JP2010043557A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2010043557A
JP2010043557A JP2008206514A JP2008206514A JP2010043557A JP 2010043557 A JP2010043557 A JP 2010043557A JP 2008206514 A JP2008206514 A JP 2008206514A JP 2008206514 A JP2008206514 A JP 2008206514A JP 2010043557 A JP2010043557 A JP 2010043557A
Authority
JP
Japan
Prior art keywords
homogeneity
gas flow
control device
torque
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008206514A
Other languages
Japanese (ja)
Inventor
Osamu Mukaihara
修 向原
Junichi Furuya
純一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008206514A priority Critical patent/JP2010043557A/en
Publication of JP2010043557A publication Critical patent/JP2010043557A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform optimal gas flow control by correcting the homogeneity of a direct injection engine which is changed accompanied by variations machine difference and deterioration with time. <P>SOLUTION: This control device include a homogeneity detection means measuring or predicting the homogeneity of an air fuel mixture, a homogeneity comparison means comparing homogeneity obtained by the means measuring or predicting the homogeneity of the air fuel mixture and target homogeneity for each predetermined air fuel ratio, a torque detection means measuring or predicting torque generated by a direct injection engine, a torque comparison means comparing torque and target torque set for each predetermined operation zone, and a gas flow control means controlling the intensity of a gas flow. In the control devices, this gas flow control device using homogeneity measurement is characterized by intermittently or continuously gas flow control means based on homogeneity detected by the homogeneity detection means, torque or control target value of the gas flow control means set for each operation zone. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関のガス流動を制御する制御装置に関する。   The present invention relates to a control device that controls gas flow in an internal combustion engine.

従来の技術では、特許文献1記載のように、触媒前後に排気ガスセンサから検出した排気ガス成分から触媒浄化率の算出を行い、この触媒浄化率に基づいてガス流動の制御を行うことが述べられている。また、筒内直噴ガソリンエンジンに限らず一般的な内燃機関では、燃料と空気で形成される混合気をむらなく均一に混ぜることで、出力性能や燃費性能の改善を図ることが知られている。この混合気をむらなく均一に混ざり合う具合のことを均質度と定義し、均質度が高いほど良好な混ざり具合を指す。均質度の向上手段としては、燃焼室内へ吸入される空気の流れ(ガス流動)を強くし、スワール流またはタンブル流などを積極的に利用する、SCV(スワールコントロールバルブ)やTGV(タンブルジェネレーテッドバルブ)等に代表されるガス流動制御弁は公知である。一般的に、ガス流動制御弁は、エンジンの運転状態(エンジン回転速度や吸気管圧力)に基づいて制御を行う。これは、ガス流動を強くすることで、均質度は向上するが、同時にガス流動制御弁が吸気経路を塞ぐため、筒内へ吸入される空気量が低下させる作用があるためである。つまり、均質度の向上分と筒内へ吸入される空気量の損失分の差で出力特性は決まると言える。   In the conventional technology, as described in Patent Document 1, it is described that the catalyst purification rate is calculated from the exhaust gas components detected from the exhaust gas sensor before and after the catalyst, and the gas flow is controlled based on the catalyst purification rate. ing. In addition, in general internal combustion engines as well as in-cylinder direct-injection gasoline engines, it is known to improve output performance and fuel consumption performance by uniformly mixing the air-fuel mixture formed by fuel and air. Yes. The degree of uniform mixing of the air-fuel mixture is defined as homogeneity, and the higher the degree of homogeneity, the better the degree of mixing. As a means of improving the homogeneity, SCV (Swirl Control Valve) or TGV (Tumble Generated) which strengthens the flow of air (gas flow) sucked into the combustion chamber and actively uses swirl flow or tumble flow, etc. A gas flow control valve represented by a valve) or the like is known. In general, the gas flow control valve performs control based on the operating state of the engine (engine rotational speed and intake pipe pressure). This is because the homogeneity is improved by strengthening the gas flow, but at the same time, the gas flow control valve closes the intake path, so that the amount of air sucked into the cylinder is reduced. That is, it can be said that the output characteristics are determined by the difference between the improvement in homogeneity and the loss in the amount of air sucked into the cylinder.

特開平9−195816号公報JP-A-9-195816

しかしながら、従来の手法では、機差ばらつきや経時劣化などにより、同じガス流動の強さであっても、均質度が必ずしも同じ様になると限らない。すなわち、環境変化(気温やエンジン水温,燃料となるガソリン性状など)の要因を含めて考えると、従来の手法では、所望の均質度を得るガス流動制御が行われているとは言えない。   However, in the conventional method, the homogeneity is not always the same even with the same gas flow strength due to machine difference variation and deterioration with time. That is, considering factors including environmental changes (temperature, engine water temperature, fuel gasoline properties, etc.), it cannot be said that gas flow control for obtaining a desired homogeneity is performed in the conventional method.

本発明の目的は、均質度を向上させることにより、エンジンの出力性能や、排気性能を向上させることである。   An object of the present invention is to improve engine output performance and exhaust performance by improving homogeneity.

上記課題を解決する本発明は、ガス流動の強さを制御するガス流動制御装置を備えた内燃機関の制御装置であって、混合気の均質度を計測または予測する均質度検出手段と、均質度検出手段から得た均質度と予め設定された空燃比毎の目標均質度とを比較する均質度比較手段と、ガス流動制御装置を制御するガス流動制御手段とを備え、均質度検出手段により検出された均質度に基づき、ガス流動制御手段を断続的または連続的に制御することを特徴とする制御装置である。   The present invention for solving the above problems is a control device for an internal combustion engine provided with a gas flow control device for controlling the strength of gas flow, a homogeneity detection means for measuring or predicting the homogeneity of an air-fuel mixture, and a homogeneity A homogeneity comparison means for comparing the homogeneity obtained from the degree detection means with a target homogeneity for each preset air-fuel ratio, and a gas flow control means for controlling the gas flow control device. The control device is characterized in that the gas flow control means is intermittently or continuously controlled based on the detected homogeneity.

本発明によれば、エンジンの出力性能や、排気性能を向上させることができる。   According to the present invention, engine output performance and exhaust performance can be improved.

以下に本発明の実施例を説明する。   Examples of the present invention will be described below.

図1と図2に、本発明の実施例1に関する構成図を示す。なお、本実施例では主として多気筒エンジンを想定しているが、以降の図では簡素化のため1つの気筒について説明する。また、均質度検出手段として、排気ガス中に残留する酸素濃度(以下、残留酸素濃度)を検出する酸素濃度センサを用い、ガス流動制御手段として、TGVを用いて説明を行う。ここで、均質度検出手段としては、排出ガス中に残留する残留酸素濃度のみならず、一酸化炭素濃度、または排気温度など均質度と相関関係がある項目を計測できる手段であればよく、直接的であっても間接的であっても混合気の均質度を把握できればよい。   FIG. 1 and FIG. 2 are configuration diagrams relating to the first embodiment of the present invention. In the present embodiment, a multi-cylinder engine is mainly assumed. In the following drawings, one cylinder will be described for the sake of simplicity. Further, description will be made using an oxygen concentration sensor that detects an oxygen concentration remaining in the exhaust gas (hereinafter referred to as residual oxygen concentration) as the homogeneity detection means, and TGV as the gas flow control means. Here, the homogeneity detection means may be any means that can measure not only the residual oxygen concentration remaining in the exhaust gas, but also an item having a correlation with the homogeneity such as carbon monoxide concentration or exhaust temperature. It is only necessary to be able to grasp the homogeneity of the air-fuel mixture whether it is target or indirect.

大気中の空気は吸気経路(102)から、エアフィルタ(図示せず)を経由し燃焼室(111)へ吸入される。更に吸気経路(102)内には、吸入空気量を計測するエアフローセンサ(103)や吸入空気量の調整を行う電制スロットル弁(104)が設けられており、コントロールユニット(201)は吸入空気量の算出や電制スロットル弁(104)の制御を行う。電制スロットル弁(104)の下流側には、ガス流動制御制御弁であるTGV(107)と仕切り板(108)が備わっており、吸気弁(109)近傍に出口が開口している副吸気通路を設けることで、燃焼室(111)へ吸入した空気にタンブル流が発生できるようにしている。このとき、ガス流動の形成を制御するため、副吸気通路から供給される空気量を制御する必要があり、TGV(107)を用い、本来の吸気経路(102)から供給される空気量との比率が制御できるようにしている。一方、燃料は燃料タンク(図示せず)から汲上げを行うリフトポンプ(図示せず)により高圧燃料ポンプ(119)へ送られ、高圧燃料ポンプ(119)によって昇圧された後、ギャラリー(120)介して燃料噴射弁(122)で燃焼室内(111)へ直接噴射される。この際の噴射量は、吸入空気量とコントロールユニット(201)に予め設定された目標空燃比によって決定される。ギャラリー(120)にはその他にギャラリー内の燃料圧を計測する燃料圧センサ(121)が備わっており、コントロールユニット(201)によって適正な燃料圧になるよう高圧燃料ポンプの制御が行われる。燃焼室(111)内に吸入された空気と燃料噴射弁(122)から噴射された燃料は、燃料室(111)内で燃焼し易い混合気となり、コントロールユニット(201)は適正な点火タイミングを算出し、点火信号を点火コイル(123)へ出力する。点火コイル(123)が昇圧した点火信号は点火プラグ(124)によって着火し、混合気は燃焼室(111)で燃焼した後、排気経路(125)内に排出ガスとして排出される。更に排気経路(125)には触媒(127)が備わっており、触媒(127)によって浄化された排出ガスは再び大気に開放される。触媒(127)には、浄化能力を最大源に引き出せる空気と燃料の割合(以下、空燃比)が存在するため、コントロールユニット(201)は、触媒(127)の上流側に備えられる酸素濃度センサ(126)からの空燃比情報を基に前記空燃比の目標値の間で所謂フィードバックに制御を行っている。また、触媒(127)の上流側には、均質度検出手段となる酸素濃度センサ(126)が備わっており、前記残留酸素濃度の検出を行う。燃焼によって生じる燃焼室(111)内の圧力(以下、燃焼圧)によって、ピストン(112)は下方向へ押し下がる力が働き、この力はコネクティングロッド(113)を介しクランクシャフト(図示なし)へ伝えられ、回転運動へ変換され、これがエンジン出力となる。尚、前記燃焼圧を計測する燃焼圧センサ(図示なし)は、トルク検出手段(128)として使用する。燃焼クランクシャフト(図示なし)には、回転運動が滑らかに行われるようフライホイール(114)が備わっており、フライホイール外周部に設けられているエッジをクランク角センサ(115)が検知する。クランクシャフト(図示なし)の回転力はベルトやチェーンなどによってエンジン本体(101)上部のカムシャフト(117a,117b)に伝えられ、カムシャフトも回転を行う。カムシャフトは、エンジンの構成によって備わる位置や本数が異なるが、本図では、カムシャフトがエンジン本体(101)上部に備わり、吸気・排気に個別のカムシャフトが備わる所謂ダブルオーバーヘッドカム式(DOHC)の直噴エンジンを示している。カムシャフト(図示なし)上に設けられている楕円形のカム(117a)の形状に応じた吸気弁(109)は、移動特性を得る。同様に排気カム(117b)が設けられており、同様に排気弁(110)は排気カム形状に応じた移動特性を得る。クランクシャフト同様にカムシャフトの回転についても、コントロールユニットはカム角センサ(116a,116b)によって検出を行う。   Air in the atmosphere is sucked from the intake passage (102) into the combustion chamber (111) via an air filter (not shown). Further, an air flow sensor (103) for measuring the amount of intake air and an electric throttle valve (104) for adjusting the amount of intake air are provided in the intake path (102), and the control unit (201) is provided with intake air. The amount is calculated and the electric throttle valve (104) is controlled. On the downstream side of the electric throttle valve (104), a TGV (107) that is a gas flow control valve and a partition plate (108) are provided, and an auxiliary intake having an outlet opened in the vicinity of the intake valve (109). By providing the passage, a tumble flow can be generated in the air sucked into the combustion chamber (111). At this time, in order to control the formation of the gas flow, it is necessary to control the amount of air supplied from the auxiliary intake passage, and using the TGV (107), the amount of air supplied from the original intake path (102) The ratio can be controlled. On the other hand, the fuel is sent from a fuel tank (not shown) to a high-pressure fuel pump (119) by a lift pump (not shown) that pumps up the fuel, and after being pressurized by the high-pressure fuel pump (119), the gallery (120) And is directly injected into the combustion chamber (111) by the fuel injection valve (122). The injection amount at this time is determined by the intake air amount and the target air-fuel ratio preset in the control unit (201). In addition, the gallery (120) is provided with a fuel pressure sensor (121) for measuring the fuel pressure in the gallery, and the high pressure fuel pump is controlled by the control unit (201) so as to obtain an appropriate fuel pressure. The air sucked into the combustion chamber (111) and the fuel injected from the fuel injection valve (122) become an air-fuel mixture that is easily combusted in the fuel chamber (111), and the control unit (201) has an appropriate ignition timing. The ignition signal is calculated and output to the ignition coil (123). The ignition signal boosted by the ignition coil (123) is ignited by the spark plug (124), and the air-fuel mixture is combusted in the combustion chamber (111) and then discharged into the exhaust path (125) as exhaust gas. Further, the exhaust path (125) is provided with a catalyst (127), and the exhaust gas purified by the catalyst (127) is again opened to the atmosphere. Since the catalyst (127) has a ratio of air and fuel (hereinafter referred to as air-fuel ratio) that can draw the purification capacity to the maximum source, the control unit (201) is provided with an oxygen concentration sensor provided upstream of the catalyst (127). Based on the air-fuel ratio information from (126), so-called feedback control is performed between the air-fuel ratio target values. Further, an upstream side of the catalyst (127) is provided with an oxygen concentration sensor (126) serving as a homogeneity detection means, which detects the residual oxygen concentration. Due to the pressure in the combustion chamber (111) (hereinafter referred to as combustion pressure) generated by the combustion, a force that pushes the piston (112) downward acts on the crankshaft (not shown) via the connecting rod (113). It is transmitted and converted into rotational motion, which becomes engine output. A combustion pressure sensor (not shown) for measuring the combustion pressure is used as torque detection means (128). The combustion crankshaft (not shown) is provided with a flywheel (114) so that the rotational motion is smoothly performed, and the crank angle sensor (115) detects an edge provided on the outer periphery of the flywheel. The rotational force of the crankshaft (not shown) is transmitted to the camshafts (117a, 117b) above the engine body (101) by a belt, a chain, etc., and the camshaft also rotates. The position and number of camshafts differ depending on the engine configuration. In this figure, the camshaft is provided at the top of the engine body (101), and the so-called double overhead cam type (DOHC) with separate camshafts for intake and exhaust. The direct injection engine is shown. The intake valve (109) corresponding to the shape of the elliptical cam (117a) provided on the camshaft (not shown) obtains movement characteristics. Similarly, an exhaust cam (117b) is provided, and similarly, the exhaust valve (110) obtains a movement characteristic corresponding to the shape of the exhaust cam. Similar to the crankshaft, the control unit detects the rotation of the camshaft by the cam angle sensors (116a, 116b).

次に、コントロールユニット(201)について説明する。主要部はMPU(202)、EP−ROM(203)、RAM(204)とA/D変換器を含むI/O LSI(205)等から構成される。クランクシャフトのクランク角センサ(115),カム角センサ(116a,116b)などから、コントロールユニット(201)はエンジン回転数の算出、点火タイミングの算出などを行う。運転者が操作するアクセルペタル(図示なし)の開度を検出するアクセル開度センサの位置情報から、電制スロットル弁(104)の操作をコントロールユニット(201)が行い、電制スロットル弁(104)の開度を検出するスロットル開度センサ(105)によって電制スロットル弁(104)の位置を把握することで補正が行えるため精密な制御を可能としている。コントロールユニット(201)は前記エアフローセンサ(103)によって、現在の吸入空気量を得た後エンジン回転数などと合わせ総合的に適正な燃料噴射時間を算出し、燃料噴射弁(122)へパルス信号を送る。燃料噴射弁(122)は、パルス信号に基づいて燃料噴射弁内のニードルを開閉することで、燃料噴射を行う。点火系については、コントロールユニット(201)によって、エンジンの運転条件などによって異なる最適な点火タイミングを点火信号として点火コイル(123)へ出力し、点火信号は点火コイル(123)よって昇圧され点火プラグ(124)によって点火する。前記残留酸素濃度を検出する酸素濃度センサに代表される均質度計測手段(223)が検出した情報に基づき、コントロールユニットは、均質度を間接的に把握する。更にこの均質度情報とトルク検出装置からの前記トルクに基づき、ガス流動制御手段(107)の制御を行う。   Next, the control unit (201) will be described. The main part is composed of an MPU (202), an EP-ROM (203), a RAM (204), an I / O LSI (205) including an A / D converter, and the like. From the crankshaft crank angle sensor (115), cam angle sensors (116a, 116b), etc., the control unit (201) calculates the engine speed, ignition timing, and the like. The control unit (201) operates the electric throttle valve (104) from the position information of an accelerator opening sensor that detects the opening degree of an accelerator petal (not shown) operated by the driver, and the electric throttle valve (104 Since the correction can be made by grasping the position of the electric throttle valve (104) by means of the throttle opening sensor (105) for detecting the opening of), precise control is possible. The control unit (201) uses the air flow sensor (103) to obtain a current intake air amount and then calculates an appropriate fuel injection time in combination with the engine speed and the like, and sends a pulse signal to the fuel injection valve (122). Send. The fuel injection valve (122) performs fuel injection by opening and closing the needle in the fuel injection valve based on the pulse signal. For the ignition system, the control unit (201) outputs an optimal ignition timing, which varies depending on the engine operating conditions, as an ignition signal to the ignition coil (123), and the ignition signal is boosted by the ignition coil (123) and the ignition plug ( 124). Based on the information detected by the homogeneity measuring means (223) represented by the oxygen concentration sensor for detecting the residual oxygen concentration, the control unit indirectly grasps the homogeneity. Further, the gas flow control means (107) is controlled based on the homogeneity information and the torque from the torque detector.

図3は、均質度と充填効率とトルクの関係をグラフにしたものである。尚、本図はあくまでも1例をグラフにしたものであり、使用するエンジンや運転条件によって記述している関係性は変化する(図内では、運転条件および空燃比を固定した状態を著す)。横軸はガス流動の強さを示し、縦軸は上から、前記トルク(301),充填効率(302),均質度(303)を示している。均質度が悪い場合、ガス流動を強くすると均質度が向上する特性を持っているが、その後、ガス流動を強くしても、均質度の向上分が徐々に少なくなり、ある点(図内では305)を超えると、ガス流動を強くしても、これ以上均質度は向上しなくなる。充填効率(302)は、ガス流動を強くすると、低下する特性を持ち、ある点(図内では304)を境に大幅な低下を示す。前記トルクは、均質度(303)が向上し、充填効率(302)の低下が少ない点まで(図内では、306)、向上するが、充填効率(図内302)が大幅な低下を始めると、前記トルクは均質度の向上分と充填効率の低下分のバランスにより点火を始める(307)。さらに均質度の向上分がなくなった状態で、充填効率が大幅な低下を始めると、前記トルク(301)は、更に大幅な低下を起こすことが分かる。尚、既述であるが、図内305,304は運転領域によって、ガス流動の強さに対する関係性を変化させる。詳しくは、運転領域が高負荷または高回転になった場合、305,304は図内左側へ移動する。これは、燃焼室へ吸入する空気量が増えることで、空気の流速が速くなることに起因する。   FIG. 3 is a graph showing the relationship between homogeneity, filling efficiency, and torque. This figure is only a graph, and the relationship described depends on the engine used and the operating conditions (in the figure, the operating conditions and the air-fuel ratio are fixed). . The horizontal axis indicates the strength of gas flow, and the vertical axis indicates the torque (301), filling efficiency (302), and homogeneity (303) from the top. When the homogeneity is poor, the homogeneity improves when the gas flow is increased. However, even if the gas flow is increased, the improvement in homogeneity gradually decreases. If it exceeds 305), even if the gas flow is strengthened, the homogeneity is not improved any more. The filling efficiency (302) has a characteristic of decreasing when the gas flow is strengthened, and shows a significant decrease at a certain point (304 in the figure). The torque is improved up to the point where the homogeneity (303) is improved and the decrease in the filling efficiency (302) is small (306 in the figure), but when the filling efficiency (302 in the figure) starts to drop significantly. The torque starts ignition (307) by the balance of the improvement in homogeneity and the reduction in filling efficiency. Further, it can be seen that when the filling efficiency starts to greatly decrease in a state where the degree of improvement in homogeneity is lost, the torque (301) further decreases significantly. As described above, 305 and 304 in the figure change the relationship with the gas flow strength depending on the operation region. Specifically, when the operation region becomes a high load or a high rotation, 305 and 304 move to the left side in the figure. This is due to the fact that the flow rate of air increases as the amount of air sucked into the combustion chamber increases.

図4は、均質度を計測できる手段の1つとして、前記残留酸素濃度と均質度の関係をグラフにしたものである。縦軸に残留酸素の濃度を示し、横軸に空燃比を示している。401は、理想の均質度において、空燃比を変化させたグラフである。つまり、前記残留酸素濃度の理想値を示したものである。空燃比がリッチの場合、均質度に関わらず、混合気中の酸素が不足することから、前記残留酸素濃度は限りなく0に近い濃度となる。理論空燃比である14.7から若干リーンになった辺りで、混合気中の酸素は多くなり、理想の均質度を保てた場合でも、酸素濃度は増加する。402は、均質度が低い場合の前記残留酸素濃度である。均質度が低いと混合気にむらがあるため、混合気中の酸素が燃焼しきれず、他の排気ガス成分に紛れ、燃焼室から排出されてしまう。このため、401に比べ、402は全体的に残留酸素濃度が高くなる。この特性を利用し、本発明の実施例1におけるガス流動の制御内容について説明する。尚、ここでは、残留酸素濃度を用いて説明を行ったが、他の排気ガス中の成分を用いても同様の効果を得ることができ、更に均質度が向上した場合、燃焼速度が速くなる特性から、排気温度を用いた制御を行っても良い。他の排気ガスとしては、酸素濃度以外に、一酸化炭素濃度がある。   FIG. 4 is a graph showing the relationship between the residual oxygen concentration and the homogeneity as one of means for measuring the homogeneity. The vertical axis represents the concentration of residual oxygen, and the horizontal axis represents the air-fuel ratio. 401 is a graph in which the air-fuel ratio is changed at an ideal homogeneity. That is, the ideal value of the residual oxygen concentration is shown. When the air-fuel ratio is rich, oxygen in the air-fuel mixture is insufficient regardless of the homogeneity, so that the residual oxygen concentration is infinitely close to 0. The oxygen concentration in the air-fuel mixture increases when the stoichiometric air-fuel ratio of 14.7 is slightly reduced, and the oxygen concentration increases even when the ideal homogeneity is maintained. 402 is the residual oxygen concentration when the homogeneity is low. If the degree of homogeneity is low, the air-fuel mixture has unevenness, so that oxygen in the air-fuel mixture cannot be combusted and is mixed with other exhaust gas components and discharged from the combustion chamber. For this reason, compared to 401, 402 has a higher residual oxygen concentration overall. The control contents of the gas flow in the first embodiment of the present invention will be described using this characteristic. In addition, although it demonstrated using residual oxygen concentration here, the same effect can be acquired even if it uses the component in other exhaust gas, and a combustion rate will become quick, when a homogeneity improves further. From the characteristics, control using the exhaust temperature may be performed. Other exhaust gases include carbon monoxide concentration in addition to oxygen concentration.

図5は本発明の実施例1におけるフローチャートであり、まず本発明における制御の流れを説明する。本発明の実施例1における制御では、大きく分け、S517とS518とS519の制御から成る。S517は、従来のガス流動制御であり、運転領域に基づくガス流動の制御を行う。S518では、定常の運転時において、均質度に起因しないなんらかの理由により、均質度が目標均質度以下となり、ガス流動が強すぎると判断した場合、ガス流動を弱める制御を行う。そして、S519では、均質度に基づいたガス流動の制御を行っている。制御の流れを詳細に説明すると、S501で、目標均質度を読込む訳であるが、本実施例では、均質度検出手段として酸素濃度センサを用い、残留酸素濃度を検出するため、予め設定された空燃比毎の目標となる残留酸素濃度(以下、目標酸素濃度)を現在の空燃比に基づき読込む。S502では、出力トルク検出手段から、トルクを検出する。S503は、直噴エンジンの運転領域に変更があったかを判断し、運転領域に変更があった場合、S504で予め運転領域毎に設定された目標トルクを現在の運転領域に基づいて検索する。S505では、予め運転領毎に設定されたガス流動制御手段の制御値を検索し、S506においてS505で検索された制御値に基づいて、ガス流動制御手段の制御を行う。その後、S511は、S502で検出した前記トルクとS504で検索された目標トルクの比較を実施する。S512は、S502で検出した前記トルクを前回トルクとして保存する。S513は、均質度検出手段である酸素濃度センサから残留酸素濃度を検出する。S514では、S513で検出した残留酸素濃度とS401で読込んだ目標酸素濃度を比較し、目標酸素濃度より前記残留酸素濃度が濃いと判断した場合、S515で、ガス流動制御手段の制御値を更にガス流動が強くなるよう制御する。逆にS514で目標酸素濃度と残留酸素濃度が近似値の場合、ガス流動が強すぎる(図3内の307の位置である。)と判断し、S516で、ガス流動制御手段の制御値をガス流動が弱くなるよう制御する。一方、S503で運転領域が一定、つまり定常運転であると判断した場合、S507は、S512またはS509によって、保存された前回トルクとS502で検出した前記トルクを比較する。前回トルクよりトルクが高い場合、制御はS511へ進み、前回トルクよりトルクが高くない場合、S508によって、更に前回トルクよりトルクが低いかを判断する。前回トルクよりトルクが低い場合、S412同様にS502で検出したトルクを前回のトルクとして保存し、S510で、ガス流動制御手段の制御値をガス流動が弱くなるよう制御する。   FIG. 5 is a flowchart according to the first embodiment of the present invention. First, the control flow according to the present invention will be described. The control in Embodiment 1 of the present invention is roughly divided into the control of S517, S518, and S519. S517 is conventional gas flow control, and performs gas flow control based on the operation region. In S518, when it is determined that the homogeneity is equal to or less than the target homogeneity and the gas flow is too strong for some reason not caused by the homogeneity during steady operation, control is performed to weaken the gas flow. In S519, the gas flow is controlled based on the homogeneity. The flow of control will be described in detail. In S501, the target homogeneity is read. In this embodiment, an oxygen concentration sensor is used as the homogeneity detecting means, and the residual oxygen concentration is detected in advance. The target residual oxygen concentration for each air-fuel ratio (hereinafter referred to as target oxygen concentration) is read based on the current air-fuel ratio. In S502, torque is detected from the output torque detection means. In S503, it is determined whether or not the operation region of the direct injection engine has been changed. When the operation region has been changed, the target torque set in advance for each operation region in S504 is searched based on the current operation region. In S505, the control value of the gas flow control means set in advance for each operation range is searched, and the gas flow control means is controlled based on the control value searched in S505 in S506. After that, in S511, the torque detected in S502 is compared with the target torque searched in S504. In S512, the torque detected in S502 is stored as the previous torque. In S513, a residual oxygen concentration is detected from an oxygen concentration sensor which is a homogeneity detection means. In S514, the residual oxygen concentration detected in S513 is compared with the target oxygen concentration read in S401. If it is determined that the residual oxygen concentration is higher than the target oxygen concentration, the control value of the gas flow control means is further set in S515. Control to increase gas flow. Conversely, if the target oxygen concentration and the residual oxygen concentration are approximate values in S514, it is determined that the gas flow is too strong (position 307 in FIG. 3), and in S516, the control value of the gas flow control means is set to gas. Control the flow to weaken. On the other hand, if it is determined in S503 that the operation region is constant, that is, it is a steady operation, S507 compares the previous torque stored in S502 with the torque detected in S502 in S512 or S509. If the torque is higher than the previous torque, the control proceeds to S511. If the torque is not higher than the previous torque, it is further determined in S508 whether the torque is lower than the previous torque. If the torque is lower than the previous torque, the torque detected in S502 is stored as the previous torque as in S412, and the control value of the gas flow control means is controlled in S510 so that the gas flow becomes weaker.

図6は、本発明の実施例1における基本的な動作を表したタイミングチャートであり、図5内のS515に至る内容に関する。図内横軸は経過時間であり、左側は過去を示し、613の点線は、現在を示している。グラフは、上から目標トルク(611),トルク検出手段から検出したトルク(601),充填効率(602),残留酸素濃度(603),目標酸素濃度(612),均質度(604),TVGの制御位置(605)を著す。まず、S517を経由し、現在のトルク(601)が目標トルク(611)に対し、不足しているとコントロールユニット(201)が判断した場合(S511)、現在の残留酸素濃度(603)を検出し、目標酸素濃度(603)と比較を行う。残留酸素濃度が目標酸素濃度に対し高い場合、均質度が足りないとコンロトールユニットは判断を行い、S515で、ガス流動制御手段であるTGVの制御位置をガス流動が強くなるように制御する。その後、運転領域に変化がない所謂、定常運転の場合、S507を経由し、トルクが目標トルク近傍になるまで、または残留酸素濃度が目標酸素濃度近傍になるまで、上記制御を繰り返す。図内では、614において、トルクが目標トルク近傍となったため(615)、ガス流動制御手段であるTGVの制御位置を一定にしている(616)。その後は、S507によって、前回のトルクと今回のトルクが同一となるため、現在のTGVの制御位置を一定とすることから、常にトルクは一定となる。補足説明として、614から更にTGVの制御位置を強くする(610)と、充填効率(607),残留酸素濃度(608),均質度(609)は、図示した点線を示し、その結果、トルク(606)は、低下することになる。また、運転領域が変更された場合には、現在のTGVの制御位置に関わらず、S517の制御に従い、運転領域毎に設定されたTGVの制御位置となり、その後、上記の制御に移行する。また、トルクが目標トルクより低く、残留酸素濃度が目標酸素濃度近傍であった場合、トルクは606の点線上にあると判断するため、S516によって、TGVの制御位置をガス流動が弱くなるように制御する。   FIG. 6 is a timing chart showing the basic operation in the first embodiment of the present invention, and relates to the contents up to S515 in FIG. The horizontal axis in the figure is the elapsed time, the left side indicates the past, and the dotted line 613 indicates the present. The graph shows target torque (611), torque detected from torque detection means (601), filling efficiency (602), residual oxygen concentration (603), target oxygen concentration (612), homogeneity (604), TVG from the top. Write control position (605). First, via S517, when the control unit (201) determines that the current torque (601) is insufficient with respect to the target torque (611) (S511), the current residual oxygen concentration (603) is detected. Then, the target oxygen concentration (603) is compared. When the residual oxygen concentration is higher than the target oxygen concentration, the control unit determines that the degree of homogeneity is insufficient, and in S515, controls the control position of the TGV that is the gas flow control means so that the gas flow becomes stronger. Thereafter, in the so-called steady operation in which there is no change in the operation region, the above control is repeated through S507 until the torque becomes close to the target torque or until the residual oxygen concentration becomes close to the target oxygen concentration. In the figure, since the torque is close to the target torque at 614 (615), the control position of the TGV which is the gas flow control means is kept constant (616). After that, since the previous torque and the current torque are the same in S507, the current TGV control position is made constant, so the torque is always constant. As a supplementary explanation, when the control position of TGV is further increased from 614 (610), the charging efficiency (607), residual oxygen concentration (608), and homogeneity (609) show the dotted lines shown in the figure, and as a result, torque ( 606) will fall. When the operation region is changed, regardless of the current control position of the TGV, the control position of the TGV set for each operation region is set according to the control of S517, and then the above control is performed. Further, when the torque is lower than the target torque and the residual oxygen concentration is close to the target oxygen concentration, it is determined that the torque is on the dotted line 606, so that the gas flow is weakened at the control position of the TGV by S516. Control.

図7は、図6に対し、エンジン制御に異常はないと判断され、ガス流動を強くなるように制御を続けても、トルクが目標トルクに達せず、結果的にガス流動が強くなりすぎ、充填効率が著しく低下するために、トルク(701)が目標トルク(711)に届かない状況を示した図である。タイミング714後において、均質度に十分な向上幅があり(709)、充填効率も大幅な低下を示していないが(707)、TGVの制御位置がタイミング714を過ぎて強くなっても、トルクが目標トルクに届かず、トルクは715をピークに低下している。この場合、制御はS507から、S508に移行し、前回トルクがトルクと同等であれば、TGVの位置を保持し、仮に前回トルクがトルクより高い場合、TGVの制御位置をガス流動が弱くなるように制御し、常にトルクが最も高くなるように制御する。   FIG. 7 is determined that there is no abnormality in engine control with respect to FIG. 6, and even if the control is continued to increase the gas flow, the torque does not reach the target torque, and as a result, the gas flow becomes too strong. It is a figure showing the situation where torque (701) does not reach the target torque (711) because the charging efficiency is significantly reduced. After timing 714, there is a sufficient improvement in homogeneity (709), and the charging efficiency does not show a significant decrease (707), but even if the TGV control position becomes stronger after timing 714, the torque does not increase. The torque does not reach the target torque, and the torque drops to a peak at 715. In this case, the control shifts from S507 to S508. If the previous torque is equal to the torque, the position of the TGV is maintained. If the previous torque is higher than the torque, the gas flow is weakened at the control position of the TGV. The torque is always controlled to be the highest.

当然であるが、本発明の実施例1における目標均質度となる残留酸素濃度及び目標トルクにはヒステリシスを持たせることは言うまでもなく、更にガス流動制御手段の制御量に対し、前回トルクまたは均質度検出手段となる残留酸素濃度の感度が極端に少ない場合は、更新頻度を遅くするなどの手法を使っても良いし、目標トルクまたは、目標均質度に学習値を備え、制御の精度を向上させる方法も用いても良い。   Of course, it goes without saying that the residual oxygen concentration and the target torque, which are the target homogeneity in the first embodiment of the present invention, have hysteresis, and the previous torque or the homogeneity with respect to the control amount of the gas flow control means. If the sensitivity of the residual oxygen concentration that is the detection means is extremely low, a method such as slowing the update frequency may be used, and the learning value is provided for the target torque or target homogeneity to improve control accuracy. A method may also be used.

これにより、機差ばらつきに起因する均質度のばらつきに対して、ガス流動制御の補正を行うことができ、予測困難な経時劣化や使用環境の変化に対しても、対応することができるため、直噴エンジンは常に良好な均質度によって制御されることになる。   As a result, it is possible to correct the gas flow control for the uniformity variation due to the machine difference variation, and it is possible to cope with the aging deterioration and the change in the use environment which are difficult to predict. Direct injection engines will always be controlled with good homogeneity.

直噴エンジンの全体構成図。The whole block diagram of a direct-injection engine. コントロールユニット(ECU)の構成図。The block diagram of a control unit (ECU). 均質度と充填効率及びトルクの関係グラフ。Graph of relationship between homogeneity, filling efficiency and torque. 残留酸素濃度と均質度の関係グラフ。Graph of the relationship between residual oxygen concentration and homogeneity. 本発明実施例1におけるフローチャート。The flowchart in Example 1 of this invention. 本発明実施例1におけるタイミングチャート1。1 is a timing chart 1 in Embodiment 1 of the present invention. 本発明実施例1におけるタイミングチャート2。2 is a timing chart 2 in Embodiment 1 of the present invention.

符号の説明Explanation of symbols

101 エンジン本体
102 吸気経路
103 エアフローセンサ
104 電制スロットル弁
105 スロットル開度センサ
106 コレクタ
107 TGV(タンブルジェネレーテッドバルブ)
108 仕切り板
109 吸気弁
110 排気弁
111 燃焼室
112 ピストン
113 コネクティングロッド
114 フライホイール
115 クランク角センサ
116a 吸気カム
116b 排気カム
117 カム角センサ
118 燃料経路
119 高圧燃料ポンプ
120 ギャラリー
121 燃料圧センサ
122 燃料噴射弁(インジェクタ)
123 点火コイル
124 点火プラグ
125 排気経路
126 酸素濃度センサ
127 触媒
223 均質度計測手段
DESCRIPTION OF SYMBOLS 101 Engine main body 102 Intake path 103 Air flow sensor 104 Electrically controlled throttle valve 105 Throttle opening sensor 106 Collector 107 TGV (tumble generated valve)
108 Partition plate 109 Intake valve 110 Exhaust valve 111 Combustion chamber 112 Piston 113 Connecting rod 114 Flywheel 115 Crank angle sensor 116a Intake cam 116b Exhaust cam 117 Cam angle sensor 118 Fuel path 119 High pressure fuel pump 120 Gallery 121 Fuel pressure sensor 122 Fuel injection Valve (Injector)
123 ignition coil 124 spark plug 125 exhaust path 126 oxygen concentration sensor 127 catalyst 223 homogeneity measuring means

Claims (11)

ガス流動の強さを制御するガス流動制御装置を備えた内燃機関の制御装置であって、
前記制御装置は、
混合気の均質度を計測または予測する均質度推定手段と、
前記ガス流動制御装置を制御するガス流動制御手段と、を備え、
前記均質度検出手段により検出された均質度に基づき、ガス流動制御手段を制御することを特徴とする制御装置。
A control device for an internal combustion engine comprising a gas flow control device for controlling the strength of gas flow,
The control device includes:
A homogeneity estimation means for measuring or predicting the homogeneity of the mixture,
Gas flow control means for controlling the gas flow control device,
A control apparatus for controlling a gas flow control means based on the homogeneity detected by the homogeneity detection means.
前記制御装置は、
前記均質度推定手段から得た均質度と予め設定された空燃比毎の目標均質度とを比較する均質度比較手段を有し、
前記ガス流動制御装置は、前記均質度推定手段から得られた均質度が前記目標均質度に近づくように前記ガス流動制御装置を制御することを特徴とする制御装置。
The control device includes:
A homogeneity comparison means for comparing the homogeneity obtained from the homogeneity estimation means with a target homogeneity for each preset air-fuel ratio;
The gas flow control device controls the gas flow control device so that the homogeneity obtained from the homogeneity estimation means approaches the target homogeneity.
ガス流動の強さを制御するガス流動制御装置を備えた内燃機関の制御装置であって、
前記制御装置は、
前記内燃機関が出力する出力トルクを計測または予測する出力トルク推定手段と、
前記出力トルクと予め運転領域毎に設定された目標トルクとを比較するトルク比較手段と、
混合気の均質度を計測または予測する均質度推定手段と、
前記ガス流動制御装置を制御するガス流動制御手段と、
を備え、
前記ガス流動制御手段は、
前記均質度検出手段により検出された均質度及び前記目標トルクに基づいて、前記出力トルクが前記目標トルクに近づくように前記ガス流動制御装置を制御することを特徴とする制御装置。
A control device for an internal combustion engine comprising a gas flow control device for controlling the strength of gas flow,
The control device includes:
Output torque estimating means for measuring or predicting output torque output from the internal combustion engine;
Torque comparison means for comparing the output torque with a target torque set in advance for each operation region;
A homogeneity estimation means for measuring or predicting the homogeneity of the mixture,
Gas flow control means for controlling the gas flow control device;
With
The gas flow control means includes
A control device that controls the gas flow control device so that the output torque approaches the target torque based on the homogeneity detected by the homogeneity detection means and the target torque.
請求項3の制御装置において、前記出力トルクが前記目標トルクより低い状態、且つ、前記均質度推定手段から検出した均質度が前記目標均質度近傍より低いと判断した場合、ガス流動制御手段の制御値をガス流動が強くなるように制御することを特徴とする制御装置。   4. The control device according to claim 3, wherein when the output torque is lower than the target torque and it is determined that the homogeneity detected from the homogeneity estimation means is lower than the vicinity of the target homogeneity, the control of the gas flow control means is performed. A control device for controlling the value so that the gas flow becomes stronger. 請求項3の制御装置において、前記出力トルクが前記目標トルクより低い状態、且つ、前記均質度推定手段から検出した均質度が前記目標均質度近傍であると判断した場合、前記ガス流動制御手段の制御値をガス流動が弱くなるように制御することを特徴とする制御装置。   4. The control device according to claim 3, wherein when the output torque is lower than the target torque and it is determined that the homogeneity detected from the homogeneity estimation means is close to the target homogeneity, the gas flow control means A control device that controls the control value so that the gas flow becomes weak. 請求項3の制御装置において、前記内燃機関の運転領域に変化があった場合において、運転領域毎に設定された前記ガス流動制御手段の制御目標値に基づき、前記ガス流動制御手段を制御することを特徴とする制御装置。   4. The control device according to claim 3, wherein when the operation region of the internal combustion engine is changed, the gas flow control unit is controlled based on a control target value of the gas flow control unit set for each operation region. A control device characterized by. 請求項3の制御装置において、前回の計測または算出した前回トルクと今回計測または算出した今回トルクとを比較する手段を備え、前記内燃機関の運転領域が定常であった場合において、前記ガス流動制御手段の制御値をガス流動が強くなるように制御したにも関わらず、前記前回トルクが前記今回トルクより高いと判断した場合、ガス流動制御手段の制御量をガス流動が弱くなるよう制御することを特徴とする制御装置。   4. The control device according to claim 3, further comprising means for comparing the previous measured or calculated previous torque with the current measured or calculated current torque, wherein the gas flow control is performed when the operating range of the internal combustion engine is steady. When the control value of the means is controlled to increase the gas flow, but the previous torque is determined to be higher than the current torque, the control amount of the gas flow control means is controlled to weaken the gas flow. A control device characterized by. 請求項1の制御装置において、前記均質度推定手段は、排出ガス中に残留する酸素濃度,一酸化炭素濃度,排気温度から選ばれる少なくとも一つを直接又は間接的に検出する手段であることを特徴とする制御装置。   2. The control device according to claim 1, wherein the homogeneity estimating means is a means for directly or indirectly detecting at least one selected from an oxygen concentration, a carbon monoxide concentration, and an exhaust gas temperature remaining in the exhaust gas. Control device characterized. 請求項3記載の制御装置において、前記出力トルクを計測または予測する手段として、前記出力トルクを検出することができるトルクセンサまたは、筒内の燃焼圧を計測することができる燃焼圧センサまたは、前記内燃機関の吸入空気量とエンジン回転速度などから前記出力トルクを予測する手段の少なくとも1つ以上を備えた制御装置。   4. The control device according to claim 3, wherein as the means for measuring or predicting the output torque, a torque sensor capable of detecting the output torque, a combustion pressure sensor capable of measuring a combustion pressure in a cylinder, or the A control device comprising at least one means for predicting the output torque from an intake air amount of an internal combustion engine, an engine rotation speed, and the like. 請求項1記載の制御装置において、前記ガス流動制御手段は、スワールコントロールバルブ,タンブルジェネレーテッドバルブ,吸気弁の移動特性を変化させることができる可変動弁のうち少なくとも一つを備えることを特徴とする制御装置。   2. The control device according to claim 1, wherein the gas flow control means includes at least one of a swirl control valve, a tumble generated valve, and a variable valve that can change a moving characteristic of the intake valve. Control device. 請求項1記載の制御装置において、始動リタード制御中には、排気経路内での燃焼を促進することができる均質度によって、始動リタード制御が行うことを特徴とする制御装置。   2. The control device according to claim 1, wherein during the start retard control, the start retard control is performed by a homogeneity that can promote combustion in the exhaust passage.
JP2008206514A 2008-08-11 2008-08-11 Control device for internal combustion engine Pending JP2010043557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206514A JP2010043557A (en) 2008-08-11 2008-08-11 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206514A JP2010043557A (en) 2008-08-11 2008-08-11 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010043557A true JP2010043557A (en) 2010-02-25

Family

ID=42015119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206514A Pending JP2010043557A (en) 2008-08-11 2008-08-11 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010043557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199034A (en) * 2013-03-29 2014-10-23 本田技研工業株式会社 Internal combustion engine and connecting rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199034A (en) * 2013-03-29 2014-10-23 本田技研工業株式会社 Internal combustion engine and connecting rod

Similar Documents

Publication Publication Date Title
US8046156B2 (en) Control apparatus of internal combustion engine
JP4988681B2 (en) High pressure fuel pump control device for internal combustion engine
US7448253B2 (en) Combustion state determination method of internal combustion engine
US9194313B2 (en) Spark-ignition engine and method of controlling the spark-ignition engine
US20170226956A1 (en) Control apparatus for internal combustion engine
US10393048B2 (en) Control device for internal combustion engine
JP4779757B2 (en) Control device and control method for internal combustion engine
JP2009287493A (en) Ignition timing control device for internal combustion engine
JP6332345B2 (en) Control device for internal combustion engine
US7469676B2 (en) Method and device for determining a phase of an internal combustion engine
EP2767703A1 (en) Control device for internal combustion engine
EP1828576B1 (en) Valve characteristic control apparatus for internal combustion engine
US8468999B2 (en) Fuel injection control system of internal combustion engine
WO2015133172A1 (en) Air-fuel ratio detection device for internal combustion engine
JP2010043557A (en) Control device for internal combustion engine
JP4946996B2 (en) Fuel injection control device for internal combustion engine
JP4155036B2 (en) Internal EGR amount estimation device for internal combustion engine
JP2009275617A (en) Control device of internal combustion engine
JP2012180817A (en) Device for calculating air-fuel ratio of internal combustion engine
JP2014020202A (en) Control device of gas engine
JP4983742B2 (en) Control device for internal combustion engine
JP5333172B2 (en) Control device for internal combustion engine
JP2009216001A (en) Noise reducing device of internal combustion engine
JP2018096355A (en) Control device of internal combustion engine
JP2010007607A (en) Control device of multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100106