JP2010047710A - Foamed polymer-silica composite having flexibility and moldability, and heat insulation material using the same - Google Patents

Foamed polymer-silica composite having flexibility and moldability, and heat insulation material using the same Download PDF

Info

Publication number
JP2010047710A
JP2010047710A JP2008214424A JP2008214424A JP2010047710A JP 2010047710 A JP2010047710 A JP 2010047710A JP 2008214424 A JP2008214424 A JP 2008214424A JP 2008214424 A JP2008214424 A JP 2008214424A JP 2010047710 A JP2010047710 A JP 2010047710A
Authority
JP
Japan
Prior art keywords
foamed polymer
silica
foamed
composite
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008214424A
Other languages
Japanese (ja)
Inventor
Satoshi Yoda
智 依田
Takeshi Furuya
武 古屋
Sachiko Masako
祥子 眞子
Takahide Kameda
孝秀 亀田
Hirobumi Matsumoto
博文 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CI Kasei Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
CI Kasei Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CI Kasei Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical CI Kasei Co Ltd
Priority to JP2008214424A priority Critical patent/JP2010047710A/en
Publication of JP2010047710A publication Critical patent/JP2010047710A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foamed polymer-silica composite having high heat insulation properties sustainable over a long period, flexibility, and moldability together and suitably applicable to a heat insulation material, and to provide a method for producing the same. <P>SOLUTION: The foamed polymer-silica composite having flexibility and moldability includes a foamed polymer structure and porous silica gel with density of 0.23 g/cm<SP>3</SP>or less. The inside wall of porous cells in the foamed polymer structure is coated with the porous silica gel while leaving cavities inside. In the method for producing the foamed polymer-silica composite, a sol-gel reaction based on the hydrolysis of silicon alkoxide or its derivative is performed on the inner surfaces of foamed cells in the foamed polymer structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低密度の多孔質シリカゲルで、発泡ポリマー構造体の内表面を被覆し、かつ発泡ポリマー構造を完全に充填せず、内部に空隙を有するように被覆された、発泡ポリマー−シリカ複合体とその製造方法、およびそれを用いた断熱材料に関するものである。   The present invention relates to a foamed polymer-silica composite coated with a low-density porous silica gel so that the inner surface of the foamed polymer structure is coated and the foamed polymer structure is not completely filled and has voids therein. The present invention relates to a body, a manufacturing method thereof, and a heat insulating material using the body.

硬質ウレタンフォーム等の発泡ポリマーは、フロン系など、断熱性の高い気体を発泡ガスとして用いることで、高い断熱性能を示すことから、軽量かつ安価な断熱材として、特に建材等に広く用いられてきた。しかし近年、発泡ガスによるオゾン層の破壊や、地球温暖化効果への悪影響のため、その代替材料の開発が進んでいる。これまで二酸化炭素やヘキサンなどの代替発泡ガスを利用した発泡材の開発が進められているが、断熱性能や生産プロセスの安全性の問題が指摘されており、現状は広く普及するには至っていない。   Foamed polymers such as rigid urethane foams have been widely used as lightweight and inexpensive heat insulating materials, especially for building materials, because they exhibit high heat insulating performance by using high heat insulating gases such as chlorofluorocarbons as the foaming gas. It was. However, in recent years, the development of alternative materials has progressed due to the destruction of the ozone layer by foaming gas and the adverse effect on the global warming effect. Development of foam materials using alternative foaming gases such as carbon dioxide and hexane has been underway so far, but problems with thermal insulation performance and production process safety have been pointed out, and the current situation has not yet become widespread. .

発泡ポリマー系断熱材では、内部に封じられた発泡ガスの分子量が大きく、平均自由工程が小さいため、対流伝熱による熱伝達が小さい。しかし発泡ガスは徐々に外部に拡散して大気と置換されるため、断熱性能が経年的に劣化するという大きな問題があった。二酸化炭素や窒素、ヘキサンなどを代替発泡ガスに用いて調製した発泡ポリマー系断熱材では、分子が軽く対流による熱伝達が大きいため、そもそも断熱性能が低いという問題がある。   In the foamed polymer heat insulating material, the molecular weight of the foamed gas sealed inside is large, and the mean free path is small, so that heat transfer by convective heat transfer is small. However, since the foaming gas gradually diffuses to the outside and is replaced with the atmosphere, there is a big problem that the heat insulation performance deteriorates over time. A foamed polymer heat insulating material prepared by using carbon dioxide, nitrogen, hexane, or the like as an alternative foaming gas has a problem that heat insulation performance is low because the molecule is light and heat transfer by convection is large.

本発明者らはこれまで、これらの発泡ポリマー系断熱材の欠点を克服するものとして、発泡ポリマーの発泡セル内に、低密度のシリカゲル、好ましくはシリカエアロゲル状を充填した材料の開発を行ってきた(特許文献1)。シリカエアロゲルは低密度、超多孔質のシリカの総称で、優れた断熱性能(モノリス状で大気圧、常温付近での熱伝導率が0.012から0.02W/mK)を持つことで知られている。低密度シリカゲルおよびシリカエアロゲルの断熱性能は、ゲルの平均細孔径が数十ナノメートル以下に抑制されており、窒素、酸素等、大気の主成分の気体分子の平均自由工程を下回るため、対流伝熱が少ないことによる。また、シリカ骨格が低密度であるため伝導伝熱も少ない。これらの材料の断熱性能は微細構造に依存するものであるため、構造の破壊が起きない限りは断熱性能が維持され、発泡ポリマー系断熱材のような経年劣化が起きることはない。   The present inventors have so far developed a material in which a foamed polymer foam cell is filled with low-density silica gel, preferably silica airgel, to overcome the drawbacks of these foamed polymer-based heat insulating materials. (Patent Document 1). Silica aerogel is a generic name for low-density, ultra-porous silica, and is known for its excellent heat insulation performance (monolithic, atmospheric pressure, thermal conductivity around 0.012 to 0.02 W / mK near room temperature). ing. The thermal insulation performance of low-density silica gel and silica aerogel is such that the average pore diameter of the gel is suppressed to several tens of nanometers or less, which is lower than the mean free path of the main gas molecules such as nitrogen and oxygen. This is due to low heat. Further, since the silica skeleton has a low density, there is little conduction heat transfer. Since the heat insulation performance of these materials depends on the microstructure, the heat insulation performance is maintained as long as the structure does not break down, and aged deterioration unlike the foamed polymer heat insulation does not occur.

一方、低密度シリカおよびシリカエアロゲルはその低密度に起因して機械的強度が極めて小さく、また柔軟性、成形性がない極めて脆い固体である。特に断熱効果に優れたモノリス状のゲル体はハンドリングが困難である。これに対し、本発明者らはポリマーとの複合化により、高い断熱性と柔軟性、良好なハンドリング性を併せ持つ断熱材となりうることを、これまでに示している(特許文献1および2)。しかし、複雑な形状を持つ配管等を被覆する特殊な断熱材などには、一般の断熱材に求められる以上の柔軟性、成形性が求められることがある。   On the other hand, low density silica and silica aerogel are extremely brittle solids having extremely low mechanical strength due to their low density, and lacking flexibility and moldability. In particular, a monolithic gel body having an excellent heat insulating effect is difficult to handle. On the other hand, the present inventors have shown so far that by combining with a polymer, a heat insulating material having both high heat insulating properties, flexibility and good handling properties can be obtained (Patent Documents 1 and 2). However, a special heat insulating material that covers a pipe having a complicated shape may require more flexibility and formability than those required for a general heat insulating material.

一方、本発明者らの研究とは別に、最近、シリカエアロゲルを連続孔型のポリマーフォームと複合化したコンポジットの作成が報告されている(特許文献3)。この文献には、シリカエアロゲルの機械的強度が複合化により改善され、エアロゲルより柔軟性を持つこと、また高い断熱性を持つことが示唆されている。しかしこの複合体はシリカが複合体全般に渡り連続した構造となるため、基本的にはシリカエアロゲルの構造、物性が支配的となり、柔軟性、成形性は不十分である。   On the other hand, apart from the study by the present inventors, recently, preparation of a composite in which silica airgel is combined with a continuous pore polymer foam has been reported (Patent Document 3). This document suggests that the mechanical strength of silica airgel is improved by compounding, and is more flexible than airgel and has high heat insulation properties. However, since this composite has a structure in which silica is continuous over the entire composite, the structure and physical properties of silica airgel are dominant, and the flexibility and moldability are insufficient.

特開2007−332242号公報JP 2007-332242 A 特願2006−220906号公報Japanese Patent Application No. 2006-220906 国際公開WO2007/146945 A2号公報International Publication WO2007 / 146945 A2 Publication

本発明の目的は、高い断熱性能と柔軟性、成形性を併せ持ち、また断熱性能が長期に渡り維持される、断熱材料、並びにそれに好適な発泡ポリマー−シリカ複合体およびその製造方法を提供することにある。   An object of the present invention is to provide a heat insulating material having high heat insulating performance, flexibility and moldability, and maintaining the heat insulating performance for a long period of time, a foamed polymer-silica composite suitable for the heat insulating material, and a method for producing the same. It is in.

本発明者らは、上記目的を達成すべく研究を重ねてきた。その結果、発泡ポリマーのセルの内表面を低密度のシリカで被覆し、かつ、その発泡セル構造を完全に充填しない、内部に空隙を持つ複合体を調製することで、断熱性能と柔軟性、成形性を兼ね備えた材料が得られることを見出し、本発明の完成に至った。   The inventors of the present invention have repeatedly studied to achieve the above object. As a result, heat insulation performance and flexibility are achieved by preparing a composite with voids inside, which covers the inner surface of the foamed polymer cell with low-density silica and does not completely fill the foamed cell structure. The inventors have found that a material having moldability can be obtained, and have completed the present invention.

[1]すなわち、本発明は、発泡ポリマー構造体と、該発泡ポリマー構造体の発泡セルの内壁に、内部に空隙を有するように被覆された密度0.23g/cm以下の多孔質シリカゲルとを備え、柔軟性、成形性を有する、発泡ポリマー−シリカ複合体である。 [1] That is, the present invention relates to a foamed polymer structure, and a porous silica gel having a density of 0.23 g / cm 3 or less coated on the inner wall of the foamed cell of the foamed polymer structure so as to have voids therein. And a foamed polymer-silica composite having flexibility and moldability.

[2]また、本発明は、前記多孔質シリカゲルが密度0.1〜0.2g/cm以下のエアロゲルであることを特徴とする[1]項に記載の発泡ポリマー−シリカ複合体である。 [2] Further, the present invention provides the foamed polymer-silica composite according to the item [1], wherein the porous silica gel is an airgel having a density of 0.1 to 0.2 g / cm 3 or less. .

[3]また、本発明は、前記発泡ポリマー構造体の空隙率が90%以上99.9%以下であることを特徴とする[1]または[2]に記載の発泡ポリマー−シリカ複合体である。 [3] Further, the present invention provides the foamed polymer-silica composite as described in [1] or [2], wherein the foamed polymer structure has a porosity of 90% or more and 99.9% or less. is there.

[4]また、本発明は、前記発泡ポリマー構造体がポリウレタンフォームまたはその複合物を含むことを特徴とする[1]〜[3]のいずれか1項に記載の発泡ポリマー−シリカ複合体である。 [4] The present invention provides the foamed polymer-silica composite according to any one of [1] to [3], wherein the foamed polymer structure includes polyurethane foam or a composite thereof. is there.

[5]また、本発明は、前記発泡ポリマー構造体がメラミンフォームまたはその複合物を含むことを特徴とする[1]〜[3]のいずれか1項に記載の発泡ポリマー−シリカ複合体である。 [5] The foamed polymer-silica composite according to any one of [1] to [3], wherein the foamed polymer structure includes melamine foam or a composite thereof. is there.

[6]また、本発明は、シリコンアルコキシドもしくはその誘導体の加水分解によるゾルゲル反応を発泡ポリマー構造体の発泡セルの内表面で行う工程を有することを特徴とする、[1]〜[5]のいずれか1項に記載の発泡ポリマー−シリカ複合体の製造方法である。 [6] In addition, the present invention includes the step of performing a sol-gel reaction by hydrolysis of silicon alkoxide or a derivative thereof on the inner surface of the foamed cell of the foamed polymer structure. It is a manufacturing method of the foaming polymer-silica composite body of any one.

[7]また、本発明は、発泡ポリマー構造体をシリコンアルコキシドもしくはその誘導体のゾルゲル溶液に浸漬し、シリコンアルコキシドもしくはその誘導体の加水分解によるゾルゲル反応を行うものであって、シリコンアルコキシドもしくはその誘導体がゲル化する前に、前記発泡ポリマー構造体を前記ゾルゲル溶液から取り出して、前記発泡ポリマー構造体の発泡セルの内部にシリカゲルの空隙を形成する工程を有することを特徴とする、[1]〜[5]のいずれか1項に記載の発泡ポリマー−シリカ複合体の製造方法である。 [7] Further, the present invention is a method in which a foamed polymer structure is immersed in a sol-gel solution of silicon alkoxide or a derivative thereof to perform a sol-gel reaction by hydrolysis of the silicon alkoxide or a derivative thereof. Before gelling, the foamed polymer structure is removed from the sol-gel solution to form silica gel voids inside the foamed cells of the foamed polymer structure, [1] to [1], 5]. The method for producing a foamed polymer-silica composite according to any one of [5].

[8]また、本発明は、[1]〜[5]のいずれか1項に記載の発泡ポリマー−シリカ複合体を用いてなり、101kPa、20℃における熱伝導率が0.03W/mK以下である、柔軟性、成形性を有する断熱材料である。 [8] Further, the present invention uses the foamed polymer-silica composite according to any one of [1] to [5], and has a thermal conductivity of 101 kPa at 20 ° C. of 0.03 W / mK or less. It is a heat insulating material having flexibility and moldability.

[9]また、本発明は、前記材料に圧縮応力を加えて、圧縮応力を加えた方向に40%圧縮した場合、一体性が損なわれず、101kPa、20℃において0.03W/mK以下の熱伝導率が維持されることを特徴とする、[8]項に記載の柔軟性、成形性を有する断熱材料である。 [9] Further, according to the present invention, when a compressive stress is applied to the material and the material is compressed by 40% in the direction in which the compressive stress is applied, the integrity is not impaired, and a heat of not more than 0.03 W / mK at 101 kPa and 20 ° C. The heat insulating material having flexibility and moldability according to the item [8], wherein the conductivity is maintained.

本発明の発泡ポリマー−シリカ複合体によれば、高い断熱性と成形性、柔軟性を併せ持ち、かつ断熱性能の経年劣化が少ない断熱材料を提供することができる。本発明の断熱材料は、住宅用、建築用の断熱材の他、応力を加えても断熱性能が変化しない特質と柔軟性を併せ持つことから、複雑な形状を持つ配管等を被覆する保温材として有用である。   According to the foamed polymer-silica composite of the present invention, it is possible to provide a heat insulating material having both high heat insulating properties, moldability, and flexibility, and having little deterioration over time in heat insulating performance. The heat insulating material of the present invention has a property and flexibility that does not change the heat insulating performance even when stress is applied in addition to heat insulating materials for residential and architectural use, so as a heat insulating material that covers piping having a complicated shape. Useful.

本発明の実施の形態を以下に説明する。   Embodiments of the present invention will be described below.

本発明に係る発泡ポリマー−シリカ複合体に用いられる発泡ポリマー構造体としては、発泡セル構造またはその発泡壁を除去して得られる連続網目状の連続構造を持ち、柔軟性のある一体的な発泡体であれば特に限定されない。オープンポア型(オープンセル型)の発泡ポリマーの方が、内部にシリカ成分を導入する上では好適である。発泡ポリマー構造体の化学種は特に限定されないが、シリカ成分との親和性の点ではポリエーテル、もしくはポリエステル構造をもつポリウレタンフォームが、ポリマーの機械的性質および化学的安定性の点からはメラミンフォームが好適である。上記のポリウレタンフォームおよびメラミンフォームはその複合物であってもよい。   The foamed polymer structure used in the foamed polymer-silica composite according to the present invention has a foamed cell structure or a continuous network-like continuous structure obtained by removing the foamed wall, and is a flexible integral foam. If it is a body, it will not specifically limit. An open pore type (open cell type) foamed polymer is more suitable for introducing a silica component therein. The chemical species of the foamed polymer structure is not particularly limited, but a polyurethane foam having a polyether or polyester structure in terms of affinity with the silica component is a melamine foam in terms of the mechanical properties and chemical stability of the polymer. Is preferred. The polyurethane foam and melamine foam may be composites thereof.

本発明における発泡ポリマー構造体の空隙率は特に限定されないが、空隙率の低い場合は、充填するシリカに空隙を生じさせる効果が明瞭でなくなる。また、ポリマー部分の熱伝導の影響が大きくなるため、断熱材としての性能が低下する。一方、粗い網状など、極端に空隙率の高いポリマーフォームにおいても内部に空隙を生じさせることが困難になる。ポリマー構造体の空隙率は90%以上99.9%以下が好ましく、90%から99%以下がさらに好ましい。なお、発泡ポリマー構造体の空隙率は(1−発泡ポリマー構造体の密度/当該ポリマーの(骨格もしくは真)密度)の式で表される率である。   The porosity of the foamed polymer structure in the present invention is not particularly limited, but when the porosity is low, the effect of generating voids in the silica to be filled becomes unclear. Moreover, since the influence of the heat conduction of a polymer part becomes large, the performance as a heat insulating material falls. On the other hand, even in a polymer foam having an extremely high porosity such as a rough mesh, it is difficult to generate voids inside. The porosity of the polymer structure is preferably 90% or more and 99.9% or less, and more preferably 90% to 99% or less. The porosity of the foamed polymer structure is a ratio represented by the formula (1-density of foamed polymer structure / (skeleton or true) density of the polymer).

本発明における発泡ポリマー構造体の発泡密度および発泡セルの平均径は、発泡ポリマー構造体の強度、物性の点からは密度が高く発泡径が小さい方が望ましいが、あまり発泡径が小さいとシリカ成分の充填および空隙の作成に困難を来す。発泡セルの平均径は100〜1000μm程度が好適である。また、発泡密度は500〜10個/cmが好ましい。 In the present invention, the foaming density of the foamed polymer structure and the average diameter of the foamed cells are preferably higher from the viewpoint of strength and physical properties of the foamed polymer structure. Causes difficulties in filling and creating voids. The average diameter of the foam cell is preferably about 100 to 1000 μm. The foam density is preferably 500 to 10 6 pieces / cm 3 .

本発明係る発泡ポリマー−シリカ複合体における多孔質シリカゲルは、緻密なシリカの10%程度以下である0.23g/cm以下の密度を持ち、低い熱伝達性を有する低密度シリカであれば特に限定されない。多孔質シリカゲルの空隙率は90%以上が好ましい。断熱性能の点からは密度が0.1〜0.2g/cmであり、かつ平均細孔径が空気の平均自由行程を下回る60nm以下であることがさらに好ましい。このような密度、構造を持つシリカエアロゲルが、本発明における低密度シリカとしては特に好ましい。
なお、本発明の発泡ポリマー−シリカ複合体における多孔質シリカゲルの密度(見かけ密度)は、直接の測定が困難である場合、発泡ポリマー構造体を用いない以外は該発泡ポリマー−シリカ複合体の製造における条件と同一条件でシリカゲルのみの試料を作成し、この密度をもって多孔質シリカゲルの密度とする。
The porous silica gel in the foamed polymer-silica composite according to the present invention has a density of 0.23 g / cm 3 or less, which is about 10% or less of dense silica, and is particularly low-density silica having low heat transfer properties. It is not limited. The porosity of the porous silica gel is preferably 90% or more. From the viewpoint of heat insulation performance, it is more preferable that the density is 0.1 to 0.2 g / cm 3 and the average pore diameter is 60 nm or less which is lower than the average free path of air. Silica airgel having such density and structure is particularly preferable as the low density silica in the present invention.
In addition, the density (apparent density) of the porous silica gel in the foamed polymer-silica composite of the present invention is the production of the foamed polymer-silica composite except that the foamed polymer structure is not used when direct measurement is difficult. A sample of only silica gel is prepared under the same conditions as in 1. The density is defined as the density of porous silica gel.

本発明における多孔質シリカゲルは、上記の発泡ポリマー構造体の発泡セルの内壁に、内部に空隙を有して被覆されたものである。シリカゲルの被覆層の厚さは特に限定はないが、発泡セル内径の10〜40%が好ましい。また、発泡ポリマー−シリカ複合体におけるシリカ含有量は50〜99質量%が好ましい。
このようにして発泡ポリマーの発泡セル内に多孔質シリカゲルを含有(被覆)させた後の発泡ポリマー−シリカ複合体の空隙率P(以下、複合体空隙率という。)は、複合化による発泡ポリマーの体積変化が無視できると仮定し、複合体の密度をρ、発泡ポリマー構造体の骨格である密なポリマーの密度をρdp、緻密なシリカの密度をρSiO2、発泡ポリマー構造体の空隙率をPppとして、以下の式1で定義される。
P=(ρdp・(1−Ppp)+ρSiO2・Ppp−ρ)/ρSiO2・・・(式1)
ここで、ρは常法により体積と重量の測定により求められる。ρdp、およびρSiO2は使用するそれぞれの材料について公知のデータを用いて決定することができる。
複合体空隙率は、多孔質シリカゲルの空隙率および発泡セル内部の空隙に影響されるので、特に限定されるものではないが、85%以上99%以下が好ましく、90%以上98%以下がさらに好ましい。
The porous silica gel in the present invention is one in which the inner wall of the foamed cell of the foamed polymer structure is coated with a void inside. The thickness of the coating layer of silica gel is not particularly limited, but is preferably 10 to 40% of the foam cell inner diameter. Further, the silica content in the foamed polymer-silica composite is preferably 50 to 99% by mass.
The porosity P (hereinafter referred to as composite porosity) of the foamed polymer-silica composite after the porous silica gel is contained (coated) in the foamed cell of the foamed polymer in this way is the foamed polymer obtained by the composite. Assuming that the volume change is negligible, ρ is the density of the composite, ρ dp is the density of the dense polymer that is the skeleton of the foamed polymer structure, ρ SiO2 is the density of the dense silica, and the porosity of the foamed polymer structure is Is defined by the following formula 1.
P = (ρ dp · (1−P pp ) + ρ SiO 2 · P pp −ρ) / ρ SiO 2 (Formula 1)
Here, ρ is obtained by measuring volume and weight by a conventional method. ρ dp and ρ SiO2 can be determined using known data for each material used.
The composite porosity is not particularly limited because it is affected by the porosity of the porous silica gel and the void inside the foamed cell, but is preferably 85% or more and 99% or less, and more preferably 90% or more and 98% or less. preferable.

本発明における発泡ポリマー−シリカ複合体の製造方法は、それに限定されるものではないが、好ましくは(1)既存のポリマーフォームに低密度シリカの前駆体を含浸してゲル化させ、ポリマーフォーム内表面を湿潤ゲルで被覆する工程、(2)被覆した湿潤ゲルを乾燥して低密度シリカゲルを形成する工程に大別される製造工程を有するものである。   The production method of the foamed polymer-silica composite in the present invention is not limited to this, but preferably (1) the existing polymer foam is impregnated with a precursor of low density silica to be gelled, It has a manufacturing process roughly divided into a process of coating the surface with a wet gel, and (2) a process of drying the coated wet gel to form a low density silica gel.

上記の(1)工程における低密度シリカの構造を持つ湿潤ゲルの調製法は、ケイ酸塩の加水分解、シリコンアルコキシド類を主原料として用いるゾルゲル法などの溶液プロセスが好適に用いられる。本発明においては、シリコンアルコキシドもしくはその誘導体の加水分解によるゾルゲル反応を発泡ポリマー構造体の発泡セルの内表面で行うことが好ましい。本発明ではポリマーフォームの空孔を完全に充填しない構造を特徴とするが、この構造を得るためにはゲル化時間が早いほうが望ましく、触媒の種類および添加量によりゲル化時間の制御が用意なゾルゲル法を、ポリマーフォームの内表面で進行させることが特に好適である。なお、「ゾルゲル法」または「ゾルゲル反応」とは、無機物の前駆体である金属アルコキシドの加水分解、それに続く縮重合により、金属酸化物の微粒子やゲルを作製する方法または反応をいう。また、「ゾルゲル溶液」とは、上記ゾルゲル法に用いられるシリコンアルコキシドもしくはその誘導体の溶液をいう。本発明において、ゾルゲル溶液の溶媒としては、例えば、メタノール、エタノールなどのアルコール類が挙げられ、ゾルゲル溶液の当初のゾル溶液において、シリコンアルコキシドもしくはその誘導体の濃度は10〜50体積%が好ましい。   As a method for preparing a wet gel having a low-density silica structure in the step (1), a solution process such as silicate hydrolysis and a sol-gel method using silicon alkoxides as a main raw material is preferably used. In the present invention, it is preferable to perform a sol-gel reaction by hydrolysis of silicon alkoxide or a derivative thereof on the inner surface of the foamed cell of the foamed polymer structure. The present invention is characterized by a structure that does not completely fill the pores of the polymer foam, but in order to obtain this structure, it is desirable that the gelation time is fast, and the gelation time can be controlled depending on the type and addition amount of the catalyst. It is particularly preferred that the sol-gel process proceeds on the inner surface of the polymer foam. The “sol-gel method” or “sol-gel reaction” refers to a method or reaction for producing metal oxide fine particles or gel by hydrolysis of a metal alkoxide, which is an inorganic precursor, and subsequent condensation polymerization. The “sol-gel solution” refers to a solution of silicon alkoxide or a derivative thereof used in the sol-gel method. In the present invention, examples of the solvent for the sol-gel solution include alcohols such as methanol and ethanol. In the initial sol solution of the sol-gel solution, the concentration of silicon alkoxide or a derivative thereof is preferably 10 to 50% by volume.

本発明において、シリコンアルコキシドは任意のものを使用することができ、好ましくはテトラメトキシシラン、テトラエトキシシランである。また、シリコンアルコキシドの誘導体としては、例えば、テトラメトキシシランオリゴマーなどを挙げることができる。   In the present invention, any silicon alkoxide can be used, preferably tetramethoxysilane or tetraethoxysilane. Moreover, as a derivative | guide_body of a silicon alkoxide, a tetramethoxysilane oligomer etc. can be mentioned, for example.

溶液プロセスにおいてポリマーフォームの内部を完全に充填しない構造を得る方法としては、界面活性剤ミセル等の構造を空隙として利用する方法、超臨界乾燥過程で除去可能なワックスやオリゴマーをゾルゲル溶液に分散する方法、昇華性のある有機物粒子を微分産して真空除去する方法などが考えられる。本発明においては、発泡ポリマー構造体をシリコンアルコキシドもしくはその誘導体のゾルゲル溶液に浸漬し、シリコンアルコキシドもしくはその誘導体の加水分解によるゾルゲル反応において、シリコンアルコキシドもしくはその誘導体がゲル化する前に、前記発泡ポリマー構造体を前記ゾルゲル溶液から取り出して、前記発泡ポリマー構造体の発泡セルの内部に空隙を形成することが好ましい。より簡便にはポリマーフォームをいったん湿潤ゲル溶液に含浸したのち、ポリマーフォームを圧縮して過剰量のゲル前駆体を除去する方法、圧縮したポリマーフォームを所定量の前駆体に含浸した後圧力を解放する方法がある。均質な表面被覆構造を得るためには、ゲル化の進捗により粘度が急上昇する直前でこれらの操作を行うことが望ましい。そのためには前駆体のゲル化時間をあらかじめ知ることが必要である。生成したゲル構造は低密度であり、乾燥後水分の吸着や液との接触により構造が損なわれやすいため、疎水性、撥液性の付与を目的として、シランカップリング剤等によるシラノール基の疎水化を行うことが一般的である。   As a method of obtaining a structure that does not completely fill the inside of the polymer foam in the solution process, a method using a structure such as a surfactant micelle as a void, a wax or an oligomer that can be removed in a supercritical drying process is dispersed in a sol-gel solution. For example, a method of differentially producing organic particles having sublimability and removing them in vacuum can be considered. In the present invention, the foamed polymer structure is immersed in a sol-gel solution of silicon alkoxide or a derivative thereof, and in the sol-gel reaction by hydrolysis of the silicon alkoxide or the derivative thereof, before the silicon alkoxide or the derivative thereof is gelled, It is preferable that the structure is taken out from the sol-gel solution to form voids inside the foamed cells of the foamed polymer structure. More simply, after impregnating the polymer foam with the wet gel solution, compress the polymer foam to remove excess gel precursor, impregnate the compressed polymer foam with a certain amount of precursor and release the pressure There is a way to do it. In order to obtain a homogeneous surface coating structure, it is desirable to perform these operations immediately before the viscosity rapidly increases due to the progress of gelation. For that purpose, it is necessary to know in advance the gelation time of the precursor. The resulting gel structure has a low density and is easily damaged by moisture adsorption and contact with the liquid after drying. For the purpose of imparting hydrophobicity and liquid repellency, the hydrophobicity of silanol groups by silane coupling agents, etc. It is common to perform the conversion.

上記(2)の被覆した湿潤ゲルを乾燥して低密度シリカゲルを形成し、本発明の発泡ポリマー−シリカ複合体を得る方法としては、気液界面の界面張力による影響を避けて乾燥する方法として公知である各種手法を適宜用いればよく、特に限定されない。化学的乾燥制御剤添加(DCCA)法、界面活性剤を添加する方法、凍結乾燥法、超臨界乾燥法などが用いられ、中でも前述の0.1〜0.2g/cm密度のシリカが容易に得られる超臨界乾燥法が好適である。中でも低温での操作が可能で、多種のポリマーフォームに適用可能である超臨界二酸化炭素による方法が好適である。 As a method of drying the coated wet gel of the above (2) to form a low density silica gel and obtaining the foamed polymer-silica composite of the present invention, a method of drying while avoiding the influence of the interfacial tension at the gas-liquid interface. Various known methods may be appropriately used, and are not particularly limited. Chemical drying control agent addition (DCCA) method, surfactant addition method, freeze-drying method, supercritical drying method, etc. are used, among which the aforementioned 0.1-0.2 g / cm 3 density silica is easy. The supercritical drying method obtained in (1) is preferred. Among them, a method using supercritical carbon dioxide, which can be operated at a low temperature and can be applied to various polymer foams, is preferable.

このようにして得られた発泡ポリマー−シリカ複合体は、低密度なモノリス状であるが、単独のシリカエアロゲルと異なりある程度の柔軟性と曲げ強度を有する。また、低密度シリカがポリマーフォームの気泡内に分散されているため、ハンドリングが容易、クラックの発生が少ない、切削等の加工が容易などの利点を有する。   The foamed polymer-silica composite thus obtained is a low-density monolith, but has a certain degree of flexibility and bending strength unlike a single silica airgel. Further, since the low density silica is dispersed in the bubbles of the polymer foam, there are advantages such as easy handling, less occurrence of cracks, and easy processing such as cutting.

本発明の発泡ポリマー−シリカ複合体は、内部に空隙を有するよう調製されているため、完全に内部を充填した状態のシリカゲル複合ポリマーフォーム(国際公開WO2007/146945 A2号公報(特許文献3))と比較して、容易に変形し、柔軟性、成形性に優れる。空隙があるために対流伝熱が大きく、そのままの状態で比較すると若干断熱性能が劣るものの、既存の断熱材と比較して十分な高性能を有している。一方、圧縮、変形等の際には、低密度シリカが空隙を圧縮するような形で変形が起こるため、対流伝熱は相対的に減少し、密度の増大による伝導伝熱の増大を相殺する。したがって、本発明の発泡ポリマー−シリカ複合体を用いてなる断熱材料は、例えば複雑な形状を持つ配管等に容易に巻き付けられ、かつ、巻き付けによる断熱性能の低下が少ない、断熱・保温材として好適である。   Since the foamed polymer-silica composite of the present invention is prepared so as to have voids therein, the silica gel composite polymer foam in a completely filled state (International Publication WO2007 / 146945 A2 (Patent Document 3)) Compared to the above, it is easily deformed and has excellent flexibility and moldability. Due to the presence of voids, convective heat transfer is large, and although the heat insulation performance is slightly inferior when compared as it is, it has sufficiently high performance as compared with existing heat insulating materials. On the other hand, during compression, deformation, etc., deformation occurs in such a way that low-density silica compresses voids, so convective heat transfer is relatively reduced, offsetting the increase in conduction heat transfer due to increased density. . Therefore, the heat insulating material using the foamed polymer-silica composite of the present invention is easily wound around, for example, a pipe having a complicated shape, and is suitable as a heat insulating and heat insulating material with little deterioration in heat insulating performance due to winding. It is.

本発明の柔軟性、成形性を有する断熱材料は、上記の発泡ポリマー−シリカ複合体を用いてなり、101kPa(大気中)、20℃(室温付近)における熱伝導率が0.03W/mK以下、好ましくは0.012〜0.025W/mKである。なお、ここで熱伝導率は、発泡ポリエチレンを標準として使用し、熱線法より測定された熱伝導率である。   The heat insulating material having flexibility and moldability of the present invention uses the above foamed polymer-silica composite, and has a thermal conductivity of 101 kPa (in air) and 20 ° C. (near room temperature) of 0.03 W / mK or less. Preferably, it is 0.012-0.025 W / mK. Here, the thermal conductivity is a thermal conductivity measured by a hot wire method using foamed polyethylene as a standard.

また、本発明の柔軟性、成形性を有する断熱材料は、圧縮応力を加えて、圧縮応力を加えた方向に40%圧縮した場合、一体性を損なわず、101kPa(大気中)、20℃(室温付近)において0.03W/mK以下の熱伝導率が維持されることが好ましい。なお、「圧縮応力を加えた方向に40%圧縮する」とは、材料の圧縮応力を加えた方向の厚さが、{1−(圧縮後の厚さ/初期厚さ)}×100=40の式を満たす厚さに圧縮することをいう。また、ここで「一体性」とは、具体的には、発泡ポリマー構造体と、多孔質シリカゲルとの一体性をいう。   In addition, when the heat insulating material having flexibility and moldability of the present invention is compressed by 40% in the direction in which the compressive stress is applied, the integrity is not impaired and 101 kPa (in the atmosphere), 20 ° C. ( It is preferable that a thermal conductivity of 0.03 W / mK or less is maintained at around room temperature). “To compress 40% in the direction in which compressive stress is applied” means that the thickness of the material in the direction in which compressive stress is applied is {1− (thickness after compression / initial thickness)} × 100 = 40. Compressing to a thickness that satisfies the formula Here, “integrality” specifically refers to the integrity of the foamed polymer structure and the porous silica gel.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these.

[実施例1]
テトラメトキシシラン(東京化成製)、メタノール(市販特級品)、0.135mol/Lアンモニア水溶液を体積比2:4:1で混合したゾル溶液に、直径80mm、高さ10mmの円盤状に成形した市販ポリウレタンフォーム((株)ブリヂストン社製HR−50、空隙率98%、平均発泡密度50個/25mm、平均発泡径680μm)を浸漬した。上記組成のゾル溶液は、20℃で約5分でゲル化するため、ゾル溶液の混合後3分で過剰なゾル溶液をウレタンフォームを圧縮して除去し、直後のゲル化によりウレタンフォームの内壁にシリカ湿潤ゲルが担持される構造を形成した。ゲル化後直ちに乾燥を防ぐためメタノールに含浸し、60℃で2日間保持してゲルの熟成を行った。その後メタノールを数回交換しながら24時間保持することで未反応テトラメトキシシランおよびゲル化により生成する水の除去を行った。このゲルをさらに20質量%の1,1,1,3,3,3−ヘキサメチルジシラザン−メタノール溶液中、65℃で3時間保持して、表面シラノール基をトリメチルシリル基に置換する疎水化処理を行った。疎水化したゲルは、乾燥を防ぐためのメタノールと共に圧力容器内に導入し、メタノール・二酸化炭素混合系の均一相条件である80℃、20MPaで超臨界乾燥処理を行って、低密度で柔軟性のある発泡ポリマー−シリカ複合体を得た。体積と重量より求めたこの複合体の密度は0.143g/cmであった。走査型電子顕微鏡観察により、この複合体ではポリマーフォーム構造の表面を厚く覆うような形で低密度シリカが担持され、かつポリマーフォームの内部が完全に充填されていない構造が多くを占めていることがわかった。緻密なウレタンの密度を1.2g/cm、密なシリカの密度を2.3g/cmとして式1より求めた複合体空隙率は93%であった。
[Example 1]
Formed into a disk shape with a diameter of 80 mm and a height of 10 mm into a sol solution in which tetramethoxysilane (manufactured by Tokyo Chemical Industry), methanol (commercial special grade), and 0.135 mol / L aqueous ammonia solution were mixed at a volume ratio of 2: 4: 1. Commercially available polyurethane foam (HR-50 manufactured by Bridgestone Corporation, porosity 98%, average foaming density 50/25 mm, average foaming diameter 680 μm) was immersed. Since the sol solution having the above composition gels in about 5 minutes at 20 ° C., the excess sol solution is compressed and removed by compressing the urethane foam 3 minutes after mixing the sol solution, and the inner wall of the urethane foam is immediately gelled. To form a structure in which silica wet gel was supported. Immediately after gelation, the mixture was impregnated with methanol, and kept at 60 ° C. for 2 days to age the gel. Thereafter, methanol was changed several times and maintained for 24 hours to remove unreacted tetramethoxysilane and water generated by gelation. The gel was further maintained in a 20% by mass 1,1,1,3,3,3-hexamethyldisilazane-methanol solution at 65 ° C. for 3 hours to hydrophobize the surface silanol groups with trimethylsilyl groups. Went. The hydrophobized gel is introduced into a pressure vessel together with methanol to prevent drying, and supercritical drying is performed at 80 ° C. and 20 MPa, which is a homogeneous phase condition of a methanol / carbon dioxide mixed system. A foamed polymer-silica composite was obtained. The density of this composite body determined from the volume and weight was 0.143 g / cm 3 . According to scanning electron microscope observation, this composite is mostly composed of low density silica supported so as to cover the surface of the polymer foam structure thickly, and the interior of the polymer foam is not completely filled. I understood. The density of the complex urethane obtained from the formula 1 was 93% when the density of the dense urethane was 1.2 g / cm 3 and the density of the dense silica was 2.3 g / cm 3 .

[実施例2]
実施例1において、市販メラミンフォーム(ストライダー社製、空隙率93%)を使用した以外は同様に、発泡ポリマー−シリカ複合体を作製した。この複合体の密度は0.131g/cmであった。走査型電子顕微鏡観察により、この複合体ではポリマーフォーム構造の表面を厚く覆うような形で低密度シリカが担持され、かつポリマーフォームの内部が完全に充填されていない構造が多くを占めていることがわかった。緻密なメラミンの密度を1.5g/cm、密なシリカの密度を2.3g/cmとして式1より求めた複合体空隙率は92%であった。
[Example 2]
In Example 1, a foamed polymer-silica composite was prepared in the same manner except that a commercially available melamine foam (Strider, 93% porosity) was used. The density of this composite was 0.131 g / cm 3 . According to scanning electron microscope observation, this composite is mostly composed of low density silica supported so as to cover the surface of the polymer foam structure thickly, and the interior of the polymer foam is not completely filled. I understood. The density of the complex melamine obtained by the formula 1 was 92% when the density of the dense melamine was 1.5 g / cm 3 and the density of the dense silica was 2.3 g / cm 3 .

[比較例1]
実施例1において、ゾル溶液の圧縮除去を行わず、ウレタンフォーム内部にシリカ湿潤ゲルを完全に充填した状態とした以外は同様の操作を行って、発泡ポリマー−シリカ複合体を得た。この複合体の密度は0.166g/cmであった。走査型電子顕微鏡観察により、この複合体ではポリマーフォーム構造の空隙を完全に充填するよう低密度シリカが存在する箇所がほぼ全域であることがわかった。複合体空隙率は92%であった。
[Comparative Example 1]
A foamed polymer-silica composite was obtained in the same manner as in Example 1 except that the sol solution was not compressed and removed, and the urethane foam was completely filled with silica wet gel. The density of this composite was 0.166 g / cm 3 . Observation with a scanning electron microscope revealed that in this composite, the low-density silica was almost entirely present so as to completely fill the voids of the polymer foam structure. The composite porosity was 92%.

[比較例2]
実施例2において、ゾル溶液の圧縮除去を行わず、メラミンフォーム内部にシリカ湿潤ゲルを完全に充填した状態とした以外は同様の操作を行って、発泡ポリマー−シリカ複合体を得た。この複合体の密度は0.158g/cmであった。走査型電子顕微鏡観察により、この複合体ではポリマーフォーム構造の空隙を完全に充填するよう低密度シリカが存在する箇所がほぼ全域であることがわかった。複合体空隙率は91%であった。
[Comparative Example 2]
In Example 2, the same operation was performed except that the melamine foam was completely filled with the silica wet gel without compressing and removing the sol solution to obtain a foamed polymer-silica composite. The density of this composite was 0.158 g / cm 3 . Observation with a scanning electron microscope revealed that in this composite, the low-density silica was almost entirely present so as to completely fill the voids of the polymer foam structure. The composite porosity was 91%.

[比較例3]
実施例1において、ポリマーフォームを使用せず、シリカエアロゲルのみのゲル体を作成し、以降の操作を同様に行って、シリカエアロゲルを得た。このシリカエアロゲルの密度は0.166g/cmであった。シリカエアロゲルの空隙率は93%であった。
[Comparative Example 3]
In Example 1, without using polymer foam, a gel body only of silica airgel was prepared, and the subsequent operations were performed in the same manner to obtain silica airgel. The density of this silica airgel was 0.166 g / cm 3 . The porosity of the silica airgel was 93%.

試験例1
調製したゲルは、京都電子QTM−500型熱伝導率測定装置により、101kPa(大気中)、20℃の条件にて、発泡ポリエチレンを標準として使用し、熱線法による熱伝導率測定を行った。結果を表1にまとめて示した。
Test example 1
The prepared gel was subjected to thermal conductivity measurement by a hot wire method using a foamed polyethylene as a standard under the conditions of 101 kPa (in the air) and 20 ° C. with a Kyoto Electronics QTM-500 type thermal conductivity measuring device. The results are summarized in Table 1.

また、調製した試料を、20×10×80mmの棒状に成形し、三点曲げ試験機(東洋精機製作所製ストログラフR3)を用いて、支点間距離70mm、変位速度1mm/minにて、JIS−K7171に準じ三点曲げ試験を行った。試料の厚さの50%変位の時点での曲げ応力(比較例3のシリカエアロゲルは破断時)を表1にまとめて示した。   Further, the prepared sample was formed into a 20 × 10 × 80 mm rod shape, and using a three-point bending tester (Strograph R3 manufactured by Toyo Seiki Seisakusho) at a fulcrum distance of 70 mm and a displacement speed of 1 mm / min, JIS A three-point bending test was performed according to -K7171. Table 1 summarizes the bending stress at the time of 50% displacement of the thickness of the sample (when the silica airgel of Comparative Example 3 is broken).

また、調製した試料を、およそ20×20×10mmの板状に成形し、ロードセル試験機(島津製作所製オートグラフAG−5000A)を用いて、JIS K 7181に準じ圧縮応力応答試験を行った。試料の厚さの25%変位時の圧縮応力を表1にまとめて示した。   Moreover, the prepared sample was shape | molded in the plate shape of about 20x20x10 mm, and the compressive-stress response test was done according to JISK7181 using the load cell tester (Shimadzu Corporation autograph AG-5000A). Table 1 summarizes the compressive stress at 25% displacement of the sample thickness.

Figure 2010047710
Figure 2010047710

表1より、実施例1および2については、比較例1、2より低密度な複合体が形成されており、走査型電子顕微鏡観察の結果を支持している。また、三点曲げ試験、圧縮試験の結果から、実施例1、2の方がより高い柔軟性、成形性を持つことがわかる。比較例3のように、小さい応力で破断することもなく、ハンドリング性は良好であった。   From Table 1, in Examples 1 and 2, a composite having a lower density than Comparative Examples 1 and 2 was formed, and the results of observation by a scanning electron microscope are supported. Moreover, from the results of the three-point bending test and the compression test, it can be seen that Examples 1 and 2 have higher flexibility and formability. As in Comparative Example 3, the handleability was good without breaking with a small stress.

また、表1より、実施例1については比較例1より若干性能が落ちるものの、良好な断熱性能を維持していること、実施例2については比較例2と同等の低い熱伝達率を有しており、断熱材として優れた性能を持っていることがわかる。   Further, from Table 1, although the performance of Example 1 is slightly lower than that of Comparative Example 1, it maintains good heat insulation performance, and Example 2 has a low heat transfer coefficient equivalent to that of Comparative Example 2. It can be seen that it has excellent performance as a heat insulating material.

[実施例3]
実施例2について、アンモニア水溶液の濃度を1/2、即ち0.0625mol/Lとした以外は同様にして、メラミンフォーム複合エアロゲルを調製した。この複合ゲルの密度は、0.09g/cmであった。複合体空隙率は94%であった。
[Example 3]
For Example 2, a melamine foam composite airgel was prepared in the same manner except that the concentration of the aqueous ammonia solution was ½, that is, 0.0625 mol / L. The density of this composite gel was 0.09 g / cm 3 . The composite porosity was 94%.

上で調製したメラミンフォーム複合エアロゲルについて、試験例1と同様に熱伝導率測定を行い、その後、ロードセル試験機(島津製作所製オートグラフAG−5000A)を用いて、鉛直方向の厚さを基準として試料を20%圧縮し、変形させた。水平方向の変化が僅かであった。圧縮したゲルについて再度、同様にして熱伝導率測定を行った。その後、再度ロードセル試験機で試料を40%まで圧縮し、同様の熱伝導率測定を繰り返した。結果を表2に示す。   The melamine foam composite aerogel prepared above was measured for thermal conductivity in the same manner as in Test Example 1, and thereafter, using a load cell tester (Autograph AG-5000A, manufactured by Shimadzu Corporation), with reference to the thickness in the vertical direction. The sample was compressed 20% and deformed. There was little change in the horizontal direction. The thermal conductivity of the compressed gel was measured again in the same manner. Thereafter, the sample was again compressed to 40% with a load cell tester, and the same thermal conductivity measurement was repeated. The results are shown in Table 2.

Figure 2010047710
Figure 2010047710

表2より、実施例3においては、圧縮して密度を変化させても、ほぼ同程度の、高い断熱性能が保たれていることがわかる。これは、圧縮による複合体の密度の増大に伴う伝導伝熱の増加と、空隙が減少することによる対流伝熱の減少が相殺され、変形時においても熱伝導率の変化が少なかったものと考えられる。このことより、本発明における発泡ポリマー−シリカ複合体は、圧縮などによる成形、変形後も高い断熱性能を保つことができる断熱材として機能するといえる。   From Table 2, it can be seen that in Example 3, high thermal insulation performance of approximately the same level is maintained even when the density is changed by compression. This is because the increase in conduction heat transfer due to the increase in density of the composite due to compression was offset by the decrease in convection heat transfer due to the decrease in voids, and there was little change in thermal conductivity even during deformation. It is done. From this, it can be said that the foamed polymer-silica composite in the present invention functions as a heat insulating material that can maintain high heat insulating performance even after molding and deformation by compression.

本発明の発泡ポリマー−シリカ複合体は、住宅用、建築用断熱材、配管や各種機器類の保温材等に利用可能な有用な断熱材料として用いることができる。   The foamed polymer-silica composite of the present invention can be used as a useful heat insulating material that can be used as a heat insulating material for houses and buildings, a heat insulating material for piping and various devices, and the like.

Claims (9)

発泡ポリマー構造体と、該発泡ポリマー構造体の発泡セルの内壁に、内部に空隙を有するように被覆された密度0.23g/cm以下の多孔質シリカゲルとを備え、柔軟性、成形性を有する発泡ポリマー−シリカ複合体。 A foamed polymer structure, and a porous silica gel with a density of 0.23 g / cm 3 or less coated on the inner wall of the foamed cell of the foamed polymer structure so as to have voids therein, have flexibility and moldability. A foamed polymer-silica composite. 前記多孔質シリカゲルが密度0.1〜0.2g/cmのエアロゲルであることを特徴とする請求項1に記載の発泡ポリマー−シリカ複合体。 The foamed polymer-silica composite according to claim 1, wherein the porous silica gel is an airgel having a density of 0.1 to 0.2 g / cm 3 . 前記発泡ポリマー構造体の空隙率が90%以上99.9%以下であることを特徴とする請求項1または2に記載の発泡ポリマー−シリカ複合体。   The foamed polymer-silica composite according to claim 1 or 2, wherein the foamed polymer structure has a porosity of 90% or more and 99.9% or less. 前記発泡ポリマー構造体がポリウレタンフォームまたはその複合物を含むことを特徴とする請求項1〜3のいずれか1項に記載の発泡ポリマー−シリカ複合体。   The foamed polymer-silica composite according to any one of claims 1 to 3, wherein the foamed polymer structure comprises a polyurethane foam or a composite thereof. 前記発泡ポリマー構造体がメラミンフォームまたはその複合物を含むことを特徴とする請求項1〜3のいずれか1項に記載の発泡ポリマー−シリカ複合体。   The foamed polymer-silica composite according to any one of claims 1 to 3, wherein the foamed polymer structure contains melamine foam or a composite thereof. シリコンアルコキシドもしくはその誘導体の加水分解によるゾルゲル反応を発泡ポリマー構造体の発泡セルの内表面で行う工程を有することを特徴とする、請求項1〜5のいずれか1項に記載の発泡ポリマー−シリカ複合体の製造方法。   The foamed polymer-silica according to any one of claims 1 to 5, further comprising a step of performing a sol-gel reaction by hydrolysis of silicon alkoxide or a derivative thereof on the inner surface of the foamed cell of the foamed polymer structure. A method for producing a composite. 発泡ポリマー構造体をシリコンアルコキシドもしくはその誘導体のゾルゲル溶液に浸漬し、シリコンアルコキシドもしくはその誘導体の加水分解によるゾルゲル反応を行うものであって、シリコンアルコキシドもしくはその誘導体がゲル化する前に、前記発泡ポリマー構造体を前記ゾルゲル溶液から取り出して、前記発泡ポリマー構造体の発泡セルの内部にシリカゲルの空隙を形成する工程を有することを特徴とする、請求項1〜5のいずれか1項に記載の発泡ポリマー−シリカ複合体の製造方法。   A foamed polymer structure is immersed in a sol-gel solution of silicon alkoxide or a derivative thereof to perform a sol-gel reaction by hydrolysis of silicon alkoxide or a derivative thereof, and before the silicon alkoxide or a derivative thereof is gelled, the foamed polymer structure The foaming according to any one of claims 1 to 5, further comprising a step of taking out the structure from the sol-gel solution and forming a silica gel void inside the foamed cell of the foamed polymer structure. A method for producing a polymer-silica composite. 請求項1〜5のいずれか1項に記載の発泡ポリマー−シリカ複合体を用いてなり、101kPa、20℃における熱伝導率が0.03W/mK以下である、柔軟性、成形性を有する断熱材料。   A heat insulation having flexibility and moldability, comprising the foamed polymer-silica composite according to any one of claims 1 to 5, wherein the thermal conductivity at 101 kPa and 20 ° C is 0.03 W / mK or less. material. 前記材料に圧縮応力を加えて、圧縮応力を加えた方向に40%圧縮した場合、一体性が損なわれず、101kPa、20℃において0.03W/mK以下の熱伝導率が維持されることを特徴とする、請求項8に記載の柔軟性、成形性を有する断熱材料。   When compressive stress is applied to the material and the material is compressed by 40% in the direction in which the compressive stress is applied, the integrity is not impaired and a thermal conductivity of 0.03 W / mK or less is maintained at 101 kPa and 20 ° C. The heat insulating material having flexibility and formability according to claim 8.
JP2008214424A 2008-08-22 2008-08-22 Foamed polymer-silica composite having flexibility and moldability, and heat insulation material using the same Pending JP2010047710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214424A JP2010047710A (en) 2008-08-22 2008-08-22 Foamed polymer-silica composite having flexibility and moldability, and heat insulation material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214424A JP2010047710A (en) 2008-08-22 2008-08-22 Foamed polymer-silica composite having flexibility and moldability, and heat insulation material using the same

Publications (1)

Publication Number Publication Date
JP2010047710A true JP2010047710A (en) 2010-03-04

Family

ID=42065057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214424A Pending JP2010047710A (en) 2008-08-22 2008-08-22 Foamed polymer-silica composite having flexibility and moldability, and heat insulation material using the same

Country Status (1)

Country Link
JP (1) JP2010047710A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534958A (en) * 2010-06-30 2013-09-09 ダウ グローバル テクノロジーズ エルエルシー Inorganic nanoporous particles with water-dispersible polyurethane binder
KR101403088B1 (en) 2011-11-24 2014-06-09 호서대학교 산학협력단 Polyurethan complex with aerogel and Manufacturing method thereof
JP2014526002A (en) * 2011-07-13 2014-10-02 サン−ゴバン イゾベ High performance insulation
WO2015122548A1 (en) * 2014-02-11 2015-08-20 주식회사 동성화학 Composition for open-cell foam, hydrophobic open-cell foam using same, and method for producing same
CN105283495A (en) * 2013-06-14 2016-01-27 斯攀气凝胶公司 Insulating composite materials comprising an inorganic aerogel and a melamine foam
JP2016074841A (en) * 2014-10-08 2016-05-12 株式会社イノアックコーポレーション Flexible aerogel composite and production process therefor
WO2016114503A1 (en) * 2015-01-15 2016-07-21 주식회사 동성화학 Aerogel-composited melamine foam having excellent thermal conductivity and stability, and preparation method therefor
RU2737426C1 (en) * 2020-02-27 2020-11-30 Дмитрий Михайлович Абрамов Method of producing foamed polyethylene with addition of airgel
CN112940451A (en) * 2021-02-03 2021-06-11 孚莱孚(上海)新材料有限公司 Aerogel with melamine foam framework
US11072145B2 (en) 2016-01-27 2021-07-27 Aspen Aerogels, Inc. Laminates comprising reinforced aerogel composites
US11547977B2 (en) 2018-05-31 2023-01-10 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684734A (en) * 1979-12-14 1981-07-10 Takashi Ishikawa Inorganic substance-filled urethane panel
JPS63238140A (en) * 1987-03-26 1988-10-04 Matsushita Electric Works Ltd Fine porous body
JPH0632935A (en) * 1992-07-20 1994-02-08 Japan Gore Tex Inc Composite of porous polymer with metal oxide and its production
JP2002275305A (en) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd Composite porous form and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684734A (en) * 1979-12-14 1981-07-10 Takashi Ishikawa Inorganic substance-filled urethane panel
JPS63238140A (en) * 1987-03-26 1988-10-04 Matsushita Electric Works Ltd Fine porous body
JPH0632935A (en) * 1992-07-20 1994-02-08 Japan Gore Tex Inc Composite of porous polymer with metal oxide and its production
JP2002275305A (en) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd Composite porous form and its manufacturing method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534958A (en) * 2010-06-30 2013-09-09 ダウ グローバル テクノロジーズ エルエルシー Inorganic nanoporous particles with water-dispersible polyurethane binder
JP2014526002A (en) * 2011-07-13 2014-10-02 サン−ゴバン イゾベ High performance insulation
KR101403088B1 (en) 2011-11-24 2014-06-09 호서대학교 산학협력단 Polyurethan complex with aerogel and Manufacturing method thereof
JP2016521670A (en) * 2013-06-14 2016-07-25 アスペン エアロゲルズ,インコーポレイティド Composite insulation containing inorganic airgel and melamine foam
CN105283495B (en) * 2013-06-14 2019-11-15 斯攀气凝胶公司 Include the insulating composite material that inorganic aerogels and melamine bubble are continuous
CN110684235B (en) * 2013-06-14 2022-04-15 斯攀气凝胶公司 Insulating composite material containing inorganic aerogel and melamine foam
CN110669251B (en) * 2013-06-14 2022-04-15 斯攀气凝胶公司 Insulating composite material containing inorganic aerogel and melamine foam
US11808032B2 (en) 2013-06-14 2023-11-07 Aspen Aerogels, Inc. Composite insulation including an inorganic aerogel and a melamine foam
KR102366030B1 (en) 2013-06-14 2022-02-23 아스펜 에어로겔, 인코포레이티드 Insulating composite materials comprising an inorganic aerogel and a melamine foam
US11767671B2 (en) 2013-06-14 2023-09-26 Aspen Aerogels, Inc. Insulating composite materials comprising an inorganic aerogel and a melamine foam
KR20200129201A (en) * 2013-06-14 2020-11-17 아스펜 에어로겔, 인코포레이티드 Insulating composite materials comprising an inorganic aerogel and a melamine foam
JP2018039723A (en) * 2013-06-14 2018-03-15 アスペン エアロゲルズ,インコーポレイティド Composite insulation including inorganic aerogel and melamine foam
EP3514199A1 (en) 2013-06-14 2019-07-24 Aspen Aerogels, Inc. Insulating composite materials comprising an inorganic aerogel and a melamine foam
CN105283495A (en) * 2013-06-14 2016-01-27 斯攀气凝胶公司 Insulating composite materials comprising an inorganic aerogel and a melamine foam
CN110669251A (en) * 2013-06-14 2020-01-10 斯攀气凝胶公司 Insulating composite material containing inorganic aerogel and melamine foam
CN110684235A (en) * 2013-06-14 2020-01-14 斯攀气凝胶公司 Insulating composite material containing inorganic aerogel and melamine foam
US20160347924A1 (en) * 2014-02-11 2016-12-01 Dongsung Chemical Co., Ltd. Open Cell Foam Composition, Hydrophobic Open Cell Foam and a Method for Preparing Them using the Same
WO2015122548A1 (en) * 2014-02-11 2015-08-20 주식회사 동성화학 Composition for open-cell foam, hydrophobic open-cell foam using same, and method for producing same
JP2016074841A (en) * 2014-10-08 2016-05-12 株式会社イノアックコーポレーション Flexible aerogel composite and production process therefor
WO2016114503A1 (en) * 2015-01-15 2016-07-21 주식회사 동성화학 Aerogel-composited melamine foam having excellent thermal conductivity and stability, and preparation method therefor
KR101674789B1 (en) 2015-01-15 2016-11-09 주식회사 동성화학 Eerogel complexed melamine form having excellent thermal conductivity and stability and method for preparing thereof
KR20160088187A (en) * 2015-01-15 2016-07-25 주식회사 동성화학 Eerogel complexed melamine form having excellent thermal conductivity and stability and method for preparing thereof
US11072145B2 (en) 2016-01-27 2021-07-27 Aspen Aerogels, Inc. Laminates comprising reinforced aerogel composites
US11547977B2 (en) 2018-05-31 2023-01-10 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions
RU2737426C1 (en) * 2020-02-27 2020-11-30 Дмитрий Михайлович Абрамов Method of producing foamed polyethylene with addition of airgel
CN112940451A (en) * 2021-02-03 2021-06-11 孚莱孚(上海)新材料有限公司 Aerogel with melamine foam framework
CN112940451B (en) * 2021-02-03 2023-01-31 孚莱孚(上海)新材料有限公司 Aerogel with melamine foam framework

Similar Documents

Publication Publication Date Title
JP2010047710A (en) Foamed polymer-silica composite having flexibility and moldability, and heat insulation material using the same
US10384946B2 (en) Low-dust, high insulation aerogel blanket and method for producing the same
JP6330145B2 (en) Method for producing xerogel
CN113795472B (en) Ceramic foam, method for producing same and use thereof
AU2006231371B2 (en) Process for the preparation, under subcritical conditions, of monolithic xerogels and aerogels of silica/latex hybrids, modified with alkoxysilane groups
US11059262B2 (en) Method of preparing low-dust and high-insulation aerogel blanket
JP6405540B2 (en) Airgel and method for producing the same
US20110240907A1 (en) Hydropohobic aerogels
KR101800938B1 (en) Preparation method of hydrophobic silica aerogel and hydrophobic silica aerogel produced by the same
JP2008208019A (en) Porous material and method for preparing the same
JP2011162756A (en) Method for producing porous silica-fiber composite, porous silica-fiber composite, and vacuum heat insulation material using the same
JP2017114744A (en) Hydrophilic silica aerogel and manufacturing method therefor and heat insulator
CN111183113A (en) Method for producing hydrophobic silica aerogel particles
JP2019099984A (en) Heat insulation sheet and manufacturing method therefor, and electronic device and battery unit
JPWO2017038777A1 (en) Airgel composite, support member with airgel composite, and heat insulating material
JP2020060291A (en) Heat insulation material, manufacturing method thereof, electronic apparatus using it, and automobile
US11577490B2 (en) Heat insulating material, method for manufacturing same, and electronic equipment and automobile using same
CN108328620B (en) Preparation method of hydrophobic foaming cement composite silicon aerogel material
JP7232983B2 (en) Insulation sheet, manufacturing method thereof, electronic device, battery unit
JP2007182490A (en) Resin composition containing porous structure
JP2017178643A (en) Method for producing aerogel complex, aerogel complex, and support member and heat insulation material with aerogel complex
CN114180984B (en) Hydroxyapatite/silicon oxide composite aerogel and preparation method thereof
US20240117122A1 (en) Porous silicone resin and light-weight flexible flame-retardant composite material
JP6677849B1 (en) Aerogel and method for producing aerogel
TWI263619B (en) Silica aerogels with high-temperature hydrophobation synthesized by using co-precursor solutions

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20101201

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20110524

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20121206

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423