JP2010040077A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP2010040077A
JP2010040077A JP2008199779A JP2008199779A JP2010040077A JP 2010040077 A JP2010040077 A JP 2010040077A JP 2008199779 A JP2008199779 A JP 2008199779A JP 2008199779 A JP2008199779 A JP 2008199779A JP 2010040077 A JP2010040077 A JP 2010040077A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
protective layer
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008199779A
Other languages
Japanese (ja)
Inventor
Michiko Horiguchi
道子 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2008199779A priority Critical patent/JP2010040077A/en
Publication of JP2010040077A publication Critical patent/JP2010040077A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium which can be manufactured by the same number of steps as that of conventional one and has excellent corrosion resistance. <P>SOLUTION: In the magnetic recording medium, an uneven pattern is formed wherein magnetic recording layers for recording information and groove parts having no recording function are alternately arranged on a disk substrate. Each of projecting shapes has ≥100° tapered angle. A protective layer is formed on the surfaces of the magnetic recording layers of the magnetic recording medium on which the uneven pattern is formed. Aperture parts of the groove parts (recessed parts) are blocked by the protective layer and cavities are formed at the inside of the recessed parts. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁気記録媒体、特に、記録層が連続、及び凹凸パターンで形成されたディスクリートトラックメディア(DTM)やビットパターンドメディア(BPM)用の磁気記録媒体に関する。   The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium for discrete track media (DTM) and bit patterned media (BPM) in which recording layers are formed in a continuous and uneven pattern.

磁気記録媒体には、磁気記録層を磁気ヘッドの接触、摺動による損傷、および腐食から保護するために、通常、磁気記録層上に保護層が形成されている。従来の磁気記録媒体では、平坦な基板上に軟磁性層、磁性層等を積層し、その上に保護層を成膜している。   In a magnetic recording medium, a protective layer is usually formed on the magnetic recording layer in order to protect the magnetic recording layer from contact with the magnetic head, damage from sliding, and corrosion. In a conventional magnetic recording medium, a soft magnetic layer, a magnetic layer, and the like are laminated on a flat substrate, and a protective layer is formed thereon.

保護層の材料としては、ダイアモンド・ライク・カーボン(DLC)膜、窒化膜、SiO2をはじめとする酸化膜、金属膜等がある。保護層の形成方法としては、スパッタリング法、プラズマCVD法、熱CVD法等が用いられている。 Examples of the material for the protective layer include a diamond-like carbon (DLC) film, a nitride film, an oxide film including SiO 2 , and a metal film. As a method for forming the protective layer, a sputtering method, a plasma CVD method, a thermal CVD method, or the like is used.

スパッタリング法で形成したDLC膜と、CVD法で形成したDLC膜を比べた場合、CVD法で形成したDLC膜の方が緻密で硬い。これは、CVD法によるDLC膜が、炭化水素ラジカルから形成されるため、水素を介して3次元的な剛性の強い四面体構造をとり易くなっているためと考えられる。また、スパッタリング法に比べてトレンチ構造(溝を有する構造)への成膜性はよいとされている。   When the DLC film formed by the sputtering method and the DLC film formed by the CVD method are compared, the DLC film formed by the CVD method is denser and harder. This is presumably because the DLC film formed by the CVD method is formed from hydrocarbon radicals, so that it is easy to take a three-dimensional rigid tetrahedral structure via hydrogen. In addition, it is considered that the film-forming property to the trench structure (structure having a groove) is better than the sputtering method.

一方、次世代媒体として、面記録密度を向上させるために隣り合う磁気記録層を切り離し、磁気記録層に凹凸パターンを形成したディスクリートトラックメディア(DTM)やドット形状をもつビットパターンドメディア(BPM)の開発が行われている。   On the other hand, as next-generation media, discrete track media (DTM) in which adjacent magnetic recording layers are separated in order to improve areal recording density, and uneven patterns are formed on the magnetic recording layer, and bit patterned media (BPM) having dot shapes Development is underway.

例えば、特許文献1には、磁気記録層に凹凸パターンを形成したディスクリートトラックメディア(DTM)やドット形状をもつビットパターンドメディア(BPM)用の磁気記録媒体が記載されている。この磁気記録媒体は、パターン化された磁気記録層の頂部にシリコン保護層を有し、凸部の頂部のシリコン保護層の上及び側面、磁気記録層の側面、凹部の底部を覆うようにカーボン系保護層が設けられている。   For example, Patent Document 1 describes a magnetic recording medium for a discrete track medium (DTM) in which a concavo-convex pattern is formed on a magnetic recording layer and a bit patterned medium (BPM) having a dot shape. This magnetic recording medium has a silicon protective layer on the top of the patterned magnetic recording layer, and carbon so as to cover the top and side surfaces of the silicon protective layer on the top of the convex portion, the side surface of the magnetic recording layer, and the bottom portion of the concave portion. A system protective layer is provided.

また、例えば特許文献2には、ディスクリートトラックメディア用の磁気記録媒体として、凹凸パターンの凹部が非磁性材料で充填されて、と粒を形成する磁気記録層の表面と、凹部に充填された緋磁性材料の表面が平坦化されている磁気記録媒体が記載されている。   Further, for example, in Patent Document 2, as a magnetic recording medium for discrete track media, a concave portion of a concavo-convex pattern is filled with a nonmagnetic material, and the surface of the magnetic recording layer that forms grains, and A magnetic recording medium is described in which the surface of the magnetic material is planarized.

特開2006−12216号公報JP 2006-12216 A 特開2006−92632号公報JP 2006-92632 A

特許文献1のようにDTMのような凹凸形状を有する構造の表面に保護層を成膜する場合、凸部側壁が凹部底辺となす角度(テーパ角度)が45°を超えると、即ち、テーパ角度が45°以上90°以下の範囲では、凹凸形状の側壁と凸部上辺(トップ)および凹部底辺(ボトム)とで保護層の付き方が異なる。保護層は側壁や凹部コーナー部に膜がつきにくく、その部分の保護層膜厚が薄くなり、ピンホールが発生しやすくなる。保護層のカバレッジ性の低下により、磁気記録層からの金属溶出、耐腐食性低下がおこる。保護層成膜時に試料傾斜角度を変更し、凸部側壁や凹部底辺に膜をつきやすくする方法もあるが、この場合は凸部トップの膜厚が薄くなり、平坦性が低下することによりヘッドに対する耐磨耗性の低下や特性低下が起きるという問題がある。   When a protective layer is formed on the surface of a structure having an uneven shape such as DTM as in Patent Document 1, if the angle (taper angle) between the convex side wall and the concave base exceeds 45 °, that is, the taper angle In the range of 45 ° or more and 90 ° or less, the method of attaching the protective layer differs between the side wall of the concavo-convex shape, the upper side (top) of the convex portion, and the bottom side (bottom) of the concave portion. The protective layer is unlikely to form a film on the side walls or the corners of the recesses, and the thickness of the protective layer at that portion becomes thin, and pinholes are likely to occur. Due to a decrease in the coverage of the protective layer, metal elution from the magnetic recording layer and a decrease in corrosion resistance occur. There is also a method to change the sample inclination angle when forming the protective layer to make it easier to attach a film to the side wall of the convex part or the bottom of the concave part. In this case, however, the film thickness of the convex top is reduced and the flatness is lowered. There is a problem that the wear resistance and characteristics of the steel deteriorate.

また、特許文献2のような、凹部を非磁性材料で充填し、磁気記録層表面を平坦化した上で保護層を形成するという方法は、磁気記録層からの金属溶出を防ぐという点では最も信頼性が高い。しかし、充填工程とその後の硬化やクリーニング等の工程数が増えることにより量産性が低下するという問題がある。   In addition, the method of forming a protective layer after filling the recesses with a nonmagnetic material and flattening the surface of the magnetic recording layer as in Patent Document 2 is the most effective in preventing metal elution from the magnetic recording layer. High reliability. However, there is a problem in that mass productivity is reduced due to an increase in the number of steps such as a filling step and subsequent curing and cleaning.

このような状況に鑑み、凹部を非磁性材料で充填することなく、凹部会後部及び磁気記録層表面を保護層で覆って、平坦化することにより、信頼性高く磁気記録層からの金属溶出を防ぐことができ、かつ、特許文献2のように量産性を低下せしめることのない磁気記録媒体を提供することを目的とする。   In view of such a situation, without filling the concave portion with a nonmagnetic material, the rear portion of the concave portion and the surface of the magnetic recording layer are covered with a protective layer and flattened, so that metal elution from the magnetic recording layer can be reliably performed. An object of the present invention is to provide a magnetic recording medium that can be prevented and that does not reduce mass productivity as in Patent Document 2.

上述の目的を達成するため、本発明の磁気記録媒体は、ディスク基板上に情報を記録する磁気記録層と記録機能をもたない溝部が交互に配列してなる凹凸パターンが形成された磁気記録媒体において、凸部形状のテーパ角度が100°以上であり、凹凸パターンが形成された磁気記録媒体の磁気記録層表面に保護層が形成され、溝部(凹部)の開口部が前記保護層で封鎖され、前記凹部の内部に空洞が形成されてなることを特徴とする。   In order to achieve the above-described object, the magnetic recording medium of the present invention is a magnetic recording in which a concavo-convex pattern in which magnetic recording layers for recording information and grooves having no recording function are alternately arranged on a disk substrate is formed. In the medium, the convex portion has a taper angle of 100 ° or more, a protective layer is formed on the surface of the magnetic recording medium of the magnetic recording medium on which the concavo-convex pattern is formed, and the opening of the groove (concave portion) is blocked by the protective layer. And a cavity is formed inside the recess.

本発明によれば、従来と同等の工程数で、耐腐食性に優れた磁気記録媒体を製造できる。   According to the present invention, a magnetic recording medium excellent in corrosion resistance can be manufactured with the same number of steps as in the prior art.

本発明の磁気記録媒体の基本構成の一例を示す断面図を図1に示す。
図1に示す磁気記録媒体はディスク基板1の上に設けられた軟磁性層2の上に磁気記録層3が形成されている。磁気記録層3は、表面に凹凸パターンが形成されている。
FIG. 1 is a sectional view showing an example of the basic configuration of the magnetic recording medium of the present invention.
The magnetic recording medium shown in FIG. 1 has a magnetic recording layer 3 formed on a soft magnetic layer 2 provided on a disk substrate 1. The magnetic recording layer 3 has an uneven pattern formed on the surface.

磁気記録層3は凸部頂部の幅が磁気記録層の軟磁性層に接する部分の幅より大きく、凸部形状のテーパ角度が100°以上となっている。凸部の物理的安定性の観点からは、このテーパ角度は135°以下であることが好ましい。   In the magnetic recording layer 3, the width of the top of the convex portion is larger than the width of the portion of the magnetic recording layer in contact with the soft magnetic layer, and the taper angle of the convex shape is 100 ° or more. From the viewpoint of physical stability of the convex portion, the taper angle is preferably 135 ° or less.

本発明の磁気記録媒体は、凹凸パターンが形成された磁気記録媒体の磁気記録層3の表面に保護層4が形成されている。この保護層は好ましくは、DLC膜またはSiO2膜などの酸化物、SiN膜などの窒化物からなり、これらの膜はプラズマCVD法で成膜することができる。 In the magnetic recording medium of the present invention, the protective layer 4 is formed on the surface of the magnetic recording layer 3 of the magnetic recording medium on which the concavo-convex pattern is formed. This protective layer is preferably made of an oxide such as a DLC film or SiO 2 film, or a nitride such as a SiN film, and these films can be formed by a plasma CVD method.

凹凸パターンのライン幅、溝幅(いずれも底部)を通常磁気記録媒体で採用される幅としても、凸部形状のテーパ角度が100°以上となっているので、凸部の頂部では、隣接する凸部間の距離が近くなり、この構造表面に保護層を成膜すると、入り口側壁部に膜が集中して付き、凹部内部が保護層で完全に充填される前に入り口が塞がる。そのため、凹部の充填を行わずに平坦に近い表面が得られるという特徴がある。凸部形状のテーパ角度が100°未満であると、凸部の頂部での隣接する凸部間の距離が広くなり、凹部内部が保護層で完全に充填される前に入り口を塞ぐことが困難になり、凸部の頂部での隣接する凸部間の距離を狭めるために凹凸パターンのライン幅、溝幅(いずれも底部)を通常磁気記録媒体で採用される幅を狭めると、安定なパターニングが困難になり、隣接する磁気記録媒体が接触するなどの不良品発生頻度が高くなる。
ちなみに、凹部を保護膜で全て埋め尽くして表面を平坦化するには、成膜と平坦化(研磨またはエッチング)を繰り返す必要があり、それだけ工程数が増え、タクトタイムが長くなるというデメリットがある。本発明のように、凹部に空洞を残して保護膜で被覆する方法は、それよりも工程数が少なく、タクトタイムが短いというメリットがある。
Even if the line width and groove width (both of the bottom portions) of the concavo-convex pattern are the widths that are normally employed in the magnetic recording medium, the convex portion has a taper angle of 100 ° or more, so that the top portion of the convex portion is adjacent. When the distance between the convex portions is reduced and a protective layer is formed on the surface of the structure, the film concentrates on the side wall of the entrance, and the entrance is closed before the inside of the concave portion is completely filled with the protective layer. Therefore, there is a feature that a nearly flat surface can be obtained without filling the recess. If the taper angle of the convex shape is less than 100 °, the distance between adjacent convex portions at the top of the convex portion becomes wide, and it is difficult to close the entrance before the concave portion is completely filled with the protective layer. In order to reduce the distance between adjacent convex portions at the top of the convex portion, stable patterning can be achieved by reducing the line width and groove width (both of the bottom portions) of the concave / convex pattern, which are usually employed in magnetic recording media. And the frequency of occurrence of defective products such as adjacent magnetic recording media is increased.
By the way, in order to fill the entire recess with a protective film and flatten the surface, it is necessary to repeat film formation and flattening (polishing or etching), which has the disadvantage that the number of steps increases and the tact time becomes long. . As in the present invention, the method of covering with a protective film while leaving a cavity in the recess has the advantages of fewer steps and shorter tact time.

テーパ角度が100°以上のものの作製は、エッチングレートの異なるレジストの組み合わせを用いたり、加工時の試料の傾きなどを適宜調節したりすることにより、行うことができる。   Fabrication of a taper angle of 100 ° or more can be performed by using a combination of resists having different etching rates or by appropriately adjusting the inclination of the sample during processing.

本発明において用いる基板1、軟磁性層2、磁気記録層3を構成する材料は、通常、磁気記録媒体に用いられる基板、軟磁性層、磁気記録層を構成する材料であればいずれも用いることができ、特に限定されるものではない。磁気記録層のパターニングに用いるレジストも、エッチングレートを適宜選択できれば特に限定されるものではない。また、保護層を形成する材料は、炭素を主成分とする膜、酸化物膜、及び窒化物膜など、通常、磁気記録層の保護に用いられる材料であればいずれも用いることができる。   The materials constituting the substrate 1, the soft magnetic layer 2, and the magnetic recording layer 3 used in the present invention are usually any materials that constitute the substrate, soft magnetic layer, and magnetic recording layer used in the magnetic recording medium. There is no particular limitation. The resist used for patterning the magnetic recording layer is not particularly limited as long as the etching rate can be appropriately selected. The material for forming the protective layer may be any material that is usually used for protecting the magnetic recording layer, such as a film containing carbon as a main component, an oxide film, and a nitride film.

以下に、実施例を用いて本発明をさらに説明する。
<実施例1、2、比較例1〜3>
ナノインプリント法を用いて、磁気記録層に所定の凹凸パターンが形成されたディスクリートトラックメディアを作製した。凹凸パターン形状はライン幅を30nm、溝幅(底部)を30nm、溝深さを10nmとした。テーパ角度は45°(比較例1)、60°(比較例2)、90°(比較例3)、100°(実施例2)、110°(実施例1)とした。
The present invention will be further described below with reference to examples.
<Examples 1 and 2 and Comparative Examples 1 to 3>
Using the nanoimprint method, a discrete track medium in which a predetermined uneven pattern was formed on the magnetic recording layer was produced. The concavo-convex pattern shape had a line width of 30 nm, a groove width (bottom) of 30 nm, and a groove depth of 10 nm. The taper angles were 45 ° (Comparative Example 1), 60 ° (Comparative Example 2), 90 ° (Comparative Example 3), 100 ° (Example 2), and 110 ° (Example 1).

これらの凹凸パターンが形成された磁気記録層上に、プラズマCVD法により3.5nmのDLC膜を成膜した。得られた磁気記録媒体につき、金属溶出試験を行い、耐腐食性を評価した。その結果を図2に示す。なお、テーパ角45°の比較例1では、磁気記録層の厚みを例えば10nmとすると、磁気記録層のすそ部分がそれぞれ10nm、両側あわせて20nmとなり、隣接する磁気記録層頂部間の間隔が開きすぎてコンパクトな構造にすることができないという問題がある。   A 3.5 nm DLC film was formed by plasma CVD on the magnetic recording layer on which the concavo-convex pattern was formed. The obtained magnetic recording medium was subjected to a metal elution test and evaluated for corrosion resistance. The result is shown in FIG. In Comparative Example 1 having a taper angle of 45 °, when the thickness of the magnetic recording layer is 10 nm, for example, the bottom portion of the magnetic recording layer is 10 nm and the both sides are 20 nm, and the gap between the tops of adjacent magnetic recording layers is increased. There is a problem that the structure cannot be made too compact.

金属溶出試験の前処理として、試料は、80℃ 90%RH 100hrの放置試験を行った。金属溶出試験では、保護層面以外からの金属溶出を防ぐため、20mm×20mm角試料の周囲をシリコン樹脂で封止し、試料を20℃の1wt%Na2SO4溶液に30分間浸漬し、自然浸漬電位を測定後、溶液を分析することで溶出した金属量を調べた。溶出量は、参考例1の金属量を1とした。 As a pretreatment for the metal dissolution test, the sample was subjected to a standing test at 80 ° C. and 90% RH for 100 hours. In the metal elution test, in order to prevent metal elution from other than the protective layer surface, the periphery of a 20 mm × 20 mm square sample was sealed with silicon resin, and the sample was immersed in a 1 wt% Na 2 SO 4 solution at 20 ° C. for 30 minutes. After measuring the immersion potential, the amount of metal eluted was examined by analyzing the solution. The amount of metal eluted in Reference Example 1 was taken as 1.

<参考例1>
凹凸パターン加工の無い連続の磁気記録層上に、プラズマCVD法により3.5nmのDLC膜を成膜した。得られた磁気記録媒体は金属溶出試験を行い、耐腐食性を評価した。
<Reference Example 1>
A 3.5 nm DLC film was formed by a plasma CVD method on a continuous magnetic recording layer having no uneven pattern processing. The obtained magnetic recording medium was subjected to a metal elution test and evaluated for corrosion resistance.

図2から、凹凸パターンに沿って保護層を形成する場合、比較例1のようにテーパ角度45°までは連続膜(参考例1)と同等の金属溶出量であった。テーパ角度を高くしてくと、比較例2(テーパ角度60°)のように金属溶出量が増加し、テーパ角度90°(比較例3)で最も高くなる。これは、テーパ角度が高くなると側壁へ膜がつきにくくなり、ピンホールが発生したところから金属が溶出したためと考えられる。しかし、100°以上(実施例1,2)になると逆に溶出量は減少した。これは、テーパ角度が90°を超えて逆テーパになると、膜は溝内部に堆積する前に、溝開口部に堆積しやすくなり、内部に空隙を残したまま開口部を塞ぐためである。   From FIG. 2, when the protective layer was formed along the concavo-convex pattern, the metal elution amount was the same as that of the continuous film (Reference Example 1) up to a taper angle of 45 ° as in Comparative Example 1. When the taper angle is increased, the metal elution amount increases as in Comparative Example 2 (taper angle 60 °), and is highest at a taper angle of 90 ° (Comparative Example 3). This is presumably because when the taper angle increases, the film hardly adheres to the sidewall, and the metal is eluted from the place where the pinhole is generated. However, the elution amount decreased conversely at 100 ° or more (Examples 1 and 2). This is because when the taper angle exceeds 90 ° and becomes a reverse taper, the film is likely to be deposited in the groove opening before being deposited inside the groove, and the opening is blocked while leaving a void inside.

この結果から、凹凸パターンのテーパ角度を100°以上にすることにより、逆に耐腐食性の高いDTMが得られることがわかる。   From this result, it can be seen that a DTM having high corrosion resistance can be obtained by setting the taper angle of the concavo-convex pattern to 100 ° or more.

<実施例3>
ナノインプリント法を用いて、磁気記録層に所定の凹凸パターンが形成されたディスクリートトラックメディアを作製した。凹凸パターン形状はライン幅を60nm、溝幅(底部)を30nm、溝深さを10nmとした。テーパ角度は100°とした。
<Example 3>
Using the nanoimprint method, a discrete track medium in which a predetermined uneven pattern was formed on the magnetic recording layer was produced. The concavo-convex pattern shape had a line width of 60 nm, a groove width (bottom) of 30 nm, and a groove depth of 10 nm. The taper angle was 100 °.

この凹凸パターンが形成された磁気記録層上に、プラズマCVD装置で3.0nmのDLC膜を成膜した。得られた磁気記録媒体につき、実施例1で行ったと同様の金属溶出試験を行い、耐腐食性を評価した。その結果を図3に示す。図3において、金属溶出量は比較例4における溶出量を1とした。   A DLC film having a thickness of 3.0 nm was formed on the magnetic recording layer on which the concavo-convex pattern was formed by a plasma CVD apparatus. The obtained magnetic recording medium was subjected to the same metal elution test as in Example 1 to evaluate the corrosion resistance. The result is shown in FIG. In FIG. 3, the metal elution amount was set to 1 in Comparative Example 4.

<比較例4>
ナノインプリント法を用いて、磁気記録層に所定の凹凸パターンが形成されたディスクリートトラックメディアを作製した。凹凸パターン形状はライン幅を60nm、溝幅(底部)を40nm、溝深さを10nmとした。テーパ角度は80°とした。
<Comparative Example 4>
Using the nanoimprint method, a discrete track medium in which a predetermined uneven pattern was formed on the magnetic recording layer was produced. The concavo-convex pattern shape had a line width of 60 nm, a groove width (bottom) of 40 nm, and a groove depth of 10 nm. The taper angle was 80 °.

この試料表面にスパッタリング法により溝部にSiO2を充填し、且つ、凸部表面にもSiO2膜が形成されるようにSiO2膜を成膜した。その後、試料を傾けた状態でエッチング加工し、凸部表面に成膜されたSiO2膜を除去した。表面平坦化後、プラズマCVD装置で3.0nmのDLC膜を成膜した。得られた磁気記録媒体につき実施例1で行ったと同様の金属溶出試験を行い、耐腐食性を評価した。その結果を実施例3の結果とともに図3に示す。 The surface of the sample by sputtering filled with SiO 2 in the groove, and was a SiO 2 film as an SiO 2 film is also formed on the surface of the protrusion. Thereafter, the sample was etched while being tilted, and the SiO 2 film formed on the surface of the convex portion was removed. After planarizing the surface, a 3.0 nm DLC film was formed by a plasma CVD apparatus. The obtained magnetic recording medium was subjected to the same metal elution test as in Example 1 to evaluate the corrosion resistance. The results are shown in FIG. 3 together with the results of Example 3.

図3から、溝部にSiO2を充填した比較例2の金属溶出量を1.0とすると、凹凸パターンに沿って保護層を形成した実施例2の金属溶出量は1.15とほぼ同等の結果であった。これは、溝内部に空隙を残したままでも、開口部を完全に密封できれば信頼性に問題が無いことを示している。 From FIG. 3, assuming that the metal elution amount of Comparative Example 2 in which the groove portion is filled with SiO 2 is 1.0, the metal elution amount of Example 2 in which the protective layer is formed along the uneven pattern is substantially equal to 1.15. It was a result. This indicates that there is no problem in reliability if the opening can be completely sealed even if a gap is left inside the groove.

本発明により、従来と同等の工程数で、耐腐食性に優れた磁気記録媒体を提供できる。   According to the present invention, a magnetic recording medium excellent in corrosion resistance can be provided with the same number of steps as in the prior art.

本発明のディスクリートトラックメディア(DTM)の基本構成を示す図である。It is a figure which shows the basic composition of the discrete track media (DTM) of this invention. 凸部形状のテーパ角度と金属溶出量の関係を示す図である。It is a figure which shows the relationship between the taper angle of a convex part shape, and a metal elution amount. 溝部にSiO2を埋め込んだ比較例と本発明の実施例の金属溶出量を比較して示す図である。It is a graph showing by comparison the metal elution amount of Examples Comparative Examples and the present invention with embedded SiO 2 in the groove.

符号の説明Explanation of symbols

1 基板
2 軟磁性層
3 磁気記録層
4 保護層
1 Substrate 2 Soft magnetic layer 3 Magnetic recording layer 4 Protective layer

Claims (2)

ディスク基板上に情報を記録する磁気記録層と記録機能をもたない溝部が交互に配列してなる凹凸パターンが形成された磁気記録媒体において、凸部形状のテーパ角度が100°以上であり、凹凸パターンが形成された磁気記録媒体の磁気記録層表面に保護層が形成され、溝部(凹部)の開口部が前記保護層で封鎖され、前記凹部の内部に空洞が形成されてなることを特徴とする磁気記録媒体。   In the magnetic recording medium on which a concavo-convex pattern formed by alternately arranging magnetic recording layers for recording information on the disk substrate and grooves having no recording function, the taper angle of the convex shape is 100 ° or more, A protective layer is formed on the surface of the magnetic recording medium of the magnetic recording medium on which the concavo-convex pattern is formed, the opening of the groove (recess) is sealed with the protective layer, and a cavity is formed inside the recess. Magnetic recording medium. 保護層が炭素を主成分とする膜、酸化物膜、及び窒化物膜から選ばれるものからなることを特徴とする請求項1に記載の磁気記録媒体。   2. The magnetic recording medium according to claim 1, wherein the protective layer is made of a film mainly composed of carbon, an oxide film, and a nitride film.
JP2008199779A 2008-08-01 2008-08-01 Magnetic recording medium Pending JP2010040077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008199779A JP2010040077A (en) 2008-08-01 2008-08-01 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008199779A JP2010040077A (en) 2008-08-01 2008-08-01 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2010040077A true JP2010040077A (en) 2010-02-18

Family

ID=42012482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199779A Pending JP2010040077A (en) 2008-08-01 2008-08-01 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2010040077A (en)

Similar Documents

Publication Publication Date Title
JP3881370B2 (en) Method for filling concave / convex pattern with concave / convex pattern and method for manufacturing magnetic recording medium
JP4071787B2 (en) Method for manufacturing magnetic recording medium
US7488429B2 (en) Method of dry etching, method of manufacturing magnetic recording medium, and magnetic recording medium
JP3686067B2 (en) Method for manufacturing magnetic recording medium
US7223439B2 (en) Method for manufacturing magnetic recording medium and magnetic recording medium
US7482070B2 (en) Magnetic recording medium
JP2008130181A (en) Method of manufacturing magnetic storage medium
US7247251B2 (en) Method for manufacturing a magnetic recording medium
JP2006012285A (en) Magnetic recording medium and method of manufacturing magnetic recording medium
JP2008217959A (en) Magnetic recording medium and method of manufacturing the same
US20090208778A1 (en) Patterned magnetic recording medium and method for manufacturing same
JP2008034034A (en) Manufacturing method of magnetic recording medium, magnetic recording medium, and magnetic recording device
US8168312B2 (en) Magnetic recording medium and a method of manufacturing the same
JP4475147B2 (en) Method for manufacturing magnetic recording medium
JP5062208B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
EP1830352B1 (en) Patterned recording medium and production method therefor
JP2010040077A (en) Magnetic recording medium
US20070223139A1 (en) Method of producing magnetic head and magnetic head
JP2006318648A (en) Method for filling recessed section in irregular pattern, and manufacturing method of magnetic recording medium
US20090242508A1 (en) Method for manufacturing magnetic recording medium
JP2011028815A (en) Method of manufacturing magnetic recording medium
US8828483B2 (en) Manufacturing method for magnetic recording medium, magnetic recording/reproducing device
JP5344283B2 (en) Magnetic recording medium
JP2007280609A (en) Manufacturing method of magnetic recording medium
JP2009176389A (en) Manufacturing method of magnetic recording medium