JP2010039325A - Optical scanning optical apparatus, image forming apparatus using the same, and method of correcting change in position of focal point in sub-scanning direction due to temperature change - Google Patents

Optical scanning optical apparatus, image forming apparatus using the same, and method of correcting change in position of focal point in sub-scanning direction due to temperature change Download PDF

Info

Publication number
JP2010039325A
JP2010039325A JP2008203790A JP2008203790A JP2010039325A JP 2010039325 A JP2010039325 A JP 2010039325A JP 2008203790 A JP2008203790 A JP 2008203790A JP 2008203790 A JP2008203790 A JP 2008203790A JP 2010039325 A JP2010039325 A JP 2010039325A
Authority
JP
Japan
Prior art keywords
optical
scanning direction
change
diffraction grating
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008203790A
Other languages
Japanese (ja)
Inventor
Aiichiro Otana
愛一朗 大棚
Yoshiaki Tamura
嘉章 田村
Hideki Okamura
秀樹 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2008203790A priority Critical patent/JP2010039325A/en
Publication of JP2010039325A publication Critical patent/JP2010039325A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the price, size and weight of an image forming apparatus including an optical scanning optical apparatus, and to form a high definition image even when ambient temperature changes. <P>SOLUTION: The optical scanning optical apparatus includes: a scanning optical means which scans a face to be scanned in a main scanning direction; a first optical system which converts the light from a light source into a substantially parallel light beam, forms a long linear light beam in a main scanning direction using an aperture and focuses the light beam; and a second optical system which scans the light deflected by the scanning optical means on the face to be scanned at a constant speed and has at least one resin optical element. The first optical system is provided with: a diffraction grating member which is perpendicular to the plane in the main scanning direction of the scanning optical means, has a circular arc grating shape whose center exists in the plane including the optical axis of the first optical system, and is movable in the main scanning direction perpendicular to the optical axis, thus the change in the position of the focal point in the subscanning direction in the optical scanning optical apparatus due to the temperature change is corrected by the change in power at the diffraction part of the diffraction grating member due to the change in the wavelength in the light source. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光走査光学装置及びそれを用いた電子写真方式を利用した複写機、プリンタ、ファクシミリ、それらの複合機などの画像形成装置と温度変動に伴う副走査方向の焦点位置変化を補正する方法に係り、特に、レーザダイオードなどの光源からの光を回転多面体鏡(ポリゴンミラー)により偏向し、感光体上を主走査するようにした、光走査光学装置及びそれを用いた画像形成装置と温度変動に伴う副走査方向の焦点位置変化を補正する方法に関するものである。   The present invention corrects a focal position change in a sub-scanning direction accompanying a temperature variation with an image forming apparatus such as a copying machine, a printer, a facsimile, or a composite machine using an optical scanning optical device and an electrophotographic system using the optical scanning optical device. In particular, an optical scanning optical device that deflects light from a light source such as a laser diode by a rotating polyhedral mirror (polygon mirror) and performs main scanning on the photosensitive member, and an image forming apparatus using the optical scanning optical device The present invention relates to a method of correcting a focal position change in the sub-scanning direction accompanying a temperature change.

電子写真方式を利用した複写機、プリンタ、ファクシミリ、それらの複合機などの画像形成装置においては、形成する画像のデータで変調した光で一様に帯電した感光体を露光するため、高速な画像形成装置においては、レーザダイオードなどの光源からの光を偏向する回転多面体鏡(ポリゴンミラー)と、偏向された光が感光体上を等速で走査するよう、fθレンズなどで構成された光走査光学装置が用いられる。   In image forming apparatuses such as copiers, printers, facsimiles, and composite machines using electrophotography, a photoconductor uniformly charged with light modulated by image data to be formed is exposed, so that high-speed images are obtained. In the forming apparatus, an optical scanning composed of a rotating polyhedral mirror (polygon mirror) for deflecting light from a light source such as a laser diode and an fθ lens so that the deflected light scans the photosensitive member at a constant speed. An optical device is used.

一方、こういった画像形成装置においてもパーソナル化の要請により、低価格化、小型化、軽量化、それに加えて形成する画像の高精細化が要請されている。そのため、光走査光学装置も低価格化、小型化、軽量化、そして温度などの環境変動があっても高精細な画像形成を可能とすることが求められている。   On the other hand, in these image forming apparatuses, due to the demand for personalization, there is a demand for price reduction, size reduction, weight reduction, and in addition, high definition of images to be formed. For this reason, the optical scanning optical device is also required to be low-priced, miniaturized, light-weighted, and capable of forming a high-definition image even when there are environmental fluctuations such as temperature.

このうち、コストや重量の低減については、例えばレンズを非球面化したり単レンズ化することが特許文献1に示されている。また、特許文献2に示されているように、プラスチックレンズを用いることも一般的に行われている。   Among them, for reduction of cost and weight, for example, Patent Document 1 discloses that a lens is aspherical or a single lens. In addition, as shown in Patent Document 2, a plastic lens is generally used.

さらに光走査光学装置の小型化のため、特許文献3には、光源手段1から出射された光束を偏向手段5に入射させる入射光学手段11と、偏向手段で反射偏向された光束を被走査面8上に結像させる走査光学手段9とを有する光走査光学装置において、走査光学手段は偏向手段側に第1のレンズ6及び被走査面側に第2のレンズ7を有し、第1のレンズは主走査方向に正のパワーを、副走査方向に負のパワーを有し、第1のレンズの主走査方向のパワーは第2のレンズの主走査方向のパワーよりも大きく、第2のレンズは副走査方向に正のパワーを有して、偏向手段5から第1のレンズまでの長さを短く、第2のレンズから結像面までの長さを長くした光走査装置及びそれを用いた画像形成装置が示されている。   Further, in order to reduce the size of the optical scanning optical device, Patent Document 3 discloses that an incident optical unit 11 that causes a light beam emitted from the light source unit 1 to enter the deflecting unit 5 and a light beam reflected and deflected by the deflecting unit are scanned surfaces. In the optical scanning optical apparatus having the scanning optical means 9 that forms an image on the scanning optical means 9, the scanning optical means has a first lens 6 on the deflection means side and a second lens 7 on the scanned surface side, The lens has a positive power in the main scanning direction and a negative power in the sub-scanning direction. The power of the first lens in the main scanning direction is larger than the power of the second lens in the main scanning direction. An optical scanning device having a positive power in the sub-scanning direction, a short length from the deflecting means 5 to the first lens, and a long length from the second lens to the imaging surface, and The image forming apparatus used is shown.

しかしながら、プラスチックレンズはガラスレンズと比較した場合、温度変化に対する線膨張や屈折率変化の度合が大きく、焦点ズレによる描画品質の劣化が生じ易いという問題がある。また、光走査光学装置は光偏向器(ポリゴンミラー)の面倒れ誤差による影響を低減するため、一般的に、光ビーム(光束)をポリゴンミラーの近傍で副走査方向についてのみ一旦結像させる構成を採用しており、そのため、副走査方向のパワー(屈折力)が主走査方向のパワーより強いアナモフィック光学系として構成される場合が多い。従って、温度変化による焦点ズレも、主として副走査方向において問題となる。   However, when compared with a glass lens, the plastic lens has a problem that the degree of linear expansion and refractive index change with respect to temperature change is large, and drawing quality is likely to deteriorate due to focus shift. Further, in order to reduce the influence of the surface deflection error of the optical deflector (polygon mirror), the optical scanning optical device generally forms a light beam (light beam) once in the vicinity of the polygon mirror only in the sub-scanning direction. Therefore, the power (refractive power) in the sub-scanning direction is often configured as an anamorphic optical system that is stronger than the power in the main scanning direction. Therefore, focus shift due to temperature change is also a problem mainly in the sub-scanning direction.

こういった環境温度変動への対応を設計に盛り込むため、前記した特許文献2では、光ビーム発生手段から光変調されて出射した光ビームを、主走査方向に長い線状として結像させる第1の光学系と、該第1の光学系の結像位置近傍に偏向面を有し、入射された光ビームを主走査方向に偏向走査する光偏向器と、光偏向器で偏向された光ビームを被走査面上に結像させる第2の光学系とを有し、第1の光学系は副走査方向に正のパワーを有するガラス材料より成るシリンドリカルレンズと、副走査方向に負のパワーを有するプラスチック材料より成るシリンドリカルレンズとを有し、第2の光学系は複数のレンズを有して、複数のレンズのうち少なくとも1枚のレンズはプラスチック材料より成るレンズで構成し、第1の光学系の負のパワーのプラスチック材料より成るシリンドリカルレンズと、第2の光学系のプラスチックレンズとでプラスチックレンズの温度変動を相殺することが示されている。   In order to incorporate such a response to environmental temperature fluctuations in the design, the above-mentioned Patent Document 2 forms a first image of a light beam that has been modulated and emitted from the light beam generating means as a long line in the main scanning direction. An optical system having a deflection surface in the vicinity of the imaging position of the first optical system, and deflecting and scanning the incident light beam in the main scanning direction, and the light beam deflected by the optical deflector And a second optical system that forms an image on the surface to be scanned. The first optical system has a cylindrical lens made of a glass material having a positive power in the sub-scanning direction, and a negative power in the sub-scanning direction. A cylindrical lens made of a plastic material, the second optical system has a plurality of lenses, and at least one of the plurality of lenses is made of a plastic material. Negative power of the system And a cylindrical lens made of plastic material, has been shown to cancel the temperature change of the plastic lens in the second optical system plastic lens.

また同様に特許文献3では、走査光学手段9における第1のレンズは主走査方向に正のパワーを、副走査方向に負のパワーを有し、第1のレンズの主走査方向のパワーは第2のレンズの主走査方向のパワーよりも大きく、第2のレンズは副走査方向に正のパワーを有するようにすることで、副走査方向の倍率を低減して副走査方向の焦点位置変化への感度低下を図れるとしている。   Similarly, in Patent Document 3, the first lens in the scanning optical means 9 has a positive power in the main scanning direction and a negative power in the sub-scanning direction, and the power of the first lens in the main scanning direction is the first power. The power of the second lens is larger than the power in the main scanning direction, and the second lens has a positive power in the sub scanning direction, thereby reducing the magnification in the sub scanning direction and changing the focal position in the sub scanning direction. It is said that the sensitivity can be lowered.

また、環境温度変動への対応策として特許文献4には、レーザダイオードからの光を回折効果を有する集光レンズを透過させて回転多面体鏡(ポリゴンミラー)に結像させて温度補償し、また、特許文献5には、偏向素子(ポリゴンミラー)で偏向された光束を屈折部と回折部とを有する走査光学素子で被走査面上に結像させるようにした光走査光学装置が、特許文献6には、光源からの光束を回折部を有するアナモフィック光学素子により偏向素子に結像させ、その偏向素子で偏向された光束を屈折部を有する走査光学素子を介して被走査面上を走査させる光走査光学装置が示され、温度変動に伴う主走査方向のピント変化を、温度変動による光源の波長変動による回折部のパワー変化で補正するようにした光走査光学装置が示されている。   As a countermeasure against environmental temperature fluctuations, Patent Document 4 discloses that light from a laser diode is transmitted through a condensing lens having a diffraction effect to form an image on a rotating polyhedral mirror (polygon mirror), and temperature compensation is performed. Patent Document 5 discloses an optical scanning optical device in which a light beam deflected by a deflecting element (polygon mirror) is imaged on a surface to be scanned by a scanning optical element having a refracting section and a diffracting section. 6, the light beam from the light source is imaged on the deflecting element by the anamorphic optical element having the diffractive portion, and the surface to be scanned is scanned by the light beam deflected by the deflecting element via the scanning optical element having the refracting portion. An optical scanning optical device is shown, and an optical scanning optical device in which a focus change in the main scanning direction due to a temperature change is corrected by a power change of a diffraction unit due to a wavelength change of a light source due to the temperature change is shown.

特許第3567408(特開平10−148755)号公報Japanese Patent No. 3567408 (Japanese Patent Laid-Open No. 10-148755) 特開2000−206432号公報JP 2000-206432 A 特開2002−48993号公報JP 2002-48993 A 特許第3317355(特開平4−328951)号公報Japanese Patent No. 3317355 (Japanese Patent Laid-Open No. 4-328951) 特許第3432085(特開平10−68903)号公報Japanese Patent No. 3432085 (Japanese Patent Laid-Open No. 10-68903) 特開2003−337295号公報JP 2003-337295 A

しかしながら、前記したように、プラスチックレンズはガラスレンズと比較し、温度変化に対する線膨張や屈折率変化の度合が大きく、焦点ズレによる描画品質の劣化が生じ易い。また、特許文献3に示したように、第1のレンズが主走査方向に正のパワーを、副走査方向に負のパワーを有し、第2のレンズは副走査方向に正のパワーを有して第1のレンズを偏向手段に近づけ、第2のレンズから結像面までの長さを長くすると、光走査光学装置を小型に構成できるが、逆に、温度変動により、光走査光学装置を構成するレンズの屈折率の少しの変化が被走査面での大きな焦点位置変化になるという問題がある。   However, as described above, the plastic lens has a greater degree of linear expansion and refractive index change with respect to a temperature change than a glass lens, and is liable to cause deterioration in drawing quality due to focus shift. Further, as shown in Patent Document 3, the first lens has a positive power in the main scanning direction, a negative power in the sub scanning direction, and the second lens has a positive power in the sub scanning direction. If the first lens is brought close to the deflecting means and the length from the second lens to the imaging surface is increased, the optical scanning optical device can be made compact, but conversely, due to temperature fluctuations, the optical scanning optical device There is a problem that a slight change in the refractive index of the lens constituting the lens becomes a large focal position change on the surface to be scanned.

そのため特許文献3では、第1のレンズの副走査方向には負のパワーを、第2のレンズの副走査方向には正のパワーを持たせたことで、副走査方向の倍率が低減されて、副走査方向の焦点位置変化への感度低下を図れるとしてはいるが、高性能が要求される現状では、効果が不十分な場合が考えられる。また特許文献2では、光学セットにガラスレンズを用いていることや、副走査方向の焦点変動緩和のためだけに凹面シリンダレンズを追加していて、コスト高となる。   For this reason, in Patent Document 3, the magnification in the sub-scanning direction is reduced by providing negative power in the sub-scanning direction of the first lens and positive power in the sub-scanning direction of the second lens. Although the sensitivity to the change in the focal position in the sub-scanning direction can be reduced, there may be a case where the effect is insufficient in the present situation where high performance is required. Further, in Patent Document 2, a glass lens is used for the optical set, and a concave cylinder lens is added only for reducing the focus variation in the sub-scanning direction, resulting in high cost.

また、特許文献4、特許文献5、特許文献6では、温度補償として回折格子を導入し、主走査方向のピント変化を、温度変動による光源の波長変動による回折部のパワー変化で補正するようにしているが、副走査方向に対する考慮はなされていない。   In Patent Document 4, Patent Document 5, and Patent Document 6, a diffraction grating is introduced as temperature compensation, and the focus change in the main scanning direction is corrected by the power change of the diffraction section due to the wavelength variation of the light source due to the temperature variation. However, no consideration is given to the sub-scanning direction.

そのため本発明においては、光走査光学装置を含めて画像形成装置を低価格化、小型化、軽量化し、さらに環境温度の変動があっても高精細な画像形成を可能とするため、環境温度の変動により副走査方向の焦点位置変化を起こさないようにして、画像形成装置に用いた場合に長期に渡って精度の高い画像が形成できる、光走査光学装置及びそれを用いた画像形成装置と温度変動に伴う副走査方向の焦点位置変化を補正する方法を提供することが課題である。   Therefore, in the present invention, the image forming apparatus including the optical scanning optical device is reduced in price, size, and weight, and further, high-definition image formation is possible even when the environmental temperature varies. An optical scanning optical device capable of forming a highly accurate image over a long period of time when used in an image forming apparatus without causing a change in the focal position in the sub-scanning direction due to fluctuations, and an image forming apparatus and temperature using the optical scanning optical device It is an object to provide a method for correcting a change in the focal position in the sub-scanning direction due to fluctuations.

上記課題を解決するため本発明になる光走査光学装置及びそれを用いた画像形成装置は、
半導体レーザよりなる光源と、該光源からの光を偏向して被走査面上を主走査方向に走査する走査光学手段と、該走査光学手段における反射面に、前記光源からの光を略平行光とした後アパーチャーにより整形して前記主走査方向に長い線状として結像させる第1光学系と、前記走査光学手段によって偏向された光の前記被走査面上における走査速度を等速とし、少なくとも樹脂製の光学素子を1つ配した第2光学系とからなる光走査光学装置において、
前記第1光学系は、前記走査光学手段における主走査方向の面に直交し、前記第1光学系光軸を含む面に中心が存在する円弧状の格子形状を有した回折格子部材を有し、該回折格子部材は光学系光軸に直交する主走査方向に移動可能に設けられ、回折格子の有効径が前記アパーチャー径より大きく形成されて、
温度変動に伴う前記光走査光学装置における副走査方向の焦点位置変化を、前記光源における波長変動による前記回折格子部材の回折部におけるパワー変化で補正することを特徴とする。
In order to solve the above problems, an optical scanning optical device according to the present invention and an image forming apparatus using the same are provided.
A light source comprising a semiconductor laser; scanning optical means for deflecting light from the light source to scan the surface to be scanned in the main scanning direction; and light from the light source on the reflecting surface of the scanning optical means. A first optical system that is shaped by an aperture and imaged as a long line in the main scanning direction, and a scanning speed of light deflected by the scanning optical means on the surface to be scanned is constant, and at least In the optical scanning optical device comprising the second optical system in which one optical element made of resin is arranged,
The first optical system includes a diffraction grating member having an arcuate grating shape perpendicular to a surface in the main scanning direction of the scanning optical means and having a center on a surface including the optical axis of the first optical system. The diffraction grating member is provided so as to be movable in the main scanning direction perpendicular to the optical axis of the optical system, and the effective diameter of the diffraction grating is formed larger than the aperture diameter,
The focal position change in the sub-scanning direction in the optical scanning optical apparatus due to temperature fluctuation is corrected by power change in the diffraction part of the diffraction grating member due to wavelength fluctuation in the light source.

また、この光走査光学装置及びそれを用いた画像形成装置で実施する温度変動に伴う副走査方向の焦点位置変化を補正する方法は、
半導体レーザよりなる光源からの光を略平行光とした後アパーチャーにより整形し、主走査方向に長い線状として偏向手段の反射面に結像させ、走査光学系で被走査面上の走査速度を等速として前記偏向手段で被走査面上の主走査方向を走査させる光走査方法を用いた光走査光学装置における、温度変動に伴う副走査方向の焦点位置変化を補正する方法において、
前記光源からの光を主走査方向に長い線状とするに際して主走査方向の面に直交し、光学系光軸を含む面に中心が存在する円弧状の格子形状を設けた回折格子部材による回折を行わせると共に、前記回折格子を光学系光軸に直交する主走査方向に移動させて前記回折格子における傾きを補正できるようにし、環境温度の上昇に伴い、前記回折格子における回折率変化がもたらす焦点位置の変化量と、前記光源の波長変化に起因する屈折率変化がもたらす焦点位置の変化量と、光学系の焦点位置変化量とが互いに相殺する関係となるよう光学素子と回折格子の関係を定め、昇温による光走査装置の副走査方向の焦点位置変化を補正することを特徴とする。
In addition, a method of correcting a focal position change in the sub-scanning direction accompanying a temperature change performed in the optical scanning optical device and an image forming apparatus using the optical scanning optical device includes:
The light from the light source consisting of a semiconductor laser is made into substantially parallel light and then shaped by an aperture, and is formed into a long line in the main scanning direction and formed on the reflecting surface of the deflecting means. The scanning optical system changes the scanning speed on the surface to be scanned. In a method of correcting a focal position change in the sub-scanning direction due to a temperature change in an optical scanning optical apparatus using an optical scanning method in which the deflection unit scans the main scanning direction on the surface to be scanned at a constant speed.
Diffraction by a diffraction grating member provided with an arc-shaped grating shape perpendicular to the surface in the main scanning direction and centered on the surface including the optical axis of the optical system when the light from the light source is linearly formed in the main scanning direction. And the tilt of the diffraction grating can be corrected by moving the diffraction grating in the main scanning direction orthogonal to the optical axis of the optical system. As the ambient temperature rises, a change in the diffraction index of the diffraction grating is brought about. The relationship between the optical element and the diffraction grating so that the amount of change in the focal point, the amount of change in the focal point caused by the change in refractive index due to the wavelength change of the light source, and the amount of change in the focal point of the optical system cancel each other. And the change of the focal position in the sub-scanning direction of the optical scanning device due to the temperature rise is corrected.

このように回折格子部材は、格子形状を円弧状として回折格子の有効径が前記アパーチャー径より大きく形成され、光学系光軸に直交する主走査方向に移動可能に設けられていることで、回折格子部材が製造誤差、部品バラツキ、組み立て誤差などにより、光走査光学装置のハウジングに傾いて取り付けられても、主走査方向への移動で回折格子における円弧の中心が主走査方向の面に直交した光軸を含む面に来るから、回折格子部材における回折格子は傾きがなくなったのと同様に補正することができる。   As described above, the diffraction grating member is formed in a circular arc shape, the effective diameter of the diffraction grating is formed larger than the aperture diameter, and is provided to be movable in the main scanning direction perpendicular to the optical axis of the optical system. Even if the grating member is tilted and attached to the housing of the optical scanning optical device due to manufacturing errors, component variations, assembly errors, etc., the center of the arc in the diffraction grating is perpendicular to the plane in the main scanning direction by moving in the main scanning direction. Since it comes to the plane including the optical axis, the diffraction grating in the diffraction grating member can be corrected in the same manner as when the inclination disappears.

また、主走査方向に平行な回折格子ではレンズの金型を作る際、工具を平行に往復動させて加工する必要があり、精度を出すのが難しいが、回折格子部材に設ける格子形状を円弧状とすることで、レンズの金型は、同芯状に回転させて切削することが可能となり、加工が非常に容易になり、それだけ安価に製造することができる。また、温度変動に伴う副走査方向の焦点位置変化を、温度変動に伴う光源における波長変動により生じる回折部のパワー変化で補正することで、非常に簡単な構成で、環境温度の変動によっても副走査方向の焦点位置変化を起こさない、光走査光学装置を提供することができる。   In addition, when making a lens mold with a diffraction grating parallel to the main scanning direction, it is necessary to reciprocate the tool in parallel, and it is difficult to achieve accuracy, but the grating shape provided on the diffraction grating member is circular. By using the arc shape, the lens mold can be rotated concentrically and cut, the processing becomes very easy, and it can be manufactured at a lower cost. In addition, the focal position change in the sub-scanning direction due to temperature fluctuations is corrected by the power change of the diffraction section caused by wavelength fluctuations in the light source due to temperature fluctuations. An optical scanning optical device that does not cause a change in the focal position in the scanning direction can be provided.

また、前記第2光学系は、前記走査光学手段側に配した第1のレンズと、前記被走査面側に配した第2のレンズとからなり、前記第1のレンズは主走査方向に正のパワーを、前記主走査方向と直交する副走査方向に負のパワーをそれぞれ有し、前記主走査方向のパワーは前記第2のレンズの主走査方向のパワーよりも大きく、前記第2のレンズは副走査方向に正のパワーを有し、前記第1と第2のレンズにおけるどちらかのレンズが非球面形状を持っていることで、走査光学手段と第1のレンズとの間を短く、被走査面と第2のレンズとの間を長くすることができ、光走査光学装置を小型、軽量に構成できるから、この光走査光学装置を用いる画像形成装置も小型、軽量に構成することができる。   The second optical system includes a first lens disposed on the scanning optical means side and a second lens disposed on the scanned surface side, and the first lens is aligned in the main scanning direction. The second lens has a negative power in the sub-scanning direction orthogonal to the main scanning direction, and the power in the main scanning direction is larger than the power in the main scanning direction of the second lens. Has a positive power in the sub-scanning direction, and one of the first and second lenses has an aspherical shape, thereby shortening the distance between the scanning optical means and the first lens, Since the distance between the surface to be scanned and the second lens can be increased, and the optical scanning optical device can be configured to be small and light, an image forming apparatus using the optical scanning optical device can also be configured to be small and light. it can.

そして、前記回折格子部材における円弧状の回折格子形状の曲率は、前記第1光学系におけるアパーチャーにより整形された光のビーム径Dmにより切られた、前記回折格子における弓状部分の副走査方向高さRcを1/400から1/1200の間とし、好ましくは1/800となるようにすることで、被走査面上での光ビーム径が理想状態とほぼ同じになり、理想的なビーム径とすることができる。   The curvature of the arc-shaped diffraction grating shape in the diffraction grating member is a height in the sub-scanning direction of the arcuate portion of the diffraction grating cut by the beam diameter Dm of the light shaped by the aperture in the first optical system. By setting the thickness Rc between 1/400 and 1/1200, and preferably 1/800, the light beam diameter on the surface to be scanned is almost the same as the ideal state, and the ideal beam diameter It can be.

また、前記光源からの光を主走査方向に長い線状として集光させる素子は、オレフィン系樹脂材料により形成することで、オレフィン系樹脂材料は湿度の高い場所でも水分吸収が少なく、水分吸収による屈折率変化が起きないから、屈折率の変動を最小限とすることができる。   Moreover, the element which condenses the light from the light source as a long line in the main scanning direction is formed of an olefin resin material, so that the olefin resin material absorbs less moisture even in a place with high humidity. Since no refractive index change occurs, the refractive index variation can be minimized.

以上記載のごとく本発明になる光走査光学装置及びそれを用いた画像形成装置と温度変動に伴う副走査方向の焦点位置変化を補正する方法は、例え回折格子部材が製造誤差、部品バラツキ、組み立て誤差などにより、光走査光学装置のハウジングに傾いて取り付けられても、主走査方向への移動で回折格子における円弧の中心が主走査方向の面に直交した光軸を含む面に来るから、回折格子部材における回折格子は傾きがなくなったのと同様に補正することができ、それによって非常に簡単な構成で、環境温度の変動によっても副走査方向への焦点位置変化を起こさず、常にきれいな画像を形成でき、小型、軽量で安価な光走査光学装置と画像形成装置、及び温度変動に伴う副走査方向の焦点位置変化を補正する方法を提供することができる。   As described above, the optical scanning optical apparatus according to the present invention, the image forming apparatus using the optical scanning optical apparatus, and the method of correcting the focal position change in the sub-scanning direction due to the temperature fluctuation include the manufacturing error, component variation, and assembly of the diffraction grating member. Even if it is attached to the housing of the optical scanning optical device due to an error, the center of the arc in the diffraction grating comes to the plane including the optical axis perpendicular to the plane in the main scanning direction due to the movement in the main scanning direction. The diffraction grating in the grating member can be corrected in the same way as when the tilt is lost, so that it has a very simple configuration and does not change the focal position in the sub-scanning direction due to fluctuations in the environmental temperature. The optical scanning optical apparatus and the image forming apparatus that are small, light, and inexpensive, and a method of correcting the focal position change in the sub-scanning direction due to temperature fluctuation can be provided.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

最初に本発明の光走査光学装置の構成を簡単に説明すると、本発明になる光走査光学装置は、半導体レーザからなる光源と、該光源からの光を略平行光とした後アパーチャーにより整形して主走査方向に長い線状とし、ポリゴンミラーなどからなる走査光学手段の反射面に結像させるシリンドリカルレンズとからなる第1光学系と、画像形成装置においては、一様に帯電された感光体などの被走査面上を、線状とした光源からの光を主走査方向に走査させる前記ポリゴンミラーなどからなる走査光学手段と、偏向された光の被走査面上における走査速度を等速とするfθレンズなどからなる第2光学系とで構成される。   First, the configuration of the optical scanning optical device according to the present invention will be briefly described. The optical scanning optical device according to the present invention is shaped by a light source composed of a semiconductor laser and an aperture after making the light from the light source substantially parallel light. In the image forming apparatus, the first optical system including a cylindrical lens that is long in the main scanning direction and has a cylindrical lens that forms an image on the reflecting surface of a scanning optical unit such as a polygon mirror is used. Scanning optical means including the polygon mirror for scanning light from a linear light source in the main scanning direction on the surface to be scanned, etc., and scanning speed of the deflected light on the surface to be scanned at a constant speed And a second optical system including an fθ lens.

また前記第1光学系は、前記走査光学手段における主走査方向の面に直交し、第1光学系光軸を含む面に中心が存在する円弧状の格子形状を有した回折格子部材を有し、温度変動に伴う光走査光学装置における副走査方向の焦点位置変化を、光源における波長変動による前記回折格子部材の回折部におけるパワー変化で補正できるようにしていると共に、回折格子部材が光学系光軸に直交する主走査方向に移動可能に設けられている。このようにすることで、回折格子部材が傾いて取り付けられた場合、この回折格子を主走査方向へ移動させることで、回折格子における円弧の中心が主走査方向の面に直交した光軸を含む面に来るから、回折格子部材における回折格子の傾きがなくなったのと同様に補正することができる。   The first optical system includes a diffraction grating member having an arcuate grating shape that is orthogonal to a surface in the main scanning direction of the scanning optical means and has a center on a surface including the optical axis of the first optical system. The focal position change in the sub-scanning direction in the optical scanning optical device due to temperature fluctuations can be corrected by the power change in the diffraction part of the diffraction grating member due to wavelength fluctuations in the light source, and the diffraction grating member is optical system light. It is provided so as to be movable in the main scanning direction orthogonal to the axis. In this way, when the diffraction grating member is mounted with an inclination, the diffraction grating is moved in the main scanning direction so that the center of the arc of the diffraction grating includes the optical axis perpendicular to the surface in the main scanning direction. Since it comes to the surface, it can be corrected in the same manner as when the tilt of the diffraction grating in the diffraction grating member disappears.

さらに従来から用いられている主走査方向に平行な回折格子では、レンズの金型を作る際に工具を平行に往復動させて加工する必要があり、精度を出すのが難しいが、回折格子部材に設ける格子形状を円弧状とすることで、レンズの金型は、同芯状に回転させて切削することが可能となり、加工が非常に容易になってそれだけ安価に製造することができる。また、温度変動に伴う副走査方向の焦点位置変化を、温度変動に伴う光源における波長変動により生じる回折部のパワー変化で補正することで、非常に簡単な構成で、環境温度の変動によっても副走査方向の焦点位置変化を起こさない、光走査光学装置を提供することができる。   Furthermore, in the case of a diffraction grating parallel to the main scanning direction that has been used in the past, it is necessary to reciprocate the tool in parallel when making a lens mold, and it is difficult to achieve accuracy. By making the lattice shape provided in the arc shape, the lens mold can be rotated by concentric rotation to be cut, and the processing becomes very easy and can be manufactured at a lower cost. In addition, the focal position change in the sub-scanning direction due to temperature fluctuations is corrected by the power change of the diffraction section caused by wavelength fluctuations in the light source due to temperature fluctuations. An optical scanning optical device that does not cause a change in the focal position in the scanning direction can be provided.

そしてfθレンズなどからなる第2光学系は、ポリゴンミラー側に配した第1のレンズと、被走査面側に配した第2のレンズとで構成されて、第1のレンズは主走査方向に正のパワーを、主走査方向と直交する副走査方向には負のパワーをそれぞれもたせ、主走査方向のパワーは第2のレンズの主走査方向のパワーよりも大きくし、第2のレンズは副走査方向に正のパワーを持たせると共に、第1と第2のレンズにおけるどちらかのレンズに非球面形状を持たせて、ポリゴンミラーと第1のレンズとの間の距離を短く、被走査面と第2のレンズとの間の距離を長くして、光走査光学装置を小型、軽量に構成したものである。   The second optical system including the fθ lens is composed of a first lens arranged on the polygon mirror side and a second lens arranged on the scanned surface side, and the first lens is arranged in the main scanning direction. Positive power is given in the sub-scanning direction orthogonal to the main scanning direction, respectively, the power in the main scanning direction is larger than the power in the main scanning direction of the second lens, and the second lens is in the sub-scanning direction. A positive power is provided in the scanning direction, and either one of the first lens and the second lens is provided with an aspherical shape so that the distance between the polygon mirror and the first lens is shortened. The optical scanning optical device is configured to be small and light by increasing the distance between the first lens and the second lens.

このように光走査光学装置を構成することで、第2光学系における温度変動に伴う副走査方向の焦点位置変化は、温度変動に伴う光源としての半導体レーザの波長変動により生じる、回折格子部材における回折部のパワー変化で補正することが可能となり、また、回折格子部材を傾けて取り付けてしまっても容易に修正でき、金型も安価に製作できるから、非常に簡単な構成で、環境温度の変動があっても副走査方向への焦点位置変化を起こさず、また、小型、軽量、安価な光走査光学装置と画像形成装置を提供することができる。   By configuring the optical scanning optical device in this way, the focal position change in the sub-scanning direction accompanying the temperature fluctuation in the second optical system is caused by the wavelength fluctuation of the semiconductor laser as the light source accompanying the temperature fluctuation in the diffraction grating member. It is possible to correct by changing the power of the diffraction section, and even if the diffraction grating member is tilted and attached, it can be easily corrected, and the mold can be manufactured at low cost. It is possible to provide an optical scanning optical device and an image forming apparatus that do not cause a change in the focal position in the sub-scanning direction even if there is a change, and that are small, light, and inexpensive.

図1は、本発明になる光走査光学装置を画像形成装置における感光体の露光装置に応用した構成概略の斜視図で、図2はこの図1に示した光走査光学装置の副走査方向断面図である。以下の説明では、同一構成要素には同一番号を付してある。   FIG. 1 is a schematic perspective view of an optical scanning optical device according to the present invention applied to a photoconductor exposure device in an image forming apparatus. FIG. 2 is a cross-sectional view of the optical scanning optical device shown in FIG. FIG. In the following description, the same number is attached | subjected to the same component.

本発明になる光走査光学装置は、例えば780nm帯半導体レーザよりなる光源1と、その半導体レーザよりなる光源1からの光を平行光とするカップリングレンズとしてのガラス非球面コリメートレンズ2と、この平行光を所定の大きさとする開口31を備えた開口絞り(アパーチャー)3と、被走査面9上を光源1からの光で走査する回転反射鏡(ポリゴンミラー)5の主走査方向の面に直交し、光学系光軸を含む面に中心が存在する円弧状の格子を有した回折格子部材20と、一面にシリンドリカル面を有してZEONEXE48R(日本ゼオン株式会社の登録商標)等のオレフィン系樹脂等で形成され、平行光とされた光源1からの光を主走査方向10に長い線状として、被走査面9上を走査させる回転反射鏡(ポリゴンミラー)5の反射面5aに結像させるシリンドリカルレンズ4などの線状集光素子と、ポリゴンミラー5により偏向された光の被走査面上における走査速度を等速とする、fθレンズ6、7などで構成される第2光学系、反射鏡8などで構成されている。なお、反射鏡8は、必要に応じて設ければ良く、なくても構わない。   An optical scanning optical device according to the present invention includes, for example, a light source 1 made of a 780 nm band semiconductor laser, a glass aspherical collimating lens 2 as a coupling lens that makes parallel light from the light source 1 made of the semiconductor laser, On the surface in the main scanning direction of an aperture stop (aperture) 3 having an opening 31 having parallel light of a predetermined size and a rotating reflecting mirror (polygon mirror) 5 that scans the surface 9 to be scanned with light from the light source 1. A diffraction grating member 20 having an arc-shaped grating that is orthogonal and has a center on a plane that includes the optical axis of the optical system, and an olefinic system such as ZEONEEXE 48R (registered trademark of Nippon Zeon Co., Ltd.) having a cylindrical surface on one side. A rotating reflecting mirror (polygon mirror) 5 that scans the surface to be scanned 9 by making light from the light source 1 made of resin or the like into parallel light that is long in the main scanning direction 10. It is composed of a linear condensing element such as a cylindrical lens 4 that forms an image on the reflecting surface 5a, and fθ lenses 6 and 7 that make the scanning speed of light deflected by the polygon mirror 5 on the surface to be scanned constant. A second optical system, a reflecting mirror 8 and the like. The reflecting mirror 8 may be provided if necessary, and may not be provided.

回折格子部材20における回折面は、前記したように回転反射鏡(ポリゴンミラー)5の主走査方向の面に直交し、光学系光軸を含む面に中心が存在する円弧状の格子でなっていて、主走査方向10にはパワーを持たない形状となっており、温度変動による回折効果が主走査方向に影響しないようにしてある。また、fθレンズ6、7などの第2光学系は、主走査方向に正のパワーを、主走査方向と直交する副走査方向に負のパワーを持つ第1レンズ6と、副走査方向に正のパワーを有している第2レンズ7とで構成され、どちらかのレンズが非球面形状を有して構成されている。そして本発明においては、fθレンズ6、7などの第2光学系における温度変動に伴う副走査方向の焦点位置変化を、半導体レーザなどの光源1における温度変動に伴う波長変動により生じる、回折格子部材20における回折部のパワー変化で補正するようにしている。   As described above, the diffraction surface of the diffraction grating member 20 is an arc-shaped grating that is orthogonal to the surface in the main scanning direction of the rotary reflecting mirror (polygon mirror) 5 and has a center on the surface including the optical axis of the optical system. Thus, the main scanning direction 10 has no power so that the diffraction effect due to temperature fluctuations does not affect the main scanning direction. The second optical system such as the fθ lenses 6 and 7 is positive in the sub-scanning direction and the first lens 6 having positive power in the main scanning direction and negative power in the sub-scanning direction orthogonal to the main scanning direction. The second lens 7 has the following power, and either lens has an aspherical shape. In the present invention, the change in the focal position in the sub-scanning direction accompanying the temperature fluctuation in the second optical system such as the fθ lenses 6 and 7 is caused by the wavelength fluctuation accompanying the temperature fluctuation in the light source 1 such as a semiconductor laser. 20 is corrected by the power change of the diffraction part.

このように光走査光学装置を構成することで、非常に簡単な構成で、環境温度の変動によっても副走査方向の焦点位置変化を起こさず、また、fθレンズ6、7における主走査方向の正、負のパワーの配分によって、第1のレンズ6とポリゴンミラー5との間を短く、感光体9と第2のレンズ7との間を長くすることができ、光走査光学装置を小型、軽量に構成できるから、この光走査光学装置を用いる画像形成装置も小型、軽量で、かつ、高精細な画像形成を可能とすることができる。   By configuring the optical scanning optical device in this way, the focal position change in the sub-scanning direction does not occur even when the environmental temperature varies, and the fθ lenses 6 and 7 are positive in the main scanning direction. By the distribution of the negative power, the distance between the first lens 6 and the polygon mirror 5 can be shortened, and the distance between the photoconductor 9 and the second lens 7 can be lengthened, and the optical scanning optical device can be reduced in size and weight. Therefore, an image forming apparatus using this optical scanning optical device can also be formed in a small, light and high-definition image.

図3は、回折格子部材20の平面図と、この平面図に点線の円22で示した部分の拡大図である。この図3に示した回折格子部材20には、副走査方向にRを有した弧状の回折格子21が設けられている。この弧状の回折格子21が設けられている範囲24は、図1に示した光源1から出射してコリメートレンズ2で平行光にされ、3で示したアパーチャーに設けられた開口31で形成された光ビーム23の径より大きな範囲としてある。   FIG. 3 is a plan view of the diffraction grating member 20 and an enlarged view of a portion indicated by a dotted circle 22 in the plan view. The diffraction grating member 20 shown in FIG. 3 is provided with an arc-shaped diffraction grating 21 having R in the sub-scanning direction. A range 24 in which the arc-shaped diffraction grating 21 is provided is formed by an opening 31 provided in an aperture indicated by 3, which is emitted from the light source 1 shown in FIG. The range is larger than the diameter of the light beam 23.

そしてこの弧状の回折格子21は、前記したように光走査光学装置における主走査方向の面に直交し、かつ、光軸を含む面に中心が存在する弧として設けられている。このようにすることで、回折格子21を製作するための金型は、同芯状に回転させて切削することが可能となり、加工が非常に容易になる。それに対して従来の主走査方向に平行な回折格子41では、金型を作る際、工具を平行に往復動させて加工する必要があり、精度を出すのが難しい。   As described above, the arc-shaped diffraction grating 21 is provided as an arc that is orthogonal to the surface in the main scanning direction of the optical scanning optical device and has a center on the surface including the optical axis. By doing in this way, the metal mold | die for manufacturing the diffraction grating 21 can be rotated by concentric shape and can be cut, and processing will become very easy. On the other hand, in the conventional diffraction grating 41 parallel to the main scanning direction, it is necessary to reciprocate the tool in parallel when making the mold, and it is difficult to obtain accuracy.

この弧状の回折格子21の半径Rは、大きくすると直線に近くなって前記した加工の容易性が薄れ、また、あまり小さくすると今度は図1に示した光源1から出射した光ビーム23の径が充分に絞れなくなる。そのため、アパーチャー23の主走査方向の径をDm、弧状の回折格子21を、このアパーチャー23の直径(Dm)で切ったときの弓状の部分の副走査方向高さをRcとすると、Rcはアパーチャー23の主走査方向の径Dmの1/400程度以下であれば光学性能を満足する設計ができ、これが下限となるが、1/800以下がより好ましい。また上限は、1/1200程度となる。   If the radius R of the arc-shaped diffraction grating 21 is increased, it becomes close to a straight line and the above-described processability is reduced. If the radius R is too small, the diameter of the light beam 23 emitted from the light source 1 shown in FIG. It will not be able to squeeze enough. Therefore, if the diameter of the aperture 23 in the main scanning direction is Dm, and the arc-shaped diffraction grating 21 is cut by the diameter (Dm) of the aperture 23, the height in the sub-scanning direction of the arcuate portion is Rc. If the aperture 23 is about 1/400 or less of the diameter Dm in the main scanning direction, the optical performance can be designed. This is the lower limit, but 1/800 or less is more preferable. The upper limit is about 1/1200.

今、アパーチャー23の主走査方向の径Dmを3mmとしたとき、Rcは下限の1/400では7.5μmとなり、好ましい1/800では3.75μm、上限1/1200では2.5μmとなるが、下限の1/400を越えた10μmでは、収差悪化によって像面でのビーム径が理想状態からΔ20μm以上変化した。また、5μmでは収差悪化の影響は見られず、像面でのビーム径は理想状態とほぼ同じ値であった。   Now, when the diameter Dm of the aperture 23 in the main scanning direction is 3 mm, Rc is 7.5 μm at the lower limit of 1/400, 3.75 μm is preferable at 1/800, and 2.5 μm at the upper limit 1/1200. At 10 μm exceeding the lower limit of 1/400, the beam diameter on the image plane changed from the ideal state by Δ20 μm or more due to aberration deterioration. At 5 μm, no aberration deterioration was observed, and the beam diameter on the image plane was almost the same value as in the ideal state.

なお、この主走査方向の径Dmと弓状の部分の副走査方向高さRcとを用い、弧の半径Rを算出すると、1/400では149.99(mm)、1/800では300.00(mm)、1/1200では449.99(mm)となる。   When the radius Dm in the main scanning direction and the height Rc of the arcuate portion in the sub-scanning direction are calculated, the arc radius R is calculated to be 149.99 (mm) at 1/400, and 300.000 at 1/800. 00 (mm) and 1/1200 are 449.99 (mm).

次に、この光走査光学装置における温度変動に伴う焦点位置変化への対応について説明する。今、例えば線状集光素子としてのシリンドリカルレンズ4を、前記したZEONEXE48R等のオレフィン系樹脂等で構成すると、全系で温度変動が0.2mm/1℃の感度を持つ光学系になる。   Next, a description will be given of the response to the focal position change accompanying the temperature fluctuation in the optical scanning optical device. Now, for example, if the cylindrical lens 4 as a linear condensing element is made of an olefin-based resin such as the ZEONEEXE 48R described above, the entire system becomes an optical system having a sensitivity with a temperature variation of 0.2 mm / 1 ° C.

ここでこの光走査光学装置が、例えばdtだけ昇温した場合を考える。この昇温で走査光学素子の屈折率nはdn/dtだけ変化し、これに伴う焦点距離変化dφIは、下記(1)式の屈折率の関数として表現できる。
dφI =L(n)dn/dt ……………………(1)
Here, consider a case where the temperature of the optical scanning optical device is increased by, for example, dt. As the temperature rises, the refractive index n of the scanning optical element changes by dn / dt, and the accompanying focal length change dφI can be expressed as a function of the refractive index of the following equation (1).
dφI = L (n) dn / dt (1)

一方、昇温によって半導体レーザ等の光源1の発振波長λもdλ/dtだけ変化し、これに伴う屈折と回折の焦点距離変化dφL、dφDは、それぞれ下記(2)、(3)式となり、共に波長の関数として表現できる。ここで定数Lw、Dwは波長の変動による屈折率の変化を示す定数である。
dφL=L(λ)dλ/dt ……………………(2)
dφD=D(λ)dλ/dt ……………………(3)
On the other hand, the oscillation wavelength λ of the light source 1 such as a semiconductor laser also changes by dλ / dt due to temperature rise, and the accompanying refraction and diffraction focal length changes dφL and dφD are expressed by the following equations (2) and (3), respectively. Both can be expressed as a function of wavelength. Here, the constants Lw and Dw are constants indicating changes in refractive index due to wavelength fluctuations.
dφL = L w (λ) dλ / dt (2)
dφD = D w (λ) dλ / dt (3)

そして昇温により生じる、主走査方向の倍率変化やピント変化を抑えるためには、下記(4)式を満足させるよう回折格子部材20における回折格子21を形成すれば、環境変動(昇温)による副走査方向における倍率変化やピント変化は、回折格子21の屈折及び回折による焦点距離変化で相殺されて改善することができる。
dφI+dφL+dφD≒0 …………………(4)
In order to suppress the change in magnification and focus in the main scanning direction caused by the temperature rise, if the diffraction grating 21 in the diffraction grating member 20 is formed so as to satisfy the following expression (4), it is caused by environmental fluctuations (temperature rise). A change in magnification and a change in focus in the sub-scanning direction can be improved by canceling with a change in focal length due to refraction and diffraction of the diffraction grating 21.
dφI + dφL + dφD≈0 (4)

すなわち、この(4)式を満足させるdφL、dφDを有するように回折格子部材の回折格子21を形成することで、それに対応して半導体レーザなどの光源1の波長変化を補正するために必要な走査光学系の屈折と回折のパワー配分を決めることができる。   That is, by forming the diffraction grating 21 of the diffraction grating member so as to have dφL and dφD satisfying the expression (4), it is necessary to correct the wavelength change of the light source 1 such as a semiconductor laser correspondingly. The power distribution of refraction and diffraction of the scanning optical system can be determined.

なお、ピントズレの改善は回折のパワーのみで行うことも可能であるが、この場合、回折格子の間隔が製造不可能なサイズ(メーカによって異なる)になってしまう可能性があり、これを避けるために屈折のパワーも利用した方がより簡単にピントズレの補正を行うことができる。また、ある波長における屈折率は、例えば屈折率を波長の関数として表した分散式から求めることも可能であり、こういった分散式としては、例えばnを屈折率、λを波長、A、B、C、……、を定数とすると、下記(5)式で表されるコーシーの分散式などが知られている。
n=A+(B/λ)+(C/λ)+…… ……(5)
In addition, although it is possible to improve the focus shift only by the diffraction power, in this case, there is a possibility that the interval of the diffraction grating may become a size that cannot be manufactured (depending on the manufacturer), in order to avoid this. If the power of refraction is also used, the focus shift can be corrected more easily. Further, the refractive index at a certain wavelength can be obtained from a dispersion formula in which the refractive index is expressed as a function of the wavelength, for example, as such a dispersion formula, for example, n is the refractive index, λ is the wavelength, A, B , C,... Are constants, and Cauchy's dispersion formula represented by the following formula (5) is known.
n = A + (B / λ 2 ) + (C / λ 4 ) + (5)

前記したように、光走査光学装置の温度による焦点変動量を0.2mm/1℃とすると、光学系の合成焦点距離fに対する温度変化は、下記(5)式で表されるf(T)なる関数として捉えられる。
f(T)=f+0.2T …………………………(6)
As described above, when the focal variation amount due to the temperature of the optical scanning optical device is 0.2 mm / 1 ° C., the temperature change with respect to the combined focal length f of the optical system is expressed by the following equation (5) f (T). As a function.
f (T) = f + 0.2T (6)

そのため、前記(1)式で表される温度変動に伴う屈折による焦点変動dφIは、上記(6)式のf(T)とほぼ同値になるため、回折光学素子における温度による焦点距離変動量dφL+dφDを、−1/f(T)とすることで相殺できることになる。   Therefore, the focus fluctuation dφI due to refraction accompanying the temperature fluctuation expressed by the above equation (1) is substantially the same as f (T) in the above equation (6), and therefore the focal length variation due to temperature in the diffractive optical element dφL + dφD. Is offset by −1 / f (T).

このように線状集光素子であるシリンダレンズに回折格子を付与することで、アナモフィック光学系の特徴である主走査方向と副走査方向でそれぞれにパワーが異なる光学素子の特徴を失うことなく、温度変動によるピントの変化を起こすことのない光走査光学装置とすることができる。   By adding a diffraction grating to the cylindrical lens that is a linear condensing element in this way, without losing the characteristics of the optical elements having different powers in the main scanning direction and the sub-scanning direction, which are characteristics of the anamorphic optical system, An optical scanning optical device that does not cause a change in focus due to temperature fluctuation can be obtained.

なお、以上説明してきた図3に示したように、回折格子21を副走査方向にRを持たせて形成した回折格子部材20などでは、図4(A)に示したように、製造誤差や部品バラツキ、組み立て誤差などにより、この回折格子部材20が光走査光学装置のハウジングに角度αだけ傾いて取り付けられてしまう場合がある。   As described above with reference to FIG. 3, in the diffraction grating member 20 formed with the diffraction grating 21 having R in the sub-scanning direction, as shown in FIG. Due to component variations, assembly errors, etc., the diffraction grating member 20 may be attached to the housing of the optical scanning optical device at an angle α.

本来、こういった回折格子を有した部材が傾かずに正常に取り付けられた場合、光源1からの光ビームは、それぞれの回折格子によってビーム径Dmの中心の両側で対称的に回折され、それによって均等に温度変動に対処されて絞られたビームとなる。それに対して回折格子を有した部材が傾いた場合、光ビームは回折格子の傾きに対応した方向に回折され、光軸を中心とした倒れが発生したことと同様な不具合を招き、シリンドリカルレンズに回折部が設けられた場合、回折光だけでなく、ポリゴンミラー5に結像する光ビームも主走査方向に対して傾きを持った線状となる。   Originally, when a member having such a diffraction grating is normally mounted without tilting, the light beam from the light source 1 is diffracted symmetrically on both sides of the center of the beam diameter Dm by each diffraction grating, Thus, the beam is narrowed by coping with temperature fluctuations evenly. On the other hand, when the member having the diffraction grating is tilted, the light beam is diffracted in the direction corresponding to the tilt of the diffraction grating, causing the same problem as the tilting around the optical axis. When the diffractive portion is provided, not only the diffracted light but also the light beam imaged on the polygon mirror 5 is linear with an inclination with respect to the main scanning direction.

この場合、回折格子21を副走査方向にRを持たせて形成した回折格子部材20では、この回折格子部材20を主走査方向にスライドさせることでこの回折格子部材20の傾きを補正したと同じ効果が得られる。   In this case, in the diffraction grating member 20 formed with the diffraction grating 21 having R in the sub-scanning direction, this is the same as correcting the inclination of the diffraction grating member 20 by sliding the diffraction grating member 20 in the main scanning direction. An effect is obtained.

即ち図4(A)のように回折格子部材20がαだけ傾いた場合、副走査方向にRを有した回折格子21も図4(B)に示したように矢印26方向に角度αだけ傾く。しかしこの回折格子部材20を図4(C)に示したように、主走査方向に矢印27のようにスライドさせることで、回折格子21におけるRの中心が、主走査方向の面に直交した光軸を含む面に来ることで回折格子部材20の傾きを補正することができる。   That is, when the diffraction grating member 20 is inclined by α as shown in FIG. 4A, the diffraction grating 21 having R in the sub-scanning direction is also inclined by the angle α in the direction of the arrow 26 as shown in FIG. . However, as shown in FIG. 4C, the diffraction grating member 20 is slid in the main scanning direction as indicated by an arrow 27 so that the center of R in the diffraction grating 21 is perpendicular to the surface in the main scanning direction. The inclination of the diffraction grating member 20 can be corrected by coming to the plane including the axis.

すなわちこれは、回折格子部材20がαだけ傾いた場合、副走査方向にRを有した回折格子21における、光ビーム23のアパーチャー23の直径(Dm)と平行な接線は、その回折格子21との接点が回折格子21の中心を通る面にないのに対し、回折格子部材20を主走査方向にスライドさせることで、回折格子21との接点が回折格子21の中心を通る面に来るからである。   That is, when the diffraction grating member 20 is inclined by α, the tangent parallel to the diameter (Dm) of the aperture 23 of the light beam 23 in the diffraction grating 21 having R in the sub-scanning direction is the same as that of the diffraction grating 21. Is not on the plane passing through the center of the diffraction grating 21, but by sliding the diffraction grating member 20 in the main scanning direction, the contact point with the diffraction grating 21 comes to the plane passing through the center of the diffraction grating 21. is there.

このようにすることで、例え回折格子部材20の製造誤差や部品バラツキ、組み立て誤差などにより、この回折格子部材20が光走査光学装置のハウジングに角度αだけ傾いて取り付けられても、容易にそれを修正することができ、それだけ公差を大きくしても良くなるから、コスト的にも有利になる。   Thus, even if the diffraction grating member 20 is attached to the housing of the optical scanning optical device at an angle α due to manufacturing errors, component variations, assembly errors, etc., it can be easily adjusted. Can be corrected, and the tolerance can be increased accordingly, which is advantageous in terms of cost.

なお、回折格子部材20を主走査方向にスライドさせる機構は、例えば回折格子部材20を両側から挟んで主走査方向にスライド可能に保持するレールを設け、送りネジなどで微少変位を可能としてスライドさせるなど、種々の方法を用いることができる。   The mechanism for sliding the diffraction grating member 20 in the main scanning direction is provided with, for example, a rail that holds the diffraction grating member 20 from both sides so as to be slidable in the main scanning direction, and is slid with a feed screw or the like to allow slight displacement. Various methods can be used.

本発明によれば、回折格子部材を傾けて取り付けても容易に補正でき、環境温度が変動しても従来存在した副走査方向への焦点位置変化が起きず、ビーム径は常に正常な値を保つことができるから、この光走査光学装置を画像形成装置に用いれば、長期に渡って高精細な画像を形成できる画像形成装置を提供することができる。   According to the present invention, even if the diffraction grating member is tilted and attached, it can be easily corrected, and even if the environmental temperature fluctuates, the conventional focal position change in the sub-scanning direction does not occur, and the beam diameter always has a normal value. Therefore, if this optical scanning optical device is used in an image forming apparatus, an image forming apparatus capable of forming a high-definition image over a long period of time can be provided.

本発明になる光走査光学装置を画像形成装置における感光体の露光装置に応用した構成概略の斜視図である。1 is a perspective view of a schematic configuration in which an optical scanning optical device according to the present invention is applied to a photoconductor exposure apparatus in an image forming apparatus. 図1に示した光走査光学装置の副走査方向断面図である。FIG. 2 is a cross-sectional view in the sub-scanning direction of the optical scanning optical device shown in FIG. 1. 他の光学部材とは独立して設けた回折格子部材20の平面図と、この平面図に点線の円22で示した部分の拡大図である。FIG. 6 is a plan view of a diffraction grating member 20 provided independently of other optical members, and an enlarged view of a portion indicated by a dotted circle 22 in this plan view. 回折格子部材20が傾いて光走査光学装置のハウジングに取り付けられた場合の対処方法を説明するための図である。It is a figure for demonstrating the coping method when the diffraction grating member 20 inclines and is attached to the housing of the optical scanning optical apparatus.

符号の説明Explanation of symbols

1 光源(半導体レーザ)
2 コリメートレンズ
3 アパーチャー(開口絞り)
31 開口
4 シリンドリカルレンズ
41 フレネルな回折格子
42 負のパワーのシリンドリカル面
5 ポリゴンミラー
6、7 fθレンズ
8 反射鏡
9 感光体(被走査面)
10 走査方向
20 回折格子部材
21 弧状の回折格子
22 拡大図示範囲
23 光ビーム
26 傾き方向矢印
27 スライド方向
1 Light source (semiconductor laser)
2 Collimating lens 3 Aperture (aperture stop)
31 Aperture 4 Cylindrical Lens 41 Fresnel Diffraction Grating 42 Negative Power Cylindrical Surface 5 Polygon Mirror 6, 7 fθ Lens 8 Reflecting Mirror 9 Photosensitive Member (Scanned Surface)
10 Scanning Direction 20 Diffraction Grating Member 21 Arc-shaped Diffraction Grating 22 Enlarged Illustrated Range 23 Light Beam 26 Tilt Direction Arrow 27 Slide Direction

Claims (6)

半導体レーザよりなる光源と、該光源からの光を偏向して被走査面上を主走査方向に走査する走査光学手段と、該走査光学手段における反射面に、前記光源からの光を略平行光とした後アパーチャーにより整形して前記主走査方向に長い線状として結像させる第1光学系と、前記走査光学手段によって偏向された光の前記被走査面上における走査速度を等速とし、少なくとも樹脂製の光学素子を1つ配した第2光学系とからなる光走査光学装置において、
前記第1光学系は、前記走査光学手段における主走査方向の面に直交し、前記第1光学系光軸を含む面に中心が存在する円弧状の格子形状を有した回折格子部材を有し、該回折格子部材は光学系光軸に直交する主走査方向に移動可能に設けられ、回折格子の有効径が前記アパーチャー径より大きく形成されて、
温度変動に伴う前記光走査光学装置における副走査方向の焦点位置変化を、前記光源における波長変動による前記回折格子部材の回折部におけるパワー変化で補正することを特徴とする光走査光学装置。
A light source comprising a semiconductor laser; scanning optical means for deflecting light from the light source to scan the surface to be scanned in the main scanning direction; and light from the light source on the reflecting surface of the scanning optical means. A first optical system that is shaped by an aperture and imaged as a long line in the main scanning direction, and a scanning speed of light deflected by the scanning optical means on the surface to be scanned is constant, and at least In the optical scanning optical device comprising the second optical system in which one optical element made of resin is arranged,
The first optical system includes a diffraction grating member having an arcuate grating shape perpendicular to a surface in the main scanning direction of the scanning optical means and having a center on a surface including the optical axis of the first optical system. The diffraction grating member is provided so as to be movable in the main scanning direction perpendicular to the optical axis of the optical system, and the effective diameter of the diffraction grating is formed larger than the aperture diameter,
An optical scanning optical device, wherein a change in a focal position in the sub-scanning direction in the optical scanning optical device due to a temperature change is corrected by a power change in a diffraction portion of the diffraction grating member due to a wavelength change in the light source.
前記第2光学系は、前記走査光学手段側に配した第1のレンズと、前記被走査面側に配した第2のレンズとからなり、前記第1のレンズは主走査方向に正のパワーを、前記主走査方向と直交する副走査方向に負のパワーをそれぞれ有し、前記主走査方向のパワーは前記第2のレンズの主走査方向のパワーよりも大きく、前記第2のレンズは副走査方向に正のパワーを有し、前記第1と第2のレンズにおけるどちらかのレンズが非球面形状を持っていることを特徴とする請求項1に記載した光走査光学装置。   The second optical system includes a first lens disposed on the scanning optical means side and a second lens disposed on the scanned surface side, and the first lens has a positive power in the main scanning direction. Each having a negative power in the sub-scanning direction orthogonal to the main scanning direction, the power in the main scanning direction being larger than the power in the main scanning direction of the second lens, and the second lens The optical scanning optical apparatus according to claim 1, wherein the optical scanning optical apparatus has a positive power in a scanning direction, and one of the first and second lenses has an aspherical shape. 前記回折格子部材における円弧状の回折格子形状の曲率は、前記第1光学系におけるアパーチャーにより整形された光のビーム径Dmにより切られた、前記回折格子における弓状部分の副走査方向高さRcを1/400から1/1200の間とし、好ましくは1/800となるようにしたことを特徴とする請求項1または2に記載した光走査光学装置。   The curvature of the arc-shaped diffraction grating shape in the diffraction grating member is the height Rc of the arcuate portion in the diffraction grating cut by the beam diameter Dm of the light shaped by the aperture in the first optical system. The optical scanning optical apparatus according to claim 1, wherein the ratio is between 1/400 and 1/1200, preferably 1/800. 前記光源からの光を主走査方向に長い線状として集光させる素子は、オレフィン系樹脂材料により形成したことを特徴とする請求項1乃至3の何れかに記載した光走査光学装置。   4. The optical scanning optical apparatus according to claim 1, wherein the element that condenses the light from the light source as a long line in the main scanning direction is formed of an olefin resin material. 前記請求項1乃至4の何れかに記載した光走査光学装置を搭載したことを特徴とする画像形成装置。   An image forming apparatus comprising the optical scanning optical device according to claim 1. 半導体レーザよりなる光源からの光を略平行光とした後アパーチャーにより整形し、主走査方向に長い線状として偏向手段の反射面に結像させ、走査光学系で被走査面上の走査速度を等速として前記偏向手段で被走査面上の主走査方向を走査させる光走査方法を用いた光走査光学装置における、温度変動に伴う副走査方向の焦点位置変化を補正する方法において、
前記光源からの光を主走査方向に長い線状とするに際して主走査方向の面に直交し、光学系光軸を含む面に中心が存在する円弧状の格子形状を設けた回折格子部材による回折を行わせると共に、前記回折格子を光学系光軸に直交する主走査方向に移動させて前記回折格子における傾きを補正できるようにし、環境温度の上昇に伴い、前記回折格子における回折率変化がもたらす焦点位置の変化量と、前記光源の波長変化に起因する屈折率変化がもたらす焦点位置の変化量と、光学系の焦点位置変化量とが互いに相殺する関係となるよう光学素子と回折格子の関係を定め、昇温による光走査装置の副走査方向の焦点位置変化を補正することを特徴とする光走査光学装置における温度変動に伴う副走査方向の焦点位置変化を補正する方法。
The light from the light source consisting of a semiconductor laser is made into substantially parallel light and then shaped by an aperture, and is formed into a long line in the main scanning direction and formed on the reflecting surface of the deflecting means. The scanning optical system changes the scanning speed on the surface to be scanned. In a method of correcting a focal position change in the sub-scanning direction due to a temperature change in an optical scanning optical apparatus using an optical scanning method in which the deflection unit scans the main scanning direction on the surface to be scanned at a constant speed.
Diffraction by a diffraction grating member provided with an arc-shaped grating shape perpendicular to the surface in the main scanning direction and centered on the surface including the optical axis of the optical system when the light from the light source is linearly formed in the main scanning direction. And the tilt of the diffraction grating can be corrected by moving the diffraction grating in the main scanning direction orthogonal to the optical axis of the optical system. As the ambient temperature rises, a change in the diffraction index of the diffraction grating is brought about. The relationship between the optical element and the diffraction grating so that the amount of change in the focal point, the amount of change in the focal point caused by the change in refractive index due to the wavelength change of the light source, and the amount of change in the focal point of the optical system cancel each other. And correcting the change in the focal position in the sub-scanning direction of the optical scanning device due to the temperature rise in the optical scanning optical device.
JP2008203790A 2008-08-07 2008-08-07 Optical scanning optical apparatus, image forming apparatus using the same, and method of correcting change in position of focal point in sub-scanning direction due to temperature change Pending JP2010039325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203790A JP2010039325A (en) 2008-08-07 2008-08-07 Optical scanning optical apparatus, image forming apparatus using the same, and method of correcting change in position of focal point in sub-scanning direction due to temperature change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203790A JP2010039325A (en) 2008-08-07 2008-08-07 Optical scanning optical apparatus, image forming apparatus using the same, and method of correcting change in position of focal point in sub-scanning direction due to temperature change

Publications (1)

Publication Number Publication Date
JP2010039325A true JP2010039325A (en) 2010-02-18

Family

ID=42011929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203790A Pending JP2010039325A (en) 2008-08-07 2008-08-07 Optical scanning optical apparatus, image forming apparatus using the same, and method of correcting change in position of focal point in sub-scanning direction due to temperature change

Country Status (1)

Country Link
JP (1) JP2010039325A (en)

Similar Documents

Publication Publication Date Title
EP0872754B1 (en) Scanning optical apparatus with a diffractive lens for compensating temperature dependent focus changes
JP6047107B2 (en) Optical scanning device and image forming apparatus having the same
US20100097646A1 (en) Scanning optical apparatus and image forming apparatus using the same
US8229323B2 (en) Scanning optical apparatus and image forming apparatus using the same, which are capable of reducing a change of an irradiation position of a light flux on a deflection unit
KR20020094917A (en) Light scanning device and image forming apparatus using the same
KR102035380B1 (en) Optical scanning apparatus and image forming apparatus including the same
KR20120080659A (en) Optical scanner
JP3397638B2 (en) Optical scanning optical system and image forming apparatus using the same
KR100461300B1 (en) Collimating lens and optical scanning apparatus using the same
JP2007140418A (en) Light scanning device and scanning optical system
KR101442616B1 (en) Light scanning system and image forming apparatus
KR101209578B1 (en) Illuminated position adjusting method in optical scanning apparatus
JP2010276860A (en) Scanning optical system in image forming apparatus
JP2010039325A (en) Optical scanning optical apparatus, image forming apparatus using the same, and method of correcting change in position of focal point in sub-scanning direction due to temperature change
JP2010039326A (en) Optical scanning optical apparatus, image forming apparatus using the same and method of correcting change in position of focal point in sub-scanning direction due to temperature change
JP2001235697A (en) Optical scanner
JP2015219447A (en) Image-formation optical element, optical scanning device and image formation device using the same
JP4404667B2 (en) Optical scanning device
JP2000002848A (en) Scanning optical device
JP2014006277A (en) Optical scanner and image forming apparatus
JP2017191143A (en) Optical scanner and image forming apparatus including the same
KR100558328B1 (en) Gwangju Yarn Equipment
JP2005234110A (en) Optical scanner
JP2023012296A (en) Optical scanner and image forming apparatus including the same
JP4652506B2 (en) Scanning optical device