JP2010038511A - Cleaning method and cleaning device of refrigerant pipe - Google Patents

Cleaning method and cleaning device of refrigerant pipe Download PDF

Info

Publication number
JP2010038511A
JP2010038511A JP2008205440A JP2008205440A JP2010038511A JP 2010038511 A JP2010038511 A JP 2010038511A JP 2008205440 A JP2008205440 A JP 2008205440A JP 2008205440 A JP2008205440 A JP 2008205440A JP 2010038511 A JP2010038511 A JP 2010038511A
Authority
JP
Japan
Prior art keywords
pipe
cleaning liquid
cleaning
solvent
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008205440A
Other languages
Japanese (ja)
Other versions
JP4865770B2 (en
JP2010038511A5 (en
Inventor
Hideaki Sodeyama
英明 袖山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008205440A priority Critical patent/JP4865770B2/en
Publication of JP2010038511A publication Critical patent/JP2010038511A/en
Publication of JP2010038511A5 publication Critical patent/JP2010038511A5/ja
Application granted granted Critical
Publication of JP4865770B2 publication Critical patent/JP4865770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a time necessary for cleaning work by efficiently recovering a cleaning liquid from a pipe in safety without leakage when the cleaning work of the air-cooled separate type refrigerant pipe is performed. <P>SOLUTION: This cleaning device includes a cleaning liquid delivering section 2 for delivering the cleaning liquid prepared by mixing a nitrogen gas into a solvent such as methylene chloride to the existing pipe P and cleaning and purifying the inside of pipe by circulating the cleaning liquid, a cleaning liquid recovering section 3 for allowing the cleaning liquid discharged from the pipe to flow into a recovery tank, and separating the gas component and the solvent component in the tank to recover the cleaning liquid, a solvent regenerating section 4 for separating impurities from the recovered solvent to regenerate the solvent, and a pump section 5 comprising a diaphragm type vacuum pump for vacuuming the inside of piping P, and these sections are received on a carriage while being connected with each other by a pipe provided with a flow channel opening/closing valve V on its pipe conduit to constitute the cleaning device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷暖房装置や冷凍機などの空冷セパレート型空調機の冷媒配管を洗浄する方法とその装置に関する。   The present invention relates to a method and an apparatus for cleaning refrigerant piping of an air-cooled separate type air conditioner such as an air conditioner or a refrigerator.

旧冷媒用の空調機を新冷媒に対応したものに取り替える場合に、旧冷媒を回収後、建物の壁面などに埋設された既設の冷媒配管を洗浄するようにしている。既設配管を洗浄する従来の方法として、洗浄流体としてR22等の冷媒フロンを用い、これを配管内に循環させて旧冷媒の回収と洗浄を同時に行い、洗浄後さらに窒素ガスを既設配管に強制的に吹き込んで管内をブロー洗浄する方法が知られている(例えば特許文献1参照)。   When replacing the old refrigerant air conditioner with one that is compatible with the new refrigerant, the existing refrigerant pipe buried in the wall of the building is washed after the old refrigerant is recovered. As a conventional method for cleaning the existing piping, a refrigerant flon such as R22 is used as the cleaning fluid, and this is circulated in the piping to collect and clean the old refrigerant at the same time. After cleaning, nitrogen gas is forced into the existing piping. There is known a method in which the inside of a tube is blown and cleaned by blowing into the tube (see, for example, Patent Document 1).

しかし、この方法では、洗浄流体として用いるR22等は沸点が極めて低いため洗浄用冷媒ガスを放出する危険があって取り扱いが極めて困難であり、また、R22等の洗浄流体は、既設配管内に残存していた、旧冷媒の圧縮機の潤滑油に用いられていた鉱物油との相溶性が極めて低く、鉱物油が溶けずに多くが残存し、十分な洗浄効果を発揮することができないという問題があった。   However, in this method, R22 or the like used as a cleaning fluid has a very low boiling point, so that it is extremely difficult to handle because there is a risk of releasing a cleaning refrigerant gas, and the cleaning fluid such as R22 remains in the existing piping. The compatibility with the mineral oil used in the old refrigerant compressor lubricant oil is extremely low, and the mineral oil does not dissolve and remains in large quantities, making it impossible to exert a sufficient cleaning effect. was there.

このような従来の洗浄方法による問題点を解決すべく、本発明者により、洗浄液として塩化メチレンやメチルアルコールなどの沸点の低い溶剤を用い、これに窒素ガスを混合させて既設配管内に送出し循環させることにより、既設の冷媒配管を洗浄する方法が提案されており、実際にこの方法により多くの既設配管が洗浄されて洗浄効果の有効性が確認されている(例えば特許文献2、3参照)。   In order to solve the problems caused by the conventional cleaning method, the present inventor uses a solvent having a low boiling point such as methylene chloride or methyl alcohol as the cleaning liquid, and mixes it with nitrogen gas and sends it into the existing piping. A method of cleaning existing refrigerant pipes by circulating them has been proposed, and the effectiveness of the cleaning effect has been confirmed by actually cleaning many existing pipes by this method (see, for example, Patent Documents 2 and 3). ).

洗浄液として塩化メチレンを用いた従来の方法において、洗浄液流通による洗浄後に既設配管内に窒素ガスを吹き込んでブロー洗浄することで、配管内に残っていた鉱物油や異物を確実に外部に排出することができるが、ブロー洗浄を十分な時間行ったとしても僅かな量の洗浄液が管内に残ってしまう。   In the conventional method using methylene chloride as the cleaning liquid, blow out nitrogen gas into the existing piping after cleaning by circulating the cleaning liquid to ensure that mineral oil and foreign matter remaining in the piping are discharged to the outside. However, even if blow cleaning is performed for a sufficient time, a small amount of cleaning liquid remains in the tube.

既設配管内に残存する洗浄液は、ブロー洗浄後の真空引きによって蒸発除去されるが、真空引きに用いる真空ポンプがオイル式の場合、蒸気化した洗浄液が真空ポンプのオイルに溶け込んでオイルの粘度を低下させ、系内の真空度到達に支障を来して真空引きに時間がかかってしまうという問題があった。真空ポンプのオイルの粘度を維持するため、オイル交換も頻繁に行わなければならなかった。とりわけ、気温が低い冬季の洗浄作業では洗浄液が蒸気化し難く、真空引きの時間が増大して洗浄作業完了までに長時間を要していた。   The cleaning liquid remaining in the existing piping is evaporated and removed by vacuuming after blow cleaning, but when the vacuum pump used for vacuuming is an oil type, the vaporized cleaning liquid dissolves in the oil in the vacuum pump and the viscosity of the oil is reduced. There is a problem that it takes a long time to draw a vacuum due to a decrease in the degree of vacuum in the system. In order to maintain the viscosity of the vacuum pump oil, oil changes had to be made frequently. In particular, in a winter cleaning operation where the temperature is low, the cleaning liquid is difficult to evaporate, and the time required for evacuation increases, and it takes a long time to complete the cleaning operation.

また、洗浄液として塩化メチレンを用いた従来の方法では、既設配管内を流通させた洗浄液を回収タンクに流入させて回収する際に、タンク内に設けた活性炭などの濾過材に洗浄液を通してガス成分を吸着させることにより、洗浄液が系外に漏出することを防止しているが、洗浄液を回収タンクに導入するときに濾過材が飽和吸着状態になっていると、洗浄液のガス成分が空気中に放散して、作業時の気温や風向きによっては周囲に異臭を感じさせることがあり、より万全な洗浄液の回収手段が望まれていた。   Further, in the conventional method using methylene chloride as the cleaning liquid, when the cleaning liquid circulated in the existing piping flows into the recovery tank and is recovered, the gas component is passed through the cleaning liquid through a filter medium such as activated carbon provided in the tank. Adsorption prevents the cleaning liquid from leaking out of the system, but if the filter medium is in a saturated adsorption state when the cleaning liquid is introduced into the recovery tank, the gas component of the cleaning liquid is diffused into the air. Thus, depending on the temperature and wind direction at the time of work, a strange odor may be felt in the surroundings, and a more complete cleaning liquid recovery means has been desired.

さらに、前記回収タンク内に導入されて回収された洗浄液は、特別管理産業廃棄物として産業廃棄物処理業者に引き渡して処分しなければならず、その収集、保管、運搬、処理の手続きは面倒であり、また、洗浄液を吸着させた濾過材も同様に産業廃棄物として処分しなければならず、これら冷媒配管の洗浄処理作業により抽出される廃棄物を洗浄処理作業者や廃棄物処理業者の手を煩わせることなく処理することのできる方策が望まれていた。   Furthermore, the cleaning liquid introduced and recovered in the recovery tank must be handed over to an industrial waste disposal company as specially controlled industrial waste for disposal, and the procedures for collection, storage, transportation and treatment are troublesome. In addition, the filter medium on which the cleaning liquid is adsorbed must be disposed of as industrial waste as well, and the waste extracted by the cleaning processing of these refrigerant pipes is handled by the cleaning operator and the waste processing company. There has been a demand for a method capable of processing without bothering.

産業廃棄物の増大が社会問題化している今日においては、洗浄後に回収された洗浄液に含まれている溶剤を産業廃棄物として破棄するのではなく、再生処理を施して再利用することが、資源の有効活用及び廃棄物排出量の低減による環境汚染の防止の観点から必要とされているところである。溶剤を回収し再生する方法として、回収した溶剤を温水で加熱し、その蒸気を吸脱着してから凝縮する方法や手段が知られているが(例えば特許文献4、5参照)、これらは冷媒が充填された既設配管や空調機の洗浄装置とは別の処理工程として位置付けられている。そのため、処理する装置構成が大掛かりとならざるを得ず、洗浄作業現場においても再生処理が可能な簡易な構成のものではなかった。   In the present day when the increase in industrial waste has become a social problem, it is not possible to dispose of the solvent contained in the cleaning liquid collected after cleaning as industrial waste. It is necessary from the viewpoint of effective use of wastewater and prevention of environmental pollution by reducing waste emissions. As a method for recovering and regenerating the solvent, there are known methods and means for heating the recovered solvent with warm water and absorbing and desorbing the vapor before condensing (see, for example, Patent Documents 4 and 5). It is positioned as a separate process from existing pipes filled with or cleaning equipment for air conditioners. Therefore, the apparatus configuration to be processed has to be large, and it has not been a simple configuration that can be regenerated at the cleaning work site.

さらに、環境保護のためには、洗浄液として用いる溶剤だけではなく、溶剤の臭気拡散防止のために用いる活性炭などの濾過材や、さらには洗浄作業前に既設の空調機及び配管から回収される冷媒も再生して利用できるようにすることが好ましい。
新たな既設配管の洗浄処理方法や手段を発案しこれを事業化する場合に、そのような廃棄物を出さない再生処理体系を事前に構築し、環境保護に供する確証を得ておくことが、発案者の義務であり社会的責任でもあるといえる。
Furthermore, in order to protect the environment, not only the solvent used as a cleaning liquid, but also a filter medium such as activated carbon used to prevent the odor diffusion of the solvent, and a refrigerant recovered from existing air conditioners and pipes before cleaning work It is also preferable to make it available for reproduction.
When inventing and commercializing new cleaning methods and means for existing pipes, it is necessary to establish a recycling system that does not emit such waste in advance and obtain confirmation that it will be used for environmental protection. It can be said that it is a duty of the inventor and a social responsibility.

特開2001−141340号公報JP 2001-141340 A 特許第3971372号公報Japanese Patent No. 3971372 特許第3971445号公報Japanese Patent No. 3971445 特開2000−225301号公報JP 2000-225301 A 特開2005−247937号公報JP 2005-247937 A

本発明は、従来技術の有するこのような問題点に鑑み、冷媒配管内に洗浄液を窒素ガスとともに送出し流通させて洗浄する場合に、配管内を流通する洗浄液に管内の異物を溶かし込んでこれを確実に除去し、洗浄作業を行うときの周囲温度に関わりなく配管内から洗浄液を漏らさずに完全且つ効率的に回収して洗浄作業に要する時間の短縮化を実現することを課題とする。特に気温が低い冬季に既設配管の洗浄処理を行う場合でも洗浄液を確実且つ完全に回収できるようにすることを課題とする。
また、本発明は、洗浄液の溶剤成分を周囲に放散させることなく確実に回収するとともに、洗浄作業により抽出される廃棄物を再生し或いは賦活させて再利用に供し、廃棄物の処理手続きの簡易化及び処理の確実化を図ることを課題とする。
In view of such problems of the prior art, the present invention dissolves foreign matter in the pipe into the cleaning liquid flowing in the pipe when the cleaning liquid is sent and circulated together with nitrogen gas in the refrigerant pipe for cleaning. It is an object of the present invention to realize a reduction in the time required for the cleaning operation by reliably removing the cleaning liquid and completely and efficiently collecting the cleaning liquid without leaking from the pipe regardless of the ambient temperature when the cleaning operation is performed. In particular, it is an object of the present invention to make it possible to reliably and completely recover the cleaning liquid even when the existing piping is cleaned in winter when the temperature is low.
In addition, the present invention reliably recovers the solvent component of the cleaning liquid without dispersing it to the surroundings, and recycles or activates the waste extracted by the cleaning operation for reuse, thereby simplifying the waste processing procedure. It is an object to make the system and process reliable.

前記課題を解決するため本発明の冷媒配管の洗浄方法は、
空冷セパレート型空調機の既設冷媒配管を冷媒回収後に洗浄する方法において、
塩化メチレンからなる溶剤に窒素ガスを混合してなる洗浄液を送出する手段及び窒素ガスを加熱して送出する手段を備えた洗浄装置を室外機に代えて設置し、洗浄装置の接続管を既設配管の管口に接続する工程と、
室内機が接続していた既設配管の管口に連絡配管を接続する工程と、
洗浄装置の接続管の一方から洗浄液を既設配管内に送出し、配管内を流通させて洗浄浄化するとともに、前記接続管の他方から洗浄液を排出させて洗浄装置の回収タンクで回収する工程と、
所定温度に加熱された洗浄液を既設配管内に送出し、配管内を循環流通させて既設配管を加熱する工程と、
前記接続管から加熱窒素ガスを既設配管内に送出し、配管内を循環流通させて既設配管を所定温度に加熱する工程と、
洗浄装置に設けたダイヤフラム式真空ポンプで既設配管内を真空引きし、管内のガスを真空ポンプから回収タンク内に導入する工程と、
を備えることを特徴としている。
In order to solve the above problems, the refrigerant pipe cleaning method of the present invention comprises:
In the method of cleaning the existing refrigerant piping of the air-cooled separate type air conditioner after collecting the refrigerant,
Instead of an outdoor unit, a cleaning device equipped with a means for sending a cleaning liquid prepared by mixing nitrogen gas into a solvent consisting of methylene chloride and a means for heating and sending the nitrogen gas is installed, and the connecting pipe of the cleaning device is installed as an existing pipe. Connecting to the pipe opening of
Connecting the connecting pipe to the port of the existing pipe to which the indoor unit was connected;
Sending the cleaning liquid from one of the connecting pipes of the cleaning device into the existing pipe, circulating the pipe to clean and purify, and discharging the cleaning liquid from the other of the connecting pipe and collecting it in the recovery tank of the cleaning apparatus;
Sending the cleaning liquid heated to a predetermined temperature into the existing piping, circulating the circulation in the piping and heating the existing piping;
Sending heated nitrogen gas from the connecting pipe into the existing pipe, circulating the inside of the pipe and heating the existing pipe to a predetermined temperature;
Evacuating the existing piping with a diaphragm vacuum pump provided in the cleaning device, and introducing the gas in the tube from the vacuum pump into the recovery tank;
It is characterized by having.

また、本発明の冷媒配管の洗浄装置は、
空冷セパレート型空調機の既設冷媒配管を冷媒回収後に洗浄する装置であって、
既設配管の室内機が接続していた側の管口に連絡配管を接続し、当該配管の室外機が接続していた側の管口に接続管をそれぞれ接続し、
前記接続管の一方から塩化メチレンなどの溶剤に窒素ガスを混合させてなる洗浄液を配管内に送出し、管内を流通させて洗浄浄化させる洗浄液送出部と、
前記接続管の他方から排出される洗浄液を回収タンク内に流入させるとともにタンク内でガス成分と溶剤成分とに分離して洗浄液を回収する洗浄液回収部と、
前記タンク内に回収された溶剤から不純物を分離して溶剤を再生する溶剤再生部と、
既設配管内を真空引きするためのダイヤフラム式真空ポンプを備えたポンプ部とを有し、
前記各部を管路上に流路開閉バルブが設けられた配管で互いに接続した状態で台車上に収納して構成されたことを特徴とする。
In addition, the refrigerant pipe cleaning device of the present invention includes:
An apparatus for cleaning an existing refrigerant pipe of an air-cooled separate type air conditioner after collecting the refrigerant,
Connect the connection pipe to the pipe port on the side where the indoor unit of the existing pipe was connected, connect the connection pipe to the pipe port on the side where the outdoor unit of the pipe was connected,
A cleaning liquid sending unit for sending a cleaning liquid obtained by mixing nitrogen gas into a solvent such as methylene chloride from one of the connecting pipes into the pipe, and for cleaning and purifying by circulating in the pipe;
A cleaning liquid recovery section for allowing the cleaning liquid discharged from the other of the connection pipes to flow into the recovery tank and separating the cleaning liquid into gas components and solvent components in the tank;
A solvent regeneration unit for separating impurities from the solvent recovered in the tank and regenerating the solvent;
Having a pump part equipped with a diaphragm type vacuum pump for evacuating the existing piping,
It is characterized in that each part is housed on a carriage in a state of being connected to each other by a pipe provided with a flow path opening / closing valve on a pipeline.

前記構成の装置において、洗浄液送出部は、
窒素ガスボンベと、溶剤が投入されるタンクであって底部又は側胴部に加熱ヒータが設けられた洗浄液タンクと、前記窒素ガスボンベから送出される窒素ガスを加熱するベイキングヒータと、送液ポンプとを有して構成されており、
溶剤が投入された洗浄液タンク内に窒素ガスを送出して溶剤に窒素ガスを混合させた洗浄液を生成し、加熱ヒータを作動させて洗浄液を適宜な温度に加熱させた状態で送液ポンプにより接続管の一方から既設配管内に送出して管内を流通させるとともに、接続管の他方から洗浄液を排出させて回収タンク内に流入させ、
次いで前記と同様に、適宜な温度に加熱させた洗浄液を既設配管内に送出し、管内を循環流通させた後、窒素ガスを既設配管内に送出させて洗浄液を回収タンク内に流入させることにより配管内を加熱処理し、
さらにベイキングヒータで加熱した窒素ガスを接続管の一方から既設配管内に送出して管内を流通させるとともに、接続管の他方からガスを排出させて回収タンク内に導入させ、さらに前記とは逆にベイキングヒータから加熱窒素ガスを接続管の他方から既設配管内に送出して管内を流通させるとともに、接続管の一方からガスを排出させて回収タンク内に導入させ、
当該加熱窒素ガスを既設配管内に交互に流通させる工程を繰り返して既設配管を所定温度に加熱した後、ダイヤフラム式真空ポンプで既設配管内を真空引きし、管内のガスを前記真空ポンプから回収タンク内に導入することにより既設配管内の残余の洗浄液を回収するように構成されていることを特徴とする。
In the apparatus configured as described above, the cleaning liquid delivery section is
A nitrogen gas cylinder, a tank into which a solvent is introduced, a cleaning liquid tank provided with a heater at the bottom or side barrel, a baking heater for heating nitrogen gas delivered from the nitrogen gas cylinder, and a liquid feed pump Has
Nitrogen gas is sent into the cleaning liquid tank filled with the solvent to generate a cleaning liquid in which the nitrogen gas is mixed with the solvent, and the heater is activated and the cleaning liquid is heated to an appropriate temperature and connected by a liquid feed pump. While sending out from one side of the pipe into the existing pipe and circulating in the pipe, the cleaning liquid is discharged from the other side of the connecting pipe to flow into the collection tank,
Next, as described above, the cleaning liquid heated to an appropriate temperature is sent into the existing pipe, circulated through the pipe, and then nitrogen gas is sent into the existing pipe to cause the cleaning liquid to flow into the recovery tank. Heat the inside of the pipe,
Further, nitrogen gas heated by a baking heater is sent from one of the connecting pipes into the existing pipe to circulate in the pipe, and the gas is discharged from the other of the connecting pipes to be introduced into the recovery tank. While sending the heated nitrogen gas from the other side of the connecting pipe into the existing pipe from the baking heater and circulating the inside of the pipe, the gas is discharged from one side of the connecting pipe and introduced into the recovery tank,
The process of alternately circulating the heated nitrogen gas into the existing piping is repeated to heat the existing piping to a predetermined temperature, and then the existing piping is evacuated with a diaphragm vacuum pump, and the gas in the pipe is recovered from the vacuum pump. It is configured to collect the remaining cleaning liquid in the existing pipe by being introduced into the pipe.

前記構成の装置において、洗浄液回収部は、
回収タンクの内部にステンレス繊維束からなるエリミネータを設けるとともに、接続管を介して回収タンクの上部に連通していて内部に濾過材からなるフィルター層を設けた吸着タンクと、送風機を備えた接続管を介して吸着タンクの上部に連通していて上面に排気口を備えていて内部にはオイルが貯留された吸収タンクとを設け、
既設配管内を流通させて排出される洗浄液又は液分が混入したガスを回収タンクのエミリネータに衝突させてガス成分と液成分に分離するとともに、分離したガス成分を吸着タンクに導入し、吸着タンクのフィルター層を通してガス成分を吸着し、送風機で接続管内に外気を導入して前記吸着されなかった残余のガス成分と窒素ガスとを希釈して吸収タンク内に吹き込むとともに残余のガス成分を吸収タンクのオイルに吸収させて溶剤を回収するように構成されたことを特徴とする。
In the apparatus having the above-described configuration, the cleaning liquid recovery unit is
The recovery tank is provided with an eliminator made of stainless steel fiber bundles, and is connected to the upper part of the recovery tank through a connecting pipe, and is provided with a filter layer made of a filtering material inside, and a connecting pipe equipped with a blower The upper part of the adsorption tank through which is provided with an exhaust port on the upper surface and an oil storage tank in which oil is stored,
The cleaning liquid or gas mixed with the liquid discharged through the existing pipe collides with the recovery tank's emilator to separate the gas component and liquid component, and the separated gas component is introduced into the adsorption tank. The gas component is adsorbed through the filter layer, the outside air is introduced into the connecting pipe with a blower, the remaining gas component that has not been adsorbed and the nitrogen gas are diluted and blown into the absorption tank, and the remaining gas component is absorbed into the absorption tank. The solvent is recovered by absorbing the oil into the oil.

前記構成の装置において、溶剤再生部は、
回収された溶剤をウォータバスで加熱して気化させる蒸留器と、水又は温水が流入される槽内に凝縮コイルを螺旋状に配してなり、コイル内に気化した溶剤を流通させてこれを液化する凝縮器と、頂面内に管連通孔が形成された蓋体と当該蓋体に面する開口上部に濾過材フィルター層が設けられていて内部で溶剤回収缶を支持する容器本体からなる再生液回収容器と、再生液回収容器の重さはかるアラーム付きの秤とを有して構成されており、
洗浄作業中に前記洗浄液回収部の各タンクに回収された溶剤を蒸留器に導入し、又は洗浄作業後に前記洗浄液回収部の各タンクから溶剤回収缶に移入させた溶剤を自吸ポンプを用いて蒸留器に導入して当該蒸留器で溶剤を蒸発させるとともに凝縮器でこれを液化し、液化した溶剤を再生回収容器内の溶剤回収缶に所定の容量だけ流入させるように構成されたことを特徴とする。
In the apparatus having the above-described configuration, the solvent regeneration unit is
A distiller that heats and vaporizes the recovered solvent in a water bath, and a condensing coil is arranged in a spiral in a tank into which water or hot water flows, and the evaporated solvent is circulated in the coil. It consists of a condenser to be liquefied, a lid body in which a tube communication hole is formed in the top surface, and a container body that supports a solvent recovery can inside by providing a filter medium filter layer at the top of the opening facing the lid body. It has a regenerative liquid collection container and a scale with an alarm that measures the weight of the regenerative liquid collection container.
The solvent recovered in each tank of the cleaning liquid recovery unit during the cleaning operation is introduced into the distiller, or the solvent transferred from each tank of the cleaning liquid recovery unit to the solvent recovery can after the cleaning operation using a self-priming pump. It is configured to be introduced into a distiller, evaporate the solvent in the distiller, liquefy it in the condenser, and flow the liquefied solvent into the solvent collection can in the regeneration collection container by a predetermined volume. And

また、前記構成の装置において、洗浄液回収部の各タンクの洗浄液流通経路上に温風を吹き入れて濾過材を所定温度に加熱するとともに、当該加熱された濾過材を通過した温風を凝縮器へと導入することにより、濾過材から溶剤成分を分離して賦活させるように構成されたことを特徴とする。   Further, in the apparatus having the above-described configuration, hot air is blown onto the cleaning liquid flow path of each tank of the cleaning liquid recovery section to heat the filter medium to a predetermined temperature, and the hot air that has passed through the heated filter medium is condensed to the condenser. It is characterized in that the solvent component is separated from the filter medium and activated by being introduced into the filter medium.

また、前記溶剤再生部の凝縮器は、蒸留させた溶剤を流通させて凝縮させる溶剤用コイルと、空調機から回収した冷媒を流通させて蒸発させる冷媒再生コイルとを槽内に並置して構成されたことを特徴とする。
また、前記凝縮器は、冷媒再生機用コンデンシングユニットより、冷媒再生機用とは別の冷媒回路と蒸発器コイルを有し、溶剤凝縮の際の冷水チラーとして用いる凝縮水冷却用蒸発器を有することを特徴とするものである。
Further, the condenser of the solvent regeneration unit is configured by juxtaposing a solvent coil for circulating and condensing the distilled solvent and a refrigerant regeneration coil for circulating and evaporating the refrigerant recovered from the air conditioner in the tank. It is characterized by that.
Further, the condenser has a refrigerant circuit and an evaporator coil different from those for the refrigerant regenerator than the refrigerant regenerator condensing unit, and a condenser water cooling evaporator used as a cold water chiller at the time of solvent condensation. It is characterized by having.

さらに、前記構成の方法及び装置において、塩化メチレンに代えて洗浄液として、メチルアルコール、イソプロピルアルコール又はこれらと塩化メチレンとの混合液、若しくは水を用いることができる。
とりわけ塩化メチレンは、溶剤の中で地球温暖化係数は最小であり、半減期は2ヶ月でオゾン層まで届かず(オゾン層破壊係数:0.03)、また、引火性もなく、環境に優しく且つ取り扱いがし易く、何よりも洗浄能力に優れた溶剤であることから既設配管の洗浄液には最適である。メチルアルコールやイソプロピルアルコールは、塩化メチレンよりも洗浄能力に劣るが、前記と同様に、環境保護及び取り扱いのし易さから洗浄液として利用することができる。
Further, in the method and apparatus having the above-described configuration, methyl alcohol, isopropyl alcohol, a mixed solution of these with methylene chloride, or water can be used as the cleaning liquid instead of methylene chloride.
In particular, methylene chloride has the lowest global warming potential among solvents, has a half-life of 2 months, does not reach the ozone layer (ozone depletion coefficient: 0.03), and is flammable and environmentally friendly. In addition, it is easy to handle and, above all, it is an excellent solvent for cleaning, so it is optimal for existing pipe cleaning liquids. Methyl alcohol and isopropyl alcohol are inferior to methylene chloride in cleaning ability, but as described above, they can be used as cleaning solutions because of environmental protection and ease of handling.

既設配管の洗浄にあたり、洗浄液として酸化力の大きな塩素系の溶剤を用い、これが配管内面にこびりついて残存していると、配管を真空引きした際に、溶剤の液分及び蒸気が真空ポンプのオイルに溶け込み、オイルの粘度を低下させ、ポンプの機能も低下させ、さらには溶剤が分解したときに発生するガスで真空ポンプの金属部分を腐蝕させることが懸念される。
そこで、本発明では、ブロー洗浄後の配管の真空引きを、ダイヤフラム式真空ポンプを用いて行い、残存洗浄液が真空ポンプの作動に影響を及ぼさないようにしている。
When cleaning existing pipes, a chlorine-based solvent with high oxidizing power is used as the cleaning liquid, and if this remains stuck to the inner surface of the pipe, when the pipe is evacuated, the liquid content of the solvent and the vapor are removed from the vacuum pump oil. There is a concern that it will dissolve into the oil, lower the viscosity of the oil, reduce the function of the pump, and corrode the metal part of the vacuum pump with the gas generated when the solvent decomposes.
Therefore, in the present invention, the piping after the blow cleaning is evacuated by using a diaphragm vacuum pump so that the remaining cleaning liquid does not affect the operation of the vacuum pump.

また、ポンプの吸引能力にもよるが、ダイヤフラム式真空ポンプを用いたとしても、真空引きに要する時間が短縮される訳ではなく、既設配管内に残存する洗浄液の除去に時間がかかることには変わりはない。既設配管の洗浄作業全体では真空引き工程に最も時間がかかっており、この工程に要する時間を短縮しなければ、洗浄作業の効率化が図れない。
そこで、本発明では、既設配管内に洗浄液を流通させて洗浄した後、加熱された洗浄液を既設配管内に流通させて配管を温め、さらに加熱窒素ガスを配管内に導入し、且つ導入方向を逐次切り替えて既設配管を所定温度迄加熱させ、かかる加熱窒素ガスの流通及び加熱により残存する洗浄液をガス化させ、加熱窒素ガスの吸引及び窒素ガスブローに伴って洗浄液の残存成分の確実な除去を実現している。
外気温が高い夏季に洗浄液として塩化メチレンなどの沸点の低い溶剤を用いて洗浄作業を行う場合は、洗浄後の真空引きによって配管内の洗浄液は高精度で除去することが可能であるが、前記加熱窒素ガスの導入によって配管内部を加熱した後に真空引きすることにより、より確実且つ完全に洗浄液の回収を図ることができる。一方、気温が低い冬季に洗浄作業を行う場合は、洗浄後の真空引きによる配管内の乾燥も周囲温度が低いため効率が悪く、また、敷設されている配管は外気に触れているため配管自体をその外側から加熱することは非効率で実現性がないことから、加熱窒素ガスを既設配管内に導入することによって配管を内側から加熱することは残余の洗浄液を除去する処理に極めて有効である。すなわち、加熱された窒素ガス及び管内に残留する洗浄液は熱によって分子運動が盛んになり、配管内壁に分子間引力により付着していた液が離れやすくなり、ガス化して窒素ガスとともに管外へ吸引し排出させることが可能である。
Depending on the suction capacity of the pump, even if a diaphragm vacuum pump is used, the time required for evacuation is not shortened, and it takes time to remove the cleaning liquid remaining in the existing piping. There is no change. In the entire existing pipe cleaning operation, the evacuation process takes the longest time, and unless the time required for this process is shortened, the efficiency of the cleaning operation cannot be achieved.
Therefore, in the present invention, the cleaning liquid is circulated in the existing pipe for cleaning, and then the heated cleaning liquid is circulated in the existing pipe to warm the pipe, and heated nitrogen gas is introduced into the pipe, and the introduction direction is changed. The existing piping is heated up to a predetermined temperature by sequentially switching, and the remaining cleaning liquid is gasified by circulating the heated nitrogen gas and heating, and the removal of the remaining components of the cleaning liquid is realized with the suction of the heated nitrogen gas and the nitrogen gas blow. is doing.
When performing a cleaning operation using a solvent having a low boiling point such as methylene chloride as a cleaning liquid in summer when the outside air temperature is high, the cleaning liquid in the pipe can be removed with high accuracy by evacuation after cleaning. By vacuuming after heating the inside of the pipe by introducing heated nitrogen gas, the cleaning liquid can be more reliably and completely recovered. On the other hand, when cleaning is performed in winter when the temperature is low, drying inside the piping by vacuuming after cleaning is not efficient because the ambient temperature is low, and the installed piping touches the outside air, so the piping itself Heating from the outside is inefficient and impractical, so heating the pipe from the inside by introducing heated nitrogen gas into the existing pipe is extremely effective in the process of removing the remaining cleaning liquid . In other words, the heated nitrogen gas and the cleaning liquid remaining in the tube are activated by molecular movement due to heat, and the liquid adhering to the inner wall of the pipe is easily separated, and is gasified and sucked out together with the nitrogen gas. Can be discharged.

一方、加熱した窒素ガスの流入のみにより、既設配管を洗浄液である溶剤が蒸発する温度まで暖めることは実用上困難である。そこで、本発明では、溶剤が投入される洗浄液タンクに加熱ヒータを装備させ、洗浄液である溶剤自体を適宜な温度、塩化メチレンであれば32〜38℃程度まで加熱し、これに窒素ガスを混合し好ましくは溶解させて配管内に送出するように構成している。   On the other hand, it is practically difficult to warm the existing piping to a temperature at which the solvent as the cleaning liquid evaporates only by the inflow of heated nitrogen gas. Therefore, in the present invention, a heater is provided in the cleaning liquid tank into which the solvent is charged, and the solvent itself, which is the cleaning liquid, is heated to an appropriate temperature, or about 32 to 38 ° C. in the case of methylene chloride, and mixed with nitrogen gas. And preferably, it is made to melt | dissolve and it sends out in piping.

予め加熱した洗浄液の送出及び加熱窒素ガスの流入により、配管は洗浄液の気化温度より若干低い温度、例えば沸点が40℃程度の塩化メチレンであれば32〜38℃程度まで加熱し暖めることが好ましい。その後の加熱された窒素ガスの導入により配管内は40℃以上に暖められ、残留塩化メチレンは完全にガス化し、窒素ガスパージと真空引きによって既設配管から完全に除去させることができる。また、真空乾燥をより一層確実に行うことができる。
加熱温度は既設配管の入口と出口の端部にそれぞれ設けた温度計により計測される。また、配管の両端から交互に加熱窒素ガスを導入する際に、導入口とは反対の口部に、洗浄液(溶剤)のハロゲンガス検知器を設置して管内に残留する洗浄液の有無を検知することが好ましい。空調機を取り外した室内側管端に取り付けられる接続管にバンドヒータやリボンヒータ等を巻きつけておけば、加熱効果がより向上する。
The pipe is preferably heated to a temperature slightly lower than the vaporization temperature of the cleaning liquid, for example, methylene chloride having a boiling point of about 40 ° C., and heated to about 32 to 38 ° C. by feeding the preheated cleaning liquid and flowing in the heated nitrogen gas. By introducing heated nitrogen gas thereafter, the inside of the pipe is heated to 40 ° C. or more, and the residual methylene chloride is completely gasified and can be completely removed from the existing pipe by nitrogen gas purging and evacuation. Moreover, vacuum drying can be performed more reliably.
The heating temperature is measured by thermometers provided at the inlet and outlet ends of the existing piping. In addition, when introducing heated nitrogen gas alternately from both ends of the pipe, a halogen gas detector for cleaning liquid (solvent) is installed at the mouth opposite to the inlet to detect the presence of cleaning liquid remaining in the pipe. It is preferable. If a band heater or ribbon heater is wound around the connecting pipe attached to the indoor pipe end from which the air conditioner has been removed, the heating effect is further improved.

また、洗浄液として塩化メチレンを用いた場合に、洗浄液を回収する際に、洗浄液のガス成分が空気中に放散して周囲に異臭を感じさせることがある。そこで、本発明では、洗浄液回収部を、内部にエリミネータを有する回収タンクと、これを連通していて内部に濾過材からなるフィルター層を設けた吸着タンクと、送風機を備えた接続管を介して吸着タンクと連通していて内部にオイルが貯留された吸収タンクにより、洗浄液の回収工程、洗浄液に含まれるガスの分離工程、及びガス化した洗浄液の吸収工程の三段階の洗浄液処理工程を経ることで、ガス化した溶剤の濃度を徐々に希釈しながら回収するように構成した。なお、濾過材としては、例えば活性炭からなるフィルター、その他洗浄液又はそのガス成分に含まれる微細な粒子や霧状、粒状の物質を液流又は気流の通過に伴い濾過することが可能な適宜な手段を用いることができる。   In addition, when methylene chloride is used as the cleaning liquid, when the cleaning liquid is recovered, the gas component of the cleaning liquid may be diffused into the air, causing a strange odor to be felt in the surroundings. Therefore, in the present invention, the cleaning liquid recovery unit is connected to the recovery tank having an eliminator inside, an adsorption tank having a filter layer made of a filtering material inside and communicating with the recovery tank, and a connecting pipe provided with a blower. Through an absorption tank that is in communication with the adsorption tank and in which oil is stored, the cleaning liquid recovery process, the separation process of the gas contained in the cleaning liquid, and the absorption process of the gasified cleaning liquid are passed through three stages of cleaning liquid treatment processes. Thus, the gasified solvent concentration was recovered while being gradually diluted. In addition, as a filtering material, for example, a filter made of activated carbon, other appropriate means capable of filtering fine particles, mist, and granular substances contained in the cleaning liquid or its gas component as the liquid flow or air flow passes. Can be used.

前述の通り、配管内を流通洗浄させて回収タンク内に回収された溶剤は特別管理産業廃棄物として処理されるべきものであるが、その保管や運搬といった取り扱いは面倒である。また、一度の洗浄処理で廃棄処分することは、事業廃棄物をできる限り少なくして環境保護を図らんとする点で好ましいものではない。一方、回収された溶剤には、管内に付着していたオイルや水分、ゴミといった異物が混入しており、これら異物を完全に分離しなければ、再利用することはできない。
そこで、本発明では、溶剤を蒸留する蒸留器と、気化した溶剤を液化する凝縮器を備えた溶剤回収部を洗浄装置に付設し、回収された溶剤を蒸留器内に導入して加熱し、蒸発成分を凝縮器で液化することで、溶剤と異物との沸点の差を利用して溶剤と異物とを分離し、再生した溶剤を利用できるようにしている。また、前記加熱窒素ガスを配管内に流通させる際に、配管から排出されるガスを凝縮器に導入して凝縮させることで、窒素ガスに混入した溶剤のガス成分を液化させて溶剤のみを回収するも可能である。
As described above, the solvent collected in the recovery tank after being flow-washed in the pipe should be treated as specially managed industrial waste, but its handling such as storage and transportation is troublesome. Further, it is not preferable to dispose of the product by a single cleaning process from the viewpoint of protecting the environment by reducing business waste as much as possible. On the other hand, the collected solvent contains foreign matters such as oil, moisture, and dust adhering to the inside of the tube, and it cannot be reused unless these foreign matters are completely separated.
Therefore, in the present invention, a solvent recovery unit equipped with a distiller for distilling the solvent and a condenser for liquefying the evaporated solvent is attached to the cleaning device, and the recovered solvent is introduced into the distiller and heated, The evaporated component is liquefied with a condenser to separate the solvent and the foreign matter using the difference in boiling point between the solvent and the foreign matter so that the regenerated solvent can be used. Also, when circulating the heated nitrogen gas through the pipe, the gas discharged from the pipe is introduced into the condenser to condense, thereby liquefying the gas component of the solvent mixed in the nitrogen gas and recovering only the solvent. It is also possible.

一方、濾過材が飽和吸着状態になっていた場合に、溶剤のガス成分の吸着が不十分となることは避けられず、ガス成分が系外に放出して、装置周囲の環境に負荷がかかることになる。一方、吸着能力が飽和する度に濾過材を交換したのでは、環境保護を図らんとする点で好ましいものではない。
そこで、本発明では、回収タンクの洗浄液流通経路上に温風送風手段を設け、濾過材に温風を吹き付けて所定温度に加熱することで、吸着していた洗浄液の成分をガス化して濾過材から分離せしめ、分離した洗浄液のガス成分を前記凝縮器へと導入することで、洗浄液成分を系外へ放出することなく回収し、同時に濾過材を賦活させ、再利用できるように構成した。
On the other hand, when the filter medium is in a saturated adsorption state, it is inevitable that the adsorption of the gas component of the solvent will be inadequate, and the gas component will be discharged out of the system, causing a load on the environment around the device. It will be. On the other hand, replacing the filter medium every time the adsorption capacity is saturated is not preferable in terms of environmental protection.
Therefore, in the present invention, a hot air blowing means is provided on the cleaning liquid flow path of the recovery tank, and the filter medium is gasified by gasifying the components of the adsorbed cleaning liquid by blowing warm air to the filter medium and heating it to a predetermined temperature. Then, the gas component of the separated cleaning liquid is introduced into the condenser so that the cleaning liquid component can be recovered without being discharged out of the system, and at the same time, the filter medium can be activated and reused.

なお、本発明者の実験によれば、洗浄液で既設配管を洗浄後、洗浄液を回収して分析したところ、微量であるが蟻酸及び、黒色、赤色、白色の粉体がそれぞれ検出された。
この蟻酸は管内のナフテン系冷凍機油のナフテン酸が、空調システムの圧縮機による圧縮熱及び加熱冷却の繰り返しにより分解され、発生したものである。これらは冷媒配管施工の際に、窒素パージが不十分で配管を溶接したときに発生する銅管の酸化被膜がちぎれたものであると考えられ、洗浄液の回収タンクの底には前記黒、赤及び白各色の粉体が沈殿する。
それぞれ黒色の粉は酸化銅及び圧縮機の摩耗により飛散した酸化鉄、赤色の粉は酸化銅の飛沫がオイルの分解によって生じた水素と反応して一価の金属銅に還元したものと推測される。つまり、蟻酸はナフテン系冷凍機油が熱分解されて生じた水素とカルボルキシル基との反応でできた生成物と捉えれば、前記蟻酸の発生と整合性がとれる。蟻酸は圧縮機の金属部分と反応して圧縮機を故障に至らしめる原因となることから、洗浄液を回収する際に管内に残存する蟻酸も他の異物とともに残らず除去し、管内を略完全な真空乾燥させて残存物が全くない状態に適正に洗浄することが要求される。
According to the experiment by the present inventor, after washing the existing pipe with the cleaning liquid, the cleaning liquid was collected and analyzed, and formic acid and black, red, and white powders were detected although they were trace amounts.
This formic acid is generated by the decomposition of the naphthenic acid of the naphthenic refrigerating machine oil in the pipe by repeated compression heat and heating / cooling by the compressor of the air conditioning system. These are thought to be due to tearing of the copper pipe oxide film that occurs when the pipes are welded due to insufficient nitrogen purge when the refrigerant pipes are installed. And white powders precipitate.
The black powder is presumed to be reduced to monovalent metallic copper by reacting with copper oxide and iron oxide scattered by the wear of the compressor, and the red powder reacting with the hydrogen generated by the decomposition of the oil. The In other words, if formic acid is regarded as a product formed by the reaction of hydrogen and carboxyl group generated by thermal decomposition of naphthenic refrigerating machine oil, consistency with the generation of formic acid can be obtained. Formic acid reacts with the metal parts of the compressor and causes the compressor to malfunction, so when recovering the cleaning liquid, all the formic acid remaining in the pipe is removed together with other foreign substances, and the inside of the pipe is almost completely removed. It is required that the substrate be properly dried so that there is no residue after vacuum drying.

本発明の好適な実施形態を図面を参照して説明する。
先ず、本発明によって冷媒配管を洗浄する工程について説明する。図1は旧冷媒機を新冷媒機に交換する際に、本発明により既設の冷媒配管を洗浄する場合の作業手順の概要を示している。この場合の配管の洗浄と新旧冷媒機の交換は以下の工程を経て行われる。
Preferred embodiments of the present invention will be described with reference to the drawings.
First, the process of cleaning the refrigerant piping according to the present invention will be described. FIG. 1 shows an outline of a work procedure when an existing refrigerant pipe is washed according to the present invention when an old refrigerant machine is replaced with a new refrigerant machine. In this case, the piping is cleaned and the old and new refrigerant machines are replaced through the following steps.

〔冷媒回収と旧機取り外し〕
先ず、旧冷媒機と配管内の冷媒を回収装置を用いて回収する。
冷媒回収後、旧冷媒機の室外機を取り外し、既設の室外機連結管口に本発明の洗浄装置の接続管を接続し、また、旧冷媒機の室内機も取り外し、既設の室内連結管口には連絡配管を接続する。
室外機に代えて本発明の洗浄装置、室内機に代えて連絡配管をそれぞれ接続することにより、洗浄液の閉回路循環系が既設配管により構成される。
[Refrigerant recovery and removal of old machine]
First, an old refrigerant machine and the refrigerant in piping are collected using a recovery device.
After collecting the refrigerant, remove the outdoor unit of the old refrigerant unit, connect the connection pipe of the cleaning device of the present invention to the existing outdoor unit connection pipe port, and also remove the indoor unit of the old refrigerant unit, and install the existing indoor connection pipe port Connect the connecting pipe.
By connecting the cleaning device of the present invention instead of the outdoor unit and the connecting pipe instead of the indoor unit, the closed circuit circulation system of the cleaning liquid is constituted by the existing piping.

〔既設配管洗浄〕
洗浄装置と連絡配管を既設配管に取り付けたならば、洗浄装置を作動させて以下の手順で洗浄を行う。
[Cleaning of existing piping]
If the cleaning device and the communication pipe are attached to the existing piping, the cleaning device is operated and cleaning is performed according to the following procedure.

(一方向洗浄)
洗浄装置に接続した既設配管の一対の連結管口の一方に、洗浄液を洗浄装置から既設配管内に加圧流入させて、管内を浄化する。配管内を流通し、洗浄装置側に戻ってきた洗浄液は一旦回収タンクに流し入れ、そこから回収缶に送って回収する。回収缶への洗浄液の送出は、例えば回収タンクの底部に液抜き弁を設けておき、これを操作して回収タンクに貯留した洗浄液を回収缶へと流入させることができる。この場合、冬期などの気温が低く配管の真空乾燥に時間がかかる状況では、配管内に送出する洗浄液を所定の温度、例えば溶剤として塩化メチレンを用いる場合には32〜38℃程度に加熱しておくことが好ましい。
(One-way cleaning)
The cleaning liquid is pressurized and flowed from the cleaning device into the existing piping into one of the pair of connection pipe ports of the existing piping connected to the cleaning device to purify the inside of the tube. The cleaning liquid that circulates in the piping and returns to the cleaning device side is once poured into a recovery tank, and then sent to a recovery can for recovery. For sending the cleaning liquid to the recovery can, for example, a drain valve is provided at the bottom of the recovery tank, and the cleaning liquid stored in the recovery tank can be made to flow into the recovery can by operating this. In this case, in a situation where the temperature is low and the vacuum drying of the pipe takes a long time such as in winter, the cleaning liquid sent into the pipe is heated to a predetermined temperature, for example, about 32 to 38 ° C. when methylene chloride is used as a solvent. It is preferable to keep it.

(逆方向洗浄)
次いで、三方向切替弁によって洗浄液の流入方向を変換し、既設配管の他方の連結管口から、洗浄液を加圧流入させ、前記とは逆方向に洗浄液を配管内に通して、管内を浄化する。なお、一方向による洗浄のみでも既設配管を十分に洗浄することは可能であり、逆方向洗浄は、洗浄する配管が長い場合その他の洗浄条件により必要に応じて行われる。
(Reverse cleaning)
Next, the inflow direction of the cleaning liquid is changed by the three-way switching valve, the cleaning liquid is pressurized and introduced from the other connection port of the existing pipe, and the cleaning liquid is passed through the pipe in the opposite direction to purify the inside of the pipe. . In addition, it is possible to sufficiently clean the existing piping only by cleaning in one direction, and reverse cleaning is performed as necessary depending on other cleaning conditions when the piping to be cleaned is long.

(異物の抜き取り)
既設配管内に洗浄液を注入させて管内を浄化したならば、管内に残存する異物を抜き取る。金属のような比重の大きな異物は洗浄液とともに管外へ排出できない場合もあることから、この抜き取りは既設配管の最も低い部位において行う。例えば数階建ての建物で室外機が屋上に設置されている場合の既設配管を洗浄するときは、最も低い階、つまり一階の室内機に代えて既設配管の連結管路に接続した連絡配管において行う。
(Extraction of foreign matter)
When the cleaning liquid is injected into the existing pipe to purify the inside of the pipe, the foreign matter remaining in the pipe is extracted. Since foreign matter having a high specific gravity such as metal cannot be discharged out of the pipe together with the cleaning liquid, this extraction is performed at the lowest part of the existing pipe. For example, when cleaning an existing pipe when an outdoor unit is installed on the roof in a multi-storey building, the connecting pipe connected to the existing pipe connection pipe instead of the indoor unit on the lowest floor, that is, the first floor To do.

(洗浄液の抜き取りとチッソパージ)
次いで、管内に流入させた洗浄液を抜き取り、洗浄装置において回収する。洗浄液の抜き取りは、洗浄装置に設置した窒素ガスボンベから窒素ガスを既設配管の一方の連結口から管内に吹き込み、加圧ブローによって洗浄液を他方の連結口から流下させて行い、これと同時に管内に未だ残存していた異物も洗浄液とともに排出させる。当該他方の連結口から流下させた洗浄液は回収タンクに流し入れて回収し、さらに窒素ガスとともに洗浄液のガス成分は吸着タンクと吸収タンクを経て回収し、周囲に放散される量を抑制する。
(Removal of cleaning liquid and nitrogen purge)
Next, the cleaning liquid that has flowed into the pipe is extracted and collected in the cleaning device. The cleaning liquid is extracted by blowing nitrogen gas from one connecting port of the existing piping into the pipe from a nitrogen gas cylinder installed in the cleaning device, and causing the cleaning liquid to flow down from the other connecting port by pressure blow, and at the same time, it is still in the pipe. The remaining foreign matter is discharged together with the cleaning liquid. The cleaning liquid that has flowed down from the other connection port is poured into the recovery tank for recovery, and the gas components of the cleaning liquid together with the nitrogen gas are recovered through the adsorption tank and the absorption tank, thereby suppressing the amount released to the surroundings.

〔残留洗浄液の除去〕
既設配管内への窒素ガスブローによる洗浄液の抜き取り処理後、さらに僅かに管内に残存する洗浄液の除去を完全にするべく、残留洗浄液の除去処理を以下の手順で行う。
[Removal of residual cleaning solution]
After the cleaning liquid is extracted by blowing nitrogen gas into the existing pipe, the residual cleaning liquid is removed by the following procedure in order to completely remove the cleaning liquid remaining in the pipe.

(ベイキング)
洗浄装置に設けたガス加熱タンクから加熱された窒素ガスを既設配管内に送出して配管を加熱する。窒素ガスの加熱は、ヒータを作動させてガス加熱タンクを所定温度まで加熱した状態で、タンク内に窒素ガスを流入させて行い、タンクから加熱窒素ガスを既設配管の一方の連結管口から管内に送出する。既設配管内を流通させた窒素ガスは、他方の連結管口から排出させ、洗浄装置に設けた回収タンクを経由して濾過材が充填された吸着タンクへと送り込む。
また、前記一方の連結管口から既設配管内への加熱窒素ガスの送出と併せて、他方の連結管口における管内温度を測定し、加熱窒素ガスが管内を流通することで管内の温度が上昇することを確認する。
そして、他方の連結管口において所定温度まで管内が加熱されたことが確認されたならば、加熱窒素ガスの流入口を切り替え、今度は当該他方の連結管口から加熱窒素ガスを管内へと送出し、前記一方の連結管口から窒素ガスを排出させて前記吸着タンクへと送り込む。
併せて当該一方の連結管口における管内温度を測定し、所定温度まで上昇したならば、再び加熱窒素ガスの流入口を切り替えて前記と同様に加熱窒素ガスを送出し、このように、既設配管内に加熱窒素ガスを流通させて配管が所定温度に達する迄加熱することで、配管の内面に付着した残余の洗浄液が気化し、次工程の真空乾燥によって、洗浄液を配管内から完全に除去することが可能となる。
なお、配管内を流通した加熱窒素ガスを濾過材が充填された吸着タンクに導入することにより、加熱窒素ガスに混ざった洗浄液のガス成分は濾過材に吸着されて除去される。吸着タンクを通過した窒素ガスは、外気と混合されてから吸収タンク内へと導入されてさらに濾過材を通した後、凝縮器へと送出される。
(Baking)
Nitrogen gas heated from a gas heating tank provided in the cleaning device is sent into the existing piping to heat the piping. Nitrogen gas is heated by operating the heater and heating the gas heating tank to the specified temperature, and then flowing the nitrogen gas into the tank, and heating nitrogen gas from the tank through one connection port of the existing pipe. To send. Nitrogen gas circulated in the existing pipe is discharged from the other connecting pipe port, and sent to the adsorption tank filled with the filter medium through the recovery tank provided in the cleaning device.
In addition to sending heated nitrogen gas from the one connecting pipe port into the existing pipe, the temperature in the pipe at the other connecting pipe port is measured, and the temperature inside the pipe rises as the heated nitrogen gas flows through the pipe. Make sure you do.
When it is confirmed that the inside of the pipe is heated to a predetermined temperature at the other connecting pipe port, the heated nitrogen gas inlet is switched, and this time, the heated nitrogen gas is sent from the other connecting pipe port into the pipe. Then, nitrogen gas is discharged from the one connection pipe port and sent to the adsorption tank.
At the same time, the temperature in the pipe at the one connecting pipe port is measured, and when the temperature rises to a predetermined temperature, the heated nitrogen gas inlet is switched again and the heated nitrogen gas is sent out in the same manner as described above. Heated nitrogen gas is circulated inside and heated until the pipe reaches a predetermined temperature, so that the remaining cleaning liquid attached to the inner surface of the pipe is vaporized, and the cleaning liquid is completely removed from the pipe by vacuum drying in the next process. It becomes possible.
In addition, the gas component of the cleaning liquid mixed with the heated nitrogen gas is adsorbed by the filter medium and removed by introducing the heated nitrogen gas flowing through the pipe into the adsorption tank filled with the filter medium. The nitrogen gas that has passed through the adsorption tank is mixed with the outside air, introduced into the absorption tank, passed through the filter medium, and then sent to the condenser.

(真空乾燥)
既設配管が所定温度まで加熱されたならば、ダイヤフラム式真空ポンプで真空引きして配管内を乾燥させる。この真空乾燥により、管内で気化した残余の洗浄液は完全に系外へと排出される。この際、真空引きにより吸引された既設配管内のガスは、回収タンクなどの各タンクを経て凝縮器へと送出され、当該ガスに含まれる洗浄液のガス成分が液化され、回収缶で回収される。
(Vacuum drying)
When the existing pipe is heated to a predetermined temperature, the inside of the pipe is dried by evacuating with a diaphragm vacuum pump. By this vacuum drying, the remaining cleaning liquid evaporated in the pipe is completely discharged out of the system. At this time, the gas in the existing piping sucked by evacuation is sent to the condenser through each tank such as a recovery tank, and the gas component of the cleaning liquid contained in the gas is liquefied and recovered by the recovery can. .

〔新冷媒機取り付け〕
真空乾燥後、洗浄装置と連絡配管を取り外し、新冷媒機の室外機と室内機を設置し、それぞれ接続口を既設配管に連結する。
[Attaching a new refrigerant unit]
After vacuum drying, remove the cleaning device and connecting pipe, install the outdoor unit and indoor unit of the new refrigerant machine, and connect the connection ports to the existing pipes.

〔真空乾燥〕
さらに、新冷媒機を取り付けた後、回路内で僅かに残った洗浄液やそのガス成分、その他管内の空気や水分を除去するために、オイル式真空ポンプにより絶対真空まで真空引きを行う。その後、新冷媒機の試運転を実施し、動作確認した後、本稼動する。
[Vacuum drying]
In addition, after installing the new refrigerant machine, vacuuming is performed to an absolute vacuum with an oil-type vacuum pump in order to remove the cleaning liquid slightly remaining in the circuit, its gas components, and other air and moisture in the pipe. After that, a trial operation of the new refrigerant machine is carried out, and after confirming the operation, it is fully operational.

また、図1に示されるように、本発明では前述の冷媒配管の洗浄処理に加えて、洗浄液である溶剤を蒸留再生する処理、濾過材である活性炭を賦活させる処理、及び空調機から回収した冷媒を再生させる処理の各処理が、洗浄作業と同時に作業現場において、又は洗浄作業終了後に適宜な場所で行えるようになっている。各処理の工程については後述する。   In addition, as shown in FIG. 1, in the present invention, in addition to the above-described refrigerant pipe cleaning process, the solvent that is the cleaning liquid is distilled and regenerated, the activated carbon that is the filter medium is activated, and the air is recovered from the air conditioner. Each process of regenerating the refrigerant can be performed at the work site simultaneously with the cleaning operation or at an appropriate place after the cleaning operation is completed. Each processing step will be described later.

図2は、前記各処理工程を行うための本発明の一実施形態の洗浄装置の概略構成図を示している。図中、符号1は洗浄装置、Pは既設配管、PAは連絡配管、PBは接続管、CVは接続管PBに設けられた流路方向切替弁、Vは各管路上に設けられた流路開閉バルブである。
同図に示されるように、洗浄装置1は、接続管PBの一方から塩化メチレンなどの溶剤に窒素ガスを混合させてなる洗浄液を配管内に送出し、管内を流通させて洗浄浄化させる洗浄液送出部2と、接続管PBの他方から排出される洗浄液を回収タンク内に流入させるとともにタンク内でガス成分と溶剤成分とに分離して洗浄液を回収する洗浄液回収部3と、前記タンク内に回収された溶剤から不純物を分離して溶剤を再生する溶剤再生部4と、既設配管P内を真空引きするためのダイヤフラム式真空ポンプを備えたポンプ部5とを備えて構成されている。これらの構成部材は、管路上に流路開閉バルブVが設けられた配管で互いに接続された状態で、図示されない台車上に収納して適宜な場所へ一体に持ち運べるように構成することができる。各構成部材を旧冷媒機の室外機の設置場所まで各々持ち運んで接続してもよく、室外機が高所に設置されている場合には、ポンプ揚げ可能な範囲内の高さに持ち運んで構成される。
なお、図中、符号BHは既設配管Pの管内を加温する際に連絡配管PAの外周に巻かれるバンドヒータ、符号6は冷媒再生処理に使用される冷媒再生機用コンデンシングユニットである。
FIG. 2 shows a schematic configuration diagram of a cleaning apparatus according to an embodiment of the present invention for performing each processing step. In the figure, reference numeral 1 is a cleaning device, P is an existing pipe, PA is a connecting pipe, PB is a connecting pipe, CV is a flow direction switching valve provided in the connecting pipe PB, and V is a flow path provided on each pipe. Open / close valve.
As shown in the figure, the cleaning device 1 sends out a cleaning liquid in which nitrogen gas is mixed with a solvent such as methylene chloride from one side of the connecting pipe PB into the pipe, and sends out the cleaning liquid that is circulated through the pipe for cleaning and purification. Unit 2, a cleaning liquid that is discharged from the other of the connection pipe PB, flows into the recovery tank and is separated into a gas component and a solvent component in the tank, and the cleaning liquid is recovered in the tank. A solvent regeneration unit 4 that regenerates the solvent by separating impurities from the solvent formed, and a pump unit 5 that includes a diaphragm vacuum pump for evacuating the existing piping P are configured. These components can be configured to be housed on a cart (not shown) and integrally carried to an appropriate place in a state where they are connected to each other by a pipe provided with a channel opening / closing valve V on the pipeline. Each component may be carried and connected to the installation location of the old refrigerant outdoor unit. If the outdoor unit is installed at a high place, it can be carried to a height within the range that can be pumped. Is done.
In the figure, reference numeral BH denotes a band heater wound around the outer periphery of the connecting pipe PA when the inside of the existing pipe P is heated, and reference numeral 6 denotes a refrigerant regenerator condensing unit used for the refrigerant regeneration process.

図3は、図2中の各部の構成を示した洗浄装置の回路構成の概略図を示している。同図を用いて各部の構成を具体的に説明する。   FIG. 3 shows a schematic diagram of a circuit configuration of the cleaning apparatus showing the configuration of each part in FIG. The configuration of each part will be specifically described with reference to FIG.

洗浄液送出部2は、窒素ガスボンベ21と、溶剤が投入される洗浄液タンク22と、窒素ガスボンベ21から送出される窒素ガスを加熱するベイキングヒータ23と、送液ポンプ24とを有して構成されている。   The cleaning liquid delivery unit 2 includes a nitrogen gas cylinder 21, a cleaning liquid tank 22 into which a solvent is charged, a baking heater 23 that heats nitrogen gas delivered from the nitrogen gas cylinder 21, and a liquid feed pump 24. Yes.

より詳しくは、洗浄液タンク22は、適宜な容量の蓋付きステンレス製タンクであり、図4に示されるように、その蓋22aにはバルブVを介して窒素ガスボンベ21が接続されており、タンク内に溜められた洗浄液を窒素ガスボンベ21からタンク内に送出される窒素ガスとともにタンク底部の送出口22bから送出するように設けてある。タンク内が略大気圧に保たれるように窒素ガスボンベ21から窒素ガスを連続的に送出すると、タンク内の窒素ガスを洗浄液に生じる小さな渦で流伴させならが、送出口22bから洗浄液が送出される。また、タンクの底部或いは側胴部には、加熱ヒータ22cが設置されており、投入される洗浄液を適宜な温度に加熱することができるように設けてある。
また、蓋22aには、タンク内の気圧を調整するためのバルブVを接続してあり、余剰の窒素ガスをバルブVから放出し、或いは洗浄液の流出に伴って窒素ガス不足のときは外気をタンク内に取り入れて、タンク内の気圧を一定に保つことができるように設けてある。さらに、蓋22aの一側には、打ち抜きによって通孔を列設させた網部22dと筒部22eが設けられ、その内部に活性炭とシリカゲルからなる水分除去フィルター22fを充填してある。この水分除去フィルター22fは、タンク内に外気を大量に取り入れる際に、流入する外気の水分を除去するためのものである。
洗浄液タンク22内で窒素ガスが混合溶解され、且つ適宜な温度に加熱された洗浄液は、送出口22bに設けた液抜き弁Vを介して送液ポンプ24へと流入し、当該ポンプでさらに窒素ガスと混合され加圧されて既設配管Pへと送出される。
More specifically, the cleaning liquid tank 22 is a stainless steel tank with a lid having an appropriate capacity. As shown in FIG. 4, a nitrogen gas cylinder 21 is connected to the lid 22a via a valve V, The cleaning liquid stored in the tank is sent out together with the nitrogen gas sent from the nitrogen gas cylinder 21 into the tank through the outlet 22b at the bottom of the tank. When nitrogen gas is continuously sent out from the nitrogen gas cylinder 21 so that the inside of the tank is maintained at substantially atmospheric pressure, the cleaning liquid is sent out from the outlet 22b, although the nitrogen gas in the tank is caused to flow along with a small vortex generated in the cleaning liquid. Is done. In addition, a heater 22c is installed at the bottom or the side body of the tank, and is provided so that the supplied cleaning liquid can be heated to an appropriate temperature.
Further, a valve V for adjusting the pressure in the tank is connected to the lid 22a. Excess nitrogen gas is discharged from the valve V, or when the nitrogen gas is insufficient due to the outflow of the cleaning liquid, the outside air is discharged. It is installed in the tank so that the air pressure in the tank can be kept constant. Further, on one side of the lid 22a, there are provided a net 22d and a cylinder 22e in which through holes are arranged by punching, and a water removal filter 22f made of activated carbon and silica gel is filled therein. The moisture removal filter 22f is for removing moisture from the flowing-in outside air when a large amount of outside air is taken into the tank.
The cleaning liquid in which the nitrogen gas is mixed and dissolved in the cleaning liquid tank 22 and heated to an appropriate temperature flows into the liquid supply pump 24 through the liquid drain valve V provided at the outlet 22b. It is mixed with gas, pressurized, and sent to the existing pipe P.

なお、この洗浄液タンク22に投入される洗浄液としては、塩化メチレン、メチルアルコール、イソプロピルアルコール、アセトン等の各種溶剤やこれらの混合液を用いることができる。洗浄液として水を用いることもできる。
これらは既設配管内の汚れ分、油分に良くなじむとともに比較的低温で蒸発し易く、管内を効率良く浄化でき、また、洗浄液をパージするため配管内を窒素ガスで加圧ブローした際に直ぐに蒸発し、後の真空乾燥で絶対真空まで管内を確実に乾燥させることが可能である。前記洗浄液の内、沸点が約40.2℃の塩化メチレンが最も望ましい。配管内に水分がある場合は、塩化メチレンに、水分量に応じて5〜50%程度のメチルアルコールを混合してもよい。メチルアルコールを単独で洗浄液に用いてもよい。
In addition, as a washing | cleaning liquid thrown into this washing | cleaning liquid tank 22, various solvents, such as a methylene chloride, methyl alcohol, isopropyl alcohol, and acetone, and these liquid mixture can be used. Water can also be used as the cleaning liquid.
These are well adapted to dirt and oil in the existing pipes and easily evaporate at a relatively low temperature, so that the inside of the pipes can be purified efficiently, and also evaporates immediately when the pipe is pressurized and blown with nitrogen gas to purge the cleaning liquid. Then, the inside of the tube can be surely dried to an absolute vacuum by subsequent vacuum drying. Of the cleaning solutions, methylene chloride having a boiling point of about 40.2 ° C. is most desirable. When there is moisture in the pipe, about 5 to 50% methyl alcohol may be mixed with methylene chloride according to the amount of moisture. Methyl alcohol may be used alone for the cleaning liquid.

ベイキンギヒータ23は、窒素ガスボンベ21から導入される窒素ガスを所定温度に加熱して送出するためのものであり、例えば適宜な容量のボンベ状の金属製容器内に、加熱体である複数本の鉄製パイプを挿入し、温度コントローラにより鉄製パイプを適宜な温度に加熱させながら、ボンベ内に導入した窒素ガスを各パイプの間隙を通して所望の温度迄加熱させ、これを連続的に送出するように構成することができる。なお、後述するように、窒素ガスは80〜110℃程度に加熱させてベイキングヒータ23から送出される。   The baking heater 23 is for heating the nitrogen gas introduced from the nitrogen gas cylinder 21 to a predetermined temperature and sending it out. For example, in a cylinder-shaped metal container having an appropriate capacity, a plurality of iron made heaters are used. The pipe is inserted, and while the iron pipe is heated to an appropriate temperature by the temperature controller, the nitrogen gas introduced into the cylinder is heated to a desired temperature through the gap between the pipes, and this is continuously sent out. be able to. As will be described later, the nitrogen gas is heated to about 80 to 110 ° C. and sent out from the baking heater 23.

送液ポンプ24は、渦流タービン型のポンプが用いられ、ポンプ吸込側から洗浄液と窒素ガスを吸引し、これらの混合、攪拌及び加圧を行って窒素ガスを洗浄液内に混入し、ミクロ状に小さな窒素ガスの気泡が洗浄液内に無数に存在する状態で、所定の圧力を保持したままポンプ吐出口から吐出するように設けてある。   The liquid feed pump 24 is a vortex turbine type pump, which sucks the cleaning liquid and nitrogen gas from the pump suction side, mixes, stirs and pressurizes them, mixes the nitrogen gas into the cleaning liquid, In a state where countless small nitrogen gas bubbles are present in the cleaning liquid, the liquid is discharged from the pump discharge port while maintaining a predetermined pressure.

洗浄液回収部3は、図5に示されるように、回収タンク31、吸着タンク32及び吸収タンク33からなり、洗浄液タンク22から既設配管P内に送出され、配管P内を流通させた洗浄液を回収する際に、各タンクにより洗浄液の液分及び窒素ガスを含むガス成分、空気の水分を回収し、周囲にガス成分が放散するのを防止して洗浄液である溶剤を回収するように構成されている。   As shown in FIG. 5, the cleaning liquid recovery unit 3 includes a recovery tank 31, an adsorption tank 32, and an absorption tank 33. The cleaning liquid recovery unit 3 collects the cleaning liquid sent from the cleaning liquid tank 22 into the existing pipe P and circulated in the pipe P. In this case, each tank is configured to collect the liquid component of the cleaning liquid, the gas component including nitrogen gas, and the moisture of the air, and prevent the gas component from being scattered to the surroundings and recover the solvent as the cleaning liquid. Yes.

より詳しくは、回収タンク31は、既設配管Pを通って返ってきた洗浄液が回収缶7に流入する前に経由するタンクであり、配管から排出された洗浄液、或いは配管内に窒素ガスを噴出した際に配管から排出されるミストと、これら液分に含まれるガス成分との分離を図るため、タンク内部にステンレス繊維束からなるエリミネータ31aを設けてある。すなわち、導入口31bからタンク内に洗浄液が流入するとエリミネータ31aに衝突し、その液分及び洗浄液に混入した異物はエリミネータ31aを伝ってタンク底部へと流れ落ち、一方、窒素ガスを含む洗浄液のガス成分はエリミネータ31aの上方へと拡散して、液分とガス成分とを分離せしめるようになっている。   More specifically, the recovery tank 31 is a tank through which the cleaning liquid returned through the existing pipe P passes before flowing into the recovery can 7, and jetted nitrogen gas into the cleaning liquid discharged from the pipe or the pipe. In order to separate the mist discharged from the piping from the gas components contained in these liquid components, an eliminator 31a made of a stainless fiber bundle is provided inside the tank. That is, when the cleaning liquid flows into the tank from the inlet 31b, it collides with the eliminator 31a, and the foreign matter mixed in the liquid and the cleaning liquid flows down to the bottom of the tank through the eliminator 31a, while the gas component of the cleaning liquid containing nitrogen gas Is diffused above the eliminator 31a to separate the liquid component from the gas component.

吸着タンク32は、筒状の接続管34を介して回収タンク31と連通しており、回収タンク31で分離した洗浄液のガス成分を窒素ガスとともにタンク内部に流入させて、窒素ガスと洗浄液のガス成分との分離を図るものである。
すなわち、接続管34内には、濾過材である活性炭を充填したフィルター層34aが設けられ、また、吸着タンク32内にも同じくフィルター層34が設けてある。そして、回収タンク31で分離した洗浄液のガス成分は、窒素ガスとともに接続管34に流入し、フィルター層34aである活性炭にガス成分の多くが吸着して除去され、吸着されなかた微量のガス成分は窒素ガスとともに吸着タンク32内に流入する。流入したガス成分と窒素ガスは、さらにタンク内に設置されたフィルター層34aでガス成分が吸着され、吸着されなかったガス成分と窒素ガスが、後述する接続管35を通って吸収タンク33へと流入する。また、吸着タンク32に流入し、当該タンク内に装填される氷やドライアイスなどの冷却部材等により、タンク内部で冷却されて凝縮し、ガス成分から液化した洗浄液は、タンク底部に流れ落ち、吸着タンク32から回収管7に送出して回収される。
The adsorption tank 32 communicates with the recovery tank 31 through a cylindrical connecting pipe 34, and the gas component of the cleaning liquid separated in the recovery tank 31 is caused to flow into the tank together with the nitrogen gas, so that the nitrogen gas and the cleaning liquid gas are supplied. It is intended to separate from the components.
That is, a filter layer 34 a filled with activated carbon that is a filter material is provided in the connection pipe 34, and a filter layer 34 is also provided in the adsorption tank 32. The gas component of the cleaning liquid separated in the recovery tank 31 flows into the connection pipe 34 together with the nitrogen gas, and most of the gas component is adsorbed and removed by the activated carbon that is the filter layer 34a. It flows into the adsorption tank 32 together with nitrogen gas. The gas component and nitrogen gas that flowed in are further adsorbed by the filter layer 34a installed in the tank, and the gas component and nitrogen gas that have not been adsorbed pass through the connecting pipe 35 described later to the absorption tank 33. Inflow. Also, the cleaning liquid that flows into the adsorption tank 32 and is cooled and condensed inside the tank by a cooling member such as ice or dry ice loaded in the tank flows down to the bottom of the tank and is adsorbed. It is sent from the tank 32 to the collection pipe 7 and collected.

吸収タンク33は、接続管35を介して吸着タンク32と連通しており、吸着タンク32で吸着されなかった洗浄液の気化成分をオイルに吸収して回収を図るものである。
すなわち、接続管35は、ステンレス製のフレキシブル筒状管体であり、その一端が吸着タンク32の蓋に設けた開口に接続し、他端が吸収タンク33の蓋に設けた導入口33aに接続してある。両口の接続口には金網を設置してある。接続管35の内部には吸着タンク32側に活性炭を充填してなるフィルター層34aを設置し、吸収タンク33側には送風機36を設置して、送風機36を駆動すると、管内に外気を取り入れて吸着タンク32で除去されなかった洗浄液の残余のガス成分を外気で希釈しつつ、これを吸収タンク33側へと送出するように設けてある。また、吸収タンク33の内部には、導入口33aの直下にステンレス繊維束からなるエリミネータ33bが設けられているとともに当該エリミネータをガス吸収用のオイル33cを漬してあり、さらにタンク内部は活性炭からなるフィルター層33dを介して排気口33eに連通させてある。この排気口33eは開閉式となっており、排気口33eを閉止した状態で配管及び流路開閉バルブVを介してポンプ部5及び溶剤再生部4と連通し、吸収タンク33のガスを系外へ放出させずに前記両部に送出できるようになっている(図3参照)。
そして、吸着タンク32で吸着されなかた洗浄液の極少量のガス成分は、窒素ガスとともに接続管35に流入し、フィルター層34aである活性炭にガス成分の多くが吸着して除去され、さらに送風機36で管内に導入された外気で希釈されて、外気及び窒素ガスとともに吸収タンク33内に流入する。吸収タンク33内に流入したガス成分は、オイル33cが連続的に滴下されているエリミネータ33bへと流入し、さらにエリミネータ33bに付着したオイルに吸着して、オイル33cとともにタンク底部に落下する。そして、窒素ガスは、吸収タンク33内を通って排気口33eから放出され、オイル33cに付着しなかった洗浄液の極々少量のガス成分が、吸収タンク33内を流れる過程でエリミネータ33b或いはフィルター層33dに吸着して除去され、これら多段階に配した吸着・吸収手段で除去されなかった、極々少量のガス成分のみが排気口33eから放出されることとなる。また、排気口33eを閉じて、窒素ガスとガス成分を溶剤再生部4へと送出し、ガス成分を凝縮し、液化した溶剤を回収できるようになっている。オイル33cとともにタンク底部に落下した洗浄液のガス成分は、吸収タンク33と接続した回収缶7に流入させて回収される。
The absorption tank 33 communicates with the adsorption tank 32 through the connection pipe 35, and is intended to absorb the vaporized component of the cleaning liquid that has not been adsorbed by the adsorption tank 32 and recover the oil.
That is, the connection pipe 35 is a stainless steel flexible cylindrical pipe, one end of which is connected to an opening provided in the lid of the adsorption tank 32 and the other end is connected to an introduction port 33a provided in the lid of the absorption tank 33. It is. Wire meshes are installed at both connection ports. A filter layer 34a formed by filling activated carbon on the adsorption tank 32 side is installed inside the connection pipe 35, and a blower 36 is installed on the absorption tank 33 side. When the blower 36 is driven, outside air is taken into the pipe. The remaining gas component of the cleaning liquid that has not been removed by the adsorption tank 32 is provided so as to be sent to the absorption tank 33 side while being diluted with outside air. Further, an eliminator 33b made of a bundle of stainless steel fibers is provided inside the absorption tank 33 immediately below the introduction port 33a, and the eliminator is immersed in oil 33c for gas absorption. The exhaust port 33e communicates with the filter layer 33d. The exhaust port 33e is of an open / close type, and communicates with the pump unit 5 and the solvent regeneration unit 4 through the piping and the flow channel on / off valve V with the exhaust port 33e closed, and the gas in the absorption tank 33 is removed from the system. It can be sent out to the both parts without being discharged (see FIG. 3).
Then, a very small amount of the gas component of the cleaning liquid that has not been adsorbed by the adsorption tank 32 flows into the connecting pipe 35 together with the nitrogen gas, and most of the gas component is adsorbed and removed by the activated carbon that is the filter layer 34a. It is diluted with the outside air introduced into the pipe and flows into the absorption tank 33 together with the outside air and nitrogen gas. The gas component that has flowed into the absorption tank 33 flows into the eliminator 33b where the oil 33c is continuously dripped, further adsorbs to the oil adhering to the eliminator 33b, and falls to the bottom of the tank together with the oil 33c. The nitrogen gas is discharged from the exhaust port 33e through the absorption tank 33, and an extremely small amount of the gas component of the cleaning liquid that has not adhered to the oil 33c flows in the absorption tank 33 in the process of the eliminator 33b or the filter layer 33d. Only a very small amount of gas components that have been adsorbed and removed and not removed by the adsorption / absorption means arranged in multiple stages are released from the exhaust port 33e. Further, the exhaust port 33e is closed, nitrogen gas and a gas component are sent to the solvent regeneration unit 4, the gas component is condensed, and the liquefied solvent can be recovered. The gas component of the cleaning liquid that has fallen to the bottom of the tank together with the oil 33 c flows into the recovery can 7 connected to the absorption tank 33 and is recovered.

なお、前記各タンク内に貯留された洗浄液を回収缶7に流入する際は、図6に示されるように、回収缶7の上面に設けた開口7a内に洗浄液の送出管71を挿入した状態で、送出管71の周囲に活性炭72aを適宜な厚みで充填したフィルター72を圧密に装着し、洗浄液のガス成分が周囲に飛散しないようにすることが好ましい。   When the cleaning liquid stored in each tank flows into the recovery can 7, the cleaning liquid delivery pipe 71 is inserted into the opening 7a provided on the upper surface of the recovery can 7, as shown in FIG. Therefore, it is preferable to tightly attach a filter 72 filled with activated carbon 72a with an appropriate thickness around the delivery pipe 71 so that the gas component of the cleaning liquid does not scatter around.

溶剤再生部4は、図3及び図7に示されるように、回収された溶剤をウォータバスで加熱して気化させる蒸留器41と、コイル内を気化した溶剤を流通させてこれを液化する凝縮器42と、前記回収缶7を内部に支持する再生液回収容器43と、再生液回収容器43の重さを量るアラーム付きの秤44とを有して構成されている。   As shown in FIGS. 3 and 7, the solvent regeneration unit 4 is a condenser 41 that heats and collects the recovered solvent by a water bath, and a condenser that circulates the vaporized solvent in the coil and liquefies it. And a regenerative liquid recovery container 43 that supports the recovery can 7 inside, and a scale 44 with an alarm for weighing the regenerative liquid recovery container 43.

詳しくは、図7に示されるように、蒸留器41は、有底箱状のウォータバス411と、このウォータバス411内に設置される、上面にドーム形の蓋部413が着脱自在に取り付けられた釜体412により構成されている。
ウォータバス411は、内部に適宜な量の水道水を貯留するように設けられ、その底部には釜体412を支持する釜置台411aと、貯留水を加熱する加熱ヒータ411bとを設置してある。釜体412は、ステンレス材などの加工が容易で堅牢且つ軽量な材料を用いて形成されており、その上部開口には多数の通孔を穿設したエリミネータ板412aが取り付けられ、また、当該開口周縁にはパッキン材412bが装着され、開口に面した胴部外周面にはパッチン錠412c及び固定金具412dが取り付けられており、前記開口に被せた蓋部413をパッチン錠412c及び固定金具412dで固定して内部を密閉状態に保持することができるように設けてある。また、蓋部413の頂部には、内部と連通する分岐管413aが設けてある。
そして、蒸留器41は、蓋部413を開けて釜体412の内部に回収された溶剤が入れられ、この釜体412を水又は温水を張ったウォータバス411内に設置し、当該バス内の水を加熱ヒータ411bで加熱して適宜な温度に熱することで、前記釜体412内部の溶剤を加熱せしめ、釜体内部で気化した溶剤の蒸気を蓋部413の分岐管413aから蒸気管45を介して凝縮器42へ送出するように設けてある。
なお、図示しないが、釜体412内で加熱された溶剤の気化を促進するため、釜体412の底部にはテフロンなどからなる沸石を設置しておくことが好ましい。この場合、沸石は半円錐形の網カゴの中に入れて設置し、釜体底部で沸石が移動しないようにしておくことがより望ましい。また、図中、符号414はウォータバス水温計、415は釜底温度計、416は蓋部413の蒸気吹き出し口の温度を測る温度計、417は溶剤レベルゲージである。図示しないが、釜体412内には、圧力計、安全弁、開放弁等が付設してある。
Specifically, as shown in FIG. 7, the distiller 41 includes a bottomed box-shaped water bath 411 and a dome-shaped lid 413 that is installed in the water bath 411 and is detachably attached to the upper surface. The hook body 412 is configured.
The water bath 411 is provided so as to store an appropriate amount of tap water therein, and a bottom of the water bath 411 is provided with a pot base 411a that supports the pot body 412 and a heater 411b that heats the stored water. . The hook body 412 is made of a robust and lightweight material that is easy to process, such as stainless steel, and an eliminator plate 412a having a large number of through holes is attached to the upper opening thereof. A packing material 412b is attached to the periphery, and a patchon lock 412c and a fixing metal fitting 412d are attached to the outer peripheral surface of the body portion facing the opening. It is provided so that it can be fixed and kept inside hermetically sealed. In addition, a branch pipe 413 a communicating with the inside is provided at the top of the lid 413.
And the distiller 41 opens the cover part 413, the collected solvent is put in the inside of the kettle body 412, this kettle body 412 is installed in the water bath 411 filled with water or warm water, Water is heated by a heater 411b and heated to an appropriate temperature, thereby heating the solvent inside the hook body 412 and vaporizing the solvent vaporized inside the pot body from the branch pipe 413a of the lid portion 413 to the steam pipe 45. It is provided so as to be sent to the condenser 42 via
Although not shown, in order to promote the vaporization of the solvent heated in the pot body 412, it is preferable to install a zeolite made of Teflon or the like at the bottom of the pot body 412. In this case, it is more desirable to place the zeolite in a semi-conical net cage so that the zeolite does not move at the bottom of the pot body. In the figure, reference numeral 414 is a water bath water thermometer, 415 is a kettle bottom thermometer, 416 is a thermometer that measures the temperature of the steam outlet of the lid 413, and 417 is a solvent level gauge. Although not shown, a pressure gauge, a safety valve, an open valve, and the like are attached in the hook body 412.

凝縮器42は、図7に示されるように、水又は温水が流入される槽内に凝縮コイル42aを螺旋状に配して形成されており、前記蒸留器41から蒸気管45を介して送出される溶剤の蒸気を凝縮コイルに流入させて凝縮し、液化した溶剤を底部に設けた液排出口から再生液回収容器43へと導入するように設けてある。また、凝縮器42は、後述するポンプ部5のダイヤフラム式真空ポンプ51及び前記吸収タンク33と接続し、既設配管Pを真空引きする際に吸引した配管内のガス、或いは既設配管P内に窒素ガスをパージした際に排出される配管内のガスが、前記洗浄液回収部3の各タンク31、32及33を経て、凝縮器42内に送出され、洗浄液のガス成分を液化して再生液回収容器43へ導入するように設けてある。洗浄液回収部3の各タンクを通さずに、配管内のガスをそのまま凝縮器42に導入されるように構成してもよい。
さらに、同図に示されるように、凝縮器42は、開閉バルブVが付設された管路を介して水道水供給口及び蒸留器41のウォータバス411と接続しており、冷温水循環ポンプ46を作動して水又は温水をウォータバス411との間で循環流通させて、後述する冷媒再生用の蒸発器としても利用できるように設けてある。符号47は逆止弁である。
As shown in FIG. 7, the condenser 42 is formed by arranging a condensing coil 42 a in a spiral shape in a tank into which water or hot water is introduced, and is sent from the distiller 41 through a steam pipe 45. The solvent vapor is caused to flow into the condensing coil to condense, and the liquefied solvent is introduced into the regenerated liquid recovery container 43 from a liquid discharge port provided at the bottom. The condenser 42 is connected to a diaphragm type vacuum pump 51 of the pump unit 5 and the absorption tank 33, which will be described later, and gas in the pipe sucked when the existing pipe P is evacuated, or nitrogen in the existing pipe P The gas in the piping discharged when the gas is purged is sent into the condenser 42 through the tanks 31, 32 and 33 of the cleaning liquid recovery unit 3, and the regenerated liquid is recovered by liquefying the gas components of the cleaning liquid. It is provided to be introduced into the container 43. You may comprise so that the gas in piping may be introduce | transduced into the condenser 42 as it is, without letting each tank of the washing | cleaning liquid collection | recovery part 3 pass.
Further, as shown in the figure, the condenser 42 is connected to the tap water supply port and the water bath 411 of the distiller 41 through a pipe line provided with an opening / closing valve V, and the cold / hot water circulation pump 46 is connected to the condenser water supply port 411. It operates so that water or warm water circulates and circulates between the water bath 411 and can be used as an evaporator for refrigerant regeneration described later. Reference numeral 47 is a check valve.

再生液回収容器43は、図8に示されるように、頂面内に管連通孔43bが形成された蓋体43aと、蓋体43aに面する開口上部に活性炭を適宜な厚みに充填配置したフィルター層43dが設けられた容器本体43cからなっており、容器本体43c内で前記回収缶7を支持するとともに内部を密閉状態とし、且つ容器内部に飛散した溶剤のガス成分はフィルター層43dで吸着されるようにして、凝縮器42から溶剤を回収缶7に流入させる過程で溶剤のガス成分が周囲に飛散しないように設けてある。   As shown in FIG. 8, the regenerative liquid recovery container 43 has a lid 43a having a tube communication hole 43b formed in the top surface, and an activated carbon filled in an appropriate thickness in the upper part of the opening facing the lid 43a. The container body 43c is provided with a filter layer 43d. The recovery can 7 is supported in the container body 43c and the inside is sealed, and the gas component of the solvent scattered inside the container is adsorbed by the filter layer 43d. In this manner, the gas component of the solvent is provided so as not to be scattered around in the process of flowing the solvent from the condenser 42 into the recovery can 7.

秤44は、再生液回収容器43を上面に載せてその重さを測定し、凝縮器42から再生液回収容器43内の回収缶7内に蒸留した溶剤が所定の容量だけ貯留されたならば、アラームを発して蒸留工程の終了或いは回収缶7の交換を通知することにより、再生した溶剤の回収を確実に行わせるために設置するものである。   The scale 44 places the regenerated liquid recovery container 43 on the upper surface and measures the weight thereof. If a predetermined amount of the distilled solvent is stored in the recovery can 7 in the regenerated liquid recovery container 43 from the condenser 42. An alarm is issued to notify the end of the distillation process or the replacement of the recovery can 7 so that the recovered solvent can be recovered reliably.

ポンプ部5は、図3に示されるように、既設配管P内を真空引きするためのダイヤフラム式真空ポンプ51と、オイル式真空ポンプ52の二つのポンプにより構成されている。ダイヤフラム式真空ポンプ51による真空吸引は真空到達度が低く、作業時間も要するため、一次真空乾燥として、ベイキング後の残余の洗浄液の吸引をダイヤフラム式真空ポンプ51で行い、次いで二次真空乾燥としてオイル式真空ポンプ52により既設配管P内を完全真空状態にして乾燥処理するものである。その後、新たに機器を取り付けた後に再び真空乾燥を行うが、このように新旧空調機の交換にあたり、合計3回の真空乾燥を実施することで、既設配管の品質がより高められることとなる。   As shown in FIG. 3, the pump unit 5 includes two pumps, a diaphragm vacuum pump 51 for evacuating the existing piping P and an oil vacuum pump 52. Vacuum suction by the diaphragm vacuum pump 51 is low in vacuum and requires a long working time. Therefore, the vacuum cleaning pump 51 sucks the remaining cleaning liquid after baking with the diaphragm vacuum pump 51, and then performs secondary vacuum drying with oil. The existing pipe P is completely vacuumed by the vacuum pump 52 and dried. After that, the vacuum drying is performed again after newly installing the device. In this way, when the old and new air conditioners are replaced, the quality of the existing piping is further improved by performing the vacuum drying a total of three times.

このように構成される本形態の洗浄装置1は、屋外の室外機が設置されていた場所まで運ばれ、その接続管PB、PBを、流路方向切替弁CVを介して、既設配管Pの室外機と接続していた連結管口に接続して設置される。また、建物内の既設配管Pの室内機と接続していた連結管口には連絡配管PAを接続し、洗浄の準備が完了する。
洗浄装置1による洗浄工程等の各処理工程は以下のように行われる。
The cleaning device 1 of this embodiment configured as described above is transported to the place where the outdoor outdoor unit is installed, and the connection pipes PB and PB are connected to the existing pipe P via the flow direction switching valve CV. It is installed by connecting to the connecting pipe port connected to the outdoor unit. Further, the connecting pipe PA is connected to the connecting pipe port connected to the indoor unit of the existing pipe P in the building, and the preparation for cleaning is completed.
Each processing step such as a cleaning step by the cleaning apparatus 1 is performed as follows.

〔配管洗浄処理〕
洗浄装置1の設置が完了したならば、送液ポンプ24を作動して洗浄液を既設配管P内に、以下の工程の如く送出させて洗浄処理を行う。
洗浄液の送出は、送液ポンプ24を作動させて、洗浄液タンク22に貯留された洗浄液と窒素ガスボンベ21から送出される窒素ガスとを混合し、窒素ガスを洗浄液に吸入させてポンプ吸入口に導入し、送液ポンプ24で加圧して洗浄液に窒素ガスを混入し吐出させて、接続管PB、PBの一方から既設配管P内に流入させて行う。この場合、特に冬場であれば、洗浄液タンク22内で洗浄液を加熱しておく。溶剤として塩化メチレンを用いる場合、洗浄液タンク22内で38℃程度に加熱しておく。
[Piping cleaning]
When the installation of the cleaning apparatus 1 is completed, the liquid feed pump 24 is operated to send the cleaning liquid into the existing pipe P as shown in the following process to perform the cleaning process.
To supply the cleaning liquid, the liquid supply pump 24 is operated to mix the cleaning liquid stored in the cleaning liquid tank 22 with the nitrogen gas sent out from the nitrogen gas cylinder 21, and the nitrogen is sucked into the cleaning liquid and introduced into the pump inlet. Then, pressurization is performed by the liquid feed pump 24, nitrogen gas is mixed into the cleaning liquid, and discharged, and then flows into one of the existing pipes P from one of the connection pipes PB and PB. In this case, particularly in winter, the cleaning liquid is heated in the cleaning liquid tank 22. When methylene chloride is used as a solvent, it is heated to about 38 ° C. in the cleaning liquid tank 22.

既設配管P内に流入した洗浄液は、管路内を洗浄しながら流通し、連絡配管PAで洗浄装置1側へ折り返されて、今度は連結管口PB、PB間の管路内を洗浄しながら流通して他方の接続管PBから排出され、回収タンク31を経て回収缶7に回収される。この際、窒素ガスとともに既設配管Pから排出される洗浄液のガス成分は、回収タンク31で液分と分離されて吸着タンク32内に流入し、その過程でフィルター層34aに吸着し、さらに吸収タンク33内に流入し、オイルに付着してその殆どが除去される。   The cleaning liquid that has flowed into the existing pipe P flows while cleaning the inside of the pipe, and is turned back to the cleaning device 1 side by the connection pipe PA, and this time, while cleaning the inside of the pipe between the connection pipe ports PB and PB. It circulates and is discharged from the other connecting pipe PB, and is recovered in the recovery can 7 via the recovery tank 31. At this time, the gas component of the cleaning liquid discharged from the existing pipe P together with the nitrogen gas is separated from the liquid in the recovery tank 31 and flows into the adsorption tank 32, and is adsorbed to the filter layer 34a in the process, and further the absorption tank It flows into 33, adheres to the oil, and most of it is removed.

次いで、前記とは洗浄液の往復流路が逆となるように、流路方向切替弁CV、CVで流路の切替操作を行って洗浄装置1の接続管PB、PBと既設配管Pとを接続し、前記と同様に、送液ポンプ24から吐出される洗浄液を既設配管P内に流入させて配管内を洗浄し、既設配管Pから排出される洗浄液を、前記と同様に、回収タンク31、吸着タンク32及び吸収タンク33に流入させて回収し、それぞれの流入過程で洗浄液のガス成分を除去する。   Subsequently, the connection pipes PB and PB of the cleaning apparatus 1 are connected to the existing pipe P by switching the flow paths with the flow direction switching valves CV and CV so that the reciprocating flow path of the cleaning liquid is reversed. In the same manner as described above, the cleaning liquid discharged from the liquid feeding pump 24 is caused to flow into the existing pipe P to clean the inside of the pipe, and the cleaning liquid discharged from the existing pipe P is returned to the recovery tank 31, It flows into the adsorption tank 32 and the absorption tank 33 and is recovered, and the gas component of the cleaning liquid is removed in the respective inflow processes.

さらに、既設配管Pの往路と復路それぞれに洗浄液を流入させて管内を洗浄したならば、配管内に残存する異物を各連絡配管PAにおいて抜き取り、その後、窒素ガスボンベ21の窒素ガスを既設配管P内に吹き込み、加圧ブローによって管内に付着した洗浄液を吹き飛ばし、同時に連絡配管PAで抜き取れなかった異物も吐出させる。   Further, if the cleaning liquid is introduced into each of the forward path and the return path of the existing pipe P and the inside of the pipe is cleaned, foreign matter remaining in the pipe is extracted in each connection pipe PA, and then the nitrogen gas in the nitrogen gas cylinder 21 is removed from the existing pipe P. The cleaning liquid adhering to the inside of the pipe is blown off by the pressure blow, and at the same time, the foreign matter that could not be removed by the connecting pipe PA is discharged.

次に、既設配管Pの内周面に僅かに付着した洗浄液を除去すべく、既設配管P内をベイキングする。
ベイキングは、ベイキングヒータ23で窒素ガスボンベ21から送出される窒素ガスを80〜110℃程度まで加熱し、これを既設配管Pに流入し循環させることにより行うが、その前に、予め加熱した洗浄液を再び既設配管P内に流入して配管内の温度を高めてもよい。
すなわち、既設配管Pの洗浄に用いる洗浄液の量は、通常、配管Pの容量の1/3〜1/2程度であり、それよりも多くの洗浄液が洗浄液タンク22に貯留されている。そして、例えば一方向洗浄で配管Pの容量分の洗浄液を洗浄液タンク22から配管P内に送出して洗浄を行い、次いで適宜な温度に加熱された残余の洗浄液を配管Pに流入させて循環させるとともに洗浄液タンク22に戻し、再び前記とは逆方向に加熱された洗浄液を配管Pに流入させて循環させるなどして、配管P内が所定温度になるまで加熱された残余の洗浄液を循環流通させてもよい。この場合、洗浄液タンク22のヒータは、貯留した液の温度制御を行いながら連続加熱する。また、連絡配管PAはその外周にバンドヒータBHを巻いて加温するのが好ましい。
加熱窒素ガスの既設配管Pへの流入は、接続管PBの一方から行い、配管P内を循環させて、他方の接続管PBから排出させ、窒素ガスとともに気化した洗浄液を回収タンク31に流入させ、ガス成分を吸着タンク32と吸収タンク33で吸収し、さらに吸収タンク33から凝縮器42へ送り込み、凝縮器42で液化した洗浄液を回収缶7で回収する。
さらに、加熱窒素ガスの既設配管P内への循環送出を、接続管PBに設けた管内温度計で配管P内の温度を確認しながら、流路方向切替弁CV、CVで流入経路を交互に切り替えて複数回繰り返し、配管P内を循環させて管内の温度を高める。加熱窒素ガスの流入により加熱された配管P内では、残余の洗浄液が熱によって分子間運動が盛んになり、管内壁に付着した洗浄液が離れやすくなり、加熱窒素ガスの流入、循環及び排出を繰り返すことにより、完全にガス化して窒素ガスとともに管外へ排出される。
Next, the existing pipe P is baked in order to remove the cleaning liquid slightly adhered to the inner peripheral surface of the existing pipe P.
Baking is performed by heating the nitrogen gas delivered from the nitrogen gas cylinder 21 to about 80 to 110 ° C. by the baking heater 23 and flowing it into the existing piping P, and before that, a preheated cleaning solution is added. The temperature in the piping may be increased by flowing into the existing piping P again.
That is, the amount of the cleaning liquid used for cleaning the existing pipe P is usually about 1/3 to 1/2 of the capacity of the pipe P, and more cleaning liquid is stored in the cleaning liquid tank 22. For example, the cleaning liquid of the capacity of the pipe P is sent out from the cleaning liquid tank 22 into the pipe P by one-way cleaning, and then the remaining cleaning liquid heated to an appropriate temperature is introduced into the pipe P and circulated. At the same time, the cleaning liquid is returned to the cleaning liquid tank 22, and the cleaning liquid heated in the opposite direction is again circulated through the pipe P to circulate the remaining cleaning liquid heated until the inside of the pipe P reaches a predetermined temperature. May be. In this case, the heater of the cleaning liquid tank 22 performs continuous heating while controlling the temperature of the stored liquid. Further, it is preferable that the connecting pipe PA is heated by winding a band heater BH on the outer periphery thereof.
The heated nitrogen gas flows into the existing pipe P from one side of the connecting pipe PB, circulates in the pipe P, is discharged from the other connecting pipe PB, and the cleaning liquid vaporized with the nitrogen gas flows into the recovery tank 31. The gas component is absorbed by the adsorption tank 32 and the absorption tank 33, further sent from the absorption tank 33 to the condenser 42, and the cleaning liquid liquefied by the condenser 42 is recovered by the recovery can 7.
In addition, circulation of the heated nitrogen gas into the existing pipe P is confirmed by checking the temperature in the pipe P with the pipe thermometer provided in the connection pipe PB, and the inflow paths are alternately switched with the flow direction switching valves CV and CV. Change over and repeat several times to circulate in the pipe P and raise the temperature in the pipe. In the piping P heated by the inflow of heated nitrogen gas, the intermolecular movement of the remaining cleaning liquid becomes active due to heat, the cleaning liquid adhering to the inner wall of the pipe is easily separated, and the inflow, circulation and discharge of the heated nitrogen gas are repeated. Thus, it is completely gasified and discharged out of the pipe together with nitrogen gas.

配管P内が所定温度まで加熱されたことを確認したならば、回路に設けたダイヤフラム式真空ポンプ51で、既設配管P内を真空到達度一杯まで吸引した後、再び窒素ガスを既設配管Pの一方から導入し、配管Pの他方出口にてハロゲン検知器で配管P内の残留ガスの存在を確認する。この際、排出された窒素ガスは回収タンク31内に導入されるようにしておく。そして、もう一度、オイル式真空ポンプ52で既設配管P内の真空乾燥を行った後、再び前記と同様に窒素ガスを導入し、ハロゲン検知器で残留ガスが完全にないことを確認したならば真空乾燥工程が終了し、これにより配管洗浄処理が完了する。前記確認を終了したところで、既設配管Pの接続口を開放し、窒素ガスを管内に残留させたまま粘着テープなどを巻き付けて封止し、新規機器の取り付けに供する。   If it is confirmed that the inside of the pipe P has been heated to a predetermined temperature, the diaphragm-type vacuum pump 51 provided in the circuit sucks the inside of the existing pipe P to the full vacuum level, and then again supplies nitrogen gas to the existing pipe P. Introduced from one side, the presence of residual gas in the pipe P is confirmed at the other outlet of the pipe P with a halogen detector. At this time, the discharged nitrogen gas is introduced into the recovery tank 31. Then, once again the existing pipe P is vacuum-dried by the oil type vacuum pump 52, nitrogen gas is again introduced in the same manner as described above, and if it is confirmed by the halogen detector that there is no residual gas, vacuum is applied. The drying process is finished, thereby completing the pipe cleaning process. When the confirmation is completed, the connection port of the existing pipe P is opened, and the adhesive tape is wrapped and sealed with the nitrogen gas remaining in the pipe, and used for attaching a new device.

〔溶剤蒸留再生処理〕
洗浄液として使用した塩化メチレンなどの溶剤は、特別管理産業廃棄物として処理する場合、その取り扱いが不便であり、何よりも環境保護の観点からは廃棄物が全く出ないようにすることが望ましい。そこで、洗浄装置1に溶剤再生部4を設け、蒸留器41と凝縮器42で溶剤の再生処理が行えるようになっている。
再生する溶剤は、前記各タンク31、32、33を介して回収缶7に回収された溶剤であり、これを蒸留器41に投入して蒸留し、溶剤から不純物を分離し、気化した溶剤を凝縮器42で液化し、再び回収缶7で回収する。再生処理は、流路切替弁Vの操作により、洗浄作業中にガス化した又は液化した溶剤を蒸留器41又は凝縮器42に投入して洗浄処理と並行に再生処理がされるようにしてもよいが、洗浄処理後に回収缶7から逐次蒸留器41に溶剤を投入して再生処理がなされるようにしてもよい。この場合、図3に示されるように、回収缶7から自吸ポンプ8で蒸留器41に連続的に溶剤が投入されるように設けてもよい。
[Solvent distillation regeneration process]
A solvent such as methylene chloride used as a cleaning liquid is inconvenient to handle as a specially controlled industrial waste, and it is desirable that no waste is generated from the viewpoint of environmental protection. Therefore, the solvent regeneration unit 4 is provided in the cleaning device 1 so that the solvent regeneration process can be performed by the distiller 41 and the condenser 42.
The solvent to be regenerated is the solvent recovered in the recovery can 7 through the tanks 31, 32, 33. The solvent is put into the still 41 and distilled to separate impurities from the solvent, and the evaporated solvent is removed. It is liquefied by the condenser 42 and recovered again by the recovery can 7. In the regeneration process, the gasification or liquefaction solvent during the cleaning operation is input to the distiller 41 or the condenser 42 by the operation of the flow path switching valve V so that the regeneration process is performed in parallel with the cleaning process. However, after the cleaning process, the regeneration process may be performed by sequentially introducing the solvent from the collection can 7 into the still 41. In this case, as shown in FIG. 3, the solvent may be continuously supplied from the recovery can 7 to the distiller 41 by the self-priming pump 8.

〔活性炭賦活処理〕
既設配管Pの洗浄処理を複数回繰り返すと、回収タンク31、吸着タンク32、吸収タンク33の各タンク内に充填された濾過材である活性炭の吸着能力が飽和する。かかる吸着能力を回復させるため、活性炭を賦活させる処理が行えるようになっている。
前記各タンク内の活性炭の賦活は、130℃程度に加熱された空気をジェットノズル(図示せず)を用いて、又はベイキングヒータ23により加熱された窒素ガスを加圧して回収タンク31内に吹き込み、活性炭を加熱して吸着していた溶剤をガス化させる。この際、前記各タンクを連通する接続管34、35の外周にリボンヒータを巻き付けて外側からも加熱する。これにより、活性炭に吸着していた溶剤は完全にガス化され、ガス化した溶剤は配管を通じて凝縮器42へと導入され、溶剤の蒸気を冷却液化し、凝縮器42から回収缶7へと流入させる。
なお、活性炭の賦活処理は、洗浄作業現場において実施可能であるが、加熱に時間を要することから、装置一式を発進基地まで持ち帰って行ってよい。この際、各タンク内の活性炭を別の密閉容器にまとめて収納し、この容器の一側から内部に熱風を吹き入れて加熱し、ガス化した溶剤を容器の他側から取り出し、凝縮器42に導入するようにしてもよい。
[Activated carbon activation treatment]
If the cleaning process of the existing pipe P is repeated a plurality of times, the adsorption capacity of activated carbon, which is a filter medium, filled in each of the recovery tank 31, the adsorption tank 32, and the absorption tank 33 is saturated. In order to recover the adsorption capacity, the activated carbon can be activated.
The activated carbon in each tank is activated by blowing air heated to about 130 ° C. into the recovery tank 31 using a jet nozzle (not shown) or pressurizing nitrogen gas heated by the baking heater 23. The activated carbon is heated to gasify the adsorbed solvent. At this time, a ribbon heater is wound around the outer periphery of the connection pipes 34 and 35 communicating with the tanks, and the tank is also heated from the outside. As a result, the solvent adsorbed on the activated carbon is completely gasified, and the gasified solvent is introduced into the condenser 42 through the piping, and the vapor of the solvent is cooled and liquefied and flows from the condenser 42 into the recovery can 7. Let
The activated carbon activation treatment can be performed at the cleaning work site, but since heating takes time, the apparatus set may be brought back to the departure base. At this time, the activated carbon in each tank is stored together in a separate sealed container, heated by blowing hot air into the inside from one side of the container, and the gasified solvent is taken out from the other side of the container. You may make it introduce in.

〔冷媒再生処理〕
既設の空調機から回収される冷媒は、機種毎にオイルが異なっていたり、オイルが分解して水分や異物が混入したりしており、回収した冷媒を、新規に取り替えた空調機、或いは修理した空調機に充填したのでは、オイルが原因で圧縮機の故障を誘発する。回収した冷媒を産業廃棄物として処理したのでは環境保護の観点から望ましくないことから、本発明の洗浄装置1では回収した冷媒を再生させる機能を装備させている。
例えば図9に示されるように、ドライヤー、膨張弁、油溜り器、油分離器、凝縮器、圧縮機、アキュームレータ、サイトグラス等の各部を備えた冷媒再生機用コンデンシングユニットを利用して、回収用冷媒ボンベの冷媒を再生して同再生冷媒ボンベに回収する場合は、前記凝縮器42を回収冷媒の蒸発器として利用する。
この場合、凝縮器42は、前記ガス化した洗浄液を液化するための凝縮コイルを装備しているが、かかる凝縮コイルを再生冷媒を導入するコイルに兼用し、切り替えて使用することは面倒であり、また、冷媒に不純物が混入する虞れもあることから、図10に示されるように、槽内に溶剤用の凝縮コイル42aと冷媒用のコイル42bとを螺旋状に並置して構成することができる。
すなわち、図11に示されるように、凝縮器42は、前述した既設配管Pの洗浄に用いた洗浄液である溶剤を再生するための溶剤凝縮器としての用途(同図(A))、圧縮機(コンデンシングユニット)の洗浄や修理等で用いた溶剤凝縮器用の冷却器としての用途(同図(B))、ボンベに回収した冷媒を修理済みの圧縮機や新規の圧縮機に充填するため、ボンベに回収した冷媒を再生するための冷媒再生蒸発器としての用途(同図(C))に用いられる。
そして、前記図10に示されるように、凝縮器42の槽内には、溶剤用の凝縮コイル42aと、冷媒用のコイル42bとが螺旋状に並置され、さらにこれらコイルの内側に溶剤を凝縮する際の冷水冷却用コイル42cが設置され、前記各用途における液入力系統を分離した構成に設けてある。すなわち、図11に示された各用途において、図10中でA、B、Cの符号で示された管口に溶剤、冷媒又は冷却水(水又は温水)が各々投入されて、凝縮処理又は蒸発処理がなされる。
[Refrigerant regeneration processing]
Refrigerant recovered from existing air conditioners has different oil for each model, or oil has decomposed and mixed with moisture and foreign matter. The recovered refrigerant has been replaced with a new air conditioner or repair. If the air conditioner is filled, oil will cause a compressor failure. Since it is not desirable from the viewpoint of environmental protection to treat the collected refrigerant as industrial waste, the cleaning device 1 of the present invention is equipped with a function of regenerating the collected refrigerant.
For example, as shown in FIG. 9, by using a condensing unit for a refrigerant regenerator that includes a dryer, an expansion valve, an oil reservoir, an oil separator, a condenser, a compressor, an accumulator, a sight glass, etc. When the refrigerant in the recovery refrigerant cylinder is regenerated and recovered in the regeneration refrigerant cylinder, the condenser 42 is used as an evaporator for the recovery refrigerant.
In this case, the condenser 42 is equipped with a condensing coil for liquefying the gasified cleaning liquid. However, it is troublesome to use the condensing coil as a coil for introducing a regenerative refrigerant. In addition, since there is a possibility that impurities are mixed into the refrigerant, as shown in FIG. 10, a solvent condensing coil 42a and a refrigerant coil 42b are arranged in a spiral in parallel in the tank. Can do.
That is, as shown in FIG. 11, the condenser 42 is used as a solvent condenser for regenerating the solvent that is the cleaning liquid used for cleaning the existing pipe P (FIG. 11A), compressor. (Condensing unit) Used as a condenser for a solvent condenser used for cleaning or repairing (Fig. (B)), to fill a recovered compressor in a cylinder into a repaired compressor or a new compressor And used as a refrigerant regeneration evaporator for regenerating the refrigerant recovered in the cylinder ((C) in the figure).
As shown in FIG. 10, a condenser coil 42a for the solvent and a coil 42b for the refrigerant are arranged in a spiral in the tank of the condenser 42, and the solvent is condensed inside these coils. In this case, a cold water cooling coil 42c is installed, and the liquid input system for each application is provided in a separated configuration. That is, in each application shown in FIG. 11, a solvent, a refrigerant, or cooling water (water or hot water) is respectively charged into the pipe ports indicated by reference signs A, B, and C in FIG. Evaporation processing is performed.

なお、図示した洗浄装置の各部の構成は一例であり、本発明はこれらに限定されるものではなく、各部は洗浄する配管の長さや容量、洗浄場所などに応じて適宜に構成することが可能である。   In addition, the structure of each part of the illustrated cleaning apparatus is an example, and the present invention is not limited to these, and each part can be appropriately configured according to the length and capacity of the pipe to be cleaned, the cleaning place, and the like. It is.

旧冷媒機を新冷媒機に交換するとともに、本発明により既設配管を洗浄するときの作業工程及び手順の概要を表した図である。It is a figure showing the outline | summary of the work process and procedure when replacing | exchanging an old refrigerant machine with a new refrigerant machine and wash | cleaning existing piping by this invention. 本発明の一実施形態の洗浄装置の処理部の概略構成図である。It is a schematic block diagram of the process part of the washing | cleaning apparatus of one Embodiment of this invention. 図2をより詳細に表した洗浄装置の概略回路構成図である。It is a schematic circuit block diagram of the washing | cleaning apparatus which represented FIG. 2 in detail. 洗浄液タンクの構成を断面で示した図である。It is the figure which showed the structure of the washing | cleaning liquid tank in the cross section. 洗浄液回収部の各タンクの構成を断面で示した図である。It is the figure which showed the structure of each tank of a washing | cleaning liquid collection | recovery part in the cross section. 回収缶の構成を断面で示した図である。It is the figure which showed the structure of the collection | recovery can in the cross section. 溶剤再生部を構成する蒸留器と凝縮器の構成を示した図である。It is the figure which showed the structure of the distiller and the condenser which comprise a solvent reproduction | regeneration part. 溶剤再生部を構成する再生液回収容器の構成を断面で示した図である。It is the figure which showed the structure of the reproduction | regeneration liquid collection | recovery container which comprises a solvent reproduction | regeneration part by the cross section. 冷媒再生機用コンデンシングユニットの構成を示した図である。It is the figure which showed the structure of the condensing unit for refrigerant | coolant regenerators. 本発明の洗浄装置が装備する多機能凝縮器の平面図と内部矢視図である。It is the top view and internal arrow line view of the multifunctional condenser with which the washing | cleaning apparatus of this invention is equipped. 図11の凝縮器の用途別の回路構成を示した図である。It is the figure which showed the circuit structure according to the use of the condenser of FIG.

符号の説明Explanation of symbols

1 洗浄装置、2 洗浄液送出部、3 洗浄液回収部、4 溶剤再生部、5 ポンプ部、6 冷媒再生機用コンデンシングユニット、7 回収缶、21 窒素ガスボンベ、22 洗浄液タンク、23 ベイキングヒータ、24 送液ポンプ、31 回収タンク、32 吸着タンク、33 吸収タンク、41 蒸留器、42 凝縮器、43 再生液回収容器、44 秤、51 ダイヤフラム式真空ポンプ、52 オイル式真空ポンプ、P 既設配管、V 流路開閉バルブ

DESCRIPTION OF SYMBOLS 1 Cleaning apparatus, 2 Cleaning liquid delivery part, 3 Cleaning liquid collection | recovery part, 4 Solvent regeneration part, 5 Pump part, 6 Condensing unit for refrigerant regenerators, 7 Collection cans, 21 Nitrogen gas cylinder, 22 Cleaning liquid tank, 23 Baking heater, 24 Liquid pump, 31 Recovery tank, 32 Adsorption tank, 33 Absorption tank, 41 Distiller, 42 Condenser, 43 Reclaimed liquid recovery container, 44 Scale, 51 Diaphragm vacuum pump, 52 Oil vacuum pump, P Existing piping, V flow Road open / close valve

Claims (9)

空冷セパレート型空調機の既設冷媒配管を冷媒回収後に洗浄する方法において、
塩化メチレンからなる溶剤に窒素ガスを混合してなる洗浄液を送出する手段及び窒素ガスを加熱して送出する手段を備えた洗浄装置を室外機に代えて設置し、洗浄装置の接続管を既設配管の管口に接続する工程と、
室内機が接続していた既設配管の管口に連絡配管を接続する工程と、
洗浄装置の接続管の一方から洗浄液を既設配管内に送出し、配管内を流通させて洗浄浄化するとともに、前記接続管の他方から洗浄液を排出させて洗浄装置の回収タンクで回収する工程と、
所定温度に加熱された洗浄液を既設配管内に送出し、配管内を循環流通させて既設配管を加熱する工程と、
前記接続管から加熱窒素ガスを既設配管内に送出し、配管内を循環流通させて既設配管を所定温度に加熱する工程と、
洗浄装置に設けたダイヤフラム式真空ポンプで既設配管内を真空引きし、管内のガスを真空ポンプから回収タンク内に導入する工程と、
を備えることを特徴とする冷媒配管の洗浄方法。
In the method of cleaning the existing refrigerant piping of the air-cooled separate type air conditioner after collecting the refrigerant,
Instead of an outdoor unit, a cleaning device equipped with a means for sending a cleaning liquid prepared by mixing nitrogen gas into a solvent consisting of methylene chloride and a means for heating and sending the nitrogen gas is installed, and the connecting pipe of the cleaning device is installed as an existing pipe. Connecting to the pipe opening of
Connecting the connecting pipe to the port of the existing pipe to which the indoor unit was connected;
Sending the cleaning liquid from one of the connecting pipes of the cleaning device into the existing pipe, circulating the pipe to clean and purify, and discharging the cleaning liquid from the other of the connecting pipe and collecting it in the recovery tank of the cleaning apparatus;
Sending the cleaning liquid heated to a predetermined temperature into the existing piping, circulating the circulation in the piping and heating the existing piping;
Sending heated nitrogen gas from the connecting pipe into the existing pipe, circulating the inside of the pipe and heating the existing pipe to a predetermined temperature;
Evacuating the existing piping with a diaphragm vacuum pump provided in the cleaning device, and introducing the gas in the tube from the vacuum pump into the recovery tank;
A cleaning method for refrigerant piping, comprising:
塩化メチレンに代えて溶剤として、メチルアルコール、イソプロピルアルコール又はこれらと塩化メチレンとの混合液、若しくは水を用いる請求項1に記載の冷媒配管の洗浄方法。   The method for cleaning a refrigerant pipe according to claim 1, wherein methyl alcohol, isopropyl alcohol, a mixed solution of these with methylene chloride, or water is used as a solvent instead of methylene chloride. 空冷セパレート型空調機の既設冷媒配管を冷媒回収後に洗浄する装置において、
既設配管の室内機が接続していた側の管口に連絡配管を接続し、当該配管の室外機が接続していた側の管口に接続管をそれぞれ接続し、
前記接続管の一方から塩化メチレンなどの溶剤に窒素ガスを混合させてなる洗浄液を配管内に送出し、管内を流通させて洗浄浄化させる洗浄液送出部と、
前記接続管の他方から排出される洗浄液を回収タンク内に流入させるとともにタンク内でガス成分と溶剤成分とに分離して洗浄液を回収する洗浄液回収部と、
前記タンク内に回収された溶剤から不純物を分離して溶剤を再生する溶剤再生部と、
既設配管内を真空引きするためのダイヤフラム式真空ポンプを備えたポンプ部とを有し、
前記各部を管路上に流路開閉バルブが設けられた配管で互いに接続した状態で台車上に収納して構成されたことを特徴とする冷媒配管の洗浄装置。
In an apparatus for cleaning an existing refrigerant pipe of an air-cooled separate type air conditioner after collecting the refrigerant,
Connect the connection pipe to the pipe port on the side where the indoor unit of the existing pipe was connected, connect the connection pipe to the pipe port on the side where the outdoor unit of the pipe was connected,
A cleaning liquid sending unit for sending a cleaning liquid obtained by mixing nitrogen gas into a solvent such as methylene chloride from one of the connecting pipes into the pipe, and for cleaning and purifying by circulating in the pipe;
A cleaning liquid recovery section for allowing the cleaning liquid discharged from the other of the connection pipes to flow into the recovery tank and separating the cleaning liquid into gas components and solvent components in the tank;
A solvent regeneration unit for separating impurities from the solvent recovered in the tank and regenerating the solvent;
Having a pump part equipped with a diaphragm type vacuum pump for evacuating the existing piping,
A refrigerant pipe cleaning apparatus, wherein each of the parts is housed on a carriage while being connected to each other by a pipe provided with a channel opening / closing valve on the pipe.
洗浄液送出部は、
窒素ガスボンベと、溶剤が投入されるタンクであって底部又は側胴部に加熱ヒータが設けられた洗浄液タンクと、前記窒素ガスボンベから送出される窒素ガスを加熱するベイキングヒータと、送液ポンプとを有して構成されており、
溶剤が投入された洗浄液タンク内に窒素ガスを送出して溶剤に窒素ガスを混合させた洗浄液を生成し、加熱ヒータを作動させて洗浄液を適宜な温度に加熱させた状態で送液ポンプにより接続管の一方から既設配管内に送出して管内を流通させるとともに、接続管の他方から洗浄液を排出させて回収タンク内に流入させて配管内を洗浄処理し、
次いで前記と同様に、適宜な温度に加熱させた洗浄液を既設配管内に送出し、管内を循環流通させた後、窒素ガスを既設配管内に送出させて洗浄液を回収タンク内に流入させることにより配管内を加熱処理し、
さらにベイキングヒータで加熱した窒素ガスを接続管の一方から既設配管内に送出して管内を流通させるとともに、接続管の他方からガスを排出させて回収タンク内に導入させ、さらに前記とは逆にベイキングヒータから加熱窒素ガスを接続管の他方から既設配管内に送出して管内を流通させるとともに、接続管の一方からガスを排出させて回収タンク内に導入させ、
当該加熱窒素ガスを既設配管内に交互に流通させる工程を繰り返して既設配管を所定温度に加熱処理した後、ダイヤフラム式真空ポンプで既設配管内を真空引きし、管内のガスを前記真空ポンプから回収タンク内に導入することにより既設配管内の残余の洗浄液を回収するように構成されていることを特徴とする請求項3に記載の冷媒配管の洗浄装置。
The cleaning liquid delivery part
A nitrogen gas cylinder, a tank into which a solvent is introduced, a cleaning liquid tank provided with a heater at the bottom or side barrel, a baking heater for heating nitrogen gas delivered from the nitrogen gas cylinder, and a liquid feed pump Has
Nitrogen gas is sent into the cleaning liquid tank filled with the solvent to generate a cleaning liquid in which the nitrogen gas is mixed with the solvent, and the heater is activated and the cleaning liquid is heated to an appropriate temperature and connected by a liquid feed pump. The pipe is sent from one of the pipes to the existing pipe and circulated in the pipe, and the cleaning liquid is discharged from the other side of the connecting pipe and flows into the collection tank to clean the pipe.
Next, as described above, the cleaning liquid heated to an appropriate temperature is sent into the existing pipe, circulated through the pipe, and then nitrogen gas is sent into the existing pipe to cause the cleaning liquid to flow into the recovery tank. Heat the inside of the pipe,
Further, nitrogen gas heated by a baking heater is sent from one of the connecting pipes into the existing pipe to circulate in the pipe, and the gas is discharged from the other of the connecting pipes to be introduced into the recovery tank. While sending the heated nitrogen gas from the other side of the connecting pipe into the existing pipe from the baking heater and circulating the inside of the pipe, the gas is discharged from one side of the connecting pipe and introduced into the recovery tank,
The process of alternately circulating the heated nitrogen gas into the existing pipe is repeated, and the existing pipe is heated to a predetermined temperature, and then the existing pipe is evacuated with a diaphragm vacuum pump, and the gas in the pipe is recovered from the vacuum pump. 4. The refrigerant pipe cleaning device according to claim 3, wherein the cleaning system is configured to recover the remaining cleaning liquid in the existing pipe by being introduced into the tank.
洗浄液回収部は、
回収タンクの内部にステンレス繊維束からなるエリミネータを設けるとともに、接続管を介して回収タンクの上部に連通していて内部に濾過材からなるフィルター層を設けた吸着タンクと、送風機を備えた接続管を介して吸着タンクの上部に連通していて上面に排気口を備えていて内部にはオイルが貯留された吸収タンクとを設け、
既設配管内を流通させて排出される洗浄液又は液分が混入したガスを回収タンクのエミリネータに衝突させてガス成分と液成分に分離するとともに、分離したガス成分を吸着タンクに導入し、吸着タンクのフィルター層を通してガス成分を吸着し、送風機で接続管内に外気を導入して前記吸着されなかった残余のガス成分と窒素ガスとを希釈して吸収タンク内に吹き込むとともに残余のガス成分を吸収タンクのオイルに吸収させて溶剤を回収するように構成されたことを特徴とする請求項3又は4に記載の冷媒配管の洗浄装置。
The cleaning liquid recovery unit
The recovery tank is provided with an eliminator made of stainless steel fiber bundles, and is connected to the upper part of the recovery tank through a connecting pipe, and is provided with a filter layer made of a filtering material inside, and a connecting pipe equipped with a blower The upper part of the adsorption tank through which is provided with an exhaust port on the upper surface and an oil storage tank in which oil is stored,
The cleaning liquid or gas mixed with the liquid discharged through the existing pipe collides with the recovery tank's emilator to separate the gas component and liquid component, and the separated gas component is introduced into the adsorption tank. The gas component is adsorbed through the filter layer, the outside air is introduced into the connecting pipe with a blower, the remaining gas component that has not been adsorbed and the nitrogen gas are diluted and blown into the absorption tank, and the remaining gas component is absorbed into the absorption tank. The refrigerant pipe cleaning device according to claim 3 or 4, wherein the solvent is recovered by absorbing the oil into the refrigerant pipe.
溶剤再生部は、
回収された溶剤をウォータバスで加熱して気化させる蒸留器と、冷水又は温水が流入される槽内に凝縮コイルを螺旋状に配してなり、コイル内に気化した溶剤を流通させてこれを液化する凝縮器と、頂面内に管連通孔が形成された蓋体と当該蓋体に面する開口上部に濾過材フィルター層が設けられていて内部で溶剤回収缶を支持する容器本体からなる再生液回収容器と、再生液回収容器の重さを量るアラーム付きの秤とを有して構成されており、
洗浄作業中に前記洗浄液回収部の各タンクに回収された溶剤を蒸留器に導入し、又は洗浄作業後に前記洗浄液回収部の各タンクから溶剤回収缶に移入させた溶剤を自吸ポンプを用いて蒸留器に導入して当該蒸留器で溶剤を蒸発させるとともに凝縮器でこれを液化し、液化した溶剤を再生回収容器内の溶剤回収缶に所定の容量だけ流入させるように構成されたことを特徴とする請求項3〜5の何れかに記載の冷媒配管の洗浄装置。
The solvent recycling section
A distiller that heats and collects the recovered solvent in a water bath, and a condensing coil spirally disposed in a tank into which cold water or hot water flows, and distributes the vaporized solvent in the coil. It consists of a condenser to be liquefied, a lid body in which a tube communication hole is formed in the top surface, and a container body that supports a solvent recovery can inside by providing a filter medium filter layer at the top of the opening facing the lid body. It has a regenerative liquid collection container and a scale with an alarm for weighing the regenerative liquid collection container,
The solvent recovered in each tank of the cleaning liquid recovery unit during the cleaning operation is introduced into the distiller, or the solvent transferred from each tank of the cleaning liquid recovery unit to the solvent recovery can after the cleaning operation using a self-priming pump. It is configured to be introduced into a distiller, evaporate the solvent in the distiller, liquefy it in the condenser, and flow the liquefied solvent into the solvent collection can in the regeneration collection container by a predetermined volume. The cleaning apparatus for refrigerant piping according to any one of claims 3 to 5.
洗浄液回収部の各タンクの洗浄液流通経路上に温風を吹き入れて濾過材を所定温度に加熱するとともに、当該加熱された濾過材を通過した温風を凝縮器へと導入することにより、濾過材から溶剤成分を分離して賦活させるように構成されたことを特徴とする請求項3〜6の何れかに記載の冷媒配管の洗浄装置。   Filtration is performed by blowing hot air over the cleaning liquid flow path of each tank of the cleaning liquid recovery unit to heat the filter medium to a predetermined temperature and introducing the hot air that has passed through the heated filter medium into the condenser. The apparatus for cleaning a refrigerant pipe according to any one of claims 3 to 6, wherein a solvent component is separated from the material and activated. 溶剤回収部の凝縮器は、蒸留させた溶剤を流通させて凝縮させる溶剤用コイルと、空調機から回収した冷媒を流通させて蒸発させる冷媒再生コイルとを槽内に並置して構成されたことを特徴とする請求項3〜7の何れかに記載の冷媒配管の洗浄装置。   The condenser of the solvent recovery unit was configured by juxtaposing a solvent coil for circulating and condensing the distilled solvent and a refrigerant regeneration coil for circulating and evaporating the refrigerant recovered from the air conditioner in the tank. The cleaning apparatus for refrigerant piping according to any one of claims 3 to 7. 塩化メチレンに代えて洗浄液として、メチルアルコール、イソプロピルアルコール又はこれらと塩化メチレンとの混合液、若しくは水を用いる請求項3〜8の何れかに記載の冷媒配管の洗浄装置。
The refrigerant pipe cleaning device according to any one of claims 3 to 8, wherein methyl alcohol, isopropyl alcohol, a mixed solution of these with methylene chloride, or water is used as the cleaning liquid instead of methylene chloride.
JP2008205440A 2008-08-08 2008-08-08 Cleaning equipment for refrigerant piping Expired - Fee Related JP4865770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205440A JP4865770B2 (en) 2008-08-08 2008-08-08 Cleaning equipment for refrigerant piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205440A JP4865770B2 (en) 2008-08-08 2008-08-08 Cleaning equipment for refrigerant piping

Publications (3)

Publication Number Publication Date
JP2010038511A true JP2010038511A (en) 2010-02-18
JP2010038511A5 JP2010038511A5 (en) 2010-05-27
JP4865770B2 JP4865770B2 (en) 2012-02-01

Family

ID=42011255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205440A Expired - Fee Related JP4865770B2 (en) 2008-08-08 2008-08-08 Cleaning equipment for refrigerant piping

Country Status (1)

Country Link
JP (1) JP4865770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107931267A (en) * 2017-12-22 2018-04-20 广东微碳检测科技有限公司 For cleaning the cleaning system of U-shaped fritted glass disk bubbler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101826955B1 (en) * 2017-03-02 2018-02-07 인티제닉 주식회사 Refrigerant charging device with leak diagnostic function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116408A (en) * 1999-10-18 2001-04-27 Taiji Kurokawa Cleaning device for refrigerating cycle
JP2001174111A (en) * 1999-12-21 2001-06-29 Taiji Kurokawa Flushing system for refrigeration cycle or the like
JP2003302128A (en) * 2002-04-12 2003-10-24 Shinryo Corp Method and device for cleaning refrigerant pipe of air- conditioning refrigeration unit
JP2008095987A (en) * 2006-10-06 2008-04-24 Hideaki Sodeyama Cleaning device of refrigerant piping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116408A (en) * 1999-10-18 2001-04-27 Taiji Kurokawa Cleaning device for refrigerating cycle
JP2001174111A (en) * 1999-12-21 2001-06-29 Taiji Kurokawa Flushing system for refrigeration cycle or the like
JP2003302128A (en) * 2002-04-12 2003-10-24 Shinryo Corp Method and device for cleaning refrigerant pipe of air- conditioning refrigeration unit
JP2008095987A (en) * 2006-10-06 2008-04-24 Hideaki Sodeyama Cleaning device of refrigerant piping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107931267A (en) * 2017-12-22 2018-04-20 广东微碳检测科技有限公司 For cleaning the cleaning system of U-shaped fritted glass disk bubbler
CN107931267B (en) * 2017-12-22 2023-06-16 广东微碳检测科技有限公司 Cleaning system for cleaning U-shaped porous glass plate absorption tube

Also Published As

Publication number Publication date
JP4865770B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US20180071793A1 (en) Method and system for removing hydrocarbon deposits from heat exchanger tube bundles
US10967323B2 (en) Exhaust gas purifying and heat recovering system and method for sludge treatment
CN101439236A (en) Device for executing recovery processing of organic discharge gas produced in coating procedure
KR101936548B1 (en) Waste liquid regenerating device
JP4865770B2 (en) Cleaning equipment for refrigerant piping
CN101439237B (en) Device for processing organic discharge gas produced in coating procedure
JP4385316B2 (en) Cleaning waste liquid distillation regenerator
US20040231702A1 (en) Flushing for refrigeration system components
JP2005131543A5 (en)
CN210613291U (en) Waste gas treatment environmental protection equipment
CN104383789B (en) Industrial tail gas treatment complete equipment of carbon fiber reinforced graphite
JP3144592U (en) Organic compound gas recovery system
JPH10238909A (en) Method and apparatus for efficiently recovering refrigerant as well as adsorption tank
JP3971445B1 (en) Cleaning equipment for refrigerant piping
JP3692325B2 (en) Soil purification equipment
JP3087971U (en) Replaceable exhaust gas treatment equipment
JPH04198676A (en) Refrigerant system washing device
CN204952592U (en) Volatility organic gas&#39;s recovery system
CN219290938U (en) Sludge drying waste gas treatment system
CN217005004U (en) Automatic cleaning device for refrigerant pipeline
CN220003004U (en) Oil removal system for chemical fiber production waste gas
CN109141064B (en) Tail gas purification and heat recovery system and method for sludge treatment
CN109133572B (en) Purification and heat recovery system and method for sludge drying waste gas
KR20030047496A (en) Treatment Method and Apparatus for Reclamation Gas
JP3027185U (en) Exhaust gas treatment equipment for cleaning equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees