JP2010043984A - Light wavelength measuring device - Google Patents

Light wavelength measuring device Download PDF

Info

Publication number
JP2010043984A
JP2010043984A JP2008208893A JP2008208893A JP2010043984A JP 2010043984 A JP2010043984 A JP 2010043984A JP 2008208893 A JP2008208893 A JP 2008208893A JP 2008208893 A JP2008208893 A JP 2008208893A JP 2010043984 A JP2010043984 A JP 2010043984A
Authority
JP
Japan
Prior art keywords
light
beam splitter
branched
measuring device
wavelength measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008208893A
Other languages
Japanese (ja)
Inventor
Yasuyuki Suzuki
泰幸 鈴木
Akinari Ito
昭成 伊藤
Choichi Tomoshiro
暢一 伴城
Hiromi Yoshida
寛美 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008208893A priority Critical patent/JP2010043984A/en
Publication of JP2010043984A publication Critical patent/JP2010043984A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light wavelength measuring device for having a stable temperature characteristic in a wide outer temperature range by using a function of a phase compensator having a refractive index temperature dependency. <P>SOLUTION: This light wavelength measuring device includes a main beam splitter that splits a light beam to be measured into a first split light beam and a second split light beam and causes the first and second split light beams passing through different optical paths to be interfered with each other. The light wavelength measuring device further includes a wavelength plate that is disposed on at least one of the optical paths of the first and second split light beams, the phase compensator that is disposed on at least one of the optical paths of the optical paths of the first and second split light beams and has the refractive index temperature dependency, a polarized light beam splitter that splits interference light obtained by the above interfering in accordance with the polarization state, and a light sensing element that receives the interference light split by the polarized light beam splitter. The light wavelength measuring device includes a heating means attached to the phase compensator and a control circuit that controls temperature of the phase compensator by way of the heating means on the basis of the ambient temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被測定光を主ビームスプリッタにより第1分岐光と第2分岐光とに分岐し、互いに異なる光路を介した前記第1分岐光と前記第2分岐光とを前記主ビームスプリッタで干渉させると共に、前記第1分岐光の光路及び前記第2分岐光の光路の少なくとも一方の光路上に配置された波長板と、前記第1分岐光の光路及び前記2分岐光の光路の少なくとも一方の光路上に配置された屈折率温度依存性を有する位相補償器と、前記干渉で得られる干渉光をその偏光状態に応じて分岐する偏光ビームスプリッタと、この偏光ビームスプリッタで分岐された干渉光を受光する受光素子と、を具備する光波長測定装置に関するものである。   According to the present invention, the light to be measured is split into a first branched light and a second branched light by a main beam splitter, and the first branched light and the second branched light are transmitted by the main beam splitter via different optical paths. A wave plate disposed on at least one of the optical path of the first branched light and the optical path of the second branched light, and at least one of the optical path of the first branched light and the optical path of the second branched light A phase compensator having a refractive index temperature dependency disposed on the optical path, a polarization beam splitter for branching the interference light obtained by the interference according to the polarization state, and the interference light branched by the polarization beam splitter And a light wavelength measuring device including the light receiving element.

被測定光を二つに分波し再び合波する、マイケルソン型干渉計を備えた光波長測定装置は、特許文献1の開示されており周知技術である。また、マイケルソン型干渉計の光路上に配置された屈折率温度依存性を有する位相補償器による温度補償の手法も周知技術である。   An optical wavelength measuring device equipped with a Michelson interferometer that divides the light to be measured into two and combines them again is a well-known technique disclosed in Patent Document 1. A temperature compensation method using a phase compensator having a refractive index temperature dependency arranged on the optical path of a Michelson interferometer is also a well-known technique.

図2は、マイケルソン型干渉計による光波長測定装置を波長モニタとする、波長可変レーザ光源の機能ブロック図である。可変波長レーザ光源10から送出されるレーザ光R0は、ビームスプリッタ20を透過して出力光R1を与えると共に、反射光L2が波長モニタ30に被測定光R2として入力される。   FIG. 2 is a functional block diagram of a wavelength tunable laser light source using an optical wavelength measuring device using a Michelson interferometer as a wavelength monitor. Laser light R0 transmitted from the variable wavelength laser light source 10 passes through the beam splitter 20 to give output light R1, and reflected light L2 is input to the wavelength monitor 30 as measured light R2.

波長モニタ30の干渉出力光C1〜C4は、受光器40で受光され、sinλ,cosλ,-sinλ,-cosλの電気信号に変換されて演算回路50に入力され、波長測定信号λiが演算されて制御回路60に出力される。制御回路60は、波長測定信号λiと波長目標値λsの偏差に基づいて可変波長レーザ光源10から送出されるレーザ光R0の波長を調節する、フィードバック制御系を形成している。   The interference output lights C1 to C4 of the wavelength monitor 30 are received by the light receiver 40, converted into sinλ, cosλ, -sinλ, and -cosλ electrical signals and input to the arithmetic circuit 50, and the wavelength measurement signal λi is calculated. It is output to the control circuit 60. The control circuit 60 forms a feedback control system that adjusts the wavelength of the laser light R0 transmitted from the variable wavelength laser light source 10 based on the deviation between the wavelength measurement signal λi and the wavelength target value λs.

図3は、マイケルソン型干渉計による従来の光波長測定装置の光学系を示す構成図である。被測定光L0は、集光レンズ1を経由して主ビームスプリッタ2に入力され、分岐膜21で反射光L1と透過光L2に2分岐される。   FIG. 3 is a block diagram showing an optical system of a conventional optical wavelength measuring device using a Michelson interferometer. The light to be measured L0 is input to the main beam splitter 2 via the condenser lens 1, and is branched into two by the branch film 21 into the reflected light L1 and the transmitted light L2.

反射光L1は、直角プリズムミラー3で反射され、主ビームスプリッタ2に戻る。透過光L2は、直角プリズムミラー4で反射され、主ビームスプリッタ2に戻り、分岐膜21で反射光L1と合波される。   The reflected light L 1 is reflected by the right-angle prism mirror 3 and returns to the main beam splitter 2. The transmitted light L2 is reflected by the right-angle prism mirror 4, returns to the main beam splitter 2, and is combined with the reflected light L1 by the branch film 21.

分岐光L1の往路と復路中には、λ/8波長板5が挿入されており、L1の偏光状態を直線偏光から楕円偏光に変換する。ここで、λ/8波長板5は、分岐光L1の往路及び復路の双方に挿入されているため、分岐光L1が光路を往復すると偏光状態がλ/4、即ち90度変化する。   A λ / 8 wavelength plate 5 is inserted in the forward and return paths of the branched light L1, and converts the polarization state of L1 from linearly polarized light to elliptically polarized light. Here, since the λ / 8 wavelength plate 5 is inserted in both the forward path and the return path of the branched light L1, the polarization state changes by λ / 4, that is, 90 degrees when the branched light L1 reciprocates along the optical path.

分岐光L2の往路と復路中に位相補償器6が配置されている。この位相補償器6は、温度変化による分岐光L1の光路長の変化を、分岐光L2の光路長の変化と位相補償器6の屈折率温度依存性とにより相殺(補償)している。このため、温度変化が生じても干渉計の大幅な特性の変化が生ずることなく安定且つ正確な動作を行うことができる。   A phase compensator 6 is disposed in the forward and return paths of the branched light L2. The phase compensator 6 cancels (compensates) the change in the optical path length of the branched light L1 due to the temperature change by the change in the optical path length of the branched light L2 and the refractive index temperature dependency of the phase compensator 6. For this reason, even if a temperature change occurs, a stable and accurate operation can be performed without causing a significant change in the characteristics of the interferometer.

分岐膜21では、偏光状態が90度変化した分岐光L1と、偏光状態が変化していない分岐光L2とが入射して、合波されて干渉光が生成される。そして、この干渉により得られた干渉光L3,L4が所定の強度比(例えば、1対1)で分岐され、一方の干渉光L3は偏光ビームスプリッタ7に入射し、他方の干渉光L4は偏光ビームスプリッタ8に入射する。   In the branch film 21, the branched light L1 whose polarization state has changed by 90 degrees and the branched light L2 whose polarization state has not changed are incident and combined to generate interference light. The interference lights L3 and L4 obtained by this interference are branched at a predetermined intensity ratio (for example, 1: 1), one interference light L3 is incident on the polarization beam splitter 7, and the other interference light L4 is polarized. The light enters the beam splitter 8.

偏光ビームスプリッタ7に入射した干渉光L3は、その偏光状態に応じて分岐されてフォトダイオードで構成された受光素子9a及び9bに入射する。偏光ビームスプリッタ8に入射した干渉光はその偏光状態に応じて分岐されてフォトダイオードで構成された受光素子10a,10bに入射する。これら受光素子9a,9b及び10a,10bの受光結果から波長の変化が測定される。   The interference light L3 incident on the polarization beam splitter 7 is branched according to the polarization state and incident on the light receiving elements 9a and 9b formed of photodiodes. The interference light incident on the polarization beam splitter 8 is branched according to the polarization state and incident on the light receiving elements 10a and 10b formed of photodiodes. The change in wavelength is measured from the light reception results of these light receiving elements 9a, 9b and 10a, 10b.

特開2002−202203号公報Japanese Patent Laid-Open No. 2002-202203

従来手法による温度補償では、位相補償器6を設けて温度に対して安定化する構成としていても、実際の素子のパラメータの誤差を完全になくすことはできないため、残存する温度特性がある。   In the temperature compensation according to the conventional method, even if the phase compensator 6 is provided and stabilized with respect to the temperature, the error of the actual element parameter cannot be completely eliminated, so that there is a remaining temperature characteristic.

実際、金属材料の線膨張係数と硝子のような誘電体倍異質の屈折率温度係数の線形性は異なっているので、温度特性を低減する際、その適用可能な範囲に制約があり、広い外部温度範囲での温度補償に限界がある。   In fact, the linearity coefficient of the metal material and the linearity of the refractive index temperature coefficient of a dielectric doubler such as glass are different, so there are restrictions on the applicable range when reducing temperature characteristics, and a wide external There is a limit to temperature compensation in the temperature range.

このため、この光波長測定装置を図2に示した可変波長レーザ光源の波長モニタとした場合に、出力光R1の波長制御精度に限界があり、広い外部温度範囲で所定の波長精度を確保できない問題がある。   For this reason, when this optical wavelength measuring device is the wavelength monitor of the variable wavelength laser light source shown in FIG. 2, there is a limit to the wavelength control accuracy of the output light R1, and a predetermined wavelength accuracy cannot be ensured in a wide external temperature range. There's a problem.

本発明は上述した問題点を解決するためになされたものであり、屈折率温度依存性を有する位相補償器の機能を利用して、広い外部温度範囲で安定な温度特性を得ることを可能とする光波長測定装置の実現を目的としている。   The present invention has been made to solve the above-described problems, and it is possible to obtain a stable temperature characteristic in a wide external temperature range by utilizing the function of a phase compensator having a refractive index temperature dependency. The purpose is to realize an optical wavelength measuring device.

このような課題を達成するために、本発明は次の通りの構成になっている。
(1)被測定光を主ビームスプリッタにより第1分岐光と第2分岐光とに分岐し、互いに異なる光路を介した前記第1分岐光と前記第2分岐光とを前記主ビームスプリッタで干渉させると共に、前記第1分岐光の光路及び前記第2分岐光の光路の少なくとも一方の光路上に配置された波長板と、前記第1分岐光の光路及び前記2分岐光の光路の少なくとも一方の光路上に配置された屈折率温度依存性を有する位相補償器と、前記干渉で得られる干渉光をその偏光状態に応じて分岐する偏光ビームスプリッタと、この偏光ビームスプリッタで分岐された干渉光を受光する受光素子と、を具備する光波長測定装置において、
前記位相補償器に取り付けられた加熱手段と、
外部温度に基づいて、前記加熱手段を介して前記位相補償器の温度を制御する制御回路と、
を備えることを特徴とする光波長測定装置。
In order to achieve such a subject, the present invention has the following configuration.
(1) The light to be measured is branched into a first branched light and a second branched light by a main beam splitter, and the first branched light and the second branched light are interfered by the main beam splitter via different optical paths. And a wave plate disposed on at least one of the optical path of the first branched light and the optical path of the second branched light; and at least one of the optical path of the first branched light and the optical path of the second branched light A phase compensator having a refractive index temperature dependence arranged on the optical path, a polarization beam splitter that branches the interference light obtained by the interference according to the polarization state, and interference light branched by the polarization beam splitter. In a light wavelength measuring device comprising a light receiving element for receiving light,
Heating means attached to the phase compensator;
A control circuit for controlling the temperature of the phase compensator via the heating means based on an external temperature;
An optical wavelength measuring device comprising:

(2)前記外部温度に対応して前記加熱手段への操作量を予め記憶したメモリを備え、前記制御回路は前記外部温度の測定値を取得したとき、前記メモリを参照して前記加熱手段に所定の操作量を出力することを特徴とする(1)に記載の光波長測定装置。 (2) A memory in which an operation amount to the heating unit is stored in advance corresponding to the external temperature is provided, and the control circuit refers to the memory when the measured value of the external temperature is acquired. The optical wavelength measuring device according to (1), wherein a predetermined operation amount is output.

(3)前記主ビームスプリッタは、前記被測定光を第1分岐光及び第2分岐光に分岐する第1ビームスプリッタと、前記第1,第2分岐光を再び重ね合わせる第2ビームスプリッタの2個の同質ビームスプリッタにより構成され、これら第1,第2ビームスプリッタの夫々の分岐膜とこれらが形成されている基板との位置関係が、互いに反対になるように配置されていることを特徴とする(1)または(2)に記載の光波長測定装置。 (3) The main beam splitter includes a first beam splitter that branches the measured light into a first branched light and a second branched light, and a second beam splitter that overlaps the first and second branched lights again. It is composed of a plurality of homogeneous beam splitters, and the positional relationship between the branch films of the first and second beam splitters and the substrate on which they are formed is arranged to be opposite to each other. The optical wavelength measuring device according to (1) or (2).

本発明の構成によれば、次のような効果を期待することができる。
(1)屈折率温度依存性を有する既存の位相補償器を利用し、これを外部温度に基づいて温度制御することにより、光波長測定装置としての干渉計出力の温度安定性を格段の向上せしめることができる。
According to the configuration of the present invention, the following effects can be expected.
(1) Using an existing phase compensator having a refractive index temperature dependency and controlling the temperature based on the external temperature, the temperature stability of the output of the interferometer as an optical wavelength measuring device is remarkably improved. be able to.

(2)従って、本発明を適用した光波長測定装置を波長モニタとする、波長可変レーザ光源の出力波長の温度安定性を広い外部温度範囲で向上させることができる。 (2) Accordingly, it is possible to improve the temperature stability of the output wavelength of the wavelength tunable laser light source using the optical wavelength measuring device to which the present invention is applied as a wavelength monitor in a wide external temperature range.

以下、本発明を図面により詳細に説明する。図1は、本発明を適用した光波長測定装置の一実施形態を示す機能ブロック図である。図3で説明した従来構成と同一要素には同一符号を付して説明を省略する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing an embodiment of an optical wavelength measuring device to which the present invention is applied. The same elements as those of the conventional configuration described with reference to FIG.

従来構成に対比した本発明の特徴部の第1は、位相補償器6に取り付けられた加熱手段100にある。加熱手段100としては、ニクロム線等の抵抗体ヒータまたはペルチェ素子でもよい。   The first feature of the present invention compared to the conventional configuration is the heating means 100 attached to the phase compensator 6. The heating means 100 may be a resistor heater such as a nichrome wire or a Peltier element.

制御回路200は、この加熱手段100に電流等の操作量Mを出力する。制御回路200は、外部温度に対応して加熱手段100への操作量をテーブル手段等により予め記憶したメモリ300を備え、外部温度センサ400からの測定値Tを取得したとき、メモリ300を参照して加熱手段100に所定の操作量Mを出力する。   The control circuit 200 outputs an operation amount M such as current to the heating means 100. The control circuit 200 includes a memory 300 in which the operation amount to the heating unit 100 corresponding to the external temperature is stored in advance by a table unit or the like, and refers to the memory 300 when the measured value T is acquired from the external temperature sensor 400. Then, a predetermined operation amount M is output to the heating means 100.

外部温度センサ400は1個を例示したが、装置近傍に複数個を配置し、各センサの測定値を演算処理(平均演算等)した測定値Tを用いることもできる。   Although one external temperature sensor 400 is exemplified, a plurality of measurement values T obtained by calculating a plurality of sensor values (average calculation etc.) by arranging a plurality of external temperature sensors in the vicinity of the apparatus can also be used.

従来構成に対比した本発明の特徴部の第2は、主ビームスプリッタ2の構成にある。即ち、主ビームスプリッタ2は、透明部材の直角プリズム2a,2bの互いの傾斜部を、光学接着層500を介して接着し、この接着層を基板として同質の第1分岐膜601及び第2分岐膜602を挟んだ形状となっている。   The second feature of the present invention compared to the conventional configuration is the configuration of the main beam splitter 2. That is, the main beam splitter 2 adheres the inclined portions of the right-angle prisms 2a and 2b, which are transparent members, via the optical adhesive layer 500, and uses the adhesive layer as a substrate to make the first branch film 601 and the second branch of the same quality. The film 602 is sandwiched.

第1分岐膜601及び第2分岐膜602の位置関係は、基板を挟んで互いに反対になるように配置されている。第1分岐膜601と基板により第1ビームスプリッタが形成され、第2分岐膜602と基板により第2ビームスプリッタが形成されている。   The positional relationship between the first branch film 601 and the second branch film 602 is arranged to be opposite to each other with the substrate interposed therebetween. A first beam splitter is formed by the first branch film 601 and the substrate, and a second beam splitter is formed by the second branch film 602 and the substrate.

第1ビームスプリッタは、被測定光L0を、第1分岐光L1及び第2分岐光L2に分岐する。第2ビームスプリッタは、直角プリズムで反射されて返される第1,第2分岐光を再び重ね合わせる。   The first beam splitter branches the measured light L0 into the first branched light L1 and the second branched light L2. The second beam splitter again superimposes the first and second branched lights reflected and returned by the right-angle prism.

このような主ビームスプリッタの構成により、分岐膜601で分岐されてから分岐膜602に入射するまでに、分岐光L1,L2の各々が1度ずつ光学接着剤層500を通過する。このため、温度変化が生じた場合に分岐光L1,L2の何れか一方のみの光路長が何れか他方の光路長に比べて大きく変動するといった事態を防止することができ、これにより安定且つ正確な動作を行うことができる。   With such a main beam splitter configuration, each of the branched lights L1 and L2 passes through the optical adhesive layer 500 once after being branched by the branch film 601 and before entering the branch film 602. For this reason, when a temperature change occurs, it is possible to prevent a situation in which the optical path length of only one of the branched lights L1 and L2 greatly fluctuates as compared with the other optical path length, thereby stably and accurately. Operation can be performed.

更に、このような主ビームスプリッタの構成により、被測定光L0が主ビームスプリッタ2の第1分岐膜601で分岐される際に、分岐光L1,L2間の位相差が生じたとしても、その位相差は分岐光L1,L2がビームスプリッタ2の第2分岐膜602に入射することにより補償され、延干渉計の位相が被測定光L0の偏光状態によって変化する現象(PDFS)も低減される。   Further, with such a configuration of the main beam splitter, even when a phase difference between the branched lights L1 and L2 occurs when the measured light L0 is branched by the first branch film 601 of the main beam splitter 2, The phase difference is compensated by the branched lights L1 and L2 entering the second branched film 602 of the beam splitter 2, and the phenomenon (PDFS) in which the phase of the extended interferometer changes depending on the polarization state of the light to be measured L0 is also reduced. .

本発明を適用した光波長測定装置の一実施形態を示す機能ブロック図である。It is a functional block diagram which shows one Embodiment of the optical wavelength measuring apparatus to which this invention is applied. 干渉計による光波長測定装置を波長モニタとする、波長可変レーザ光源の機能ブロック図である。It is a functional block diagram of a wavelength tunable laser light source using an optical wavelength measuring device using an interferometer as a wavelength monitor. マイケルソン型干渉計による従来の光波長測定装置の光学系を示す構成図である。It is a block diagram which shows the optical system of the conventional optical wavelength measuring apparatus by a Michelson type interferometer.

符号の説明Explanation of symbols

1 集光レンズ
2 主ビームスプリッタ
3,4 直角プリズムミラー
5 λ/8波長板
6 位相補償器
7,8 偏向ビームスプリッタ
8a,8b 受光素子
9a,9b 受光素子
100 加熱手段
200 制御回路
300 メモリ
400 外部温度センサ
500 光学接着層
601,602 分岐膜
DESCRIPTION OF SYMBOLS 1 Condensing lens 2 Main beam splitter 3, 4 Right angle prism mirror 5 (lambda) / 8 wavelength plate 6 Phase compensator 7, 8 Deflection beam splitter 8a, 8b Light receiving element 9a, 9b Light receiving element 100 Heating means 200 Control circuit 300 Memory 400 External Temperature sensor 500 Optical adhesive layer 601 602 Branched film

Claims (3)

被測定光を主ビームスプリッタにより第1分岐光と第2分岐光とに分岐し、互いに異なる光路を介した前記第1分岐光と前記第2分岐光とを前記主ビームスプリッタで干渉させると共に、前記第1分岐光の光路及び前記第2分岐光の光路の少なくとも一方の光路上に配置された波長板と、前記第1分岐光の光路及び前記2分岐光の光路の少なくとも一方の光路上に配置された屈折率温度依存性を有する位相補償器と、前記干渉で得られる干渉光をその偏光状態に応じて分岐する偏光ビームスプリッタと、この偏光ビームスプリッタで分岐された干渉光を受光する受光素子と、を具備する光波長測定装置において、
前記位相補償器に取り付けられた加熱手段と、
外部温度に基づいて、前記加熱手段を介して前記位相補償器の温度を制御する制御回路と、
を備えることを特徴とする光波長測定装置。
The light to be measured is branched into a first branched light and a second branched light by a main beam splitter, and the first branched light and the second branched light through different optical paths are caused to interfere with each other by the main beam splitter, A wave plate disposed on at least one of the optical path of the first branched light and the optical path of the second branched light; and on at least one optical path of the optical path of the first branched light and the optical path of the second branched light. A phase compensator having a refractive index temperature dependency, a polarization beam splitter that branches the interference light obtained by the interference according to the polarization state, and a light receiving device that receives the interference light branched by the polarization beam splitter. In an optical wavelength measuring device comprising an element,
Heating means attached to the phase compensator;
A control circuit for controlling the temperature of the phase compensator via the heating means based on an external temperature;
An optical wavelength measuring device comprising:
前記外部温度に対応して前記加熱手段への操作量を予め記憶したメモリを備え、前記制御回路は前記外部温度の測定値を取得したとき、前記メモリを参照して前記加熱手段に所定の操作量を出力することを特徴とする請求項1に記載の光波長測定装置。   A memory that pre-stores an operation amount to the heating unit corresponding to the external temperature is provided, and the control circuit refers to the memory when the measured value of the external temperature is acquired, and performs a predetermined operation on the heating unit. The optical wavelength measuring device according to claim 1, wherein the optical wavelength measuring device outputs a quantity. 前記主ビームスプリッタは、前記被測定光を第1分岐光及び第2分岐光に分岐する第1ビームスプリッタと、前記第1,第2分岐光を再び重ね合わせる第2ビームスプリッタの2個の同質ビームスプリッタにより構成され、これら第1,第2ビームスプリッタの夫々の分岐膜とこれらが形成されている基板との位置関係が、互いに反対になるように配置されていることを特徴とする請求項1または2に記載の光波長測定装置。   The main beam splitter includes two homogeneous beams: a first beam splitter that branches the measured light into a first branched light and a second branched light, and a second beam splitter that superimposes the first and second branched lights again. 2. A beam splitter, wherein the first and second beam splitters are arranged so that the positional relationship between each branch film and the substrate on which they are formed is opposite to each other. 3. The optical wavelength measuring device according to 1 or 2.
JP2008208893A 2008-08-14 2008-08-14 Light wavelength measuring device Pending JP2010043984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208893A JP2010043984A (en) 2008-08-14 2008-08-14 Light wavelength measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208893A JP2010043984A (en) 2008-08-14 2008-08-14 Light wavelength measuring device

Publications (1)

Publication Number Publication Date
JP2010043984A true JP2010043984A (en) 2010-02-25

Family

ID=42015478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208893A Pending JP2010043984A (en) 2008-08-14 2008-08-14 Light wavelength measuring device

Country Status (1)

Country Link
JP (1) JP2010043984A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2365045A1 (en) 2010-03-01 2011-09-14 Nitto Denko Corporation Protective Sheet and Use Thereof
CN103411689A (en) * 2013-08-29 2013-11-27 浙江理工大学 Laser wavelength direct measurement method and device based on single frequency orthogonal linearly polarized light
US20210199685A1 (en) * 2018-08-28 2021-07-01 Ball Aerospace & Technologies Corp. Optical wind lidar-based multifunctional instrument for enhanced measurements and prediction of clear air turbulence and other wind-based aviation related phenomena
JP2022098280A (en) * 2020-12-21 2022-07-01 横河電機株式会社 Interferometer and optical apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779983A (en) * 1986-03-05 1988-10-25 Chelsea Instruments Limited Beam splitter and spectrometer containing the beam splitter
JP2002202203A (en) * 2000-12-28 2002-07-19 Anritsu Corp Optical wavelength measuring device
JP2006502391A (en) * 2002-10-11 2006-01-19 アジレント・テクノロジーズ・インク Method and apparatus for monitoring an interferometer
JP2007280121A (en) * 2006-04-07 2007-10-25 Okano Electric Wire Co Ltd Temperature control system, and temperature controller applied to temperature control system
JP2007306371A (en) * 2006-05-12 2007-11-22 Yokogawa Electric Corp Delay interferometer and demodulator
JP2009109393A (en) * 2007-10-31 2009-05-21 Yokogawa Electric Corp Interferometer and wavelength measurement device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779983A (en) * 1986-03-05 1988-10-25 Chelsea Instruments Limited Beam splitter and spectrometer containing the beam splitter
JP2002202203A (en) * 2000-12-28 2002-07-19 Anritsu Corp Optical wavelength measuring device
JP2006502391A (en) * 2002-10-11 2006-01-19 アジレント・テクノロジーズ・インク Method and apparatus for monitoring an interferometer
JP2007280121A (en) * 2006-04-07 2007-10-25 Okano Electric Wire Co Ltd Temperature control system, and temperature controller applied to temperature control system
JP2007306371A (en) * 2006-05-12 2007-11-22 Yokogawa Electric Corp Delay interferometer and demodulator
JP2009109393A (en) * 2007-10-31 2009-05-21 Yokogawa Electric Corp Interferometer and wavelength measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2365045A1 (en) 2010-03-01 2011-09-14 Nitto Denko Corporation Protective Sheet and Use Thereof
CN103411689A (en) * 2013-08-29 2013-11-27 浙江理工大学 Laser wavelength direct measurement method and device based on single frequency orthogonal linearly polarized light
US20210199685A1 (en) * 2018-08-28 2021-07-01 Ball Aerospace & Technologies Corp. Optical wind lidar-based multifunctional instrument for enhanced measurements and prediction of clear air turbulence and other wind-based aviation related phenomena
JP2022098280A (en) * 2020-12-21 2022-07-01 横河電機株式会社 Interferometer and optical apparatus
JP7284741B2 (en) 2020-12-21 2023-05-31 横河電機株式会社 Interferometers and optics
US11933609B2 (en) 2020-12-21 2024-03-19 Yokogawa Electric Corporation Interferometer and optical instrument with integrated optical components

Similar Documents

Publication Publication Date Title
US6043883A (en) Wavemeter and an arrangement for the adjustment of the wavelength of the signals of an optical source
EP0646767B1 (en) Interferometric distance measuring apparatus
US8520218B2 (en) Measuring method of refractive index and measuring apparatus of refractive index
JP2009300263A (en) Two-wavelength laser interferometer and method of adjusting optical axis in the same
JP6558821B1 (en) Optical lockers
KR100922577B1 (en) Portable biophotonic sensor measurement system
JP2013501254A (en) Optical transceiver and fiber optic gyro
JP2010043984A (en) Light wavelength measuring device
US9651359B2 (en) Dual wavelength dual interferometer with combiner-splitter
JP3347644B2 (en) Laser light source device
US7423760B2 (en) Method and apparatus for monitoring an interferometer
JP5141189B2 (en) Interferometer and wavelength measuring device
US9113507B2 (en) Light source apparatus and method of controlling the same
JP6656914B2 (en) Detector, interrogator, and strain detection system
US20130066595A1 (en) Measurement apparatus and measurement method
JP7284741B2 (en) Interferometers and optics
US11143819B2 (en) Optical filter control
JP2014123669A (en) Light source device, control method, and shape measuring device
JP2006210826A (en) Optical device, control method thereof, laser module, laser apparatus, control unit thereof, and control method of laser apparatus
TW387055B (en) Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts
US20100177795A1 (en) Apparatus and method for stabilizing frequency of laser
JPH10197570A (en) Current measuring device with optical fiber
JPH0512743Y2 (en)
JP2006300803A (en) Wavelength monitor
JPH01238081A (en) Wavelength stabilized laser oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130131