be a voltage drop of only the resistance component. As a result, since the voltage value of the power supply voltage including the power supply noise given to the noise tolerance evaluation target circuit 16 can be accurately known, the noise tolerance evaluation of the noise tolerance evaluation target circuit 16 can be performed with high accuracy.

(第3実施形態)
図6は本発明の半導体集積回路装置の第3実施形態を外部電源と共に示す回路図である。本発明の半導体集積回路装置の第3実施形態58は、本発明の半導体集積回路装置の第1実施形態14が設ける高電位側の抵抗18Aを削除し、その他については、本発明の半導体集積回路装置の第1実施形態14と同様に構成したものである。可変電流源19、20及び制御回路21は、図2又は図4に示す場合と同様に構成することができる。
(Third embodiment)
FIG. 6 is a circuit diagram showing a third embodiment of the semiconductor integrated circuit device of the present invention together with an external power supply. In the third embodiment 58 of the semiconductor integrated circuit device according to the present invention, the high-potential-side resistor 18A provided in the first embodiment 14 of the semiconductor integrated circuit device according to the present invention is deleted. The apparatus is configured in the same manner as in the first embodiment. The variable current sources 19 and 20 and the control circuit 21 can be configured similarly to the case shown in FIG. 2 or FIG.

本発明の半導体集積回路装置の試験方法の第3実施形態は、本発明の半導体集積回路装置の第3実施形態58を対象とするものであり、電源供給配線17A、17Bとの間に外部電源15から電源電圧を供給する工程と、可変電流源19、20を制御し、可変電流源19が流す電流の電流値と可変電流源20が流す電流の電流値との合計値を一定値に保たせ、可変電流源19が流す電流と可変電流源20が流す電流とに増減変化を起こさせる工程とを含むものである。   The third embodiment of the method for testing a semiconductor integrated circuit device according to the present invention is directed to the third embodiment 58 of the semiconductor integrated circuit device according to the present invention, and an external power source is provided between the power supply wirings 17A and 17B. 15, the power supply voltage is supplied from the control circuit 15 and the variable current sources 19 and 20 are controlled, and the total value of the current value of the current flowing through the variable current source 19 and the current value of the current flowing through the variable current source 20 is kept constant. In addition, the method includes a step of causing an increase / decrease change in the current flowing through the variable current source 19 and the current flowing through the variable current source 20.

本発明の半導体集積回路装置の第3実施形態58によれば、可変電流源19が流す電流に増減変化を起こさせることにより抵抗18Bに発生する電圧降下の増減変化を低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路16に与えることができる。   According to the third embodiment 58 of the semiconductor integrated circuit device of the present invention, an increase / decrease change in the voltage drop generated in the resistor 18B by causing an increase / decrease change in the current flowing through the variable current source 19 is reduced. It can be given to the noise tolerance evaluation target circuit 16 as noise.

この場合、制御回路21は、可変電流源19、20を制御し、可変電流源19が流す電流の電流値と可変電流源20が流す電流の電流値との合計値を一定値に保たせるので、電源供給配線17A、17Bに流れる電流の電流値を一定値にし、電源供給配線17A、17Bの寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、ノイズ耐性評価対象回路16に与える電源ノイズを含む電源電圧の電圧値を正確に知ることができるので、ノイズ耐性評価対象回路16のノイズ耐性評価を高精度に行うことができる。   In this case, the control circuit 21 controls the variable current sources 19 and 20, and maintains the total value of the current value of the current flowing through the variable current source 19 and the current value of the current flowing through the variable current source 20 at a constant value. The current value of the current flowing through the power supply wirings 17A and 17B can be set to a constant value, and the voltage drop due to the parasitic impedance of the power supply wirings 17A and 17B can be a voltage drop of only the resistance component. As a result, since the voltage value of the power supply voltage including the power supply noise given to the noise tolerance evaluation target circuit 16 can be accurately known, the noise tolerance evaluation of the noise tolerance evaluation target circuit 16 can be performed with high accuracy.

(第4実施形態)
図7は本発明の半導体集積回路装置の第4実施形態を外部電源と共に示す回路図である。図7中、60は本発明の半導体集積回路装置の第1実施形態、61は本発明の半導体集積回路装置の第1実施形態60に電源電圧を供給する外部電源である。本発明の半導体集積回路装置の第4実施形態60において、62はノイズ耐性評価対象回路、63Aは高電位側の電源供給配線、63Bは低電位側の電源供給配線である。電源供給配線63A、63Bには、ボンディングワイヤ等、半導体パッケージ内の電源配線や、外部電源61と本発明の半導体集積回路装置の第4実施形態60との接続部分の電源配線などが含まれる。
(Fourth embodiment)
FIG. 7 is a circuit diagram showing a fourth embodiment of the semiconductor integrated circuit device of the present invention together with an external power supply. In FIG. 7, 60 is a first embodiment of the semiconductor integrated circuit device of the present invention, and 61 is an external power supply for supplying a power supply voltage to the first embodiment 60 of the semiconductor integrated circuit device of the present invention. In the fourth embodiment 60 of the semiconductor integrated circuit device of the present invention, 62 is a noise tolerance evaluation target circuit, 63A is a high-potential-side power supply wiring, and 63B is a low-potential-side power supply wiring. The power supply wirings 63A and 63B include a power supply wiring in the semiconductor package such as a bonding wire, a power supply wiring at a connection portion between the external power supply 61 and the fourth embodiment 60 of the semiconductor integrated circuit device of the present invention.

64Aは電源供給配線63Aとノイズ耐性評価対象回路62の高電位側の電源配線との間に接続された抵抗、64Bは電源供給配線63Bとノイズ耐性評価対象回路62の低電位側の電源配線との間に接続された抵抗である。   Reference numeral 64A denotes a resistor connected between the power supply wiring 63A and the power supply wiring on the high potential side of the noise tolerance evaluation target circuit 62. Reference numeral 64B denotes a power supply wiring on the low potential side of the power supply wiring 63B and the noise tolerance evaluation target circuit 62. It is the resistance connected between.

65は高電位側の電源ノイズ発生用の可変電流源である。可変電流源65は、抵抗64Aとノイズ耐性評価対象回路62の高電位側の電源配線との接続部分と、抵抗64Bと電源供給配線63Bとの接続部分との間に接続されている。   Reference numeral 65 denotes a variable current source for generating power source noise on the high potential side. The variable current source 65 is connected between a connection portion between the resistor 64A and the power supply wiring on the high potential side of the noise tolerance evaluation target circuit 62 and a connection portion between the resistor 64B and the power supply wiring 63B.

66は低電位側の電源ノイズ発生用の可変電流源である。可変電流源66は、抵抗64Aと電源供給配線63Aとの接続部分と、抵抗64Bとノイズ耐性評価対象回路62の低電位側の電源配線との接続部分との間に接続されている。   Reference numeral 66 denotes a variable current source for generating power source noise on the low potential side. The variable current source 66 is connected between a connection portion between the resistor 64A and the power supply wiring 63A and a connection portion between the resistor 64B and the power supply wiring on the low potential side of the noise tolerance evaluation target circuit 62.

67は消費電流安定用の可変電流源である。可変電流源67は、抵抗64Aと電源供給配線63Aとの接続部分と、抵抗64Bと電源供給配線63Bとの接続部分との間に接続されている。   Reference numeral 67 denotes a variable current source for stabilizing current consumption. The variable current source 67 is connected between a connection portion between the resistor 64A and the power supply wiring 63A and a connection portion between the resistor 64B and the power supply wiring 63B.

68は制御回路である。制御回路68は、外部から与えられるノイズ制御信号に制御されて可変電流源65〜67を制御し、可変電流源65が流す電流の電流値と可変電流源66が流す電流の電流値と可変電流源67が流す電流の電流値との合計値を一定値に保たせ、可変電流源65が流す電流と可変電流源66が流す電流とのいずれか一方又は両方と、可変電流源67が流す電流とに増減変化を起こさせるものである。   Reference numeral 68 denotes a control circuit. The control circuit 68 is controlled by a noise control signal given from the outside to control the variable current sources 65 to 67, the current value of the current flowing through the variable current source 65, the current value of the current flowing through the variable current source 66, and the variable current. The total value of the currents flowing from the source 67 is kept constant, and either or both of the current flowing from the variable current source 65 and the current flowing from the variable current source 66 and the current flowing from the variable current source 67 are used. This causes an increase / decrease change.

本発明の半導体集積回路装置の試験方法の第4実施形態は、本発明の半導体集積回路装置の第4実施形態60を対象とするものであり、電源供給配線63A、63B間に外部電源61から電源電圧を供給する工程と、可変電流源65〜67を制御し、可変電流源65が流す電流の電流値と可変電流源66が流す電流の電流値と可変電流源67が流す電流の電流値との合計値を一定値に保たせ、可変電流源65が流す電流と可変電流源66が流す電流とのいずれか一方又は両方と、可変電流源67が流す電流とに増減変化を起こさせる工程とを含むものである。   The fourth embodiment of the semiconductor integrated circuit device testing method of the present invention is directed to the fourth embodiment 60 of the semiconductor integrated circuit device of the present invention. From the external power supply 61 between the power supply wirings 63A and 63B. A step of supplying a power supply voltage, and control of the variable current sources 65 to 67, a current value of a current flowing through the variable current source 65, a current value of a current flowing through the variable current source 66, and a current value of a current flowing through the variable current source 67 And maintaining a constant value to cause an increase / decrease change in one or both of the current flowing from the variable current source 65 and the current flowing from the variable current source 66 and the current flowing from the variable current source 67. Is included.

ノイズ耐性評価対象回路62に高電位側の電源ノイズのみを与える場合には、可変電流源66が流す電流の電流値を一定にし、可変電流源65が流す電流に増減変化を起こさせる。このようにすると、抵抗64Aに電圧降下の増減変化が発生し、この抵抗64Aに発生する電圧降下の増減変化が高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。   When only the high-potential-side power supply noise is given to the noise tolerance evaluation target circuit 62, the current value of the current flowing through the variable current source 66 is made constant, and the current flowing through the variable current source 65 is increased or decreased. In this way, a voltage drop increase / decrease change occurs in the resistor 64A, and the voltage drop increase / decrease change generated in the resistor 64A is given to the noise tolerance evaluation target circuit 62 as noise of the power supply voltage on the high potential side.

また、ノイズ耐性評価対象回路62に低電位側の電源ノイズのみを与える場合には、可変電流源65が流す電流の電流値を一定にし、可変電流源66が流す電流に増減変化を起こさせる。このようにすると、抵抗64Bに電圧降下の増減変化が発生し、この抵抗64Bに発生する電圧降下の増減変化が低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。   When only the low-potential-side power supply noise is given to the noise tolerance evaluation target circuit 62, the current value of the current flowing through the variable current source 65 is made constant, and the current flowing through the variable current source 66 is increased or decreased. In this way, a change in voltage drop is generated in the resistor 64B, and the change in voltage drop generated in the resistor 64B is given to the noise tolerance evaluation target circuit 62 as noise of the power supply voltage on the low potential side.

また、ノイズ耐性評価対象回路62に高電位側及び低電位側の電源ノイズを与える場合には、可変電流源65、66が流す電流に増減変化を起こさせる。このようにすると、抵抗64A、64Bのそれぞれに電圧降下の増減変化が発生し、抵抗64Aに発生する電圧降下の増減変化が高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられると共に、抵抗64Bに発生する電圧降下の増減変化が低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。   Further, when the high-potential-side and low-potential-side power supply noise is given to the noise tolerance evaluation target circuit 62, the current flowing from the variable current sources 65 and 66 is caused to increase or decrease. In this way, an increase / decrease change in the voltage drop occurs in each of the resistors 64A and 64B, and an increase / decrease change in the voltage drop generated in the resistor 64A is given to the noise tolerance evaluation target circuit 62 as noise of the power supply voltage on the high potential side. At the same time, an increase / decrease change in the voltage drop generated in the resistor 64B is given to the noise tolerance evaluation target circuit 62 as noise of the low-potential power supply voltage.

なお、可変電流源65が流す電流と可変電流源66が流す電流とに同一方向の増減変化を起こさせる場合には、ノイズ耐性評価対象回路62の高電位側の電源配線と低電位側の電源配線とに同位相の電源ノイズを与えることができる。また、可変電流源65が流す電流と可変電流源66が流す電流とに逆方向の増減変化を起こさせる場合には、ノイズ耐性評価対象回路62の高電位側の電源配線と低電位側の電源配線とに逆位相の電源ノイズを与えることができる。   When the current flowing from the variable current source 65 and the current flowing from the variable current source 66 are caused to increase or decrease in the same direction, the power supply wiring on the high potential side and the power supply on the low potential side of the noise tolerance evaluation target circuit 62 are used. Power supply noise having the same phase can be given to the wiring. Further, when the current flowing from the variable current source 65 and the current flowing from the variable current source 66 are caused to increase or decrease in the opposite directions, the high-potential-side power supply wiring and the low-potential-side power supply of the noise tolerance evaluation target circuit 62 are used. Power supply noise having an opposite phase can be given to the wiring.

(本発明の半導体集積回路装置の第4実施形態の第1具体例)
図8は本発明の半導体集積回路装置の第4実施形態の第1具体例を外部電源と共に示す回路図である。可変電流源65は、PMOSトランジスタ70で構成されている。PMOSトランジスタ70は、ソースを抵抗64Aとノイズ耐性評価対象回路62の高電位側の電源配線との接続部分に接続し、ドレインを抵抗64Bと電源供給配線63Bとの接続部分に接続している。
(First Specific Example of Fourth Embodiment of Semiconductor Integrated Circuit Device of the Present Invention)
FIG. 8 is a circuit diagram showing a first specific example of the fourth embodiment of the semiconductor integrated circuit device of the present invention together with an external power supply. The variable current source 65 is composed of a PMOS transistor 70. The PMOS transistor 70 has a source connected to a connection portion between the resistor 64A and the power supply wiring on the high potential side of the noise tolerance evaluation target circuit 62, and a drain connected to a connection portion between the resistor 64B and the power supply wiring 63B.

可変電流源66は、PMOSトランジスタ71で構成されている。PMOSトランジスタ71は、ソースを抵抗64Aと電源供給配線63Aとの接続部分に接続し、ドレインを抵抗64Bとノイズ耐性評価対象回路62の低電位側の電源配線との接続部分に接続している。   The variable current source 66 is composed of a PMOS transistor 71. The PMOS transistor 71 has a source connected to the connection portion between the resistor 64A and the power supply wiring 63A, and a drain connected to a connection portion between the resistor 64B and the power supply wiring on the low potential side of the noise tolerance evaluation target circuit 62.

可変電流源67は、NMOSトランジスタ72、73と、抵抗74、75とで構成されている。NMOSトランジスタ72は、ドレインを抵抗74を介して抵抗64Aと電源供給配線63Aとの接続部分に接続し、ソースを抵抗64Bと電源供給配線63Bとの接続部分に接続している。NMOSトランジスタ73は、ドレインを抵抗64Aと電源供給配線63Bとの接続部分に接続し、ソースを抵抗75を介して抵抗64Bと電源供給配線63Bとの接続部分に接続している。   The variable current source 67 includes NMOS transistors 72 and 73 and resistors 74 and 75. The NMOS transistor 72 has a drain connected to a connection portion between the resistor 64A and the power supply wiring 63A via a resistor 74, and a source connected to a connection portion between the resistor 64B and the power supply wiring 63B. The NMOS transistor 73 has a drain connected to a connection portion between the resistor 64A and the power supply wiring 63B, and a source connected via a resistor 75 to a connection portion between the resistor 64B and the power supply wiring 63B.

制御回路68は、アナログ信号からなるノイズ制御信号SD1、SD2を入力するための入力端子76、77と、PMOSトランジスタ70及びNMOSトランジスタ72を制御する制御回路78と、PMOSトランジスタ71及びNMOSトランジスタ73を制御する制御回路79とを有している。   The control circuit 68 includes input terminals 76 and 77 for inputting noise control signals SD1 and SD2 made of analog signals, a control circuit 78 for controlling the PMOS transistor 70 and the NMOS transistor 72, and a PMOS transistor 71 and an NMOS transistor 73. And a control circuit 79 for controlling.

制御回路78は、PMOSトランジスタ70及びNMOSトランジスタ72にゲート電圧を供給すると共に、NMOSトランジスタ72に基板電位を供給するものである。制御回路79は、PMOSトランジスタ71及びNMOSトランジスタ73にゲート電圧を供給すると共に、NMOSトランジスタ73に基板電位を供給するものである。   The control circuit 78 supplies a gate voltage to the PMOS transistor 70 and the NMOS transistor 72 and supplies a substrate potential to the NMOS transistor 72. The control circuit 79 supplies a gate voltage to the PMOS transistor 71 and the NMOS transistor 73 and supplies a substrate potential to the NMOS transistor 73.

制御回路78は、NMOSトランジスタ80と、電源81と、電流源82と、基板電位供給回路83とを有している。NMOSトランジスタ80は、ゲートを入力端子76に接続し、電源81を電源とし、電流源82を負荷素子とし、ソースフォロア回路を構成している。基板電位供給回路83は、図3に示す基板電位供給回路31と同様に構成される。   The control circuit 78 includes an NMOS transistor 80, a power supply 81, a current source 82, and a substrate potential supply circuit 83. The NMOS transistor 80 has a gate connected to the input terminal 76, a power source 81 as a power source, a current source 82 as a load element, and forms a source follower circuit. The substrate potential supply circuit 83 is configured similarly to the substrate potential supply circuit 31 shown in FIG.

制御回路79は、NMOSトランジスタ84と、電源85と、電流源86と、基板電位供給回路87とを有している。NMOSトランジスタ84は、ゲートを入力端子77に接続し、電源85を電源とし、電流源86を負荷素子とし、ソースフォロア回路を構成している。基板電位供給回路87は、図3に示す基板電位供給回路31と同様に構成される。   The control circuit 79 includes an NMOS transistor 84, a power supply 85, a current source 86, and a substrate potential supply circuit 87. The NMOS transistor 84 has a gate connected to the input terminal 77, a power source 85 as a power source, a current source 86 as a load element, and forms a source follower circuit. The substrate potential supply circuit 87 is configured similarly to the substrate potential supply circuit 31 shown in FIG.

本発明の半導体集積回路装置の第4実施形態60の第1具体例においては、ノイズ耐性評価対象回路62に高電位側の電源ノイズのみを与える場合には、例えば、ノイズ制御信号SD2を中間電位に固定し、ノイズ制御信号SD1の電位を増減変化させる。このようにすると、PMOSトランジスタ71及びNMOSトランジスタ73が流す電流の電流値を一定とし、PMOSトランジスタ70及びNMOSトランジスタ72が流す電流に逆方向の増減変化を起こさせることができる。この場合、PMOSトランジスタ70が流す電流の増減変化により抵抗64Aに電圧降下の増減変化が発生し、この抵抗64Aの電圧降下の増減変化が高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。   In the first specific example of the fourth embodiment 60 of the semiconductor integrated circuit device of the present invention, when only the high-potential-side power supply noise is given to the noise tolerance evaluation target circuit 62, for example, the noise control signal SD2 is set to the intermediate potential. And the potential of the noise control signal SD1 is increased or decreased. In this way, the current value of the current flowing through the PMOS transistor 71 and the NMOS transistor 73 can be made constant, and the current flowing through the PMOS transistor 70 and the NMOS transistor 72 can be caused to increase or decrease in the reverse direction. In this case, an increase / decrease change in the voltage drop occurs in the resistor 64A due to an increase / decrease change in the current flowing through the PMOS transistor 70. Given to.

また、ノイズ耐性評価対象回路62に低電位側の電源ノイズのみを与える場合には、例えば、ノイズ制御信号SD1を中間電位に固定し、ノイズ制御信号SD2の電位を増減変化させる。このようにすると、PMOSトランジスタ70及びNMOSトランジスタ72が流す電流の電流値を一定とし、PMOSトランジスタ71及びNMOSトランジスタ73が流す電流に逆方向の増減変化を起こさせることができる。この場合、PMOSトランジスタ71が流す電流の増減変化により抵抗64Bに電圧降下の増減変化が発生し、この抵抗64Bの電圧降下の増減変化が低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。   Further, when only the low-potential-side power supply noise is given to the noise tolerance evaluation target circuit 62, for example, the noise control signal SD1 is fixed to an intermediate potential, and the potential of the noise control signal SD2 is changed. In this way, the current values of the currents flowing through the PMOS transistor 70 and the NMOS transistor 72 can be made constant, and the currents flowing through the PMOS transistor 71 and the NMOS transistor 73 can be increased or decreased in the reverse direction. In this case, an increase / decrease change in the voltage drop occurs in the resistor 64B due to an increase / decrease change in the current flowing through the PMOS transistor 71, and the increase / decrease change in the voltage drop of the resistor 64B is regarded as noise of the power supply voltage on the low potential side. Given to.

また、ノイズ耐性評価対象回路62に高電位側及び低電位側の電源ノイズを与える場合には、ノイズ制御信号SD1、SD2の電位を増減変化させる。このようにすると、PMOSトランジスタ70及びNMOSトランジスタ72が流す電流に逆方向の増減変化を起こさせることができると共に、PMOSトランジスタ71及びNMOSトランジスタ73が流す電流に逆方向の増減変化を起こさせることができる。この場合、PMOSトランジスタ70が流す電流の増減変化により抵抗64Aに電圧降下の増減変化が発生し、この抵抗64Aの電圧降下の増減変化が高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。また、PMOSトランジスタ71が流す電流の増減変化により抵抗64Bに電圧降下の増減変化が発生し、この抵抗64Bの電圧降下の増減変化が低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。   In addition, when the high-potential-side and low-potential-side power supply noise is given to the noise tolerance evaluation target circuit 62, the potentials of the noise control signals SD1 and SD2 are changed. In this way, the current flowing through the PMOS transistor 70 and the NMOS transistor 72 can be caused to increase and decrease in the reverse direction, and the current flowing through the PMOS transistor 71 and the NMOS transistor 73 can be caused to increase and decrease in the reverse direction. it can. In this case, an increase / decrease change in the voltage drop occurs in the resistor 64A due to an increase / decrease change in the current flowing through the PMOS transistor 70, and the increase / decrease change in the voltage drop of the resistor 64A is regarded as noise of the power supply voltage on the high potential side. Given to. In addition, the increase / decrease change in the voltage drop occurs in the resistor 64B due to the increase / decrease change in the current flowing through the PMOS transistor 71, and the increase / decrease change in the voltage drop of the resistor 64B occurs in the noise tolerance evaluation target circuit 62 as noise of the low-potential power supply voltage. Given.

なお、ノイズ制御信号SD1の電位が高くなる場合は、PMOSトランジスタ70に流れる電流が減少し、NMOSトランジスタ72に流れる電流が増加する。ノイズ制御信号SD1の電位が低くなる場合は、PMOSトランジスタ70に流れる電流が増加し、NMOSトランジスタ72に流れる電流が減少する。これらの場合、PMOSトランジスタ70及びNMOSトランジスタ72の電流変化の絶対値が等しくなるように、ノイズ制御信号SD1の電位に応じたNMOSトランジスタ72の基板電位VO1が基板電位供給回路83により供給される。   Note that when the potential of the noise control signal SD1 increases, the current flowing through the PMOS transistor 70 decreases and the current flowing through the NMOS transistor 72 increases. When the potential of the noise control signal SD1 decreases, the current flowing through the PMOS transistor 70 increases and the current flowing through the NMOS transistor 72 decreases. In these cases, the substrate potential supply circuit 83 supplies the substrate potential VO1 of the NMOS transistor 72 according to the potential of the noise control signal SD1 so that the absolute values of the current changes of the PMOS transistor 70 and the NMOS transistor 72 are equal.

また、ノイズ制御信号SD2の電位が高くなる場合は、PMOSトランジスタ71に流れる電流が減少し、NMOSトランジスタ73に流れる電流が増加する。ノイズ制御信号SD2の電位が低くなる場合は、PMOSトランジスタ71に流れる電流が増加し、NMOSトランジスタ73に流れる電流が減少する。これらの場合、PMOSトランジスタ71及びNMOSトランジスタ73の電流変化の絶対値が等しくなるように、ノイズ制御信号SD2の電位に応じたNMOSトランジスタ73の基板電位VO2が基板電位供給回路87により供給される。   When the potential of the noise control signal SD2 increases, the current flowing through the PMOS transistor 71 decreases and the current flowing through the NMOS transistor 73 increases. When the potential of the noise control signal SD2 becomes low, the current flowing through the PMOS transistor 71 increases and the current flowing through the NMOS transistor 73 decreases. In these cases, the substrate potential supply circuit 87 supplies the substrate potential VO2 of the NMOS transistor 73 according to the potential of the noise control signal SD2 so that the absolute values of the current changes of the PMOS transistor 71 and the NMOS transistor 73 are equal.

(本発明の半導体集積回路装置の第4実施形態の第2具体例)
図9は本発明の半導体集積回路装置の第4実施形態の第2具体例を外部電源と共に示す回路図である。可変電流源65は、NMOSトランジスタ88、89で構成されている。NMOSトランジスタ88、89は、ドレインを抵抗64Aとノイズ耐性評価対象回路62の高電位側の電源配線との接続部分に接続し、ソースを抵抗64Bと電源供給配線63Bとの接続部分に接続している。
(Second Specific Example of Fourth Embodiment of Semiconductor Integrated Circuit Device of the Present Invention)
FIG. 9 is a circuit diagram showing a second specific example of the fourth embodiment of the semiconductor integrated circuit device of the present invention together with an external power supply. The variable current source 65 includes NMOS transistors 88 and 89. The NMOS transistors 88 and 89 have drains connected to the connection portion between the resistor 64A and the power supply wiring on the high potential side of the noise tolerance evaluation target circuit 62, and sources connected to a connection portion between the resistor 64B and the power supply wiring 63B. Yes.

可変電流源66は、NMOSトランジスタ90、91で構成されている。NMOSトランジスタ90、91は、ドレインを抵抗64Aと電源供給配線63Aとの接続部分に接続し、ソースを抵抗64Bとノイズ耐性評価対象回路62の低電位側の電源配線との接続部分に接続している。   The variable current source 66 is composed of NMOS transistors 90 and 91. The NMOS transistors 90 and 91 have drains connected to a connection portion between the resistor 64A and the power supply wiring 63A, and sources connected to a connection portion between the resistor 64B and the power supply wiring on the low potential side of the noise tolerance evaluation target circuit 62. Yes.

可変電流源67は、NMOSトランジスタ92〜95で構成されている。NMOSトランジスタ92〜95は、ドレインを抵抗64Aと電源供給配線63Aとの接続部分に接続し、ソースを抵抗64Bと電源供給配線63Bとの接続部分に接続している。   The variable current source 67 includes NMOS transistors 92 to 95. The NMOS transistors 92 to 95 have drains connected to a connection portion between the resistor 64A and the power supply wiring 63A, and sources connected to a connection portion between the resistor 64B and the power supply wiring 63B.

制御回路68は、デジタル信号からなるノイズ制御信号SE1〜SE4を入力するための入力端子96〜99と、ノイズ制御信号SE1〜SE4を反転するインバータ100〜103とを有している。入力端子96は、NMOSトランジスタ88のゲート及びインバータ100の入力端子に接続されている。入力端子97は、NMOSトランジスタ89のゲート及びインバータ101の入力端子に接続されている。入力端子98は、NMOSトランジスタ90のゲート及びインバータ102の入力端子に接続されている。入力端子99は、NMOSトランジスタ91のゲート及びインバータ103の入力端子に接続されている。   The control circuit 68 has input terminals 96 to 99 for inputting noise control signals SE1 to SE4 composed of digital signals, and inverters 100 to 103 for inverting the noise control signals SE1 to SE4. The input terminal 96 is connected to the gate of the NMOS transistor 88 and the input terminal of the inverter 100. The input terminal 97 is connected to the gate of the NMOS transistor 89 and the input terminal of the inverter 101. The input terminal 98 is connected to the gate of the NMOS transistor 90 and the input terminal of the inverter 102. The input terminal 99 is connected to the gate of the NMOS transistor 91 and the input terminal of the inverter 103.

インバータ100の出力端子はNMOSトランジスタ92のゲートに接続されている。インバータ101の出力端子はNMOSトランジスタ93のゲートに接続されている。インバータ102の出力端子はNMOSトランジスタ94のゲートに接続されている。インバータ103の出力端子はNMOSトランジスタ95のゲートに接続されている。   The output terminal of the inverter 100 is connected to the gate of the NMOS transistor 92. The output terminal of the inverter 101 is connected to the gate of the NMOS transistor 93. The output terminal of the inverter 102 is connected to the gate of the NMOS transistor 94. The output terminal of the inverter 103 is connected to the gate of the NMOS transistor 95.

ノイズ耐性評価対象回路62に高電位側の電源ノイズのみを与える場合には、例えば、ノイズ制御信号SE3、SE4をHレベルに固定し、ノイズ制御信号SE1、SE2のいずれか一方又は両方の電位を変化させる。このようにすると、PMOSトランジスタ90、91はON、NMOSトランジスタ94、95はOFFに固定され、PMOSトランジスタ88、89のいずれか一方又は両方及びNMOSトランジスタ92、93のいずれか一方又は両方がスイッチング動作を行うことになる。この場合、PMOSトランジスタ88、89のいずれか一方又は両方が流す電流の増減変化により抵抗64Aに電圧降下の増減変化が発生し、この抵抗64Aの電圧降下の増減変化が高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。   When only the high-potential-side power supply noise is given to the noise tolerance evaluation target circuit 62, for example, the noise control signals SE3 and SE4 are fixed to the H level, and the potential of one or both of the noise control signals SE1 and SE2 is set. Change. In this way, the PMOS transistors 90 and 91 are fixed to ON and the NMOS transistors 94 and 95 are fixed to OFF, and either one or both of the PMOS transistors 88 and 89 and one or both of the NMOS transistors 92 and 93 are switched. Will do. In this case, an increase / decrease change in the voltage drop occurs in the resistor 64A due to an increase / decrease change in the current flowing through one or both of the PMOS transistors 88 and 89, and the increase / decrease change in the voltage drop of the resistor 64A is caused by the power supply voltage on the high potential side. The noise is given to the noise tolerance evaluation target circuit 62 as noise.

また、この場合、NMOSトランジスタ88、89中のスイッチングするNMOSトランジスタの数と、NMOSトランジスタ92、93中のスイッチングするNMOSトランジスタの数は同数となるので、外部電源61から見ると、ONとなっているNMOSトランジスタの数は一定であり、電源供給配線63A、63Bに流れる電流の電流値は一定値となる。   Further, in this case, the number of NMOS transistors to be switched in the NMOS transistors 88 and 89 is the same as the number of NMOS transistors to be switched in the NMOS transistors 92 and 93. The number of NMOS transistors included is constant, and the current value of the current flowing through the power supply wirings 63A and 63B is a constant value.

また、ノイズ耐性評価対象回路62に低電位側の電源ノイズのみを与える場合には、例えば、ノイズ制御信号SE1、SE2をHレベルに固定し、ノイズ制御信号SE3、SE4のいずれか一方又は両方の電位を変化させる。このようにすると、PMOSトランジスタ88、89はON、NMOSトランジスタ92、93はOFFに固定され、PMOSトランジスタ90、91のいずれか一方又は両方及びNMOSトランジスタ94、95のいずれか一方又は両方がスイッチング動作を行うことになる。この場合、PMOSトランジスタ90、91のいずれか一方又は両方が流す電流の増減変化により抵抗64Bに電圧降下の増減変化が発生し、この抵抗64Bの電圧降下の増減変化が低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。   In addition, when only the low-potential-side power supply noise is given to the noise tolerance evaluation target circuit 62, for example, the noise control signals SE1 and SE2 are fixed to the H level, and one or both of the noise control signals SE3 and SE4 are fixed. Change the potential. In this way, the PMOS transistors 88 and 89 are fixed to ON, the NMOS transistors 92 and 93 are fixed to OFF, and either one or both of the PMOS transistors 90 and 91 and one or both of the NMOS transistors 94 and 95 are switched. Will do. In this case, an increase / decrease change in the voltage drop occurs in the resistor 64B due to an increase / decrease change in the current flowing through one or both of the PMOS transistors 90, 91, and the increase / decrease change in the voltage drop of the resistor 64B is caused by the power supply voltage on the low potential side. The noise is given to the noise tolerance evaluation target circuit 62 as noise.

また、この場合、NMOSトランジスタ90、91中のスイッチングするNMOSトランジスタの数と、NMOSトランジスタ94、95中のスイッチングするNMOSトランジスタの数は同数となるので、外部電源61から見ると、ONとなっているNMOSトランジスタの数は一定であり、電源供給配線63A、63Bに流れる電流の電流値は一定値となる。   In this case, the number of NMOS transistors to be switched in the NMOS transistors 90 and 91 and the number of NMOS transistors to be switched in the NMOS transistors 94 and 95 are the same. The number of NMOS transistors included is constant, and the current value of the current flowing through the power supply wirings 63A and 63B is a constant value.

ノイズ耐性評価対象回路62に高電位側及び低電位側の電源ノイズを与える場合には、ノイズ制御信号SE1、SE2のいずれか一方又は両方及びノイズ制御信号SE3、SE4のいずれか一方又は両方の電位を変化させる。このようにすると、PMOSトランジスタ88、89のいずれか一方又は両方、PMOSトランジスタ90、91のいずれか一方又は両方、NMOSトランジスタ92、93のいずれか一方又は両方、及び、NMOSトランジスタ94、95のいずれか一方又は両方がスイッチング動作を行うことになる。   When applying high-potential-side and low-potential-side power supply noise to the noise tolerance evaluation target circuit 62, the potential of either or both of the noise control signals SE1 and SE2 and the noise control signals SE3 and SE4. To change. In this way, one or both of the PMOS transistors 88 and 89, one or both of the PMOS transistors 90 and 91, one or both of the NMOS transistors 92 and 93, and any of the NMOS transistors 94 and 95 Either or both will perform the switching operation.

この場合、PMOSトランジスタ88、89のいずれか一方又は両方が流す電流の増減変化により抵抗64Aに電圧降下の増減変化が発生し、この抵抗64Aの電圧降下の増減変化が高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられると共に、PMOSトランジスタ90、91のいずれか一方又は両方が流す電流の増減変化により抵抗64Bに電圧降下の増減変化が発生し、この抵抗64Bの電圧降下の増減変化が低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えられる。   In this case, an increase / decrease change in the voltage drop occurs in the resistor 64A due to an increase / decrease change in the current flowing through one or both of the PMOS transistors 88 and 89, and the increase / decrease change in the voltage drop of the resistor 64A is caused by the power supply voltage on the high potential side. The noise is supplied to the noise tolerance evaluation target circuit 62 as noise, and the increase / decrease change in the voltage drop occurs in the resistor 64B due to the increase / decrease change in the current flowing through one or both of the PMOS transistors 90, 91. The increase / decrease change is given to the noise tolerance evaluation target circuit 62 as noise of the power supply voltage on the low potential side.

また、この場合、NMOSトランジスタ88、89中のスイッチングするNMOSトランジスタの数と、NMOSトランジスタ92、93中のスイッチングするNMOSトランジスタの数は同数となる。また、NMOSトランジスタ90、91中のスイッチングするNMOSトランジスタの数と、NMOSトランジスタ94、95中のスイッチングするNMOSトランジスタの数は同数となる。したがって、外部電源61から見ると、ONとなっているNMOSトランジスタの数は一定であり、電源供給配線63A、63Bに流れる電流の電流値は一定値となる。   In this case, the number of switching NMOS transistors in the NMOS transistors 88 and 89 is equal to the number of switching NMOS transistors in the NMOS transistors 92 and 93. Further, the number of NMOS transistors to be switched in the NMOS transistors 90 and 91 and the number of NMOS transistors to be switched in the NMOS transistors 94 and 95 are the same. Therefore, when viewed from the external power supply 61, the number of NMOS transistors that are ON is constant, and the current value of the current flowing through the power supply wirings 63A and 63B is a constant value.

また、ノイズ制御信号SE1〜SE4の電位を本発明の半導体集積回路装置の第4実施形態60が使用する基本クロックの周期で変化させれば、基本クロックに同期した電源ノイズをノイズ耐性評価対象回路62に与えることができる。また、ノイズ制御信号SE1〜SE2の電位を基本クロックの周期より遅い周期で変化させれば、基本クロックより遅い周期の電源ノイズをノイズ耐性評価対象回路62に与えることができる。また、ノイズ制御信号SE1〜SE4の電位を基本クロックよりも早い周期で変化させれば、基本クロック内で変動する電源ノイズを与えることができる。   Further, if the potentials of the noise control signals SE1 to SE4 are changed at the period of the basic clock used by the fourth embodiment 60 of the semiconductor integrated circuit device of the present invention, the power supply noise synchronized with the basic clock is converted into the noise tolerance evaluation target circuit. 62. Further, if the potentials of the noise control signals SE1 to SE2 are changed at a period slower than the period of the basic clock, power supply noise having a period later than the basic clock can be given to the noise tolerance evaluation target circuit 62. Further, if the potentials of the noise control signals SE1 to SE4 are changed at a period earlier than that of the basic clock, power supply noise that varies within the basic clock can be given.

以上のように、本発明の半導体集積回路装置の第4実施形態60によれば、可変電流源65が流す電流に増減変化を起こさせることにより抵抗64Aに発生する電圧降下の増減変化を高電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えることができる。また、可変電流源66が流す電流に増減変化を起こさせることにより抵抗64Bに発生する電圧降下の増減変化を低電位側の電源電圧のノイズとしてノイズ耐性評価対象回路62に与えることができる。   As described above, according to the fourth embodiment 60 of the semiconductor integrated circuit device of the present invention, an increase / decrease change of the voltage drop generated in the resistor 64A by causing the current flowing through the variable current source 65 to increase / decrease is increased. Can be given to the noise tolerance evaluation target circuit 62 as noise of the power supply voltage on the side. Further, by causing the current flowing from the variable current source 66 to increase or decrease, the increase or decrease of the voltage drop generated in the resistor 64B can be given to the noise tolerance evaluation target circuit 62 as noise of the power supply voltage on the low potential side.

この場合、制御回路68は、可変電流源65〜67を制御し、可変電流源65が流す電流の電流値と可変電流源66が流す電流の電流値と可変電流源67が流す電流の電流値の合計値を一定値に保たせるので、電源供給配線63A、63Bに流れる電流の電流値を一定値にし、電源供給配線63A、63Bの寄生インピーダンスによる電圧降下を抵抗成分のみの電圧降下とすることができる。この結果、ノイズ耐性評価対象回路62に与えるノイズを含む電源電圧の電圧値を正確に知ることができるので、ノイズ耐性評価対象回路62のノイズ耐性評価を高精度に行うことができる。   In this case, the control circuit 68 controls the variable current sources 65 to 67, the current value of the current flowing through the variable current source 65, the current value of the current flowing through the variable current source 66, and the current value of the current flowing through the variable current source 67. Is maintained at a constant value, the current value of the current flowing through the power supply wirings 63A and 63B is set to a constant value, and the voltage drop due to the parasitic impedance of the power supply wirings 63A and 63B is the voltage drop of only the resistance component. Can do. As a result, the voltage value of the power supply voltage including the noise given to the noise tolerance evaluation target circuit 62 can be accurately known, so that the noise tolerance evaluation of the noise tolerance evaluation target circuit 62 can be performed with high accuracy.

ここで、本発明の半導体集積回路装置及び半導体集積回路装置の試験方法を整理すると、本発明の半導体集積回路装置及び半導体集積回路装置の試験方法には、少なくとも、以下の半導体集積回路装置及び半導体集積回路装置の試験方法が含まれる。   Here, the semiconductor integrated circuit device and the test method of the semiconductor integrated circuit device of the present invention are organized. The semiconductor integrated circuit device and the test method of the semiconductor integrated circuit device of the present invention include at least the following semiconductor integrated circuit device and semiconductor: A method for testing an integrated circuit device is included.

(付記1)
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第1の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第2の可変電流源と、
前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる制御回路と、
を有することを特徴とする半導体集積回路装置。
(Appendix 1)
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring;
A second variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistor and the second power supply wiring; ,
When the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the first variable current source and the second variable current source are controlled, and the current value of the current flowing through the first variable current source and the second variable current source are controlled. A control circuit that keeps the total value of the currents flowing through the variable current source at a constant value and causes an increase / decrease change in the current flowing through the first variable current source and the current flowing through the second variable current source When,
A semiconductor integrated circuit device comprising:

(付記2)
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記ノイズ耐性評価対象回路の第2の電源配線との間に接続された第1の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の電源配線との間に接続された第2の可変電流源と、
前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる制御回路と、
を有することを特徴とする半導体集積回路装置。
(Appendix 2)
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a connection portion between the first resistor and the first power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A second variable current source connected between a connection portion between the first resistor and the first power supply wiring, and the second power supply wiring;
When the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the first variable current source and the second variable current source are controlled, and the current value of the current flowing through the first variable current source and the second variable current source are controlled. A control circuit that keeps the total value of the currents flowing through the variable current source at a constant value and causes an increase / decrease change in the current flowing through the first variable current source and the current flowing through the second variable current source When,
A semiconductor integrated circuit device comprising:

(付記3)
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記ノイズ耐性評価対象回路の第1の電源配線と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第1の可変電流源と、
前記第1の電源配線と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第2の可変電流源と、
前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる制御回路と、
を有することを特徴とする半導体集積回路装置。
(Appendix 3)
Noise tolerance evaluation target circuit,
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a first power supply wiring of the noise tolerance evaluation target circuit and a connection portion between the second resistor and the second power supply wiring;
A second variable current source connected between the first power supply wiring and a connection portion between the second resistor and the second power supply wiring;
When the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the first variable current source and the second variable current source are controlled, and the current value of the current flowing through the first variable current source and the second variable current source are controlled. A control circuit that keeps the total value of the currents flowing through the variable current source at a constant value and causes an increase / decrease change in the current flowing through the first variable current source and the current flowing through the second variable current source When,
A semiconductor integrated circuit device comprising:

(付記4)
前記第1の可変電流源は、可変電流源用トランジスタとして第1導電型の第1の電界効果トランジスタを有し、
前記第2の可変電流源は、可変電流源用トランジスタとして第2導電型の第2の電界効果トランジスタを有し、
前記制御回路は、前記第1の電界効果トランジスタのゲート及び前記第2の電界効果トランジスタのゲートにアナログ制御信号を与えること
を特徴とする付記1乃至3に記載の半導体集積回路装置。
(Appendix 4)
The first variable current source includes a first conductivity type first field effect transistor as a variable current source transistor,
The second variable current source has a second conductivity type second field effect transistor as a variable current source transistor,
4. The semiconductor integrated circuit device according to any one of appendices 1 to 3, wherein the control circuit provides an analog control signal to a gate of the first field effect transistor and a gate of the second field effect transistor.

(付記5)
前記制御回路は、前記第1の電界効果トランジスタが流す電流の増減変化の絶対値と前記第2の電界効果トランジスタが流す電流の増減変化の絶対値とが同一となるように基板電位を前記第2の電界効果トランジスタに供給する基板電位供給回路を有すること
を特徴とする付記4に記載の半導体集積回路装置。
(Appendix 5)
The control circuit sets the substrate potential so that the absolute value of the increase / decrease change in the current flowing through the first field effect transistor is the same as the absolute value of the increase / decrease change in the current passed through the second field effect transistor. 5. The semiconductor integrated circuit device according to appendix 4, further comprising a substrate potential supply circuit that supplies the second field effect transistor.

(付記6)
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第3の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第4の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第5の可変電流源と、
前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第3の可変電流源と前記第4の可変電流源と前記第5の可変電流源とを制御し、前記第3の可変電流源が流す電流の電流値と前記第4の可変電流源が流す電流の電流値と前記第5の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第3の可変電流源が流す電流と前記第4の可変電流源が流す電流とのいずれか一方又は両方と、前記第5の可変電流源が流す電流とに増減変化を起こさせる制御回路と、
を有することを特徴とする半導体集積回路装置。
(Appendix 6)
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A third variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring;
A fourth variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistor and the second power supply wiring;
A fifth variable current source connected between a connection portion between the first resistor and the first power supply wiring, and a connection portion between the second resistor and the second power supply wiring; ,
A current flowing through the third variable current source by controlling the third variable current source, the fourth variable current source, and the fifth variable current source during noise tolerance measurement of the noise tolerance evaluation target circuit; Current value of the current flowing through the fourth variable current source and the current value of the current flowing through the fifth variable current source are kept constant, and the third variable current source A control circuit for causing an increase / decrease change in one or both of a current flowing and a current flowing by the fourth variable current source, and a current flowing by the fifth variable current source;
A semiconductor integrated circuit device comprising:

(付記7)
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第1の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第2の可変電流源と、
を有する半導体集積回路装置の試験方法であって、
前記第1の電源供給配線と前記第2の電源供給配線との間に外部から電源電圧を供給する工程と、
前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる工程と、
を含むことを特徴とする半導体集積回路装置の試験方法。
(Appendix 7)
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring;
A second variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistor and the second power supply wiring; ,
A method for testing a semiconductor integrated circuit device having:
Supplying a power supply voltage from the outside between the first power supply wiring and the second power supply wiring;
The first variable current source and the second variable current source are controlled, and the sum of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source Maintaining the value at a constant value, causing the current flowing from the first variable current source and the current flowing from the second variable current source to increase or decrease;
A method for testing a semiconductor integrated circuit device, comprising:

(付記8)
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記ノイズ耐性評価対象回路の第2の電源配線との間に接続された第1の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の電源配線との間に接続された第2の可変電流源と、
を有する半導体集積回路装置の試験方法であって、
前記第1の電源供給配線と前記第2の電源供給配線との間に外部から電源電圧を供給する工程と、
前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる工程と、
を含むことを特徴とする半導体集積回路装置の試験方法。
(Appendix 8)
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a connection portion between the first resistor and the first power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A second variable current source connected between a connection portion between the first resistor and the first power supply wiring, and the second power supply wiring;
A method for testing a semiconductor integrated circuit device having:
Supplying a power supply voltage from the outside between the first power supply wiring and the second power supply wiring;
The first variable current source and the second variable current source are controlled, and the sum of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source Maintaining the value at a constant value, causing the current flowing from the first variable current source and the current flowing from the second variable current source to increase or decrease;
A method for testing a semiconductor integrated circuit device, comprising:

(付記9)
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記ノイズ耐性評価対象回路の第1の電源配線と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第1の可変電流源と、
前記第1の電源配線と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第2の可変電流源と、
を有する半導体集積回路装置の試験方法であって、
前記第1の電源供給配線と前記第2の電源供給配線との間に外部から電源電圧を供給する工程と、
前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる工程と、
を含むことを特徴とする半導体集積回路装置の試験方法。
(Appendix 9)
Noise tolerance evaluation target circuit,
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a first power supply wiring of the noise tolerance evaluation target circuit and a connection portion between the second resistor and the second power supply wiring;
A second variable current source connected between the first power supply wiring and a connection portion between the second resistor and the second power supply wiring;
A method for testing a semiconductor integrated circuit device having:
Supplying a power supply voltage from the outside between the first power supply wiring and the second power supply wiring;
The first variable current source and the second variable current source are controlled, and the sum of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source Maintaining the value at a constant value, causing the current flowing from the first variable current source and the current flowing from the second variable current source to increase or decrease;
A method for testing a semiconductor integrated circuit device, comprising:

(付記10)
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第3の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第4の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第5の可変電流源と、
を有する半導体集積回路装置の試験方法であって、
前記第1の電源供給配線と前記第2の電源供給配線との間に外部から電源電圧を供給する工程と、
前記第3の可変電流源と前記第4の可変電流源と前記第5の可変電流源とを制御し、前記第3の可変電流源が流す電流の電流値と前記第4の可変電流源が流す電流の電流値と前記第5の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第3の可変電流源が流す電流と前記第4の可変電流源が流す電流とのいずれか一方又は両方と、前記第5の可変電流源が流す電流とに増減変化を起こさせる工程と、
を含むことを特徴とする半導体集積回路装置の試験方法。
(Appendix 10)
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A third variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring;
A fourth variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistor and the second power supply wiring;
A fifth variable current source connected between a connection portion between the first resistor and the first power supply wiring, and a connection portion between the second resistor and the second power supply wiring; ,
A method for testing a semiconductor integrated circuit device having:
Supplying a power supply voltage from the outside between the first power supply wiring and the second power supply wiring;
The third variable current source, the fourth variable current source, and the fifth variable current source are controlled, and the current value of the current that the third variable current source passes and the fourth variable current source are The total value of the current value of the flowing current and the current value of the current flowing by the fifth variable current source is kept constant, and the current flowing by the third variable current source and the fourth variable current source flow. A step of causing an increase / decrease change in any one or both of the current and the current flowing by the fifth variable current source;
A method for testing a semiconductor integrated circuit device, comprising:

本発明の半導体集積回路装置の第1実施形態を外部電源と共に示す回路図である。1 is a circuit diagram showing a first embodiment of a semiconductor integrated circuit device of the present invention together with an external power supply. 本発明の半導体集積回路装置の第1実施形態の第1具体例を外部電源と共に示す回路図である。1 is a circuit diagram showing a first specific example of a first embodiment of a semiconductor integrated circuit device of the present invention together with an external power supply. FIG. 本発明の半導体集積回路装置の第1実施形態の第1具体例が有する制御回路内の基板電位供給回路の構成を示す回路図である。1 is a circuit diagram showing a configuration of a substrate potential supply circuit in a control circuit included in a first specific example of a first embodiment of a semiconductor integrated circuit device of the present invention; FIG. 本発明の半導体集積回路装置の第1実施形態の第2具体例を外部電源と共に示す回路図である。It is a circuit diagram which shows the 2nd specific example of 1st Embodiment of the semiconductor integrated circuit device of this invention with an external power supply. 本発明の半導体集積回路装置の第2実施形態を外部電源と共に示す回路図である。It is a circuit diagram which shows 2nd Embodiment of the semiconductor integrated circuit device of this invention with an external power supply. 本発明の半導体集積回路装置の第3実施形態を外部電源と共に示す回路図である。It is a circuit diagram which shows 3rd Embodiment of the semiconductor integrated circuit device of this invention with an external power supply. 本発明の半導体集積回路装置の第4実施形態を外部電源と共に示す回路図である。It is a circuit diagram which shows 4th Embodiment of the semiconductor integrated circuit device of this invention with an external power supply. 本発明の半導体集積回路装置の第4実施形態の第1具体例を外部電源と共に示す回路図である。It is a circuit diagram which shows the 1st specific example of 4th Embodiment of the semiconductor integrated circuit device of this invention with an external power supply. 本発明の半導体集積回路装置の第4実施形態の第2具体例を外部電源と共に示す回路図である。It is a circuit diagram which shows the 2nd specific example of 4th Embodiment of the semiconductor integrated circuit device of this invention with an external power supply. 従来の半導体集積回路装置の一例を外部電源と共に示す回路図である。It is a circuit diagram which shows an example of the conventional semiconductor integrated circuit device with an external power supply.

符号の説明Explanation of symbols

1…従来の半導体集積回路装置の一例
2…外部電源
3…ノイズ耐性評価対象回路
4A、4B…電源供給配線
5…可変電流源
6〜8…NMOSトランジスタ
9〜11…入力端子
14…本発明の半導体集積回路装置の第1実施形態
15…外部電源
16…ノイズ耐性評価対象回路
17A、17B…電源供給配線
18A、18B…抵抗
19、20…可変電流源
21…制御回路
22…デカップリング容量
23…PMOSトランジスタ
24…NMOSトランジスタ
25、26…抵抗
27…NMOSトランジスタ
28…電源
29…電流源
30…入力端子
31…基板電位供給回路
32…高電位側の電源配線、
33…低電位側の電源配線
34…入力ノード
35…PMOSトランジスタ
36〜38…NMOSトランジスタ
39、40…抵抗
41…差動増幅器
42…出力ノード
45〜50…NMOSトランジスタ
51〜53…入力端子
54〜56…インバータ
57…本発明の半導体集積回路装置の第2実施形態
58…本発明の半導体集積回路装置の第3実施形態
60…本発明の半導体集積回路装置の第4実施形態
61…外部電源
62…ノイズ耐性評価対象回路
63A、63B…電源供給配線
64A、64B…抵抗
65〜67…可変電流源
68…制御回路
69…デカップリング容量
70、71…PMOSトランジスタ
72、73…NMOSトランジスタ
74、75…抵抗
76、77…入力端子
78、79…制御回路
80…NMOSトランジスタ
81…電源
82…電流源
83…基板電位供給回路
84…NMOSトランジスタ
85…電源
86…電流源
87…基板電位供給回路
88〜95…NMOSトランジスタ
96〜99…入力端子
100〜103…インバータ
DESCRIPTION OF SYMBOLS 1 ... Example of conventional semiconductor integrated circuit device 2 ... External power supply 3 ... Noise tolerance evaluation object circuit 4A, 4B ... Power supply wiring 5 ... Variable current source 6-8 ... NMOS transistor 9-11 ... Input terminal 14 ... First embodiment of semiconductor integrated circuit device 15 ... external power supply 16 ... noise tolerance evaluation target circuit 17A, 17B ... power supply wiring 18A, 18B ... resistor 19,20 ... variable current source 21 ... control circuit 22 ... decoupling capacitor 23 ... PMOS transistor 24 ... NMOS transistor 25, 26 ... resistor 27 ... NMOS transistor 28 ... power supply 29 ... current source 30 ... input terminal 31 ... substrate potential supply circuit 32 ... power supply wiring on high potential side,
33 ... Low-potential-side power supply wiring 34 ... Input node 35 ... PMOS transistor 36-38 ... NMOS transistor 39, 40 ... Resistance 41 ... Differential amplifier 42 ... Output node 45-50 ... NMOS transistor 51-53 ... Input terminal 54- 56 ... Inverter 57 ... Second Embodiment of Semiconductor Integrated Circuit Device of the Present Invention 58 ... Third Embodiment of Semiconductor Integrated Circuit Device of the Present Invention 60 ... Fourth Embodiment of Semiconductor Integrated Circuit Device of the Present Invention 61 ... External Power Supply 62 ... Noise tolerance evaluation target circuit 63A, 63B ... Power supply wiring 64A, 64B ... Resistors 65-67 ... Variable current source 68 ... Control circuit 69 ... Decoupling capacitance 70, 71 ... PMOS transistor 72, 73 ... NMOS transistor 74, 75 ... Resistors 76, 77 ... Input terminals 78, 79 ... Control circuit 80 ... NMOS transistors Star 81 ... Power source 82 ... Current source 83 ... Substrate potential supply circuit 84 ... NMOS transistor 85 ... Power source 86 ... Current source 87 ... Substrate potential supply circuit 88-95 ... NMOS transistor 96-99 ... Input terminal 100-103 ... Inverter

Claims (5)

ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第1の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第2の可変電流源と、
前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる制御回路と、
を有することを特徴とする半導体集積回路装置。
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring;
A second variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistor and the second power supply wiring; ,
When the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the first variable current source and the second variable current source are controlled, and the current value of the current flowing through the first variable current source and the second variable current source are controlled. A control circuit that keeps the total value of the currents flowing through the variable current source at a constant value and causes an increase / decrease change in the current flowing through the first variable current source and the current flowing through the second variable current source When,
A semiconductor integrated circuit device comprising:
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記ノイズ耐性評価対象回路の第2の電源配線との間に接続された第1の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の電源配線との間に接続された第2の可変電流源と、
前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる制御回路と、
を有することを特徴とする半導体集積回路装置。
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a connection portion between the first resistor and the first power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A second variable current source connected between a connection portion between the first resistor and the first power supply wiring, and the second power supply wiring;
When the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the first variable current source and the second variable current source are controlled, and the current value of the current flowing through the first variable current source and the second variable current source are controlled. A control circuit that keeps the total value of the currents flowing through the variable current source at a constant value and causes an increase / decrease change in the current flowing through the first variable current source and the current flowing through the second variable current source When,
A semiconductor integrated circuit device comprising:
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記ノイズ耐性評価対象回路の第1の電源配線と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第1の可変電流源と、
前記第1の電源配線と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第2の可変電流源と、
前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる制御回路と、
を有することを特徴とする半導体集積回路装置。
Noise tolerance evaluation target circuit,
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a first power supply wiring of the noise tolerance evaluation target circuit and a connection portion between the second resistor and the second power supply wiring;
A second variable current source connected between the first power supply wiring and a connection portion between the second resistor and the second power supply wiring;
When the noise tolerance measurement of the noise tolerance evaluation target circuit is performed, the first variable current source and the second variable current source are controlled, and the current value of the current flowing through the first variable current source and the second variable current source are controlled. A control circuit that keeps the total value of the currents flowing through the variable current source at a constant value and causes an increase / decrease change in the current flowing through the first variable current source and the current flowing through the second variable current source When,
A semiconductor integrated circuit device comprising:
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第3の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第4の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第5の可変電流源と、
前記ノイズ耐性評価対象回路のノイズ耐性測定時に、前記第3の可変電流源と前記第4の可変電流源と前記第5の可変電流源とを制御し、前記第3の可変電流源が流す電流の電流値と前記第4の可変電流源が流す電流の電流値と前記第5の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第3の可変電流源が流す電流と前記第4の可変電流源が流す電流とのいずれか一方又は両方と、前記第5の可変電流源が流す電流とに増減変化を起こさせる制御回路と、
を有することを特徴とする半導体集積回路装置。
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A third variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring;
A fourth variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistor and the second power supply wiring;
A fifth variable current source connected between a connection portion between the first resistor and the first power supply wiring, and a connection portion between the second resistor and the second power supply wiring; ,
A current flowing through the third variable current source by controlling the third variable current source, the fourth variable current source, and the fifth variable current source during noise tolerance measurement of the noise tolerance evaluation target circuit; Current value of the current flowing through the fourth variable current source and the current value of the current flowing through the fifth variable current source are kept constant, and the third variable current source A control circuit for causing an increase / decrease change in one or both of a current flowing and a current flowing by the fourth variable current source, and a current flowing by the fifth variable current source;
A semiconductor integrated circuit device comprising:
ノイズ耐性評価対象回路と、
前記ノイズ耐性評価対象回路の第1の電源配線と第1の電源供給配線との間に接続された第1の抵抗と、
前記ノイズ耐性評価対象回路の第2の電源配線と第2の電源供給配線との間に接続された第2の抵抗と、
前記第1の抵抗と前記第1の電源配線との接続部分と、前記第2の抵抗と前記第2の電源配線との接続部分との間に接続された第1の可変電流源と、
前記第1の抵抗と前記第1の電源供給配線との接続部分と、前記第2の抵抗と前記第2の電源供給配線との接続部分との間に接続された第2の可変電流源と、
を有する半導体集積回路装置の試験方法であって、
前記第1の電源供給配線と前記第2の電源供給配線との間に外部から電源電圧を供給する工程と、
前記第1の可変電流源と前記第2の可変電流源とを制御し、前記第1の可変電流源が流す電流の電流値と前記第2の可変電流源が流す電流の電流値との合計値を一定値に保たせ、前記第1の可変電流源が流す電流と前記第2の可変電流源が流す電流とに増減変化を起こさせる工程と、
を含むことを特徴とする半導体集積回路装置の試験方法。
Noise tolerance evaluation target circuit,
A first resistor connected between the first power supply wiring and the first power supply wiring of the noise tolerance evaluation target circuit;
A second resistor connected between a second power supply wiring and a second power supply wiring of the noise tolerance evaluation target circuit;
A first variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistance and the second power supply wiring;
A second variable current source connected between a connection portion between the first resistor and the first power supply wiring and a connection portion between the second resistor and the second power supply wiring; ,
A method for testing a semiconductor integrated circuit device having:
Supplying a power supply voltage from the outside between the first power supply wiring and the second power supply wiring;
The first variable current source and the second variable current source are controlled, and the sum of the current value of the current flowing through the first variable current source and the current value of the current flowing through the second variable current source Maintaining the value at a constant value, causing the current flowing from the first variable current source and the current flowing from the second variable current source to increase or decrease;
A method for testing a semiconductor integrated circuit device, comprising:
JP2008212617A 2008-08-21 2008-08-21 Semiconductor integrated circuit device and method for testing semiconductor integrated circuit device Expired - Fee Related JP5098889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212617A JP5098889B2 (en) 2008-08-21 2008-08-21 Semiconductor integrated circuit device and method for testing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212617A JP5098889B2 (en) 2008-08-21 2008-08-21 Semiconductor integrated circuit device and method for testing semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JP2010048649A true JP2010048649A (en) 2010-03-04
JP5098889B2 JP5098889B2 (en) 2012-12-12

Family

ID=42065854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212617A Expired - Fee Related JP5098889B2 (en) 2008-08-21 2008-08-21 Semiconductor integrated circuit device and method for testing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP5098889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702942B2 (en) 2013-09-26 2017-07-11 Nec Corporation Measurement device, semiconductor device and impedance adjustment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702942B2 (en) 2013-09-26 2017-07-11 Nec Corporation Measurement device, semiconductor device and impedance adjustment method

Also Published As

Publication number Publication date
JP5098889B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US8403559B2 (en) Two-terminal semiconductor sensor device
US20080061868A1 (en) Digital temperature sensing device using temperature depending characteristic of contact resistance
US20130335135A1 (en) Calibration circuit, integrated circuit having calibration circuit, and calibration method
CN103348574A (en) Process and temperature insensitive inverter
KR101241542B1 (en) Testing apparatus
KR20080080057A (en) Semiconductor device
CN111505542B (en) Stress compensation control circuit and semiconductor sensor device
US8907653B2 (en) Circuit of outputting temperature compensation power voltage from variable power and method thereof
US8237505B2 (en) Signal amplification circuit
JP2013152181A (en) Current detection circuit
JP5098889B2 (en) Semiconductor integrated circuit device and method for testing semiconductor integrated circuit device
JP2010074587A (en) Voltage comparator
JP2008227192A (en) In-chip potential monitor circuit
US11249504B2 (en) Current generation circuit
JP2015215316A (en) Hall element drive circuit
JP2008210078A (en) Constant voltage power supply circuit, test method thereof and electronic equipment using the same
US10103622B2 (en) Switching module
US20080238517A1 (en) Oscillator Circuit and Semiconductor Device
JP2021141443A (en) Semiconductor integrated circuit device and current detection circuit
US10396648B2 (en) Voltage adjusting circuit and method for adjusting voltage
KR100607164B1 (en) Reference voltage generation circuit
KR20160046259A (en) Circuit for compensating test path and system for compensating test path
JPWO2007114379A1 (en) Variable delay circuit, test apparatus and electronic device
US20180052481A1 (en) Method for ultra-low-power and high-precision reference generation
JP2008235974A (en) Constant current control circuit and semiconductor integrated circuit provided with the circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees