JP2010038831A - Anomaly detection equipment in nuclear power plant - Google Patents

Anomaly detection equipment in nuclear power plant Download PDF

Info

Publication number
JP2010038831A
JP2010038831A JP2008204528A JP2008204528A JP2010038831A JP 2010038831 A JP2010038831 A JP 2010038831A JP 2008204528 A JP2008204528 A JP 2008204528A JP 2008204528 A JP2008204528 A JP 2008204528A JP 2010038831 A JP2010038831 A JP 2010038831A
Authority
JP
Japan
Prior art keywords
equipment
buried
nuclear power
facility
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008204528A
Other languages
Japanese (ja)
Other versions
JP5188906B2 (en
Inventor
Norifumi Yanagida
憲史 柳田
Yasutaka Iwata
安隆 岩田
Hirokuni Ishigaki
博邦 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2008204528A priority Critical patent/JP5188906B2/en
Publication of JP2010038831A publication Critical patent/JP2010038831A/en
Application granted granted Critical
Publication of JP5188906B2 publication Critical patent/JP5188906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide anomaly detection equipment in a nuclear power plant which can detect an anomaly quickly and can restore a spot where it appears even in piping and the like buried underground. <P>SOLUTION: Backup pipes P<SB>n-1</SB>, P<SB>n</SB>and P<SB>n+1</SB>are branched off from buried pipes D<SB>n-1</SB>, D<SB>n</SB>and D<SB>n+1</SB>and one end of each of the backup pipes is allowed to protrude over the ground. The end on the aboveground side of each of the backup pipes includes valves B<SB>n-1</SB>, B<SB>n</SB>and B<SB>n+1</SB>for bypasses and is usually closed down. In the buried pipes, emergency valves V<SB>n-1</SB>, V<SB>n</SB>and V<SB>n+1</SB>are provided while squeezing both ends of each of the backup pipes. Each of the emergency valves is usually opened and switching operations for opening and closing it is made possible by using means which can be manipulated from the ground such as extension valves E<SB>n-1</SB>, E<SB>n</SB>and E<SB>n+1</SB>. Data monitoring equipment MB monitors the presence or absence of the appearance of an anomaly and notifies workers of a spot where the anomaly appears when it happens. The workers connects the backup pipes located before and behind the spot where the anomaly appears with a bypass pipe BD<SB>n</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原子力発電所の異常検知設備に係り、特に、原子力発電所内に敷設された埋設配管や埋設電線の地震による破断を検知し、破断地点を迅速に復旧する手段に関する。   The present invention relates to an abnormality detection facility for a nuclear power plant, and more particularly, to a means for detecting breakage caused by an earthquake of a buried pipe or a buried electric wire laid in the nuclear power plant and quickly recovering the break point.

原子力発電所の配管や電線を初めとする設備は、地震により発生する可能性のある環境への放射線による影響の観点から、耐震設計上の重要度別に高い順からSクラス・Bクラス・Cクラスに分類される。Sクラス及びBクラスは、その機能が喪失することにより放射性物質を外部に拡散する可能性がある設備であり、その影響の大小により前者または後者に属される。これに対し、Cクラスは一般産業設備と同等の安全性を保持すれば良い設備であり、例えば消火系配管等が挙げられ、地中に埋設されているものが多い。   From the viewpoint of the effects of radiation on the environment that may occur due to an earthquake, facilities such as piping and electric wires of nuclear power plants are ranked in descending order of importance in terms of seismic design. are categorized. The S class and the B class are facilities that may diffuse radioactive materials to the outside due to loss of their functions, and belong to the former or the latter depending on the magnitude of the influence. On the other hand, the C class is a facility that is required to maintain safety equivalent to that of general industrial facilities. For example, a fire extinguishing system pipe or the like can be cited, and many of them are buried in the ground.

現在、原子力発電所には、地震発生による機器異常の検知、点検、及び早期復旧に関する方法(インストラクションシステム)の充実化が望まれており、殊に昨今の大型地震を踏まえ、重要度が低いクラスの設備についても、早期に復旧が可能なインストラクションシステムの導入が一段と望まれている。   At present, nuclear power plants are expected to enhance methods (instruction systems) for detecting, checking, and early recovery of equipment anomalies due to earthquakes, especially in light of the recent large earthquakes. For these facilities, the introduction of an instruction system that can be restored at an early stage is further desired.

地震時のインストラクションシステムとしては、例えば、原子力発電所内に設置された地震加速度計・加速度デ−タ処理機・デ−タ表示画面等を用いて、作業員に的確な地震情報及び早急に点検を行うための情報を表示するシステムが知られている(例えば、特許文献1,2参照)。
特公平8−3549号公報 特開平6−265692号公報
As an instruction system at the time of an earthquake, for example, seismic accelerometers, acceleration data processing machines, data display screens, etc. installed in nuclear power plants are used to check accurate earthquake information and prompt inspections for workers. A system for displaying information to be performed is known (see, for example, Patent Documents 1 and 2).
Japanese Patent Publication No. 8-3549 JP-A-6-265692

ところで、耐震重要度クラスが低い設備を異常検知の対象に含める場合には、数量が膨大であること、及び地中に埋設されていることを考慮する必要があり、対象にした異常検知設備には、極力小型かつ安価で簡易に設置できること、及び復旧作業員が地上で容易に復旧作業を行えることが特に望まれる。   By the way, when including equipment with a low seismic importance class in the object of abnormality detection, it is necessary to consider that the quantity is huge and that it is buried in the ground. It is particularly desirable that the installation is as small and inexpensive as possible and can be easily installed, and that the restoration worker can easily perform restoration work on the ground.

しかしながら、特許文献1,2に開示されているインストラクションシステムは、耐震重要度クラスが高い設備に適用するために開発されたものであり、加速度計、計算機、デ−タベ−ス及び入出力装置等から構成される大型かつ複雑なものであり、かつ埋設設備に対応できるように構成されていないので、耐震重要度クラスが低い設備を含めて適用することは、事実上困難である。   However, the instruction systems disclosed in Patent Documents 1 and 2 were developed for application to facilities having a high seismic importance class, such as accelerometers, computers, databases, input / output devices, etc. It is practically difficult to apply including equipment with a low seismic importance class because it is large and complex composed of

本発明は、このような従来技術の実情に鑑みてなされたものであり、その目的は、耐震重要度が低いクラスの配管や電線等の機器の異常を速やかに検知でき、早期に復旧できる原子力発電所の異常検知設備を提供することにある。   The present invention has been made in view of such a state of the art, and its purpose is to quickly detect abnormalities in equipment such as piping and electric wires of a class having a low seismic importance, and to recover nuclear power at an early stage. The purpose is to provide power plant abnormality detection equipment.

本発明は、前記課題を解決するため、第1に、原子力発電所内に敷設された埋設設備から分岐され、先端部が地上に配置された複数の予備設備と、前記埋設設備の状態を検知する状態センサ及び当該状態センサから出力される状態デ−タを無線送信する無線送信機を有し、前記予備設備の先端部に備えられた状態デ−タ送信手段と、前記状態デ−タ送信手段から送信される状態データを受信する無線受信機、前記埋設設備の状態が正常か否かを判別するための閾値デ−タを格納する閾値デ−タテ−ブル、前記無線受信機にて受信された前記状態データが前記閾値デ−タテ−ブルに格納された前記閾値デ−タを超えた場合に前記埋設設備に異常が発生したと判定し、その異常発生地点を特定する判定手段、及び前記判定手段により特定された異常発生地点を作業員に通知する通知手段を有するデータ監視設備とを備えるという構成にした。   In order to solve the above-mentioned problem, the present invention firstly detects a plurality of spare facilities branched from a buried facility laid in a nuclear power plant and having a tip portion disposed on the ground, and the state of the buried facility. A state data transmitter having a state sensor and a wireless transmitter for wirelessly transmitting the state data output from the state sensor; and a state data transmitter provided at a tip of the spare equipment; and the state data transmitter A wireless receiver that receives state data transmitted from the threshold data, a threshold data table that stores threshold data for determining whether or not the state of the buried equipment is normal, and is received by the wireless receiver. The state data exceeds the threshold data stored in the threshold data table, it is determined that an abnormality has occurred in the buried equipment, and a determination means for specifying the abnormality occurrence point; and The error specified by the judgment means The occurrence point and the structure of and a data monitoring facility having a notification unit configured to notify the operator.

本構成によると、埋設設備から分岐された複数の予備設備の先端部を地上に配置し、当該先端部に埋設設備の状態を検知してその状態デ−タを無線送信する状態デ−タ送信手段を備えるので、膨大な数の埋設設備に対する状態デ−タ送信手段の設置を容易に行うことができる。また、状態デ−タ送信手段から送信される状態データに基づいて埋設設備の異常発生地点を特定し、作業員に通知するデータ監視設備を備えるので、異常の発生時に異常発生地点を迅速に作業員に通知することができ、異常発生地点の復旧を早期に行うことができる。   According to this configuration, the state data transmission for arranging the front ends of a plurality of spare facilities branched from the embedded facility on the ground, detecting the state of the embedded facility at the front end and transmitting the state data wirelessly. Since the means is provided, it is possible to easily install the state data transmission means for a huge number of embedded facilities. In addition, it is equipped with a data monitoring facility that identifies the location of abnormalities in the buried equipment based on the status data transmitted from the status data transmission means and notifies the workers, so that the location of abnormalities can be quickly operated when an abnormality occurs. Staff can be notified, and the point where the anomaly has occurred can be recovered early.

本発明は第2に、前記第1の原子力発電所の異常検知設備において、前記埋設設備及び前記予備設備の適宜の部位に復旧用設備を備えると共に、前記原子力発電所内に復旧用装備を保管するという構成にした。   Secondly, in the abnormality detection facility of the first nuclear power plant, the present invention includes a recovery facility in an appropriate part of the buried facility and the spare facility, and stores the recovery device in the nuclear power plant. It was configured as follows.

本構成によると、復旧用設備と復旧用装備とを予め地上に備えておくので、掘削を行うことなく復旧作業を行うことができ、異常発生地点の復旧を早期に行うことができる。   According to this configuration, since the restoration facility and the restoration equipment are provided on the ground in advance, the restoration work can be performed without excavation, and the abnormality occurrence point can be restored at an early stage.

本発明は第3に、前記第1及び第2の原子力発電所の異常検知設備において、前記埋設設備が埋設配管であり、前記予備設備が前記埋設配管から分岐された予備配管であり、前記状態センサが前記予備配管に作用する加速度を検出する加速度センサであるという構成にした。   Thirdly, in the abnormality detection equipment of the first and second nuclear power plants, the present invention is characterized in that the buried equipment is a buried pipe, the spare equipment is a spare pipe branched from the buried pipe, and the state The sensor is an acceleration sensor that detects acceleration acting on the spare pipe.

本構成によると、埋設配管から分岐された予備配管に加速度センサを設置するので、検出された予備配管に作用する加速度の大きさから埋設配管に生じる破断を有無を高精度に予測でき、破断した埋設配管の修復を早期に行うことができる。   According to this configuration, since the acceleration sensor is installed in the spare pipe branched from the buried pipe, it is possible to accurately predict whether or not the buried pipe will break from the magnitude of the detected acceleration acting on the spare pipe, The buried piping can be repaired at an early stage.

本発明は第4に、前記第2の原子力発電所の異常検知設備において、前記復旧用設備が、前記予備配管に備えられたバイパス用バルブ及び前記埋設配管に備えられた非常用弁であり、前記復旧用装備が、前記予備配管と連結可能なバイパス用配管であるという構成にした。   Fourthly, in the abnormality detection facility of the second nuclear power plant according to the present invention, the recovery facility is a bypass valve provided in the reserve pipe and an emergency valve provided in the buried pipe, The restoration equipment is a bypass pipe that can be connected to the spare pipe.

本構成によると、バイパス用配管を接続するために必要な全ての復旧用設備を予備配管及び埋設配管の所定の部位に予め備えると共に、原子力発電所内にバイパス用配管を保管しておくので、埋設配管の異常発生地点を迅速に復旧することができる。即ち、データ監視設備から作業員に埋設配管の異常発生地点が通知されたとき、作業員は、まず異常発生地点に直行して、異常発生地点の上流側に配置された非常用弁及び異常発生地点の下流側に配置された非常用弁を閉状態に切り換えて、流体の漏洩を停止させる。しかる後に、バイパス用配管の保管場所からバイパス用配管を取り出して異常発生地点に搬送し、その両端部を異常発生地点の上流側に配置された第1の予備配管と異常発生地点の下流側に配置された第2の予備配管とに接続する。次いで、異常発生地点の上流側に配置された非常用弁を開状態に切り換えると共に、予備配管に備えられたバイパス用バルブを開状態に切り換えることにより、埋設配管内を流れる流体を、異常発生地点を迂回するバイパス用配管に流す。これにより、異常発生地点の復旧を行うことができる。この場合、バイパス用配管を接続するために必要な全ての復旧用設備を予備配管及び埋設配管の所定の部位に予め備えているので、現場における作業を最小限にすることができ、異常発生地点の復旧を早期に行うことができる。   According to this configuration, all the restoration equipment necessary for connecting the bypass pipe is prepared in advance in the predetermined part of the reserve pipe and the buried pipe, and the bypass pipe is stored in the nuclear power plant. It is possible to quickly recover the piping abnormality occurrence point. In other words, when the data monitoring facility notifies the worker of the location of the abnormality in the buried piping, the worker first goes straight to the location where the abnormality occurred, and the emergency valve and abnormality that were placed upstream of the location where the abnormality occurred The emergency valve disposed downstream of the point is switched to the closed state to stop fluid leakage. After that, the bypass pipe is taken out from the bypass pipe storage place and transported to the point of occurrence of the abnormality, and both ends thereof are arranged downstream of the first preliminary pipe and the point of occurrence of the abnormality. It connects with the arranged 2nd preliminary piping. Next, the emergency valve disposed upstream of the abnormality occurrence point is switched to the open state, and the bypass valve provided in the spare pipe is switched to the open state, so that the fluid flowing in the buried piping Flow through bypass piping that bypasses. Thereby, it is possible to recover the abnormality occurrence point. In this case, all the restoration equipment necessary for connecting the bypass pipes is provided in advance in the predetermined parts of the reserve pipes and the buried pipes, so that the work at the site can be minimized and the point where the abnormality occurs Can be recovered early.

本発明は第5に、前記第4の原子力発電所の異常検知設備において、前記非常用弁は、作業員の人力で開閉操作されるという構成にした。   Fifth, in the fourth nuclear power plant abnormality detection facility, the present invention is configured such that the emergency valve is manually opened and closed by an operator.

本構成によると、非常用弁として作業員の人力で開閉操作されるものを用いるので、地震発生時に原子力発電所の電源系統が遮断しても、必要な復旧作業を滞りなく行うことができる。   According to this configuration, since an emergency valve that can be opened and closed by an operator is used, even if the power system of the nuclear power plant is shut off in the event of an earthquake, necessary restoration work can be performed without delay.

本発明は第6に、前記第1及び第2の原子力発電所の異常検知設備において、前記埋設設備が埋設電線であり、前記予備設備が前記埋設電線から分岐された予備電線であり、前記状態センサが前記埋設電線の電位を計測する電位計であるという構成にした。   The present invention sixthly, in the abnormality detection equipment of the first and second nuclear power plants, the buried equipment is a buried electric wire, the spare equipment is a spare electric wire branched from the buried electric wire, and the state The sensor is an electrometer that measures the potential of the buried electric wire.

本構成によると、埋設電線から分岐された予備電線に電位計を設置するので、検出された予備電線の電位から埋設電線の状態を高精度に検出することができ、破断した埋設電線の修復を早期に行うことができる。   According to this configuration, since the electrometer is installed on the spare wire branched from the buried wire, the state of the buried wire can be detected with high accuracy from the detected potential of the spare wire, and the broken buried wire can be repaired. Can be done early.

本発明は第7に、前記第2の原子力発電所の異常検知設備において、前記復旧用設備が、前記予備電線に備えられた接続コネクタであり、前記復旧用装備が、両端に前記接続コネクタと連結可能な接続コネクタを備えたバイパス用電線であるという構成にした。   Seventhly, in the abnormality detection facility of the second nuclear power plant according to the present invention, the recovery facility is a connection connector provided in the spare wire, and the recovery equipment is connected to the connection connector at both ends. The electric wire for bypass provided with the connectable connector was used.

本構成によると、バイパス用電線を接続するために必要な全ての復旧用設備を予備配管の所定の部位に予め備えると共に、原子力発電所内にバイパス用電線を保管しておくので、埋設電線の異常発生地点を迅速に復旧することができる。即ち、データ監視設備から作業員に埋設電線の異常発生地点が通知されたとき、作業員は、バイパス用電線の保管場所からバイパス用電線を取り出して、異常発生地点に搬送する。そして、そのバイパス用電線の両端部に予め備えられた接続コネクタを、異常発生地点の上流側に配置された第1の予備配管に備えられた接続コネクタと、異常発生地点の下流側に配置された第2の予備配管に備えられた接続コネクタとに接続することにより、異常発生地点を迂回するバイパス用電線を配線できるので、異常発生地点の復旧を行うことができる。この場合、バイパス用電線を接続するために必要な全ての復旧用設備を予備配管及び埋設配管の所定の部位に予め備えているので、現場における作業を最小限にすることができ、異常発生地点の復旧を早期に行うことができる。   According to this configuration, all the restoration equipment necessary for connecting the bypass wires is prepared in advance in the predetermined part of the reserve piping, and the bypass wires are stored in the nuclear power plant. The point of occurrence can be quickly restored. That is, when the data monitoring equipment notifies the worker of the location where the buried electric wire is abnormal, the worker takes out the bypass wire from the storage location of the bypass electric wire and transports it to the abnormality occurrence location. And the connection connectors provided in advance at both ends of the bypass electric wire are arranged on the downstream side of the abnormality occurrence point with the connection connector provided on the first auxiliary pipe arranged upstream of the abnormality occurrence point. Further, by connecting to the connection connector provided in the second spare pipe, a bypass electric wire that bypasses the abnormality occurrence point can be wired, so that the abnormality occurrence point can be restored. In this case, all the restoration facilities necessary for connecting the bypass wires are provided in advance in the predetermined parts of the spare piping and the buried piping, so that the work at the site can be minimized and the point where the abnormality occurs Can be recovered early.

本発明は第8に、前記第2、第4及び第7の原子力発電所の異常検知設備において、前記復旧用装備が、原子力発電所内の所定区画ごとに設置された復旧用装備保管設備に保管されているという構成にした。   Eighth, according to the present invention, in the second, fourth and seventh nuclear power plant abnormality detection facilities, the recovery equipment is stored in a recovery equipment storage facility installed for each predetermined section in the nuclear power plant. It was configured to be.

本構成によると、復旧用装備が原子力発電所内の所定区画ごとに設置された復旧用装備保管設備に保管されているので、復旧用装備保管設備と異常発生地点との距離を短縮することができ、異常発生地点への復旧用装備の搬入を容易化することができ、異常発生地点の復旧を早期に行うことができる。   According to this configuration, since the recovery equipment is stored in the recovery equipment storage facility installed for each predetermined section in the nuclear power plant, the distance between the recovery equipment storage facility and the point of occurrence of the abnormality can be shortened. In addition, it is possible to easily carry in the restoration equipment to the abnormality occurrence point, and it is possible to restore the abnormality occurrence point at an early stage.

本発明は第9に、前記第2、第4及び第7の原子力発電所の異常検知設備において、前記復旧用装備が、前記デ−タ監視設備に保管されているという構成にした。   Ninthly, in the second, fourth and seventh nuclear power plant abnormality detection facilities, the present invention is configured such that the restoration equipment is stored in the data monitoring facility.

本構成によると、復旧用装備がデ−タ監視設備に保管されているので、デ−タ監視設備において異常発生の通知を受けた作業員が、直ちに復旧用装備を携帯して異常発生地点に直行することができ、異常発生地点の復旧を早期に行うことができる。   According to this configuration, since the recovery equipment is stored in the data monitoring facility, an operator who has received a notification of the occurrence of an abnormality in the data monitoring facility immediately carries the recovery equipment to the location where the abnormality occurred. It is possible to go straight and restore the point of occurrence of an abnormality early.

本発明は第10に、前記第1乃至第9の原子力発電所の異常検知設備において、前記デ−タ監視設備は、下部に免震装置を備えているという構成にした。   According to the tenth aspect of the present invention, in the abnormality detection equipment of the first to ninth nuclear power plants, the data monitoring equipment is provided with a seismic isolation device at the bottom.

本構成によると、デ−タ監視設備の下部に免震装置を備えているので、地震発生時にもデ−タ監視設備の安全を確保することができ、作業員に対する異常発生地点の通知を確実に行うことができて、異常発生地点の復旧を早期にかつ確実に行うことができる。   According to this configuration, since the seismic isolation device is provided at the bottom of the data monitoring facility, the safety of the data monitoring facility can be ensured even in the event of an earthquake, and the operator is notified of the location of the abnormality. This makes it possible to quickly and reliably restore the point of occurrence of an abnormality.

本発明によれば、予備設備を増設することにより、所要の埋設設備に対する異常検出を適宜行うことができるので、原子力発電所に敷設された多数の埋設設備に対する異常検出を容易に行うことができ、異常発生地点の復旧も迅速に行うことができる。また、予備設備を設けることにより、人がアクセス困難な埋設設備の異常を的確に検知できるので、これまで困難とされてきた埋設設備の異常検知及び異常発生地点の復旧を容易に行うことができる。さらに、状態デ−タ送信手段及びデ−タ監視設備で埋設設備の状態を適宜モニタリングしているので、状態の径時変化を把握でき、地震に限らず点検及び交換の計画立案のための有効な情報としても活用できる。   According to the present invention, it is possible to appropriately detect an abnormality in a required buried facility by adding a spare facility, and therefore it is possible to easily detect an abnormality in a large number of buried facilities laid in a nuclear power plant. In addition, it is possible to quickly restore the point where the abnormality occurred. In addition, by providing spare equipment, it is possible to accurately detect abnormalities in buried facilities that are difficult for humans to access, so it is possible to easily detect abnormalities in buried facilities that have been difficult so far and to restore the locations where abnormalities have occurred. . Furthermore, since the status of the buried equipment is properly monitored by the status data transmission means and the data monitoring equipment, it is possible to grasp changes in the status of the equipment over time, and it is effective for planning inspections and replacements not limited to earthquakes. Can also be used as useful information.

以下、本発明に係る原子力発電所の異常検知設備の第1実施形態を、図1乃至図5を参照して説明する。図1は第1実施形態に係る異常検知設備の全体構成図、図2は第1実施形態に係る異常検知設備に備えられる状態デ−タ送信手段の構成図、図3は第1実施形態に係る異常検知設備を用いた異常検知方法及び復旧方法を示す説明図、図4は第1実施形態に係る異常検知設備を用いた異常判定手順を示すフロー図、図5は免震装置を備えたデータ監視設備の説明図である。なお、図中に記載された各符号の添字n−1,n,n+1は、予備配管の設置地点を示す。   Hereinafter, a first embodiment of an abnormality detection facility for a nuclear power plant according to the present invention will be described with reference to FIGS. 1 to 5. FIG. 1 is an overall configuration diagram of the abnormality detection facility according to the first embodiment, FIG. 2 is a configuration diagram of state data transmission means provided in the abnormality detection facility according to the first embodiment, and FIG. FIG. 4 is a flowchart showing an abnormality determination procedure using the abnormality detection equipment according to the first embodiment, and FIG. 5 is provided with a seismic isolation device. It is explanatory drawing of a data monitoring facility. In addition, the subscripts n-1, n, n + 1 of the reference numerals shown in the figure indicate the installation points of the spare pipes.

図1に示すように、第1実施形態に係る異常検知設備は、既設の埋設配管Dn−1,D,Dn+1に予備配管Pn−1,P,Pn+1の設置地点n−1,n,n+1を任意に定め、図の破線で囲まれた各々の設置地点n−1,n,n+1内に、埋設配管Dn−1,D,Dn+1から分岐させた予備配管Pn−1,P,Pn+1をそれぞれ接続する。予備配管Pn−1,P,Pn+1の片端は、作業員がアクセスできるよう、地上に突出させる。各予備配管Pn−1,P,Pn+1の地上側の端部には、バイパス用バルブBn−1,B,Bn+1を備え、通常は閉止状態とする。埋設配管Dn−1,D,Dn+1には、各予備配管Pn−1,P,Pn+1の両端を挟んだ形で非常弁Vn−1,V,Vn+1を設ける。各非常弁Vn−1,V,Vn+1は、通常開状態であり、地上から操作可能な例えばエクステンションバルブEn−1,E,En+1を用いて開閉操作できるようになっている。 As shown in FIG. 1, the abnormality detection facility according to the first embodiment includes an existing buried pipe D n−1 , D n , D n + 1 and an installation point n− of the spare pipes P n−1 , P n , P n + 1. 1, n, determines the n + 1 arbitrarily, installation point n-1 of each surrounded by a broken line in FIG., n, in the n + 1, buried pipe D n-1, D n, preliminary pipe P branched from D n + 1 n−1 , P n , and P n + 1 are connected to each other. One end of each of the auxiliary pipes P n−1 , P n , and P n + 1 is projected to the ground so that the worker can access it. By - pass valves B n−1 , B n , and B n + 1 are provided at the end portions on the ground side of the spare pipes P n−1 , P n , and P n + 1 , and are normally closed. In the buried pipes D n−1 , D n , and D n + 1 , emergency valves V n−1 , V n , and V n + 1 are provided so as to sandwich both ends of the spare pipes P n−1 , P n , and P n + 1 . Each emergency valve V n−1 , V n , V n + 1 is normally open, and can be opened / closed using, for example, extension valves E n−1 , E n , E n + 1 that can be operated from the ground. .

予備配管Pn−1,P,Pn+1の所要の部分には、埋設配管Dn−1,D,Dn+1の状態を検知し、検知された状態デ−タTn−1,T,Tn+1を無線送信する機能を有する状態デ−タ送信手段Sn−1,S,Sn+1が取り付けられる。本実施形態における「埋設配管Dn−1,D,Dn+1の状態」とは、予備配管Pn−1,P,Pn+1に作用する加速度とする。なお、図1に示す例においては、状態デ−タ送信手段Sn−1,S,Sn+1が、地上に露出したバイパスバルブBn−1,B,Bn+1の表面に設定されているが、無線が正常に伝送可能な範囲であれば、地中にある埋設配管Dn−1,D,Dn+1の表面に取り付けても良い。後者の方が埋設配管そのものの情報であるため、デ−タとしては直接的で望ましい。 In the required portions of the spare pipes P n−1 , P n , P n + 1 , the state of the buried pipes D n−1 , D n , D n + 1 is detected, and the detected state data T n−1 , T State data transmission means S n−1 , S n , and S n + 1 having a function of wirelessly transmitting n and T n + 1 are attached. The “state of the buried pipes D n−1 , D n , D n + 1 ” in the present embodiment is an acceleration acting on the spare pipes P n−1 , P n , P n + 1 . In the example shown in FIG. 1, the state data transmission means S n−1 , S n , S n + 1 are set on the surfaces of the bypass valves B n−1 , B n , B n + 1 exposed to the ground. However, it may be attached to the surface of the buried pipes D n−1 , D n , D n + 1 in the ground as long as the radio can be normally transmitted. Since the latter is information of the buried piping itself, it is desirable as data directly.

状態デ−タ送信手段Sn−1,S,Sn+1は、図2に示すように、予備配管Pn−1,P,Pn+1の表面に取り付けられた、加速度センサ1と、加速度センサ1の出力信号をA/D変換するA/D変換器2と、A/D変換器2によりA/D変換された加速度センサ1の出力信号を状態データTn−1,T,Tn+1として無線送信する無線送信機3とから構成されている。加速度センサ1としては、例えば汎用の3次元MEMS(Micro Electro Mechanical systems)からなり、状態データTn−1,T,Tn+1として、3次元加速度a,a,aを発信するものが用いられる。 As shown in FIG. 2, the state data transmission means S n−1 , S n , and S n + 1 include an acceleration sensor 1 attached to the surface of the spare pipes P n−1 , P n , and P n + 1 , and an acceleration. An A / D converter 2 that performs A / D conversion on the output signal of the sensor 1, and an output signal of the acceleration sensor 1 that has been A / D converted by the A / D converter 2 are used as state data T n-1 , T n , T It is composed of a wireless transmitter 3 that wirelessly transmits as n + 1 . The acceleration sensor 1 is made of, for example, general-purpose three-dimensional MEMS (Micro Electro Mechanical systems), and transmits three-dimensional accelerations a x , a y , a z as state data T n−1 , T n , T n + 1. Is used.

以下、このように構成された第1実施形態に係る異常検知設備を用いた埋設配管Dn−1,D,Dn+1の異常検知方法と、異常が検知された場合における復旧方法とを、図3及び図4を参照して説明する。 Hereinafter, an abnormality detection method for the buried pipes D n−1 , D n , D n + 1 using the abnormality detection facility according to the first embodiment configured as described above, and a recovery method when an abnormality is detected, This will be described with reference to FIGS.

各状態デ−タ送信手段Sn−1,S,Sn+1から送信された状態デ−タTn−1,T,Tn+1は、デ−タ監視設備MBに受信され、ここで各地点n−1,n,n+1の状態がモニタリングされている。デ−タ監視設備MBには、状態デ−タ送信手段Sn−1,S,Sn+1から送信される状態データTn−1,T,Tn+1を受信する無線受信機、埋設配管Dn−1,D,Dn+1の状態が正常か否かを判別するための閾値デ−タを格納する閾値デ−タテ−ブル、無線受信機にて受信された状態データTn−1,T,Tn+1が閾値デ−タテ−ブルに格納された閾値デ−タを超えた場合に埋設配管Dn−1,D,Dn+1に異常が発生したと判定し、その異常発生地点を特定する判定手段、及び判定手段により特定された異常発生地点を作業員に通知する通知手段とが備えられており、地震発生時等において、判定手段により、埋設配管Dn−1,D,Dn+1が破断して漏洩等の異常が発生したと判定された場合、通知手段により作業員Uに異常発生及び異常が発生した地点を通知する。 The status data T n−1 , T n , T n + 1 transmitted from each status data transmitting means S n−1 , S n , S n + 1 is received by the data monitoring equipment MB, where The state of points n-1, n, n + 1 is monitored. The data monitoring equipment MB includes a radio receiver for receiving the status data T n−1 , T n , T n + 1 transmitted from the status data transmitting means S n−1 , S n , S n + 1 , and buried piping. Threshold data table for storing threshold data for determining whether or not the states of D n−1 , D n , and D n + 1 are normal, and status data T n−1 received by the wireless receiver , T n , T n + 1 exceed the threshold data stored in the threshold data table, it is determined that an abnormality has occurred in the buried pipes D n−1 , D n , D n + 1 and the abnormality has occurred. A determination means for specifying a point, and a notification means for notifying an operator of an abnormality occurrence point specified by the determination means. When an earthquake occurs, the determination means provides a buried pipe D n−1 , D of determining n, and D n + 1 abnormalities such as leakage and rupture occurs If, abnormal and abnormality operator U notifies the point generated by the notification unit.

デ−タ監視設備MBは、図5に示すように、下部に例えば汎用の積層ゴムから成る免震装置6を備えることが特に望ましい。このように、デ−タ監視設備MBの下部に免震装置6を備えると、地震発生時にもデ−タ監視設備MBの安全を確保できるので、作業員Uに対する異常発生地点の通知を確実に行うことができて、異常発生地点の復旧を早期にかつ確実に行うことができる。   As shown in FIG. 5, the data monitoring facility MB is particularly preferably provided with a seismic isolation device 6 made of, for example, general-purpose laminated rubber at the bottom. Thus, if the seismic isolation device 6 is provided at the lower part of the data monitoring facility MB, the safety of the data monitoring facility MB can be ensured even in the event of an earthquake. It is possible to perform the restoration of the abnormality occurrence point early and reliably.

判定手段における異常判定は、図4に示す手順で行われる。即ち、状態デ−タTn−1,T,Tn+1をデ−タ監視設備MBにて受信し、各地点n−1,n,n+1における加速度閾値を内蔵した閾値デ−タテ−ブル4と照合する。なお、閾値データは、過去の知見等に基づいて予め設定した値とする。照合の結果、検出された加速度デ−タが閾値データを超えた場合、異常が発生したと判定する。例えば、図4の例において、状態デ−タTのx方向加速度a又はy方向加速度aが1000Galを超えているか、z方向加速度aが800Galを超えており、状態デ−タTn−1,Tn+1については、いずれの方向の加速度についても閾値データを超えていないと判定された場合には、地点nにて異常が発生したと判定する。この方法によれば、複数の地点において同時に異常が発生したことを検知することも、勿論可能である。 The abnormality determination in the determination means is performed according to the procedure shown in FIG. That is, the state data T n−1 , T n , T n + 1 is received by the data monitoring equipment MB, and the threshold data table 4 incorporating the acceleration threshold at each point n−1, n, n + 1. To match. The threshold data is a value set in advance based on past knowledge or the like. As a result of the collation, when the detected acceleration data exceeds the threshold data, it is determined that an abnormality has occurred. For example, in the example of FIG. 4, state de - or x-direction acceleration of the motor T n a x or y direction acceleration a y is greater than 1000Gal, z direction acceleration a z is above the 800Gal state de - data T For n−1 and T n + 1 , if it is determined that the threshold data does not exceed the acceleration in any direction, it is determined that an abnormality has occurred at point n. According to this method, it is of course possible to detect that an abnormality has occurred at a plurality of points simultaneously.

なお、本実施形態においては、予備配管Pn−1,P,Pn+1又は埋設配管Dn−1,D,Dn+1に作用する加速度を状態デ−タとして用いたが、本発明の要旨はこれに限定されるものではなく、埋設配管Dn−1,D,Dn+1内の2点間の配管内圧力差、配管内流量、配管内流量差、配管の相対変位のいずれか、若しくはこれらの組み合わせを状態デ−タとして用いることもできる。その場合には、図2に示した加速度センサ1に代えて、汎用の圧力計、流量計、又は変位計が設置される。 In the present embodiment, the preliminary pipe P n-1, P n, P n + 1 or buried pipe D n-1, D n, D n + state de the acceleration acting on 1 - is used as the data, the present invention The gist is not limited to this, and any of the pressure difference in the pipe, the flow rate in the pipe, the flow rate difference in the pipe, and the relative displacement of the pipe between the two points in the buried pipes D n-1 , D n , D n + 1 Alternatively, a combination of these can be used as the status data. In that case, instead of the acceleration sensor 1 shown in FIG. 2, a general-purpose pressure gauge, flow meter, or displacement meter is installed.

デ−タ監視設備MBから異常通知を受けた作業員Uは、図3に示すように、異常発生地点nを挟む地点n−1,n+1に向かい、エクステンションバルブEn−1及びEn+1を用いて、非常弁Vn−1及びVn+1のn地点寄りの弁を閉止する。続いて、所定区間毎に設置されたバイパス配管保管設備BBのうち、異常発生地点nから最も近い位置にあるバイパス配管保管設備BB内に保管されているバイパス配管BDをバイパス配管保管設備BB内から取り出して異常発生地点nに搬送し、その両端を予備配管Pn−1とPn+1に接続する。しかる後に、バイパスバルブBn−1及びBn+1を開き、流水経路を埋設配管からバイパス配管BD経由に切り替えることで、異常発生前の運転状態に復旧させる。 As shown in FIG. 3, the worker U who has received the abnormality notification from the data monitoring equipment MB is directed to the points n−1 and n + 1 across the abnormality occurrence point n and uses the extension valves En −1 and En + 1 . Then, the valves near the n point of the emergency valves V n−1 and V n + 1 are closed. Subsequently, among the bypass piping storage facilities BB installed for each predetermined section, the bypass piping BD n stored in the bypass piping storage facility BB closest to the abnormality occurrence point n is replaced with the bypass piping storage facility BB. And then transported to an abnormality occurrence point n, and both ends thereof are connected to the spare pipes P n−1 and P n + 1 . After that, the bypass valves B n−1 and B n + 1 are opened, and the running water path is switched from the buried pipe to the bypass pipe BD n to restore the operating state before the occurrence of the abnormality.

バイパス配管BDとしては、持ち運びやすさや接続操作の迅速性及び容易性を考慮し、例えば汎用消火ホ−スのような軽量品を用いることが特に望ましい。また、バイパス配管BDの両端部及び予備配管Pn−1,P,Pn+1の先端部には、接続作業を容易化するため、対応する接続コネクタを設けておくことが特に望ましい。 The bypass pipe BD n, considering rapidity and ease of portability ease and connection operations, for example a general purpose fire extinguishing Ho - it is particularly desirable to use a scan lightweight products such as. In addition, it is particularly desirable to provide corresponding connection connectors at both ends of the bypass pipe BD n and the front ends of the spare pipes P n−1 , P n , and P n + 1 in order to facilitate connection work.

なお、前記実施形態においては、所定区間毎に設置したバイパス配管保管設備BB内にバイパス配管BDを保存する構成にしたが、かかる構成に代えて、デ−タ監視設備MBにバイパス配管BDを保存する構成にすることもできる。かかる構成によると、異常の発生を通知された作業員Uが、デ−タ監視設備MBから直ちに異常発生地点nに直行できるので、復旧作業をより迅速化することができる。 In the above-described embodiment, the bypass pipe BD n is stored in the bypass pipe storage facility BB installed for each predetermined section. However, instead of such a configuration, the data monitoring facility MB includes the bypass pipe BD n. It can also be configured to save. According to such a configuration, the worker U who is notified of the occurrence of an abnormality can go straight from the data monitoring facility MB to the abnormality occurrence point n, so that the recovery operation can be further speeded up.

以下、本発明に係る原子力発電所の異常検知設備の第2実施形態を、図6乃至図8を参照して説明する。図6は第2実施形態に係る異常検知設備を用いた異常検知方法及び復旧方法を示す説明図、図7は第2実施形態に係る異常検知設備に備えられる状態デ−タ送信手段の構成図、図8は第2実施形態に係る異常検知設備を用いた異常判定手順を示すフロー図である。   Hereinafter, a second embodiment of an abnormality detection facility for a nuclear power plant according to the present invention will be described with reference to FIGS. FIG. 6 is an explanatory diagram showing an abnormality detection method and a recovery method using the abnormality detection facility according to the second embodiment, and FIG. 7 is a configuration diagram of a state data transmission means provided in the abnormality detection facility according to the second embodiment. FIG. 8 is a flowchart showing an abnormality determination procedure using the abnormality detection facility according to the second embodiment.

本発明の第2実施形態は、図6に示すように、異常検知の対象が埋設電線管CD内に敷設された埋設電線Cであることを特徴とする。本実施形態においては、埋設電線管CDから複数の予備電線管PC,PCn+1が分岐されると共に、各予備電線管PC,PCn+1内に埋設電線Cから分岐された予備電線SC,SCn+1が配線される。予備電線SC,SCn+1の先端部には、復旧作業用のスイッチSW,SWn+1が設けられる。その他については、第1実施形態に係る異常検知設備と同じであるので、図示を省略する。 As shown in FIG. 6, the second embodiment of the present invention is characterized in that an abnormality detection target is an embedded electric wire C n laid in an embedded electric wire CD n . In the present embodiment, a plurality of spare conduits PC n and PC n + 1 are branched from the buried conduit CD n and the spare wires SC branched from the buried wire C n in each of the spare conduits PC n and PC n + 1 . n and SC n + 1 are wired. Switches SW n and SW n + 1 for recovery work are provided at the tip ends of the spare wires SC n and SC n + 1 . Since others are the same as the abnormality detection equipment according to the first embodiment, illustration is omitted.

本実施形態に係る状態デ−タ送信手段S,Sn+1は、図7に示すように、予備電線管PC,PCn+1の表面に取り付けられた汎用の電位計5(電線管を貫通して直接予備電線SC,SCn+1電線に接触している。)と、A/D変換器2と、無線送信機3から構成されており、・無線送信機3は、電位計5によって検出された電位vn−1,v,vn+1を状態デ−タTn−1,T,Tn+1として発信している。 State de according to this embodiment - data transmission means S n, S n + 1, as shown in FIG. 7, the preliminary conduit PC n, the generic attached to the surface of the PC n + 1 the electrometer 5 (conduits through in direct contact with pre-wire SC n, the SC n + 1 wires Te and.), an a / D converter 2 is constituted by a radio transmitter 3, and wireless transmitter 3 is detected by the electrometer 5 potential v n-1, v n, v n + 1 states de - data T n-1, T n, are transmitted as T n + 1.

判定手段における異常判定は、図8に示す手順で行われる。即ち、状態デ−タTn−1,T,Tn+1をデ−タ監視設備MBにて受信し、各地点n−1,n,n+1における電圧降下の閾値を内蔵した閾値デ−タテ−ブル4と照合する。なお、閾値データは、断線が発生したと判定できる値であり、図8の例では、vとvn+1の電位差の閾値が20Vに設定されており、電位差が20Vを超えた場合に地点nから地点n+1までの間で断線が発生したと判定する。そして、作業員Uには、異常発生地点として、地点nから地点n+1までの間を通知する。 The abnormality determination in the determination means is performed according to the procedure shown in FIG. That is, the state data T n−1 , T n , T n + 1 are received by the data monitoring equipment MB, and the threshold data with built-in voltage drop thresholds at the respective points n−1, n, n + 1. Check against Bull 4. The threshold data is a value that can be determined that the disconnection has occurred, in the example of FIG. 8, v n and v n + 1 threshold potential difference is set to 20V, the point when the potential difference exceeds 20V n It is determined that a disconnection has occurred from point to point n + 1. Then, the worker U is notified from the point n to the point n + 1 as an abnormality occurrence point.

作業員Uは、異常発生地点nから最も近い位置にあるバイパス配管保管設備BB内に保管されているバイパス電線BCをバイパス電線保管設備BB内から取り出して異常発生地点nに搬送し、その両端を予備電線SCとSCn+1に接続する。しかる後に、スイッチSW及びSwn+1を閉じ、電流経路を埋設電線Cからバイパス電線BCに切り替えることで、異常発生前の運転状態に復旧させる。 Operator U retrieves the bypass wire BC n stored in the bypass pipe storage facility in BB located closest to the abnormal occurrence point n from the bypass wire storage facilities in BB transported to the abnormality occurrence point n, both ends Is connected to spare wires SC n and SC n + 1 . Thereafter, the switches SW n and Sw n + 1 are closed and the current path is switched from the buried electric wire C n to the bypass electric wire BC n to restore the operating state before the occurrence of the abnormality.

予備電線SC,SCn+1の先端部及びバイパス電線BCの両端部には、両者の接続を容易にするため、接続コネクタを備えることが特に望ましい。 In order to facilitate the connection between the front ends of the spare wires SC n and SC n + 1 and the both ends of the bypass wire BC n , it is particularly desirable to provide connection connectors.

その他、バイパス用バルブBn−1,B,Bn+1及びスイッチSWn−1,SW,SWn+1の操作を手動でなく自動化することもできる。具体的には、これらの各バイパス用バルブBn−1,B,Bn+1及びスイッチSWn−1,SW,SWn+1を電磁弁で作動する構造とし、異常発生時にこれらの開閉を指示する送信機能をデ−タ監視設備MBに、受信機能を電磁弁に付加して、デ−タ監視設備MBからの指令により、これらの開閉が可能な構造とすれば良い。これは現行の技術で実施できる事は自明である。このような自動化により復旧時間の短縮させる事も可能である。 In addition, the operation of the bypass valves B n−1 , B n , B n + 1 and the switches SW n−1 , SW n , SW n + 1 can be automated instead of manually. Specifically, each of these bypass valves B n−1 , B n , B n + 1 and the switches SW n−1 , SW n , SW n + 1 are structured to operate by electromagnetic valves, and the opening and closing of these are instructed when an abnormality occurs. The transmission function to be performed may be added to the data monitoring facility MB, the reception function may be added to the solenoid valve, and the structure can be opened and closed by a command from the data monitoring facility MB. Obviously, this can be done with current technology. Such automation can also shorten the recovery time.

また、本明細書においては、地震発生時の異常を例にとって説明したが、他の災害(津波・土砂崩れ等)によって発生する異常にも対応することができる。   Further, in this specification, the abnormality at the time of the occurrence of the earthquake has been described as an example, but it is also possible to cope with an abnormality that occurs due to other disasters (such as a tsunami or landslide).

第1実施形態に係る異常検知設備の全体構成図である。It is a whole block diagram of the abnormality detection equipment which concerns on 1st Embodiment. 第1実施形態に係る異常検知設備に備えられる状態デ−タ送信手段の構成図である。It is a block diagram of the state data transmission means with which the abnormality detection equipment which concerns on 1st Embodiment is equipped. 第1実施形態に係る異常検知設備を用いた異常検知方法及び復旧方法を示す説明図である。It is explanatory drawing which shows the abnormality detection method and recovery method using the abnormality detection equipment which concerns on 1st Embodiment. 第1実施形態に係る異常検知設備を用いた異常判定手順を示すフロ−図である。It is a flowchart which shows the abnormality determination procedure using the abnormality detection equipment which concerns on 1st Embodiment. 免震装置を備えたデータ監視設備の説明図である。It is explanatory drawing of the data monitoring equipment provided with the seismic isolation apparatus. 第2実施形態に係る異常検知設備を用いた異常検知方法及び復旧方法を示す説明図である。It is explanatory drawing which shows the abnormality detection method and recovery method using the abnormality detection equipment which concerns on 2nd Embodiment. 第2実施形態に係る異常検知設備に備えられる状態デ−タ送信手段の構成図である。It is a block diagram of the status data transmission means with which the abnormality detection equipment which concerns on 2nd Embodiment is equipped. 第2実施形態に係る異常検知設備を用いた異常判定手順を示すフロー図である。It is a flowchart which shows the abnormality determination procedure using the abnormality detection equipment which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

1 加速度センサ
2 A/D変換器
3 無線送信機
4 閾値デ−タテ−ブル
5 電位計
n−1,D,Dn+1 埋設配管
n−1,P,Pn+1 予備配管
n−1,n,n+1 設置地点
n−1,B,Bn+1 バイパス用バルブ
n−1,V,Vn+1 非常弁
n−1,E,En+1 エクステンションバルブ
n−1,T,Tn+1 状態デ−タ
n−1,S,Sn+1 状態デ−タ送信手段
MB デ−タ監視設備
BB バイパス電線配管設備
BD バイパス配管
CD 埋設電線管
PC,PCn+1 予備電線管
SC,SCn+1 予備電線
SW,SWn+1 スイッチ
1 acceleration sensor 2 A / D converter 3 radio transmitter 4 threshold de - Vertical - table 5 electrometer D n-1, D n, D n + 1 buried pipe P n-1, P n, P n + 1 pre piping n-1 , n, n + 1 installation point B n-1, B n, B n + 1 bypass valve V n-1, V n, V n + 1 very valve E n-1, E n, E n + 1 extension valve T n-1, T n , T n + 1 states de - data S n-1, S n, S n + 1 state de - data transmission means MB de - data monitoring facility BB bypass wire plumbing BD n bypass pipe CD n buried conduit PC n, PC n + 1 spare wire tube SC n, SC n + 1 spare wire SW n, SW n + 1 switch

Claims (10)

原子力発電所内に敷設された埋設設備から分岐され、先端部が地上に配置された複数の予備設備と、
前記埋設設備の状態を検知する状態センサ及び当該状態センサから出力される状態デ−タを無線送信する無線送信機を有し、前記予備設備の先端部に備えられた状態デ−タ送信手段と、
前記状態デ−タ送信手段から送信される状態データを受信する無線受信機、前記埋設設備の状態が正常か否かを判別するための閾値デ−タを格納する閾値デ−タテ−ブル、前記無線受信機にて受信された前記状態データが前記閾値デ−タテ−ブルに格納された前記閾値デ−タを超えた場合に前記埋設設備に異常が発生したと判定し、その異常発生地点を特定する判定手段、及び前記判定手段により特定された異常発生地点を作業員に通知する通知手段を有するデータ監視設備と
を備えたことを特徴とする原子力発電所の異常検知設備。
A plurality of spare equipment branched from the buried equipment laid in the nuclear power plant and having the tip arranged on the ground;
A state sensor for detecting the state of the embedded equipment, and a wireless transmitter for wirelessly transmitting the state data output from the state sensor; and a state data transmitting means provided at the tip of the spare equipment; ,
A wireless receiver for receiving state data transmitted from the state data transmitting means; a threshold data table for storing threshold data for determining whether or not the state of the buried equipment is normal; When the state data received by the wireless receiver exceeds the threshold data stored in the threshold data table, it is determined that an abnormality has occurred in the embedded equipment, and the abnormality occurrence point is determined. An abnormality detection facility for a nuclear power plant, comprising: a determination unit for specifying; and a data monitoring facility having a notification unit for notifying a worker of an abnormality occurrence point specified by the determination unit.
前記埋設設備及び前記予備設備の適宜の部位に復旧用設備を備えると共に、前記原子力発電所内に復旧用装備を保管したことを特徴とする請求項1に記載の原子力発電所の異常検知設備。   2. The nuclear power plant abnormality detection facility according to claim 1, wherein a recovery facility is provided in an appropriate part of the buried facility and the spare facility, and the recovery equipment is stored in the nuclear power plant. 前記埋設設備が埋設配管であり、前記予備設備が前記埋設配管から分岐された予備配管であり、前記状態センサが前記予備配管に作用する加速度を検出する加速度センサであることを特徴とする請求項1及び請求項2のいずれか1項に記載の原子力発電所の異常検知設備。   The buried equipment is a buried pipe, the spare equipment is a spare pipe branched from the buried pipe, and the state sensor is an acceleration sensor that detects an acceleration acting on the spare pipe. The abnormality detection equipment for a nuclear power plant according to any one of claims 1 and 2. 前記復旧用設備が、前記予備配管に備えられたバイパス用バルブ及び前記埋設配管に備えられた非常用弁であり、前記復旧用装備が、前記予備配管と連結可能なバイパス用配管であることを特徴とする請求項2に記載の原子力発電所の異常検知設備。   The restoration facility is a bypass valve provided in the spare pipe and an emergency valve provided in the buried pipe, and the restoration equipment is a bypass pipe connectable with the spare pipe. The abnormality detection facility for a nuclear power plant according to claim 2, wherein the facility is an abnormality detection facility. 前記非常用弁は、作業員の人力で開閉操作されることを特徴とする請求項4に記載の原子力発電所の異常検知設備。   The abnormality detection facility for a nuclear power plant according to claim 4, wherein the emergency valve is opened and closed by a human operator. 前記埋設設備が埋設電線であり、前記予備設備が前記埋設電線から分岐された予備電線であり、前記状態センサが前記埋設電線の電位を計測する電位計であることを特徴とする請求項1及び請求項2のいずれか1項に記載の原子力発電所の異常検知設備。   The buried device is a buried wire, the spare device is a spare wire branched from the buried wire, and the state sensor is an electrometer that measures the potential of the buried wire. The abnormality detection equipment for a nuclear power plant according to claim 2. 前記復旧用設備が、前記予備電線に備えられた接続コネクタであり、前記復旧用装備が、両端に前記接続コネクタと連結可能な接続コネクタを備えたバイパス用電線であることを特徴とする請求項2に記載の原子力発電所の異常検知設備。   The restoration equipment is a connection connector provided in the spare electric wire, and the restoration equipment is a bypass electric wire provided with a connection connector connectable to the connection connector at both ends. Anomaly detection equipment for nuclear power plants as described in 2. 前記復旧用装備が、原子力発電所内の所定区画ごとに設置された復旧用装備保管設備に保管されていることを特徴とする請求項2,4,7のいずれか1項に記載の原子力発電所の異常検知設備。   The nuclear power plant according to any one of claims 2, 4 and 7, wherein the restoration equipment is stored in a restoration equipment storage facility installed for each predetermined section in the nuclear power plant. Anomaly detection equipment. 前記復旧用装備が、前記デ−タ監視設備に保管されていることを特徴とする請求項2,4,7のいずれか1項に記載の原子力発電所の異常検知設備。   The abnormality detection equipment for a nuclear power plant according to any one of claims 2, 4, and 7, wherein the restoration equipment is stored in the data monitoring equipment. 前記デ−タ監視設備は、下部に免震装置を備えていることを特徴とする請求項1乃至請求項9のいずれか1項に記載の原子力発電所の異常検知設備。   The nuclear power plant abnormality detection facility according to any one of claims 1 to 9, wherein the data monitoring facility includes a seismic isolation device at a lower portion thereof.
JP2008204528A 2008-08-07 2008-08-07 Anomaly detection equipment for nuclear power plants Expired - Fee Related JP5188906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204528A JP5188906B2 (en) 2008-08-07 2008-08-07 Anomaly detection equipment for nuclear power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204528A JP5188906B2 (en) 2008-08-07 2008-08-07 Anomaly detection equipment for nuclear power plants

Publications (2)

Publication Number Publication Date
JP2010038831A true JP2010038831A (en) 2010-02-18
JP5188906B2 JP5188906B2 (en) 2013-04-24

Family

ID=42011531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204528A Expired - Fee Related JP5188906B2 (en) 2008-08-07 2008-08-07 Anomaly detection equipment for nuclear power plants

Country Status (1)

Country Link
JP (1) JP5188906B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252755A (en) * 2010-06-01 2011-12-15 Toshiba Corp Earthquake scram method and apparatus
KR101554459B1 (en) 2014-05-16 2015-09-22 한국과학기술원 Method for Availability Improvement of Standby Equipment

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153996A (en) * 1978-05-25 1979-12-04 Toshiba Corp Sub-cooling sea water system for emergency
JPS5822512A (en) * 1981-07-31 1983-02-09 株式会社東芝 Wire passing device
JPH01286733A (en) * 1988-05-11 1989-11-17 Mitsubishi Cable Ind Ltd Current limiting unit
JPH01310070A (en) * 1988-06-07 1989-12-14 Toshiba Corp Plant operation room
JPH025048U (en) * 1988-06-22 1990-01-12
JPH02195297A (en) * 1989-01-25 1990-08-01 Toshiba Corp Earthquake-relief structure of building for nuclear power generation
JPH0443934A (en) * 1990-06-11 1992-02-13 Sumitomo Heavy Ind Ltd Leak detecting device
JPH0518848A (en) * 1991-07-09 1993-01-26 Toshiba Corp Leak-detection device
JPH06265692A (en) * 1993-03-16 1994-09-22 Hitachi Ltd Instruction system at the time of earthquake
JPH07198064A (en) * 1993-12-28 1995-08-01 Ishikawajima Harima Heavy Ind Co Ltd Low temperature valve
JPH083549B2 (en) * 1986-01-22 1996-01-17 株式会社日立製作所 Earthquake Intrasystem
JPH09159652A (en) * 1995-12-12 1997-06-20 Ishikawajima Harima Heavy Ind Co Ltd Method for foreseeing danger of containing structure
JPH10123282A (en) * 1996-10-16 1998-05-15 Toshiba Corp Plant component state monitoring device
JPH11295179A (en) * 1998-04-09 1999-10-29 Mitsubishi Electric Corp Abnormal place detecting device
JP2001141876A (en) * 1999-11-12 2001-05-25 Hitachi Ltd Fuel inspection device
JP2002340726A (en) * 2001-05-16 2002-11-27 Toshiba Corp Apparatus and method for analyzing vibration
JP2003057382A (en) * 2001-08-16 2003-02-26 Toshiba Eng Co Ltd Testing device of existence of cable disconnection and test method of existence of cable disconnection
JP2004125412A (en) * 2002-09-30 2004-04-22 Toshiba Corp Method for replacing penetrating pipe of nuclear reactor containment vessel

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153996A (en) * 1978-05-25 1979-12-04 Toshiba Corp Sub-cooling sea water system for emergency
JPS5822512A (en) * 1981-07-31 1983-02-09 株式会社東芝 Wire passing device
JPH083549B2 (en) * 1986-01-22 1996-01-17 株式会社日立製作所 Earthquake Intrasystem
JPH01286733A (en) * 1988-05-11 1989-11-17 Mitsubishi Cable Ind Ltd Current limiting unit
JPH01310070A (en) * 1988-06-07 1989-12-14 Toshiba Corp Plant operation room
JPH025048U (en) * 1988-06-22 1990-01-12
JPH02195297A (en) * 1989-01-25 1990-08-01 Toshiba Corp Earthquake-relief structure of building for nuclear power generation
JPH0443934A (en) * 1990-06-11 1992-02-13 Sumitomo Heavy Ind Ltd Leak detecting device
JPH0518848A (en) * 1991-07-09 1993-01-26 Toshiba Corp Leak-detection device
JPH06265692A (en) * 1993-03-16 1994-09-22 Hitachi Ltd Instruction system at the time of earthquake
JPH07198064A (en) * 1993-12-28 1995-08-01 Ishikawajima Harima Heavy Ind Co Ltd Low temperature valve
JPH09159652A (en) * 1995-12-12 1997-06-20 Ishikawajima Harima Heavy Ind Co Ltd Method for foreseeing danger of containing structure
JPH10123282A (en) * 1996-10-16 1998-05-15 Toshiba Corp Plant component state monitoring device
JPH11295179A (en) * 1998-04-09 1999-10-29 Mitsubishi Electric Corp Abnormal place detecting device
JP2001141876A (en) * 1999-11-12 2001-05-25 Hitachi Ltd Fuel inspection device
JP2002340726A (en) * 2001-05-16 2002-11-27 Toshiba Corp Apparatus and method for analyzing vibration
JP2003057382A (en) * 2001-08-16 2003-02-26 Toshiba Eng Co Ltd Testing device of existence of cable disconnection and test method of existence of cable disconnection
JP2004125412A (en) * 2002-09-30 2004-04-22 Toshiba Corp Method for replacing penetrating pipe of nuclear reactor containment vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252755A (en) * 2010-06-01 2011-12-15 Toshiba Corp Earthquake scram method and apparatus
KR101554459B1 (en) 2014-05-16 2015-09-22 한국과학기술원 Method for Availability Improvement of Standby Equipment

Also Published As

Publication number Publication date
JP5188906B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP3543426B2 (en) Pipe network management method and system
JP2019193799A (en) Warning valve station of fire extinguisher, especially sprinkler, or water injection fire extinguisher, and fire extinguisher
CN107424380A (en) Urban Underground pipe gallery monitoring and warning system and method
JP7227170B2 (en) Monitoring systems for sections or components of pipelines for the transport of hydrocarbons installed at hazardous sites
BR112015032467B1 (en) Subsea intervention system
CN101098195A (en) Optical fiber safety early-warning system
KR101775489B1 (en) Monitoring system of power supply apparatus for fire fighting equipment
JP2014066294A (en) Cutoff valve remote opening and closing system
WO2021173868A1 (en) In line inspection strain device method and apparatus for performing in line joint inspections
CN103927834A (en) Underground pipeline perimeter intrusion early warning system
JP5188906B2 (en) Anomaly detection equipment for nuclear power plants
KR101505003B1 (en) Reporting system through analysing operation of the protection relay
JP2016205864A (en) Nuclear power plant training system
CN110886968B (en) Natural gas riser early warning system based on optical fiber sensing
KR101429391B1 (en) A data processing device for managing underground buried objects
KR102396189B1 (en) Monitoring system for damage of infrastructure facility
KR20100053128A (en) System based on network for detecting a fire
CN109900808B (en) Channel self-checking system and method of acoustic emission signal monitoring system
CN109767592A (en) Fire-fighting equipment power supply smart comprehensive monitoring system based on bus structures
CN103901873B (en) Safety instrumented systems and PST start method
CN201804067U (en) Self-diagnostic device for sensor system
JP2007024808A (en) Gas meter disaster prevention system
JP6214927B2 (en) Plant monitoring system and plant monitoring method
CN103744368A (en) Alarm system for flooded workshop of hydropower station
KR102310134B1 (en) System of alarm and leakage detecting for underground hot water pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees