JP2010047815A - Steel sheet less in welding deformation - Google Patents

Steel sheet less in welding deformation Download PDF

Info

Publication number
JP2010047815A
JP2010047815A JP2008214998A JP2008214998A JP2010047815A JP 2010047815 A JP2010047815 A JP 2010047815A JP 2008214998 A JP2008214998 A JP 2008214998A JP 2008214998 A JP2008214998 A JP 2008214998A JP 2010047815 A JP2010047815 A JP 2010047815A
Authority
JP
Japan
Prior art keywords
less
welding
deformation
content
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008214998A
Other languages
Japanese (ja)
Other versions
JP5157748B2 (en
Inventor
Tomoya Kawabata
友弥 川畑
Hiroshi Nakamura
浩史 中村
Kazushige Arimochi
和茂 有持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008214998A priority Critical patent/JP5157748B2/en
Publication of JP2010047815A publication Critical patent/JP2010047815A/en
Application granted granted Critical
Publication of JP5157748B2 publication Critical patent/JP5157748B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet capable of inexpensvely and securely suppressing welding deformation in a fillet welding. <P>SOLUTION: The steel sheet having reduced welding deformation has a chemical composition containing, by mass, 0.02 to 0.25% C, 0.01 to 0.7% Si, 0.3 to 2% Mn, ≤0.05% P, ≤0.008% S, 1 to 2.5% Cr, ≤0.05% Mo, 0.005 to 0.1% Nb, 0.003 to 0.1% Al and ≤0.01% N, and the balance Fe with impurities, and has a metallic structure composed of a ferritic structure of 10 to 60% and a bainitic structure and/or a martensitic structure of 40 to 90%, and in which the average grain size of the ferritic structure is ≤30 μm and the ratio between the hardness of the bainitic structure and/or martensitic structure and the hardness of the ferritic structure is ≥1.5. The steel sheet may further comprise one or more kinds selected from Ti, Cu, Ni, V, B, Zr, Ca, Mg and rare earth metals. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、造船、海洋構造物、建築構造物、橋梁、土木などの分野で用いられる、溶接変形が小さい鋼板に関する。特に、隅肉溶接の作業時に発生する溶接変形が小さい厚鋼板に関する。   The present invention relates to a steel plate having a small welding deformation used in the fields of shipbuilding, offshore structures, building structures, bridges, civil engineering, and the like. In particular, the present invention relates to a thick steel plate with small welding deformation that occurs during fillet welding.

一般に、各種溶接鋼構造物の製作時には、溶接金属の凝固収縮およびその後の冷却と相変態による収縮・膨張により、変形が発生する。溶接変形の代表的なものとして、T型隅肉溶接部の角変形が挙げられる。角変形を残したまま構造物を製作すると、部材の変形により座屈強度が大幅に低下したり、破壊特性が劣化したりするので、設計者が狙った構造物とはならない。そのような事態を防ぐために、様々な工夫により防止策が講じられている。   In general, during the production of various welded steel structures, deformation occurs due to solidification shrinkage of the weld metal and subsequent shrinkage and expansion due to cooling and phase transformation. As a typical welding deformation, there is an angular deformation of a T-type fillet weld. If a structure is manufactured with the angular deformation left, the buckling strength is greatly reduced due to the deformation of the member, or the fracture characteristics are deteriorated. Therefore, the structure is not aimed by the designer. In order to prevent such a situation, various measures have been taken to prevent it.

現状適用されている溶接変形防止策を大別すると、次の(i)〜(iii)の3つになる。   The welding deformation prevention measures currently applied are roughly divided into the following three (i) to (iii).

(i) 設計の工夫(被変形部材の剛性を高める方法)
溶接変形が残留する原因は、溶接金属や母材の溶接止端部近傍が塑性変形を受けるためである。塑性変形を受けた部位は、その外側の部分を弾性的に変形させようとするが、剛性が高い、すなわち断面積が大きい場合には、その変形量は小さくなる。したがって、断面積を大きくするように設計変更することが一つの防止策となり得る。しかしながら、断面積を大きくするという設計変更は、使用鋼材のコストアップ、重量アップおよび工期長期化の面でロスが多い。
(i) Design ingenuity (method to increase the rigidity of the deformed member)
The reason why the welding deformation remains is that the vicinity of the weld toe of the weld metal or the base metal is subjected to plastic deformation. The part that has undergone plastic deformation tends to elastically deform its outer part, but if the rigidity is high, that is, the cross-sectional area is large, the amount of deformation is small. Therefore, changing the design to increase the cross-sectional area can be one preventive measure. However, the design change to increase the cross-sectional area has a lot of loss in terms of cost increase, weight increase and construction period extension of the steel material used.

(ii) 溶接時の工夫
溶接時に、何らかの工夫をしておくことで溶接変形を防止することが可能である。幾つかの方法があるが、まずは溶接前に予め逆方向に曲げておくことである。溶接後には角変形が発生するが、予め逆方向に曲げておくことにより所望の形状に仕上がる可能性がある。また、溶接時に端部を拘束しておき変形を許容しない方法もある。さらに、後行トーチを設置し、溶接後に適切な位置を再加熱することにより逆に曲げ戻す方法も採られる場合がある。しかしながら、何れも大幅な工数増加を伴うので、コストアップ要因となる。
(ii) Device for welding Welding deformation can be prevented by making some device for welding. There are several methods, but the first is to bend in the opposite direction before welding. Although angular deformation occurs after welding, there is a possibility that it will be finished in a desired shape by bending it in the opposite direction in advance. There is also a method in which the end is constrained during welding and deformation is not allowed. Further, there is a case where a backward torch is installed and bent back by reheating an appropriate position after welding. However, all of them are accompanied by a significant increase in man-hours, which causes a cost increase.

(iii) 溶接後の矯正加工
溶接後に矯正する方法として、機械的矯正と線状加熱矯正がある。しかしながら、これらの方法も大幅な工数増加が必要であるとともに熟練した高度な技能も要求される。
(iii) Straightening after welding There are mechanical straightening and linear heating straightening as methods for straightening after welding. However, these methods also require a significant increase in man-hours and require highly skilled skills.

上記の(i)〜(iii)の対策はすべて製作上の工夫であるが、溶接材料の工夫により溶接変形の低減を図ることが、たとえば、特許文献1に提案されている。しかしながら、溶接材料のコストアップが経済性を阻害したり、また効果が不十分であったりと、問題は多く、現実的に適用が進んでいない状況である。   All of the measures (i) to (iii) above are contrivances in production. For example, Patent Document 1 proposes reducing welding deformation by contriving with welding materials. However, there are many problems that the cost increase of the welding material hinders the economic efficiency and the effect is insufficient, and the application is not practically progressing.

これに対して、母材となる鋼材の工夫により溶接変形を抑制しようとした例もあり、次のとおり、いくつか提案されている。   On the other hand, there is an example of trying to suppress welding deformation by devising a steel material as a base material, and some have been proposed as follows.

特許文献2には、NbとMoを複合添加することにより溶接熱履歴中の析出を促し降伏応力を高める方法が開示されている。しかしながら、特にMoの添加は大幅なコストアップをもたらすため、汎用性に乏しい。   Patent Document 2 discloses a method of increasing yield stress by promoting precipitation in welding heat history by adding Nb and Mo in combination. However, since addition of Mo brings about a significant cost increase, it is poor in versatility.

特許文献3および4には、母材となる鋼材のベイナイトおよび/又はマルテンサイトの分率を20%以上に制御し、さらに炭窒化物の分散状態を規定することによって、降伏応力を高め、もって溶接変形を抑制することの記載がある。しかしながら、必ずしも実用上十分な溶接変形低減効果を得るまでには至っていない。   In Patent Documents 3 and 4, by controlling the fraction of bainite and / or martensite of the steel material as the base material to 20% or more and further defining the dispersion state of carbonitride, the yield stress is increased, and There is a description of suppressing welding deformation. However, it has not yet reached a practically sufficient weld deformation reduction effect.

そして、特許文献5には、母材となる鋼材のベイナイト率を70%以上とし、さらに固溶Nb量を0.0040%確保することによって、溶接変形を抑制することの記載がある。しかしながら、ベイナイト比率が70%以上になると母材の強度が汎用レンジから逸脱する場合が生じるだけでなく、Nbによる溶接割れ性の阻害が問題化するおそれがある。   And patent document 5 has description of suppressing welding deformation by ensuring the bainite rate of the steel materials used as a base material to 70% or more, and also ensuring 0.0040% of solid solution Nb amount. However, when the bainite ratio is 70% or more, not only does the strength of the base material deviate from the general-purpose range, but there is a concern that inhibition of weld cracking by Nb may become a problem.

特開平7-9191号公報Japanese Unexamined Patent Publication No. 7-9191 特開平7-138715号公報Japanese Laid-Open Patent Publication No.7-138715 特開2003-268484号公報JP 2003-268484 A 特開2006-2211号公報JP 2006-2211 A 特開2006-2198号公報Japanese Unexamined Patent Publication No. 2006-2198

このように、従来方法では、それぞれ経済性および実際的再現性の観点から難があり、実用上では改良の余地が大きい。   Thus, the conventional methods have difficulty from the viewpoints of economy and practical reproducibility, and there is much room for improvement in practical use.

特に、厚さ15mm以上の厚鋼板を用いて製造される溶接構造物では、個々の溶接箇所における変形量は小さくても溶接構造物全体としては大きな変形が生じ得るため、溶接変形量を極力小さくすることが必要となる。なお、厚みの上限は特に限定するものではないが、50mmまでのものを扱うのが好ましい。   In particular, in a welded structure manufactured using a thick steel plate having a thickness of 15 mm or more, even if the amount of deformation at each weld location is small, large deformation can occur as a whole welded structure. It is necessary to do. In addition, although the upper limit of thickness is not specifically limited, It is preferable to handle a thing to 50 mm.

本発明は、上記事情に鑑み、低コストで確実に隅肉溶接において溶接変形を抑制させる技術を確立し、溶接変形が小さい鋼板を提供することを目的とする。なお、溶接変形量の目標値は従来鋼の1/2とした。   In view of the above circumstances, an object of the present invention is to establish a technique for reliably suppressing welding deformation in fillet welding at low cost, and to provide a steel plate having small welding deformation. In addition, the target value of the amount of welding deformation was set to 1/2 that of the conventional steel.

本発明者らは、かかる課題を解決すべく、種々検討の結果、鋼板の化学組成の規定するとともに、その金属組織についても規定した。実験と併せて実施した熱連成FEM解析によって得られた各材料物性値の独立した影響を示したものを図1に示す。また、FEM解析の計算条件を図2に示す。   As a result of various studies, the present inventors have specified the chemical composition of the steel sheet and the metal structure thereof in order to solve such problems. FIG. 1 shows the independent influence of the physical property values of each material obtained by the thermal coupled FEM analysis conducted in conjunction with the experiment. Moreover, the calculation conditions of FEM analysis are shown in FIG.

図1中、横軸は熱伝導率(白丸プロット)、変態点Ac1(黒丸プロット)、強度TS(四角プロット)であり、縦軸は角変形量を示す。図1より、鋼板の熱伝導率を大きくしても角変形量は変化がなく、変態点が上昇すると角変形量は大きくなり、強度が大きくなると角変形量は小さくなることが判る。よって、溶接変形は特に強度や変態点に大きく依存し、溶接変形量(角変形量)の目標値を従来鋼(角変形量はおよそ0.8mm)の1/2、すなわち0.4mmとすると、強度が極めて高くなって汎用強度クラスから逸脱することになる。汎用強度クラスからの逸脱は、一般的な商取引上の対象外となるだけでなく、構造設計上の問題や溶接性の問題も併発する可能性があり、望ましくない。   In FIG. 1, the horizontal axis represents thermal conductivity (white circle plot), transformation point Ac1 (black circle plot), and strength TS (square plot), and the vertical axis represents the amount of angular deformation. From FIG. 1, it can be seen that the amount of angular deformation does not change even when the thermal conductivity of the steel sheet is increased, the amount of angular deformation increases as the transformation point increases, and the amount of angular deformation decreases as the strength increases. Therefore, the welding deformation particularly depends largely on the strength and transformation point, and the target value of the welding deformation amount (angular deformation amount) is ½ that of conventional steel (angular deformation amount is about 0.8 mm), that is, 0.4 mm. The strength becomes extremely high and deviates from the general-purpose strength class. Deviations from the general strength class are not desirable because they are not only subject to general commercial transactions, but may also cause structural design problems and weldability problems.

そこで本発明者らは、汎用強度クラスに適合する常温強度は保持したまま、高温強度を増加させてなる鋼種の開発を目指した。   Therefore, the present inventors aimed to develop a steel type that increases the high-temperature strength while maintaining the normal-temperature strength suitable for the general-purpose strength class.

なお、従来から高温強度に効果のあると言われるMoは、合金コストの高騰によりコストアップ要因となるので、現実的ではない。そこで、本発明者らは比較的安価で溶接性への悪影響も小さいCrに着目し、種々試験を実施した。その結果、次の(a)〜(d)に示す知見が得られた。   Note that Mo, which has been conventionally said to be effective in high-temperature strength, is not realistic because it causes a cost increase due to a rise in alloy costs. Accordingly, the inventors focused on Cr, which is relatively inexpensive and has a small adverse effect on weldability, and conducted various tests. As a result, the following findings (a) to (d) were obtained.

(a) Crは高温強度を増加させることができる。Crを1.0%以上含有させると、Moを共存させなくても高温強度を確保することができ、もって溶接変形を十分に抑制することができる。しかしながら、Crの含有量が1.0%未満では、Moを共存させない場合には高温強度の確保は不十分なものとなる。   (a) Cr can increase the high-temperature strength. When Cr is contained in an amount of 1.0% or more, high-temperature strength can be secured without coexisting Mo, and welding deformation can be sufficiently suppressed. However, if the Cr content is less than 1.0%, the high temperature strength cannot be ensured sufficiently if Mo is not allowed to coexist.

(b) また、Nbを含有させることは必須である。Nbを含有させないと高温強度の確保は不十分なものとなる。ただし、Nbの添加量は少量でよく、0.005%以上であれば良い。   (b) It is essential to contain Nb. If Nb is not contained, securing of high temperature strength is insufficient. However, the amount of Nb added may be small and may be 0.005% or more.

(c) 汎用強度レベルに適合させるためにはフェライト組織を含ませることが必須である。靭性の観点からフェライト組織の結晶粒径は30μm以下であることが必要である。また、溶接変形を最小化するためにベイナイトあるいはマルテンサイト組織からなる硬相の硬さは硬い方が良く、硬相と軟相の硬さ比は1.5以上とする必要がある。   (c) In order to conform to the general-purpose strength level, it is essential to include a ferrite structure. From the viewpoint of toughness, the crystal grain size of the ferrite structure needs to be 30 μm or less. In addition, in order to minimize welding deformation, the hardness of the hard phase composed of bainite or martensite is better, and the hardness ratio of the hard phase to the soft phase needs to be 1.5 or more.

(d) 鋼板の製造方法は一般的な条件でも良いが、通常鋼に比べ焼入性が高い傾向にあるため、汎用強度レベルに適合させるために工夫するのが好ましい。   (d) The manufacturing method of the steel sheet may be under general conditions, but since it tends to be harder than normal steel, it is preferable to devise in order to adapt it to the general-purpose strength level.

本発明は、上記の知見を基礎として完成したものであって、その要旨は下記の(1)〜(4)に示す溶接変形が小さい鋼板にある。   The present invention has been completed on the basis of the above knowledge, and the gist thereof is a steel sheet with small welding deformation shown in the following (1) to (4).

(1) 質量%で、C:0.02〜0.25%、Si:0.01〜0.7%、Mn:0.3〜2%、P:0.05%以下、S:0.008%以下、Cr:1〜2.5%、Mo:0.05%以下、Nb:0.005〜0.1%、Al:0.003〜0.1%およびN:0.01%以下を含み、残部Feおよび不純物からなる化学組成を有し、金属組織がフェライト組織10〜60%およびベイナイト組織および/又はマルテンサイト組織40〜90%からなり、かつ、当該フェライト組織の平均粒径が30μm以下であって、ベイナイト組織および/又はマルテンサイト組織の硬度とフェライト組織の硬度との比が1.5以上であることを特徴とする溶接変形が小さい鋼板。   (1) By mass%, C: 0.02 to 0.25%, Si: 0.01 to 0.7%, Mn: 0.3 to 2%, P: 0.05% or less, S: 0.00. 008% or less, Cr: 1 to 2.5%, Mo: 0.05% or less, Nb: 0.005 to 0.1%, Al: 0.003 to 0.1%, and N: 0.01% or less The metal structure is composed of 10-60% ferrite structure and 40-90% bainite structure and / or martensite structure, and the average grain size of the ferrite structure is A steel plate having a small welding deformation, wherein the ratio of the hardness of a bainite structure and / or martensite structure to the hardness of a ferrite structure is 1.5 or more, and is 30 μm or less.

(2) 質量%で、さらに、Ti:0.1%以下を含有することを特徴とする上記(1)の溶接変形が小さい鋼板。   (2) The steel plate having a small weld deformation according to the above (1), further comprising Ti: 0.1% or less by mass%.

(3) 質量%で、さらに、Cu:2%以下、Ni:3.5%以下、V:0.1%以下、B:0.004%以下およびZr:0.02%以下のうちの1種又は2種以上を含有することを特徴とする上記(1)または(2)の溶接変形が小さい鋼板。   (3) By mass%, Cu: 2% or less, Ni: 3.5% or less, V: 0.1% or less, B: 0.004% or less, and Zr: 0.02% or less The steel plate having a small weld deformation according to the above (1) or (2), comprising a seed or two or more kinds.

(4) 質量%で、さらに、Ca:0.004%以下、Mg:0.002%以下およびREM:0.002%以下のうちの1種又は2種以上を含有することを特徴とする上記(1)〜(3)のいずれかの溶接変形が小さい鋼板。   (4) The above-mentioned, characterized by further containing one or more of Ca: 0.004% or less, Mg: 0.002% or less, and REM: 0.002% or less in mass%. A steel plate with small welding deformation according to any one of (1) to (3).

なお、鋼板における溶接変形の小さい溶接方法との観点から本発明を考察すると、鋼板における溶接変形は実質的には溶接熱影響部における溶接変形であるので、溶接熱影響部において所定の要件を満足した上で溶接をすれば、溶接変形抑制能は向上すると考えられる。   Considering the present invention from the viewpoint of a welding method with small weld deformation in a steel plate, the weld deformation in the steel plate is substantially a weld deformation in the weld heat affected zone, and therefore satisfies a predetermined requirement in the weld heat affected zone. In addition, if welding is performed, the ability to suppress welding deformation is considered to be improved.

したがって、本発明は、溶接方法の観点からは、
「質量%で、C:0.02〜0.25%、Si:0.01〜0.7%、Mn:0.3〜2%、P:0.05%以下、S:0.008%以下、Cr:1〜2.5%、Mo:0.05%以下、Nb:0.005〜0.1%、Al:0.003〜0.1%およびN:0.01%以下を含み、残部Feおよび不純物からなる化学組成を有する鋼板の溶接方法であって、溶接前の鋼板における溶接熱影響部となる部位の金属組織がフェライト組織10〜60%およびベイナイト組織および/又はマルテンサイト組織40〜90%からなり、かつ、当該フェライト組織の平均粒径が30μm以下であって、ベイナイト組織および/又はマルテンサイト組織の硬度とフェライト組織の硬度との比が1.5以上であることを特徴とする溶接方法。」
と把握することもできる。
Therefore, from the viewpoint of the welding method, the present invention
“In mass%, C: 0.02 to 0.25%, Si: 0.01 to 0.7%, Mn: 0.3 to 2%, P: 0.05% or less, S: 0.008% Hereinafter, including Cr: 1 to 2.5%, Mo: 0.05% or less, Nb: 0.005 to 0.1%, Al: 0.003 to 0.1%, and N: 0.01% or less , A method of welding a steel sheet having a chemical composition comprising the balance Fe and impurities, wherein the metal structure of the part that becomes the weld heat affected zone in the steel sheet before welding is a ferrite structure of 10 to 60% and a bainite structure and / or a martensite structure The average grain size of the ferrite structure is 30 μm or less, and the ratio of the hardness of the bainite structure and / or martensite structure to the hardness of the ferrite structure is 1.5 or more. Features welding method. "
It can also be grasped.

もちろん、鋼板が、質量%で、さらに、Ti:0.1%以下、Cu:2%以下、Ni:3.5%以下、V:0.1%以下、B:0.004%以下、Zr:0.02%以下、Ca:0.004%以下、Mg:0.002%以下およびREM:0.002%以下のうちの1種又は2種以上を含有してもよい。
ここで、後述するように、母材となる鋼板全体が上記の要件を満足するように製造した上で溶接してもよいし、母材となる鋼板のうち溶接しようとする部位(溶接熱影響部となる部位)のみを加工してその部位について上記の要件を満足させた上で溶接してもよい。
Of course, the steel sheet is in% by mass, Ti: 0.1% or less, Cu: 2% or less, Ni: 3.5% or less, V: 0.1% or less, B: 0.004% or less, Zr : 0.02% or less, Ca: 0.004% or less, Mg: 0.002% or less, and REM: 0.002% or less may be contained.
Here, as will be described later, the steel plate as a base material may be welded after being manufactured so as to satisfy the above requirements, or the part to be welded (welding heat effect in the steel plate as a base material). It is also possible to weld only after satisfying the above requirements for the part by processing only the part to be a part.

そして、この溶接方法は、溶接変形の大きい隅肉溶接の際にも適用することができる。なお、隅肉溶接は、重ね継手、T継手、十字継手などにおいて行われるが、この溶接方法は継手母材の相対的な位置関係で特に大きな溶接変形が生じるT継手と十字継手における隅肉溶接に特に有効である。   And this welding method is applicable also in the case of fillet welding with a large welding deformation. Fillet welding is performed on lap joints, T joints, cruciform joints, etc., but this welding method involves fillet welding on T joints and cruciform joints, which cause particularly large welding deformations due to the relative positional relationship of the joint base material. Is particularly effective.

本発明によれば、低コストで確実に隅肉溶接において溶接変形を抑制することができる鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate which can suppress a welding deformation in fillet welding reliably at low cost can be provided.

本発明において、溶接変形が小さい鋼板の化学組成および金属組織を限定する理由は次のとおりである。   In the present invention, the reason for limiting the chemical composition and metal structure of the steel sheet with small welding deformation is as follows.

(A)鋼板の化学組成
鋼板の各成分の作用効果および各成分の好ましい含有量は下記のとおりである。なお、含有量に関する「%」は「質量%」を意味する。
(A) Chemical composition of steel sheet The effects of each component of the steel sheet and the preferred contents of each component are as follows. In addition, "%" regarding content means "mass%".

C:0.02〜0.25%
Cは強度向上にもっとも有効な元素であり、かつ安価な元素である。ただし、0.02%未満では他の元素の併用による強度保証が必要となり、結果的にコストアップ要因となる。また、0.25%を超えて含有させると溶接性を著しく阻害する。したがって、Cの含有量は0.02〜0.25%とする。
C: 0.02-0.25%
C is the most effective element for improving the strength and is an inexpensive element. However, if it is less than 0.02%, it is necessary to guarantee strength by using other elements in combination, resulting in an increase in cost. Moreover, when it contains exceeding 0.25%, weldability will be inhibited remarkably. Therefore, the C content is 0.02 to 0.25%.

Si:0.01〜0.7%
Siは強度向上に寄与する元素である。ただし、0.01%未満では必要とする強度を確保することができない。また、0.7%を超えて添加すると母材靱性と溶接性靱性を著しく劣化させることになる。したがって、Siの含有量は0.01〜0.7%とする。
Si: 0.01 to 0.7%
Si is an element contributing to strength improvement. However, if it is less than 0.01%, the required strength cannot be ensured. Moreover, if added over 0.7%, the base metal toughness and weldability toughness will be remarkably deteriorated. Therefore, the Si content is set to 0.01 to 0.7%.

Mn:0.3〜2%
Mnは強度確保のために必要な元素である。ただし、0.3%未満では必要とする強度を確保することができない。また、2%を超えて添加すると溶接性が劣化する。したがって、Mnの含有量は0.3〜2%とする。
Mn: 0.3-2%
Mn is an element necessary for ensuring strength. However, if it is less than 0.3%, the required strength cannot be ensured. On the other hand, if it exceeds 2%, weldability deteriorates. Therefore, the Mn content is 0.3-2%.

P:0.05%以下
Pは、不純物として鋼中に存在する元素である。Pの含有量が0.05%を超えると、粒界に偏析して靭性を低下させるのみならず、溶接時に高温割れを招くため、Pの含有量を0.05%以下とする。
P: 0.05% or less P is an element present in steel as an impurity. If the P content exceeds 0.05%, it not only segregates at the grain boundaries and lowers the toughness, but also causes hot cracking during welding, so the P content is 0.05% or less.

S:0.008%以下
Sは、不純物として鋼中に存在す元素である。Sの含有量が0.008%を超えると、中心偏析を助長したり、延伸形状のMnSが多量に生成したりするため、母材およびHAZの機械的性質が劣化する。したがって、Sの含有量の上限を0.008%とする。
S: 0.008% or less S is an element present in steel as an impurity. If the S content exceeds 0.008%, center segregation is promoted or a large amount of stretched MnS is generated, so that the mechanical properties of the base material and the HAZ deteriorate. Therefore, the upper limit of the S content is 0.008%.

Cr:1〜2.5%
Crは焼入れ性の向上を通じて強度を高めるのに有効な元素である。この効果を得るには1%以上の添加が必要となる。しかし、2.5%を超えると靱性が劣化する。したがって、Crの含有量は1〜2.5%とする。なお、好ましい含有量は1〜1.8%である。
Cr: 1 to 2.5%
Cr is an effective element for increasing the strength by improving the hardenability. In order to obtain this effect, addition of 1% or more is necessary. However, if it exceeds 2.5%, the toughness deteriorates. Therefore, the Cr content is 1 to 2.5%. In addition, preferable content is 1-1.8%.

Mo:0.05%以下
Moは、コストの著しい増加をもたらすため、添加しない。不純物として混入してくる場合があるが、その場合でもMoの含有量は0.05%以下とする。
Mo: 0.05% or less Mo is not added because it causes a significant increase in cost. Although impurities may be mixed in, the Mo content should be 0.05% or less even in that case.

Nb:0.005〜0.1%
Nbは、鋼板の金属組織の再結晶化を遅延させる効果がある。ただし、その含有量が0.005%未満ではその効果が得られない。また、0.1%を超えると前記効果が飽和する一方でHAZの靱性を著しく損なう。したがって、Nbの含有量は0.005〜0.1%とする。なお、好ましい含有量は0.008〜0.020%である。
Nb: 0.005 to 0.1%
Nb has the effect of delaying recrystallization of the metal structure of the steel sheet. However, if the content is less than 0.005%, the effect cannot be obtained. On the other hand, if it exceeds 0.1%, the above effect is saturated while the toughness of the HAZ is significantly impaired. Therefore, the Nb content is 0.005 to 0.1%. In addition, preferable content is 0.008 to 0.020%.

Al:0.003〜0.1%
Alは脱酸のために必須の元素である。脱酸を確実に行うためには、0.003%以上の含有量が必要である。ただし、0.1%を超えると、特にHAZにおいて靱性が劣化しやすくなる。これは、粗大なクラスター状のアルミナ系介在物粒子が形成されやすくなるためと考えられる。したがって、Alの含有量は0.003〜0.1%とする。
Al: 0.003-0.1%
Al is an essential element for deoxidation. In order to reliably perform deoxidation, a content of 0.003% or more is necessary. However, if it exceeds 0.1%, the toughness tends to deteriorate particularly in HAZ. This is presumably because coarse cluster-like alumina inclusion particles are easily formed. Therefore, the Al content is 0.003 to 0.1%.

N:0.01%以下
Nは、不純物として鋼中に存在する元素である。Nの含有量が0.01%を超えると、母材靱性とHAZ靭性の悪化原因となる。したがって、Nの含有量の上限を0.01%とする。
N: 0.01% or less N is an element present in steel as an impurity. If the N content exceeds 0.01%, the base material toughness and the HAZ toughness are deteriorated. Therefore, the upper limit of the N content is 0.01%.

本発明に係る溶接変形が小さい鋼板は、上記の成分のほか、必要に応じて、次の第1群から第3群までの少なくとも1群から選んだ1種以上の成分を含有させることができる。以下、これらの群に属する成分について述べる。   The steel plate with small welding deformation according to the present invention can contain one or more components selected from at least one group from the following first group to the third group, if necessary, in addition to the above components. . Hereinafter, components belonging to these groups will be described.

第1群の成分:Ti
Ti:0.1%以下
Tiは、主に脱酸元素として作用するので、必要に応じて含有させることができる。ただし、脱酸はAlによっても可能であるため、必ずしも含有させる必要はない。ただし、Ti含有量が多い場合にはTi酸化物またはTi−Al酸化物が形成されるため、特に小入熱溶接部熱影響部における組織を微細化する能力が失われる。このため、必要に応じて含有させる場合のTi含有量は0.1%以下とする。なお、Tiを含有させることによる脱酸効果を確実に得るためには、その含有量を0.01%以上とするのが好ましい。
Group 1 ingredients: Ti
Ti: 0.1% or less Since Ti mainly acts as a deoxidizing element, it can be contained if necessary. However, since deoxidation can be performed with Al, it is not always necessary to contain it. However, since Ti oxide or Ti—Al oxide is formed when the Ti content is large, the ability to refine the structure particularly in the heat-affected zone of the small heat input weld zone is lost. For this reason, Ti content in the case of making it contain as needed is 0.1% or less. In addition, in order to acquire the deoxidation effect by containing Ti reliably, it is preferable to make the content into 0.01% or more.

第2群の成分:Cu、Ni、V、B、Zr
Cu:2%以下
Cuは靱性をあまり劣化させずに強度を向上させることができるので、必要に応じて含有させることができる。ただし、Cu含有量が2%を超えると熱間圧延時に亀甲状の割れを発生させるので、必要に応じて含有させる場合のCu含有量は2%以下とする。なお、Cuを含有させることによる強度向上効果を確実に得るためには、その含有量を0.05%以上とするのが好ましい。さらに好ましい含有量は、0.2%以上である。
Second group of components: Cu, Ni, V, B, Zr
Cu: 2% or less Cu can improve the strength without significantly degrading toughness, and can be contained as required. However, if the Cu content exceeds 2%, turtle shell cracks are generated during hot rolling, so the Cu content in the case of inclusion if necessary is 2% or less. In addition, in order to acquire the strength improvement effect by containing Cu reliably, it is preferable that the content shall be 0.05% or more. A more preferable content is 0.2% or more.

Ni:3.5%以下
Niは母材靱性を向上させ、かつ焼入性向上により強度向上にも寄与する元素であるので、必要に応じて含有させることができる。ただし、Niは高価な元素であるからNiを過大に含有させると大きなコストアップ要因となる。このため、必要に応じて含有させる場合のNiの含有量の上限を3.5%以下とする。なお、Niを含有させることによる上記効果を確実に得るためには、その含有量を0.05%以上とするのが好ましい。
Ni: 3.5% or less Ni is an element that improves the toughness of the base material and contributes to the improvement of the strength by improving the hardenability, and can be contained as necessary. However, since Ni is an expensive element, if Ni is excessively contained, it causes a large cost increase. For this reason, the upper limit of the content of Ni when it is contained as necessary is set to 3.5% or less. In addition, in order to acquire the said effect by containing Ni reliably, it is preferable to make the content into 0.05% or more.

V:0.1%以下
Vは強度向上に有効な元素であるので、必要に応じて含有させることができる。ただし、Vの含有量が0.1%を超えると靱性が大きく劣化するので、必要に応じて含有させる場合のV含有量は0.1%以下とする。なお、Vを含有させることによる強度向上効果を確実に得るためには、その含有量を0.005%以上とするのが好ましい。
V: 0.1% or less V is an element effective for improving the strength, and can be contained as necessary. However, if the V content exceeds 0.1%, the toughness is greatly deteriorated. Therefore, the V content in the case where V content is included is 0.1% or less. In addition, in order to acquire the strength improvement effect by containing V reliably, it is preferable that the content shall be 0.005% or more.

B:0.004%以下
Bは焼入性を向上させて強度を高める作用があるので、必要に応じて含有させることができる。ただし、Bの含有量が0.004%を超えると、強度を高める効果が飽和し、また、母材、HAZともに靱性劣化の傾向が著しくなる。したがって、必要に応じて含有させる場合のBの含有量は0.004%以下とする。なお、Bを含有させることによる焼入れ性と強度を高める効果を確実に得るためには、Bの含有量は0.0003%以上とすることが好ましい。
B: 0.004% or less B has an effect of improving hardenability and increasing strength, and can be contained as required. However, when the content of B exceeds 0.004%, the effect of increasing the strength is saturated, and the tendency of toughness deterioration becomes remarkable in both the base material and HAZ. Therefore, the content of B in the case where it is contained as necessary is 0.004% or less. In addition, in order to acquire the effect which improves hardenability and intensity | strength by containing B reliably, it is preferable that content of B shall be 0.0003% or more.

Zr:0.02%以下
Zrは鋼中で窒化物を微細分散析出し、強度を向上させる効果があるので、必要に応じて含有させることができる。ただし、0.02%を超えて添加すると粗大析出物を形成し、靭性を劣化させるので、必要に応じて含有させる場合のZrの含有量は0.02%以下とする。なお、Zrを含有させることによる強度向上効果を確実に得るためには、Zrの含有量は0.0003%以上とすることが好ましい。
Zr: 0.02% or less Zr has the effect of finely dispersing and precipitating nitrides in steel and improving the strength, and can be contained as required. However, if added over 0.02%, coarse precipitates are formed and the toughness is deteriorated, so the Zr content in the case of inclusion if necessary is 0.02% or less. In addition, in order to acquire the strength improvement effect by containing Zr reliably, it is preferable that content of Zr shall be 0.0003% or more.

第3群の成分:Ca、Mg、REM
Ca:0.004%以下
Caは鋼中のSと反応して溶鋼中で酸硫化物(オキシサルファイド)を形成する。この酸硫化物はMnSなどの延伸形状の介在物とは異なり、圧延加工で圧延方向に伸びることがなく圧延後も球状であるため、延伸形状の介在物の先端などを割れの起点とする溶接割れや水素誘起割れを抑制する作用があるので、必要に応じて含有させることができる。ただし、その含有量が0.004%を超えると靱性の劣化を招くことがある。したがって、必要に応じて含有させる場合のCaの含有量は0.004%以下とする。なお、溶接割れや水素誘起割れを抑制する効果を確実に得るためには、Caの含有量は0.0003%以上とすることが好ましい。
Group 3 components: Ca, Mg, REM
Ca: 0.004% or less Ca reacts with S in steel to form oxysulfide (oxysulfide) in molten steel. Unlike the stretched inclusions such as MnS, this oxysulfide does not extend in the rolling direction during rolling and is spherical after rolling. Therefore, welding with the tip of the stretched inclusions as the starting point of cracking Since there exists an effect | action which suppresses a crack and a hydrogen induction crack, it can be made to contain as needed. However, if its content exceeds 0.004%, toughness may be deteriorated. Therefore, the Ca content in the case of inclusion as necessary is 0.004% or less. In addition, in order to acquire the effect which suppresses a weld crack or a hydrogen induction crack reliably, it is preferable that content of Ca shall be 0.0003% or more.

Mg:0.002%以下
MgはMg含有酸化物を生成し、TiNの発生核となり、TiNを微細分散させる効果を持つので、必要に応じて含有させることができる。ただし、その含有量が0.002%を超えると、酸化物が多くなりすぎて延性低下をもたらす。したがって、必要に応じて含有させる場合のMgの含有量の上限を0.002%とする。なお、TiNを微細分散させる効果を確実に得るためには、Mgの含有量は0.0003%以上とすることが好ましい。
Mg: 0.002% or less Mg forms an Mg-containing oxide, serves as a generation nucleus of TiN, and has an effect of finely dispersing TiN. Therefore, Mg can be contained as necessary. However, when the content exceeds 0.002%, the amount of oxide becomes excessive and ductility is reduced. Therefore, the upper limit of the content of Mg in the case where it is contained as necessary is set to 0.002%. In order to surely obtain the effect of finely dispersing TiN, the Mg content is preferably 0.0003% or more.

REM:0.002%以下
REMは、溶接熱影響部の組織の微細化や、Sの固定に寄与するので、必要に応じて含有させることができる。ただし、その含有量が0.002%を超えると、REMは母材の靱性に悪影響を与える介在物となるので、必要に応じて含有させる場合のREMの含有量0.002%以下とする。なお、組織の微細化やSの固定効果を確実に得るためには、REMの含有量は0.0003%以上とすることが好ましい。なお、REMとは、ランタニドの15元素にYおよびScを合わせた17元素の総称であり、これらの元素のうちの1種又は2種以上を含有させることができる。また、REMの含有量はこれらの元素の合計含有量を意味する。
REM: 0.002% or less REM contributes to the refinement of the structure of the weld heat affected zone and the fixation of S, and can be contained as necessary. However, if the content exceeds 0.002%, REM becomes an inclusion that adversely affects the toughness of the base material, so the content of REM in the case of inclusion is set to 0.002% or less as required. In addition, in order to acquire the refinement | miniaturization of a structure | tissue and the fixing effect of S reliably, it is preferable that content of REM shall be 0.0003% or more. Note that REM is a generic name for 17 elements in which Y and Sc are combined with 15 elements of lanthanide, and one or more of these elements can be contained. Further, the content of REM means the total content of these elements.

(B)金属組織
金属組織のフェライト分率は、10〜60%とする。溶接変形防止の観点から、降伏しやすい組織であるフェライトは少ない方が良いが、汎用強度鋼の強度レンジに適合させるため、フェライト分率の上下限を、それぞれ60%および10%とした。また、フェライト組織の平均粒径は破壊靭性の観点から小さい方が良い。そして、フェライト組織の平均粒径が30μmを超えると十分な破壊靭性を得ることができないため、その上限値を30μmとした。
(B) Metal structure The ferrite fraction of a metal structure shall be 10 to 60%. From the viewpoint of preventing welding deformation, it is better that the amount of ferrite, which is a structure that tends to yield, is better. The average grain size of the ferrite structure is preferably small from the viewpoint of fracture toughness. And since the sufficient fracture toughness cannot be obtained when the average particle diameter of a ferrite structure exceeds 30 micrometers, the upper limit was made into 30 micrometers.

フェライト組織以外の組織はベイナイト組織および/又はマルテンサイト組織である。すなわち、ベイナイト組織、マルテンサイト組織または(ベイナイト+マルテンサイト)組織である。ここで、フェライト組織を軟相、そして、ベイナイト組織および/又はマルテンサイト組織を硬相と呼ぶ。素材が多様な温度で全降伏することを極力防ぐ必要があることから、硬相の硬度は高い方が望ましい。一方、軟相が存在することにより、構造用鋼として降伏強度と引張強度を規格などに適合するレンジに調整することが可能となる。ただし、前述したとおり、硬相を硬くしておくことにより溶接変形は抑制されるので、ここでは、硬相と軟相の硬度比という指標を用いて、溶接変形抑制能を規定することとした。発明者らの検討により、硬相の硬度が軟相の硬度の1.5倍以上となると、溶接変形抑制能の向上が顕著化するため、硬度比は1.5倍以上とする。   The structure other than the ferrite structure is a bainite structure and / or a martensite structure. That is, a bainite structure, a martensite structure, or a (bainite + martensite) structure. Here, the ferrite structure is called a soft phase, and the bainite structure and / or the martensite structure is called a hard phase. Since it is necessary to prevent the material from yielding at various temperatures as much as possible, it is desirable that the hardness of the hard phase is high. On the other hand, the presence of the soft phase makes it possible to adjust the yield strength and tensile strength of structural steel to a range that conforms to standards and the like. However, as described above, since the welding deformation is suppressed by keeping the hard phase hard, here, the index of the hardness ratio between the hard phase and the soft phase is used to define the ability to suppress welding deformation. . According to the study by the inventors, when the hardness of the hard phase is 1.5 times or more of the hardness of the soft phase, the improvement in the ability to suppress welding deformation becomes remarkable, so the hardness ratio is 1.5 times or more.

次に、本発明に係る鋼板を得るための圧延や熱処理の条件等について説明する。   Next, conditions for rolling and heat treatment for obtaining a steel sheet according to the present invention will be described.

熱間圧延に先立ってまず鋼塊を加熱するが、このときの加熱温度をAc点以上にすると完全にオーステナイト相にすることができ、未変態部分がない状態で均質化されるため、加熱温度をAc点以上とするのが好ましい。具体的には900〜1200℃に加熱するのが好ましい。そして、熱間圧延に際して薄肉端の圧延仕上げ温度を900℃以下にすると、結晶粒が適度な大きさとなって、素材の破壊靭性が十分となることから、900℃以下とするのが好ましい。圧延仕上げ温度の下限は、特に定めるものではなく、強度を汎用強度レンジに適合させることができればどのような条件でも良い。ただし、圧延仕上げ温度を700℃以上にすると、二相域加工による異方性は目立たないから、望ましい。圧延に引き続いて、加速冷却なども行って良い。加速冷却を行う場合には、圧延後直ちにあるいは若干の放置時間のあと、中心部の冷却速度を0.5〜20℃/sに制御するのが好ましい。冷却停止温度については150〜500℃を目安に制御するのが好ましい。また、圧延後に熱処理を適宜実施してもよい。熱処理を実施する場合には焼ならし処理か焼戻し処理を行うのが好ましく、温度はそれぞれ800〜1100℃、300〜700℃の温度帯を選ぶのが好ましい。 Prior to hot rolling, the steel ingot is first heated, but if the heating temperature at this time is set to Ac 3 or higher, it can be completely austenitic phase and homogenized without any untransformed part. It is preferable that the temperature be Ac 3 point or higher. Specifically, it is preferable to heat to 900 to 1200 ° C. When the rolling finish temperature at the thin-walled end is set to 900 ° C. or lower during hot rolling, the crystal grains become an appropriate size and the fracture toughness of the material becomes sufficient. The lower limit of the rolling finishing temperature is not particularly defined, and any conditions may be used as long as the strength can be adapted to the general-purpose strength range. However, when the rolling finishing temperature is set to 700 ° C. or higher, anisotropy due to two-phase region processing is not noticeable, which is desirable. Subsequent to rolling, accelerated cooling may be performed. In the case of performing accelerated cooling, it is preferable to control the cooling rate of the central part to 0.5 to 20 ° C./s immediately after rolling or after some standing time. The cooling stop temperature is preferably controlled using 150 to 500 ° C. as a guide. Moreover, you may implement heat processing suitably after rolling. When the heat treatment is performed, it is preferable to perform a normalizing process or a tempering process, and it is preferable to select temperature ranges of 800 to 1100 ° C. and 300 to 700 ° C., respectively.

本発明にかかる鋼板の一例を示す。表1に示す組成成分の鋼塊を、表2に示すそれぞれの加熱温度・仕上げ温度・加速冷却・熱処理条件にて製造した。鋼板の板厚は16mmとした。   An example of the steel plate concerning this invention is shown. Steel ingots having the composition components shown in Table 1 were produced under the heating temperature, finishing temperature, accelerated cooling, and heat treatment conditions shown in Table 2. The plate thickness of the steel plate was 16 mm.

Figure 2010047815
Figure 2010047815

Figure 2010047815
Figure 2010047815

また、表3にこのようにして得られた鋼板の降伏点YP、引張強度TS、遷移温度vTrs、フェライト分率、フェライト平均粒径、硬相と軟相の硬さ比および溶接角変形量をそれぞれ示す。   Table 3 shows the yield point YP, tensile strength TS, transition temperature vTrs, ferrite fraction, ferrite average grain size, hardness ratio of hard phase to soft phase, and welding angle deformation of the steel sheet thus obtained. Each is shown.

Figure 2010047815
Figure 2010047815

なお、得られた鋼板の引張特性を測定するために、JIS−Z−2201に記載の試験方法に準じて試片を採取した。採取位置は、板厚方向の1/4近辺およびL方向(圧延方向と平行)とした。なお、降伏点は10N/mm・sの試験速度として下降伏点を求め、明確な降伏点が現れない場合は0.2%耐力とした。引張特性の目標値は、降伏点YPが350N/mm以上、そして、引張強度TSが490〜720N/mmとした。 In addition, in order to measure the tensile property of the obtained steel plate, the test piece was extract | collected according to the test method as described in JIS-Z-2201. The sampling position was set to around ¼ of the plate thickness direction and the L direction (parallel to the rolling direction). The yield point was determined as a test speed of 10 N / mm · s, and the yield point was 0.2% proof stress when no clear yield point appeared. The target value of the tensile properties, the yield point YP is 350 N / mm 2 or more, and the tensile strength TS has a 490~720N / mm 2.

また、得られた鋼板の衝撃特性を測定するために、JIS−Z−2202に記載の試験方法に準じて試片を採取した。採取位置は、板厚方向の1/4近辺およびL方向(圧延方向と平行)で、2mmVノッチシャルピー試験片とし、様々な温度における脆性破面率を測定し、遷移温度を求めた。シャルピー特性の目標値は遷移温度が0℃以下であることとした。組織観察は光学顕微鏡で行った。観察によって得られた像を画像解析した。例えば、粒径を算出する場合には、短径と長径を測定し、その和の1/2から粒径を求めた。このようにして100視野観察して求めた個々の粒子の粒径について、算術平均したものを「平均粒径」と規定した。また、金属組織のフェライト分率は、上記と同様の観察法によって得られた100視野観察分の面積に対するフェライトの面積割合を算出することによって求めた。ベイナイト分率とマルテンサイト分率についても同様であるが、表3にはフェライト分率のみを表示した。   Moreover, in order to measure the impact characteristic of the obtained steel plate, the test piece was extract | collected according to the test method as described in JIS-Z-2202. The sampling position was around 1/4 in the plate thickness direction and the L direction (parallel to the rolling direction), and a 2 mmV notch Charpy test piece was measured. The brittle fracture surface ratio at various temperatures was measured to determine the transition temperature. The target value of the Charpy characteristic is that the transition temperature is 0 ° C. or lower. Tissue observation was performed with an optical microscope. The image obtained by observation was subjected to image analysis. For example, when calculating the particle diameter, the short diameter and the long diameter were measured, and the particle diameter was obtained from 1/2 of the sum. The arithmetic average of the particle diameters of the individual particles obtained by observing 100 visual fields in this manner was defined as “average particle diameter”. In addition, the ferrite fraction of the metal structure was obtained by calculating the area ratio of ferrite with respect to the area for 100 field observations obtained by the same observation method as described above. The same applies to the bainite fraction and martensite fraction, but Table 3 shows only the ferrite fraction.

そして、隅肉溶接による溶接角変形量は次の要領にて評価を行った。   And the welding angle deformation amount by fillet welding was evaluated in the following manner.

鋼板は、図3に示すように、T型の溶接試験片を作成し、片側を三角形の剛性の高い鋼板で拘束し、反対側を1パスの隅肉溶接を実施した。使用した溶接材料は、一般的な50キロ鋼用フラックスコアードワイヤであり、溶接条件は10.4kJ/cm(200A−26V−30cm/min)とした。溶接後の十分時間が経ったところで、試験片を定板の上に置き、図4に定義する角変形量θを、溶接開始位置・中央位置・終端位置の3箇所において、すきまゲージによって測定し、それらの平均値を溶接角変形量とした。なお、この方法で測定した通常の汎用50キロ鋼の溶接角変形量はおよそ1゜程度であり、本発明の目標とする溶接角変形レベルは0.5゜である。   As shown in FIG. 3, a T-shaped welding test piece was prepared for the steel plate, one side was constrained with a triangular steel plate having high rigidity, and the other side was subjected to 1-pass fillet welding. The welding material used was a general 50-kilo steel flux cored wire, and the welding conditions were 10.4 kJ / cm (200 A-26 V-30 cm / min). When a sufficient time has elapsed after welding, place the test piece on the surface plate, and measure the angular deformation θ defined in Fig. 4 with three clearance gauges at the welding start position, center position and end position. The average value thereof was taken as the welding angle deformation. In addition, the welding angle deformation amount of ordinary general-purpose 50 kg steel measured by this method is about 1 °, and the target welding angle deformation level of the present invention is 0.5 °.

この結果、Mark 1-eの鋼板(比較例)においては、仕上温度が910℃と高くかつ冷却条件を空冷としたため、フェライトの生成量が多く、また生成したフェライトが粒成長して平均粒径が大きくなった。このため、引張強度が小さくなった。また、硬相と軟相の硬さの比は本発明の範囲内にあるにもかかわらず、溶接角変形量も大きくなった。これは、軟相としてのフェライトと硬相の量のバランスが崩れたためであると考えられる。以上のように、Mark 1-eの鋼板は引張強度が低く、溶接角変形量も大きいので、構造用鋼板として不適切な鋼材である。   As a result, in the Mark 1-e steel plate (comparative example), the finishing temperature is as high as 910 ° C. and the cooling condition is air cooling, so the amount of ferrite produced is large, and the produced ferrite grows and the average grain size grows. Became larger. For this reason, the tensile strength was reduced. Moreover, although the hardness ratio between the hard phase and the soft phase is within the range of the present invention, the welding angle deformation amount is also increased. This is thought to be because the balance between the amount of ferrite as the soft phase and the amount of the hard phase is lost. As described above, the steel sheet of Mark 1-e has a low tensile strength and a large amount of welding angle deformation, and is therefore an inappropriate steel material as a structural steel sheet.

次に、Mark 1-fの鋼板(比較例)においては、加熱後の冷却速度を25℃/secとしたため、焼きが入りすぎてフェライトが生成されず、鋼板自体の引張強度が大きくなり、かつ靭性も大きく低下した。溶接角変形量は小さいものの構造用鋼板としては不適切な鋼材である。   Next, in the steel plate of Mark 1-f (comparative example), the cooling rate after heating was set to 25 ° C./sec. The toughness was also greatly reduced. Although the welding angle deformation is small, it is an inappropriate steel material for structural steel plates.

また、Mark12-bの鋼板(比較例)においては、水冷停止温度を120℃とし、比較的低温まで焼入れしたため、硬相と軟相の硬さ比が小さくなり、溶接角変形量が大きくなった。   Moreover, in the Mark12-b steel sheet (comparative example), the water cooling stop temperature was set to 120 ° C., and the steel was quenched to a relatively low temperature, so the hardness ratio between the hard phase and the soft phase was reduced and the welding angle deformation was increased. .

さらに、Mark 40〜46の鋼板(比較例)においては、本発明に規定する鋼組成を満足しておらず、鋼板自体の靭性が低下した。構造用鋼板としては不適切の鋼材である。   Furthermore, in the steel plates of Mark 40 to 46 (comparative examples), the steel composition defined in the present invention was not satisfied, and the toughness of the steel plate itself was lowered. It is an inappropriate steel material as a structural steel plate.

これに対して、その他のMarkで示される本発明例に係る鋼板においては、いずれも引張特性が、降伏点YPが350N/mm以上、そして、引張強度TSが490〜720N/mm級の汎用鋼であって、遷移温度vTrs、フェライト分率、フェライト平均粒径、硬相と軟相の硬さ比も適正範囲にあり、溶接角変形量も目標の0.5゜以内に収まっているので、構造用鋼板として適切であることが分かる。 On the other hand, in the steel sheets according to the examples of the present invention indicated by other marks, the tensile properties are all such that the yield point YP is 350 N / mm 2 or more and the tensile strength TS is 490 to 720 N / mm 2 class. General purpose steel with transition temperature vTrs, ferrite fraction, ferrite average particle size, hardness ratio of hard phase to soft phase, and proper welding angle deformation within 0.5 ° of target. Therefore, it turns out that it is suitable as a structural steel plate.

以上説明したように、本発明によれば、低コストで確実に隅肉溶接において溶接変形を抑制することができる鋼板を提供することができる。   As described above, according to the present invention, it is possible to provide a steel plate that can reliably suppress welding deformation in fillet welding at low cost.

溶接角変形量に及ぼす各材料物性値の影響を示すFEM計算結果である。It is a FEM calculation result which shows the influence of each material physical property value on the amount of welding angle deformation. FEM解析の計算条件を示す模式図である。It is a schematic diagram which shows the calculation conditions of FEM analysis. 溶接角変形量を評価するのに用いた試験片を示す図である。It is a figure which shows the test piece used in evaluating the welding angle deformation. 溶接角変形量の定義を示す図である。It is a figure which shows the definition of the welding angle deformation amount.

Claims (4)

質量%で、C:0.02〜0.25%、Si:0.01〜0.7%、Mn:0.3〜2%、P:0.05%以下、S:0.008%以下、Cr:1〜2.5%、Mo:0.05%以下、Nb:0.005〜0.1%、Al:0.003〜0.1%およびN:0.01%以下を含み、残部Feおよび不純物からなる化学組成を有し、金属組織がフェライト組織10〜60%およびベイナイト組織および/又はマルテンサイト組織40〜90%からなり、かつ、当該フェライト組織の平均粒径が30μm以下であって、ベイナイト組織および/又はマルテンサイト組織の硬度とフェライト組織の硬度との比が1.5以上であることを特徴とする溶接変形が小さい鋼板。   In mass%, C: 0.02 to 0.25%, Si: 0.01 to 0.7%, Mn: 0.3 to 2%, P: 0.05% or less, S: 0.008% or less Cr: 1 to 2.5%, Mo: 0.05% or less, Nb: 0.005 to 0.1%, Al: 0.003 to 0.1% and N: 0.01% or less, It has a chemical composition composed of the remaining Fe and impurities, the metal structure is composed of a ferrite structure of 10 to 60% and a bainite structure and / or a martensite structure of 40 to 90%, and the average grain size of the ferrite structure is 30 μm or less. A steel sheet with small welding deformation, wherein the ratio of the hardness of the bainite structure and / or martensite structure to the hardness of the ferrite structure is 1.5 or more. 質量%で、さらに、Ti:0.1%以下を含有することを特徴とする請求項1に記載の溶接変形が小さい鋼板。   The steel plate with small welding deformation according to claim 1, further comprising Ti: 0.1% or less by mass%. 質量%で、さらに、Cu:2%以下、Ni:3.5%以下、V:0.1%以下、B:0.004%以下およびZr:0.02%以下のうちの1種又は2種以上を含有することを特徴とする請求項1または2に記載の溶接変形が小さい鋼板。   In addition, one or two of Cu: 2% or less, Ni: 3.5% or less, V: 0.1% or less, B: 0.004% or less, and Zr: 0.02% or less. The steel plate with small weld deformation according to claim 1 or 2, wherein the steel plate contains seeds or more. 質量%で、さらに、Ca:0.004%以下、Mg:0.002%以下およびREM:0.002%以下のうちの1種又は2種以上を含有することを特徴とする請求項1から3までのいずれかに記載の溶接変形が小さい鋼板。   2. From mass%, further comprising one or more of Ca: 0.004% or less, Mg: 0.002% or less, and REM: 0.002% or less. A steel plate having a small weld deformation according to any one of 3 to 3.
JP2008214998A 2008-08-25 2008-08-25 Steel plate with small welding deformation Expired - Fee Related JP5157748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214998A JP5157748B2 (en) 2008-08-25 2008-08-25 Steel plate with small welding deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214998A JP5157748B2 (en) 2008-08-25 2008-08-25 Steel plate with small welding deformation

Publications (2)

Publication Number Publication Date
JP2010047815A true JP2010047815A (en) 2010-03-04
JP5157748B2 JP5157748B2 (en) 2013-03-06

Family

ID=42065125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214998A Expired - Fee Related JP5157748B2 (en) 2008-08-25 2008-08-25 Steel plate with small welding deformation

Country Status (1)

Country Link
JP (1) JP5157748B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451405A (en) * 2013-09-13 2015-03-25 宝钢特钢有限公司 Austenite wear-resistant steel with impact and wear resistance and hot rolled plate manufacturing method
CN104651728A (en) * 2015-02-10 2015-05-27 苏州科胜仓储物流设备有限公司 Anticorrosion steel sheet for storing equipment and preparation method of steel sheet
CN105296862A (en) * 2015-02-10 2016-02-03 苏州科胜仓储物流设备有限公司 High-strength antiseptic steel plate for shuttle car shelf and machining process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293915A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance
JP2007277623A (en) * 2006-04-05 2007-10-25 Nippon Steel Corp Method for manufacturing thick steel plate having high tensile strength of 780 mpa grade and superior weldability and low-temperature toughness
JP2008144216A (en) * 2006-12-08 2008-06-26 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293915A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance
JP2007277623A (en) * 2006-04-05 2007-10-25 Nippon Steel Corp Method for manufacturing thick steel plate having high tensile strength of 780 mpa grade and superior weldability and low-temperature toughness
JP2008144216A (en) * 2006-12-08 2008-06-26 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451405A (en) * 2013-09-13 2015-03-25 宝钢特钢有限公司 Austenite wear-resistant steel with impact and wear resistance and hot rolled plate manufacturing method
CN104651728A (en) * 2015-02-10 2015-05-27 苏州科胜仓储物流设备有限公司 Anticorrosion steel sheet for storing equipment and preparation method of steel sheet
CN105296862A (en) * 2015-02-10 2016-02-03 苏州科胜仓储物流设备有限公司 High-strength antiseptic steel plate for shuttle car shelf and machining process thereof

Also Published As

Publication number Publication date
JP5157748B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5573265B2 (en) High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP6253974B2 (en) Thick steel plate for reactor containment vessel with excellent brittle crack propagation stopping characteristics
US8226780B2 (en) Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and process for manufacturing the same
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP5385760B2 (en) Cold-formed square steel pipe with excellent earthquake resistance
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP6807690B2 (en) Square steel pipe
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
EP2385149B1 (en) Steel material for welding and method for producing same
JP6108116B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
WO2014175122A1 (en) H-shaped steel and method for producing same
KR20210010566A (en) Clad steel sheet and its manufacturing method
JP6024928B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP2012172242A (en) High-tensile steel sheet having superior toughness and method for manufacturing the same
JP5157748B2 (en) Steel plate with small welding deformation
JP5157749B2 (en) Steel plate with small welding deformation
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees