JP2010038049A - Blade for wind power generation, and wind power generator - Google Patents

Blade for wind power generation, and wind power generator Download PDF

Info

Publication number
JP2010038049A
JP2010038049A JP2008202575A JP2008202575A JP2010038049A JP 2010038049 A JP2010038049 A JP 2010038049A JP 2008202575 A JP2008202575 A JP 2008202575A JP 2008202575 A JP2008202575 A JP 2008202575A JP 2010038049 A JP2010038049 A JP 2010038049A
Authority
JP
Japan
Prior art keywords
main body
wing
wind power
wind
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008202575A
Other languages
Japanese (ja)
Inventor
Hisanao Maruyama
久直 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Press Kogyo Co Ltd
Original Assignee
Press Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Press Kogyo Co Ltd filed Critical Press Kogyo Co Ltd
Priority to JP2008202575A priority Critical patent/JP2010038049A/en
Publication of JP2010038049A publication Critical patent/JP2010038049A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blade for wind power generation improving strength and rigidity with respect to strong wind and improving electricity generated in weak wind. <P>SOLUTION: Each blade 30 is roughly composed of three members, and is provided with columnar core material 32 composed of (manufactured from) a metallic rigid body such as an aluminum alloy, an intermediate member 34 also composed of the rigid body, and a flexible body 36 such as fiber-reinforced plastic, glass fiber, and carbon fiber. The root of the core material 32 is fixed to a pitch angle adjusting member 28, and the pitch angle adjusting member 28 uniformly adjusts (changes) the pitch angle of the whole core material 32. The core material 32 extends from its root in a radial direction with a rotor head 26 as a center. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、風力によって発電する風力発電に用いられる風力発電用羽及びこの風力発電用羽を備えた風力発電装置に関する。   The present invention relates to a wind power generation wing used for wind power generation using wind power and a wind power generation apparatus including the wind power generation wing.

風力によって羽を回転させて発電する風力発電装置が知られている。この風力発電装置の高出力型の一例について図7を参照して説明する。図7は、従来の高出力型の風力発電装置の一例を示す斜視図である。   A wind power generator that generates power by rotating wings with wind power is known. An example of the high output type of the wind turbine generator will be described with reference to FIG. FIG. 7 is a perspective view showing an example of a conventional high-power wind power generator.

風力発電装置10は、鉛直方向に延びる支柱12と、風向きに応じて自在に回転するように支柱12の上端部12aに固定された回転軸14と、風力に応じて回転するように回転軸14の長手方向一端部14aに固定された複数(図1では3枚)の羽16とを備えた構造をしている。   The wind power generator 10 includes a support column 12 extending in the vertical direction, a rotation shaft 14 fixed to the upper end portion 12a of the support column 12 so as to freely rotate according to the wind direction, and a rotation shaft 14 so as to rotate according to the wind force. And a plurality of (three in FIG. 1) wings 16 fixed to one longitudinal end portion 14a.

上記したような大型の風力発電装置10は、定格出力を安定的に維持するために、定格風速近傍での羽の回転速度は一定に保たれるように構成されている。また、この定格風速の範囲内の風速の変化に対しては、羽の回転による周速によって羽が相対的に受ける風の風速と自然の風による風速との合成速度の方向が、その風速によって変化する。   The large wind power generator 10 as described above is configured such that the rotational speed of the wings in the vicinity of the rated wind speed is kept constant in order to stably maintain the rated output. In addition, for changes in the wind speed within the range of the rated wind speed, the direction of the combined speed of the wind speed that the wing relatively receives by the peripheral speed due to the rotation of the wing and the wind speed by the natural wind depends on the wind speed. Change.

このため、羽16の受ける抗力(風に対する抵抗力)を最小にすると共に揚力を最大にするために、羽16のピッチ角を上記の合成速度の方向に追随させる風力発電装置が提案されている(例えば、特許文献1参照。)。この風力発電装置では、ブレード(羽)用軸受を介して羽16の全体をロータヘッドに固定しておき、ロータの回転軸に直交する羽16の長手方向に延びるピッチ調整軸の周りに羽16を回転させる構造になっている。このようなピッチ調整構造の場合、羽16をロータヘッドに回転自在に連結しなければならない。従って、羽16の受ける風圧に伴って変化するモーメントの全てをブレード(羽)用軸受で支持する必要があり、十分な耐久性を確保するためにはブレード(羽)用軸受として大型の特殊な軸受を使用する必要がある。このような大型の特殊な軸受は、消耗品であるシールやグリス交換等にかかる保守費用も少なくないという問題も生じる。   For this reason, in order to minimize the drag (resistance to the wind) received by the wings 16 and maximize the lift force, a wind turbine generator has been proposed that follows the pitch angle of the wings 16 in the direction of the combined speed. (For example, refer to Patent Document 1). In this wind turbine generator, the entire wing 16 is fixed to the rotor head via a blade (blade) bearing, and the wing 16 is arranged around a pitch adjustment axis extending in the longitudinal direction of the wing 16 perpendicular to the rotation axis of the rotor. It is structured to rotate. In the case of such a pitch adjustment structure, the wings 16 must be rotatably connected to the rotor head. Therefore, it is necessary to support all of the moments that change with the wind pressure received by the blade 16 with the blade (blade) bearing, and in order to ensure sufficient durability, the blade (blade) bearing has a large special size. It is necessary to use a bearing. Such a large special bearing also has a problem that maintenance costs for exchanging seals and grease, which are consumables, are not small.

一方、定格風速における一般的な従来の羽16の半径方向各部の横断面形状は、図8(a)(先端部近傍)及び(b)(根元部近傍)に示すようになっている。羽16の各部における風速と羽16の回転周速の合成方向に、それぞれの部位の横断面長手方向を一致させることによって、それぞれの部位での抗力を最小にしている。即ち、羽16は、揚力と抗力の合成力のうち回転方向の分力が最大となるような形状を有している。しかし、従来の羽16は剛体で形成されているので、風速が変化したときは、羽16の先端部で回転方向分力が最大になるように羽16のピッチを調整しても、羽16の回転時の半径方向全ての部位で回転方向の分力が最大になるとは限らない。   On the other hand, the cross-sectional shape of each part in the radial direction of a general conventional wing 16 at the rated wind speed is as shown in FIGS. 8A (near the tip) and (b) (near the root). By making the cross-sectional longitudinal direction of each part coincide with the combined direction of the wind speed at each part of the wing 16 and the rotational peripheral speed of the wing 16, the drag at each part is minimized. That is, the wing 16 has a shape that maximizes the component in the rotational direction of the combined force of lift and drag. However, since the conventional wing 16 is formed of a rigid body, when the wind speed changes, the wing 16 can be adjusted even if the pitch of the wing 16 is adjusted so that the rotational force component becomes maximum at the tip of the wing 16. The component force in the rotational direction is not necessarily maximized at all the radial positions during rotation.

例えば図9(a)及び(b)に示したように、風力が定格風速を超えた場合(強風時)には、羽16の根元部近傍の断面はピッチ過大となり、羽16の抗力の増加に伴って羽16が破損したり、場合によっては支柱まで破損、転倒したりして発電装置全体を修復不能に失陥させるとともに、装置周辺の安全を脅かす事態まで招くことがある。
特開2001−99045号公報
For example, as shown in FIGS. 9A and 9B, when the wind force exceeds the rated wind speed (during strong wind), the cross section near the root portion of the wing 16 becomes excessive in pitch, and the drag of the wing 16 increases. Along with this, the wing 16 may be damaged, or even the support may be damaged or fall down, causing the entire power generation apparatus to be unrepairably lost and causing a situation that threatens the safety around the apparatus.
Japanese Patent Laid-Open No. 2001-99045

本発明は、上記事情に鑑み、強風に対する強度及び剛性を向上し、弱風における発電量を改善した風力発電用羽及び風力発電装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a wind turbine generator and a wind turbine generator that improve the strength and rigidity against strong wind and improve the power generation amount in the weak wind.

上記目的を達成するための本発明の風力発電用羽は、鉛直方向に延びる支柱と、その上端部に回転自在に固定されたロータヘッドと、該ロータヘッドに収容されたピッチ角調整部材とを備えた風力発電装置における、前記ロータヘッドにその根元部が固定されると共に、前記ロータヘッドを中心にした放射方向に延びる風力発電用羽において、
(1)前記ピッチ角調整部材にその根元部が固定されると共に前記放射方向に延びる、剛体からなる心材と、
(2)その根元部が前記ロータヘッドに固定されて前記心材を取り囲むように前記放射方向に延びる、その先端部が前記心材の先端部に固定された可撓性で筒状の本体と、
(3)前記心材の外周面に接触してこの外周面を覆うと共に、この外周面上を摺動する摺動部と、
(4)該摺動部を前記本体に接続させる接続部とを備えたことを特徴とするものである。
In order to achieve the above object, a wing for wind power generation according to the present invention comprises a column extending in the vertical direction, a rotor head rotatably fixed to an upper end portion thereof, and a pitch angle adjusting member accommodated in the rotor head. In the wind power generator provided, in the wing for wind power generation, the root portion is fixed to the rotor head, and extends in the radial direction centered on the rotor head,
(1) a core made of a rigid body, the root of which is fixed to the pitch angle adjusting member and extending in the radial direction;
(2) a flexible and cylindrical main body whose root is fixed to the rotor head and extends in the radial direction so as to surround the core, and whose tip is fixed to the tip of the core;
(3) A sliding portion that contacts the outer peripheral surface of the core material and covers the outer peripheral surface, and slides on the outer peripheral surface;
(4) A connecting portion for connecting the sliding portion to the main body is provided.

ここで、
(5)前記本体、前記摺動部、及び前記連結部は一体に構成されたものであってもよい。
here,
(5) The main body, the sliding part, and the connecting part may be integrally formed.

さらに、
(6)前記心材は、前記本体の横断面の中心位置よりもその回転方向及び風上方向にそれぞれ偏心した位置に、その中心が配置されたものであってもよい。
further,
(6) The center of the core may be arranged at a position that is eccentric in the rotational direction and the windward direction from the center position of the cross section of the main body.

さらにまた、
(7)前記本体は、前記放射方向及びこれに直交する方向に延びる複数の繊維で構成されたものであってもよい。
Furthermore,
(7) The main body may be composed of a plurality of fibers extending in the radial direction and in a direction perpendicular thereto.

上記目的を達成するための本発明の他の風力発電用羽は、鉛直方向に延びる支柱と、その上端部に回転自在に固定されたロータヘッドと、該ロータヘッドに収容されたピッチ角調整部材とを備えた風力発電装置における、前記ロータヘッドにその根元部が固定されると共に、前記ロータヘッドを中心にした放射方向に延びる風力発電用羽において、
(8)前記ピッチ角調整部材にその根元部が固定されると共に前記放射方向に延びる、剛体からなる心材と、
(9)その根元部が前記ロータヘッドに固定されて前記心材を取り囲むように前記放射方向に延びる、剛体からなる中間部材と、
(10)該中間部材を取り囲むように前記放射方向に延びると共に、その先端部が前記心材の先端部に固定された可撓性で筒状の本体と、
(11)前記中間部材の外周面に接触してこの外周面を覆うと共に、この外周面上を摺動する摺動部と、
(12)該摺動部を前記本体に接続させる接続部とを備えたことを特徴とするものである。
In order to achieve the above object, another wing for wind power generation according to the present invention includes a vertically extending column, a rotor head rotatably fixed to an upper end portion thereof, and a pitch angle adjusting member accommodated in the rotor head. In a wind turbine generator equipped with a wind power generator blade having a root portion fixed to the rotor head and extending in a radial direction centered on the rotor head,
(8) a core made of a rigid body, the root of which is fixed to the pitch angle adjusting member and extending in the radial direction;
(9) an intermediate member made of a rigid body, the root portion of which is fixed to the rotor head and extends in the radial direction so as to surround the core material;
(10) A flexible and cylindrical main body that extends in the radial direction so as to surround the intermediate member, and whose tip is fixed to the tip of the core material;
(11) A sliding portion that contacts the outer peripheral surface of the intermediate member to cover the outer peripheral surface and slides on the outer peripheral surface;
(12) A connecting portion for connecting the sliding portion to the main body is provided.

ここで、
(13)前記本体、前記摺動部、及び前記接続部は一体に構成されたものであってもよい。
here,
(13) The main body, the sliding portion, and the connecting portion may be integrally formed.

さらに、
(14)前記中間部材は、その横断面の形状が楕円形のものであってもよい。
further,
(14) The intermediate member may have an elliptical cross-sectional shape.

さらにまた、
(15)前記本体は、風下側の面が風上側の面よりも撓み易いものであってもよい。
Furthermore,
(15) The main body may have a leeward surface that is more easily bent than an leeward surface.

請求項1に係る発明(中間部材を備えていない風力発電用羽)によれば、ピッチ角調整部材にその根元部が固定された心材は剛体であるので、ピッチ角調整部材によって心材全体のピッチ角が一様に(均一に)調整(変更)される。この心材の先端部には本体の先端部が固定されているので、心材のピッチ角が調整されたときは心材の先端部と共に本体の先端部もそのピッチ角が調整される。しかし、本体の先端部のピッチ角が調整された場合であっても、本体は可撓性であるので、その先端部よりも根元部に近い部分(先端部以外の部分)では、その先端部のピッチ角と同じようには調整されない。一方、摺動部は心材の外周面上を摺動でき、この摺動部に接続されている接続部も摺動部と共に動けるので、可撓性の本体に受ける風力や風向に応じて摺動部が心材の外周面上を摺動して、この摺動に伴って接続部も動くと共に本体も心材の回りを一定角度だけ回転する(回動する)。即ち、風を直接に受ける本体は風力や風向に応じて、本体の各部分において風に対する抵抗力(抗力)が最小となるように撓んで自動的にピッチ角が調整されることとなる。従って、羽の受ける風圧や、この風圧に起因して発生する支柱の曲げモーメントの増加が抑制されるので、風力発電装置を構成する各部品・部材の破損や故障を防止できる。   According to the invention according to claim 1 (wind power generation wing not provided with an intermediate member), since the core material whose root portion is fixed to the pitch angle adjustment member is a rigid body, the pitch angle of the entire core material by the pitch angle adjustment member The corners are adjusted (changed) uniformly (uniformly). Since the distal end portion of the main body is fixed to the distal end portion of the core material, when the pitch angle of the core material is adjusted, the pitch angle of the distal end portion of the main body is adjusted together with the distal end portion of the core material. However, even when the pitch angle of the tip of the main body is adjusted, the main body is flexible, so that the tip of the portion closer to the root than the tip (the portion other than the tip) is the tip. It is not adjusted in the same way as the pitch angle. On the other hand, the sliding part can slide on the outer peripheral surface of the core material, and the connecting part connected to this sliding part can move together with the sliding part, so it slides according to the wind force and wind direction received by the flexible body. The portion slides on the outer peripheral surface of the core material, and the connecting portion moves along with the sliding, and the main body also rotates (rotates) around the core material by a certain angle. In other words, the main body that receives wind directly bends and automatically adjusts the pitch angle in accordance with the wind force and the wind direction so that the resistance (resistance force) to the wind is minimized in each part of the main body. Therefore, since the increase in the wind pressure received by the wings and the bending moment of the struts caused by this wind pressure is suppressed, it is possible to prevent damage and failure of each component / member constituting the wind power generator.

請求項5に係る発明(中間部材を備えた風力発電用羽)によれば、ピッチ角調整部材にその根元部が固定された心材は剛体であるので、ピッチ角調整部材によって心材全体のピッチ角が一様に調整(変更)される。この心材の先端部には本体の先端部が固定されているので、心材のピッチ角が調整されたときは心材の先端部と共に本体の先端部もそのピッチ角が調整される。しかし、本体の先端部のピッチ角が調整された場合であっても、本体は可撓性であるので、その先端部よりも根元部に近い部分(先端部以外の部分)では、その先端部のピッチ角と同じようには調整されない。また、ロータヘッドには剛体の中間部材の根元部が固定されており、この中間部材と本体との間には摺動部及び接続部が配置されている。摺動部は中間部材の外周面上を摺動でき、この摺動部に接続されている接続部も摺動部と共に動けるので、本体に受ける風力や風向に応じて摺動部が中間部材の外周面上を摺動して、この摺動に伴って接続部も動くと共に本体も心材の回りを回転する(回動する)。即ち、風を直接に受ける本体は風力や風向に応じて、本体の各部分において風に対する抵抗力(抗力)が最小となるように撓んで自動的にピッチ角が調整されることとなる。従って、羽の受ける風圧や、この風圧に起因して発生する支柱の曲げモーメントの増加が抑制されるので、風力発電装置を構成する各部品・部材の破損や故障を防止できる。ここで、中間部材の横断面の形状を楕円形にすると共に、定格風速よりも強風に対応するように本体先端部のピッチ角が調整された場合は、摺動部が中間部材の外周面上を摺動して中間部材によって本体の横断面が扁平に変形するように本体が撓み、この逆に、定格風速よりも弱風に対応するように本体先端部のピッチ角が調整された場合は、摺動部が中間部材の外周面上を摺動して中間部材によって本体の横断面が厚く変形するように本体が撓む。この結果、強風に対する抗力や揚力の増加が抑制されて強度及び剛性が向上し、弱風における揚力の減少が前記横断面の変形で緩和されて発電量が改善される。   According to the invention according to claim 5 (wind power generation wing provided with an intermediate member), since the core material whose root portion is fixed to the pitch angle adjusting member is a rigid body, the pitch angle of the entire core material by the pitch angle adjusting member. Are adjusted (changed) uniformly. Since the distal end portion of the main body is fixed to the distal end portion of the core material, when the pitch angle of the core material is adjusted, the pitch angle of the distal end portion of the main body is adjusted together with the distal end portion of the core material. However, even when the pitch angle of the tip of the main body is adjusted, the main body is flexible, so that the tip of the portion closer to the root than the tip (the portion other than the tip) is the tip. It is not adjusted in the same way as the pitch angle. The root portion of the rigid intermediate member is fixed to the rotor head, and a sliding portion and a connecting portion are disposed between the intermediate member and the main body. The sliding part can slide on the outer peripheral surface of the intermediate member, and the connecting part connected to the sliding part can move together with the sliding part. By sliding on the outer peripheral surface, the connecting portion moves along with the sliding, and the main body also rotates (rotates) around the core material. In other words, the main body that receives wind directly bends and automatically adjusts the pitch angle in accordance with the wind force and the wind direction so that the resistance (resistance force) to the wind is minimized in each part of the main body. Therefore, since the increase in the wind pressure received by the wings and the bending moment of the struts caused by this wind pressure is suppressed, it is possible to prevent damage and failure of each component / member constituting the wind power generator. Here, when the shape of the cross section of the intermediate member is elliptical and the pitch angle of the front end of the main body is adjusted so as to correspond to a stronger wind than the rated wind speed, the sliding portion is on the outer peripheral surface of the intermediate member. If the pitch angle of the tip of the main body is adjusted so that it corresponds to weaker wind than the rated wind speed, the main body bends so that the cross section of the main body is deformed flat by the intermediate member. The main body bends so that the sliding portion slides on the outer peripheral surface of the intermediate member and the intermediate member deforms the cross section of the main body thickly. As a result, an increase in drag and lift against strong winds is suppressed to improve strength and rigidity, and a decrease in lift in weak winds is mitigated by deformation of the cross section to improve power generation.

本発明は、垂直方向に延びる支柱を備えた風力発電装置に実現された。   The present invention has been realized in a wind turbine generator having a column extending in the vertical direction.

図1から図4までを参照して、本発明の風力発電装置の一例を説明する。図1は、本発明の風力発電装置の一例の概略構成を示す斜視図である。図2(a)は、定格風速時の羽を示す横断面図(図1の二点鎖線で示す断面図)であり、(b)は、強風時の羽を示す横断面図(図1の二点鎖線で示す断面図)である。図3は、羽をその長手方向に切断して示す縦断面図である。図4は、補強材を組み込んだ羽を示す横断面図である。   An example of the wind power generator of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a schematic configuration of an example of a wind turbine generator of the present invention. 2A is a cross-sectional view (cross-sectional view shown by a two-dot chain line in FIG. 1) showing the wings at the rated wind speed, and FIG. 2B is a cross-sectional view showing the wings in the strong wind (FIG. 1). It is sectional drawing shown with a dashed-two dotted line). FIG. 3 is a longitudinal sectional view showing a wing cut in the longitudinal direction. FIG. 4 is a cross-sectional view showing a wing incorporating a reinforcing material.

風力発電装置20は、図1に示すように、鉛直方向に延びる支柱22を備えている。支柱22の上端部22aには回転体24が固定されている。この回転体24は、風向きに応じて自在に回転するように上端部22aに固定されている。回転体24の長手方向一端部24aに取り付けられたロータヘッド26(図3参照)には、風力に応じて回転するように羽30が固定されている。図1では羽30は3枚であるが、何枚でもよい。なお、ロータヘッド26は回転体24に回転自在に固定されており、ロータヘッド26の内部には、羽30のピッチ角を調整する周知のピッチ角調整部材28が配置されている。   As shown in FIG. 1, the wind power generator 20 includes a column 22 that extends in the vertical direction. A rotating body 24 is fixed to the upper end portion 22 a of the column 22. The rotating body 24 is fixed to the upper end 22a so as to freely rotate according to the wind direction. A wing 30 is fixed to a rotor head 26 (see FIG. 3) attached to one end 24a in the longitudinal direction of the rotating body 24 so as to rotate in accordance with wind power. Although there are three wings 30 in FIG. 1, any number may be used. The rotor head 26 is rotatably fixed to the rotating body 24, and a known pitch angle adjusting member 28 that adjusts the pitch angle of the blades 30 is disposed inside the rotor head 26.

羽30の構造を説明する。羽30は大別して3つの部材から構成されており、アルミニウム合金などの金属製の剛体からなる(作製された)円柱状の心材32と、同じく剛体からなる中間部材34と、繊維強化プラスチックやグラスファイバやカーボンファイバなどからなる可撓性の本体36を備えている。   The structure of the wing 30 will be described. The wing 30 is roughly divided into three members. A cylindrical core member 32 made of a metal rigid body such as an aluminum alloy (manufactured), an intermediate member 34 also made of a rigid body, and a fiber reinforced plastic or glass. A flexible main body 36 made of fiber or carbon fiber is provided.

図3に示すように心材32の根元部はピッチ角調整部材28に固定されており、ピッチ角調整部材28によって心材32の全体が一様にそのピッチ角を調整(変更)される。心材32はその根元部から。ロータヘッド26を中心にした放射方向に延びている。   As shown in FIG. 3, the base of the core material 32 is fixed to the pitch angle adjusting member 28, and the pitch angle of the entire core material 32 is adjusted (changed) uniformly by the pitch angle adjusting member 28. The heartwood 32 is from its root. It extends in the radial direction around the rotor head 26.

中間部材34は、その根元部がロータヘッド26に固定されており、心材32を取り囲むように上記の放射方向に延びている。従って、中間部材34はロータヘッド26の回転に伴って回転するが、ピッチ角調整部材28には接続されていない(連結されていない)ので、ピッチ角調整部材28によってそのピッチ角を調整(変更)されることはない。また、中間部材34の横断面は、図2に示すように楕円形である。図2に示すように、この楕円形の長軸は風の方向に延びて(風向にほぼ平行になるように延びて)おり、短軸は、風向きに直交するように延びている。中間部材34は剛体であるので、楕円の長軸及び短軸は常に上記方向に延びていることとなる。   The intermediate member 34 has a root portion fixed to the rotor head 26 and extends in the radial direction so as to surround the core material 32. Accordingly, the intermediate member 34 rotates with the rotation of the rotor head 26, but is not connected (not connected) to the pitch angle adjusting member 28, so that the pitch angle is adjusted (changed) by the pitch angle adjusting member 28. ) Is never done. Further, the cross section of the intermediate member 34 is elliptical as shown in FIG. As shown in FIG. 2, the major axis of the ellipse extends in the wind direction (extends so as to be substantially parallel to the wind direction), and the minor axis extends so as to be orthogonal to the wind direction. Since the intermediate member 34 is a rigid body, the major axis and the minor axis of the ellipse always extend in the above direction.

中間部材34の外周面に接触してこの外周面を覆うように、横断面が楕円形の摺動部38が配置されている。摺動部38は中間部材34よりもやや薄い厚さであり、両者はほぼ相似形状である。摺動部38は、繊維強化プラスチックやグラスファイバやカーボンファイバなどの可撓性の材料から作製されており、中間部材34の外周面上をその周方向に摺動する。この摺動部38の外周面には、繊維強化プラスチックやグラスファイバやカーボンファイバなどの可撓性の材料から作製された接続部39が固定されている。接続部39は、楕円の中心を挟んでほぼ対称な2ヶ所に固定されており、羽30の長手方向に延びている。接続部39は、摺動部38を本体36の内周面に接続させている。即ち、摺動部38は接続部39を介して本体36に接続されている。従って、摺動部38が中間部材34の外周面をその周方向に摺動するときは、接続部39と共に本体36も中間部材34に対して相対的に移動することとなる。ここでは、本体36、摺動部38、及び接続部39を異なる名称で別体にしたが、これらを一体の構成にしてもよい。   A sliding portion 38 having an elliptical cross section is disposed so as to contact the outer peripheral surface of the intermediate member 34 and cover the outer peripheral surface. The sliding portion 38 is slightly thinner than the intermediate member 34, and both are substantially similar in shape. The sliding portion 38 is made of a flexible material such as fiber reinforced plastic, glass fiber, or carbon fiber, and slides on the outer peripheral surface of the intermediate member 34 in the circumferential direction. A connecting portion 39 made of a flexible material such as fiber reinforced plastic, glass fiber, or carbon fiber is fixed to the outer peripheral surface of the sliding portion 38. The connecting portion 39 is fixed at two substantially symmetrical positions across the center of the ellipse, and extends in the longitudinal direction of the wing 30. The connection part 39 connects the sliding part 38 to the inner peripheral surface of the main body 36. That is, the sliding portion 38 is connected to the main body 36 via the connection portion 39. Therefore, when the sliding portion 38 slides on the outer circumferential surface of the intermediate member 34 in the circumferential direction, the main body 36 moves relative to the intermediate member 34 together with the connecting portion 39. Here, the main body 36, the sliding portion 38, and the connecting portion 39 are separated from each other with different names, but these may be integrated.

本体36は、図3に示すように、その根元部が中間部材34の根元部に摺動自在に固定されており、中間部材34を取り囲むように放射方向に延びている筒状のものである。本体36はロータヘッド26には直接に固定されておらず(接続されておらず)、本体36の根元部は、中間部材34の根元部に固定されている。また、本体36の先端部は、図3に示すように心材32の先端部に固定されている。従って、心材32のピッチ角が調整されたときは、このピッチ角調整は本体36の先端部には伝達されるが、本体36は可撓性であるので、後述するように本体36の全体が同一のピッチ角になるわけではない。また、本体36は、図2に示すように、その横断面形状が羽30の回転方向に長い楕円形状であるが、風下方向に揚力を発生させるように風上側と風下側とが非対称の形状になっている。   As shown in FIG. 3, the main body 36 has a cylindrical portion whose root portion is slidably fixed to the root portion of the intermediate member 34 and extends radially so as to surround the intermediate member 34. . The main body 36 is not directly fixed (not connected) to the rotor head 26, and the root portion of the main body 36 is fixed to the root portion of the intermediate member 34. Moreover, the front-end | tip part of the main body 36 is being fixed to the front-end | tip part of the core material 32, as shown in FIG. Therefore, when the pitch angle of the core material 32 is adjusted, the pitch angle adjustment is transmitted to the tip of the main body 36, but the main body 36 is flexible, so that the entire main body 36 is fully described as will be described later. The pitch angle is not the same. Further, as shown in FIG. 2, the main body 36 has an elliptical shape in which the cross-sectional shape is long in the rotational direction of the wing 30, but the shape of the windward side and the leeward side is asymmetric so as to generate lift in the leeward direction. It has become.

上記した心材32、中間部材34、及び本体36の位置関係を説明する。   The positional relationship between the core material 32, the intermediate member 34, and the main body 36 will be described.

本体36は、羽30の各部の回転周速と風速の合成速度によって抗力が最小となるように、即ち、羽30の受ける抗力と揚力の合成力でピッチが自動調整される位置が回転中心となるように、図2に示すように、摺動部38及び接続部39を介して中間部材34に回転自在に連結されている。この回転中心となる位置Rは、本体36の横断面形状の長手中心における厚さの中心Cに対し、風上側及び本体36の回転方向にそれぞれ本体36の厚さ及び幅の5%以上12%以下の範囲内の距離だけ離れた位置である。この偏心量(厚さ及び幅の5%以上12%以下の範囲内の距離)が5%未満のときはピッチが自動調整されず、12%を超えたときはピッチ方向に羽30が回転振動し、騒音発生の原因となる。   The main body 36 has a rotational center at which the pitch is automatically adjusted by the combined force of the drag and lift received by the wing 30 so that the drag is minimized by the combined speed of the rotational peripheral speed and wind speed of each part of the wing 30. As shown in FIG. 2, the intermediate member 34 is rotatably connected to the intermediate member 34 via the sliding portion 38 and the connecting portion 39. The position R serving as the rotation center is 5% to 12% of the thickness and width of the main body 36 in the windward direction and the rotation direction of the main body 36 with respect to the center C of the thickness at the longitudinal center of the cross-sectional shape of the main body 36, respectively. It is a position separated by a distance within the following range. When this amount of eccentricity (distance within the range of 5% to 12% of the thickness and width) is less than 5%, the pitch is not automatically adjusted, and when it exceeds 12%, the wing 30 rotates and vibrates in the pitch direction. However, it causes noise generation.

上述したように、中間部材34の横断面は楕円形であり、この楕円形の長軸は風の方向に延びて(風向にほぼ平行になるように延びて)おり、短軸は、風向きに直交するように延びている。このため、図2(b)に示すように、本体36の横断面形状の長手方向が強風側(即ち、ピッチ角の増加側)に調整されたとき(この長手方向が風向きに平行になろうとしたとき)に、本体36の横断面形状の厚さ側が、中間部材34の楕円形状の短軸側に近づくように移動するので抗力と揚力を同時に減少できる。従って、強風時には羽30の回転数が減少し、羽30の受ける風圧やこれを介して受ける支柱22の曲げモーメントの増加を抑制できるので、これら構造部材の破損を効果的に防止できる。このような場合、羽30の本体36の横断面形状の変形が風下側により多く発生するように、横断面形状の風下側の材料(面)を撓み易くするために、この材料を低剛性材または薄肉材を使用したり、この逆に、風上側に図4に示すような補強材40を追加したりすることにより、よりいっそうの効果を期待できる。   As described above, the cross section of the intermediate member 34 is elliptical, and the major axis of the ellipse extends in the wind direction (extends so as to be substantially parallel to the wind direction), and the minor axis extends in the wind direction. It extends so as to be orthogonal. For this reason, as shown in FIG. 2B, when the longitudinal direction of the cross-sectional shape of the main body 36 is adjusted to the strong wind side (that is, the pitch angle increasing side) (this longitudinal direction tends to be parallel to the wind direction). The thickness side of the cross-sectional shape of the main body 36 moves so as to approach the elliptical short axis side of the intermediate member 34, so that the drag force and the lift force can be reduced simultaneously. Therefore, when the wind is strong, the number of rotations of the wing 30 is reduced, and an increase in the wind pressure received by the wing 30 and the bending moment of the column 22 received via the wing 30 can be suppressed, so that damage to these structural members can be effectively prevented. In such a case, in order to make the leeward side material (surface) of the cross-sectional shape easy to bend so that deformation of the cross-sectional shape of the main body 36 of the wing 30 occurs more on the leeward side, this material is used as a low-rigidity material. Alternatively, a further effect can be expected by using a thin material, or conversely, by adding a reinforcing material 40 as shown in FIG. 4 to the windward side.

上記したように、羽30では、簡単な構造でピッチ調整用の構造部材(心材32)が風圧によって発生する曲げモーメントから開放されるので、これらの可動構成部材を小型、軽量化できる。また、強風時にも羽30の全ての部位で最適なピッチ角に調整できるだけでなく、羽30の厚さ(本体36の厚さ)を風力に応じて変化できるので、強風時の羽30の抗力だけでなく揚力の増加も抑制でき、羽30や支柱22の許容風速をこれらの断面強度を増加させずに高めることができる。   As described above, in the wing 30, since the pitch adjusting structural member (core material 32) is released from the bending moment generated by the wind pressure with a simple structure, these movable components can be reduced in size and weight. Further, not only can the pitch angle be adjusted to an optimum pitch angle in all parts of the wing 30 even in a strong wind, but the thickness of the wing 30 (the thickness of the main body 36) can be changed according to the wind force. In addition, the increase in lift can be suppressed, and the allowable wind speed of the wings 30 and the struts 22 can be increased without increasing the cross-sectional strength.

図5と図6を参照して、本発明の風力発電装置の他の例を説明する。図5は、羽を示す横断面図(図1の二点鎖線で示す断面図と同様)であり、図6は、図5の羽の縦断面図である。   With reference to FIG. 5 and FIG. 6, another example of the wind power generator of the present invention will be described. 5 is a cross-sectional view (similar to the cross-sectional view shown by the two-dot chain line in FIG. 1) showing the wing, and FIG. 6 is a vertical cross-sectional view of the wing in FIG.

実施例2の風力発電装置の概略構成は,図1に示す実施例1の風力発電装置と同様であるが、実施例2の羽60は、実施例1の羽30とはその構造が異なる。   The schematic configuration of the wind turbine generator of the second embodiment is the same as that of the wind turbine generator of the first embodiment shown in FIG. 1, but the structure of the wing 60 of the second embodiment is different from that of the wing 30 of the first embodiment.

羽60の構造を説明する。羽60は、アルミニウム合金などの金属製の剛体からなる(作製された)円柱状の心材62と、繊維強化プラスチックやグラスファイバやカーボンファイバなどの可撓性の本体64と、繊維強化プラスチックやグラスファイバやカーボンファイバなどの可撓性の材料から作製されて横断面が楕円形の摺動部66と、繊維強化プラスチックやグラスファイバやカーボンファイバなどの可撓性の材料から作製された接続部68とを備えている。摺動部66は、心材62の外周面に接触してこの外周面を覆うように構成されており、心材62の外周面上をその周方向に摺動する。この摺動部66の外周面には接続部68が固定されている。接続部68は、円柱状の心材62の中心を挟んでほぼ対称な2ヶ所に固定されており、羽60の長手方向に直交する方向に延びている。接続部68は、摺動部66を本体64の内周面に接続させている。即ち、摺動部66は接続部68を介して本体64に接続されている。従って、摺動部66が心材62の外周面をその周方向に摺動するときは、接続部68と共に本体64も心材62に対して相対的にその周方向に移動することとなる。ここでは、本体64、摺動部66、及び接続部68を異なる名称で別体にしたが、これらを一体の構成にしてもよい。また、心材62は、本体64の横断面の中心位置Cよりもその回転方向及び風上方向にそれぞれ偏心した位置Rに配置されている。この点は、実施例1と同じである。   The structure of the wing 60 will be described. The wing 60 is a cylindrical core material 62 (made) made of a metal rigid body such as an aluminum alloy, a flexible main body 64 such as fiber reinforced plastic, glass fiber, or carbon fiber, and fiber reinforced plastic or glass. A sliding portion 66 made of a flexible material such as fiber or carbon fiber and having an elliptical cross section, and a connecting portion 68 made of a flexible material such as fiber reinforced plastic, glass fiber, or carbon fiber. And. The sliding portion 66 is configured to contact the outer peripheral surface of the core material 62 and cover the outer peripheral surface, and slides on the outer peripheral surface of the core material 62 in the circumferential direction. A connecting portion 68 is fixed to the outer peripheral surface of the sliding portion 66. The connecting portion 68 is fixed at two substantially symmetrical positions across the center of the cylindrical core material 62 and extends in a direction perpendicular to the longitudinal direction of the wing 60. The connecting portion 68 connects the sliding portion 66 to the inner peripheral surface of the main body 64. That is, the sliding portion 66 is connected to the main body 64 via the connection portion 68. Therefore, when the sliding portion 66 slides on the outer peripheral surface of the core material 62 in the circumferential direction, the main body 64 moves together with the connection portion 68 in the circumferential direction relative to the core material 62. Here, the main body 64, the sliding portion 66, and the connecting portion 68 are separated from each other with different names, but these may be integrated. Further, the core material 62 is disposed at a position R that is eccentric in the rotation direction and the windward direction from the center position C of the cross section of the main body 64. This is the same as in the first embodiment.

図6に示すように心材62の根元部はピッチ角調整部材28に固定されており、ピッチ角調整部材28によって心材62の全体が一様にそのピッチ角を調整(変更)される。心材62はその根元部から、ロータヘッド26を中心にした放射方向に延びている。   As shown in FIG. 6, the base of the core material 62 is fixed to the pitch angle adjusting member 28, and the pitch angle of the entire core material 62 is adjusted (changed) uniformly by the pitch angle adjusting member 28. The core material 62 extends from the root portion in a radial direction around the rotor head 26.

本体64は、その根元部がロータヘッド26に固定されており、心材62を取り囲むように放射方向に延びている筒状のものである。また、本体64の先端部は、図6に示すように心材62の先端部に固定されている。従って、心材62のピッチ角が調整されたときは、このピッチ角調整は本体64の先端部には伝達されるが、本体64は可撓性であるので本体64の全体が同一のピッチ角になるわけではない。また、本体64は、図5に示すように、その横断面形状が羽60の回転方向に長い楕円形状であるが、風下方向に揚力を発生させるように風上側と風下側とが非対称の形状になっている。   The main body 64 has a base portion fixed to the rotor head 26 and has a cylindrical shape extending in the radial direction so as to surround the core material 62. Moreover, the front-end | tip part of the main body 64 is being fixed to the front-end | tip part of the core material 62, as shown in FIG. Therefore, when the pitch angle of the core material 62 is adjusted, the pitch angle adjustment is transmitted to the tip end portion of the main body 64, but the main body 64 is flexible so that the entire main body 64 has the same pitch angle. It doesn't mean. Further, as shown in FIG. 5, the main body 64 has an elliptical shape in which the cross-sectional shape is long in the direction of rotation of the wing 60, but the upwind side and the leeward side are asymmetrical so as to generate lift in the downwind direction. It has become.

羽60では、ピッチ角の調整時に本体64の断面形状を変化させたり、羽60の曲げ強度や剛性を、実施例1の中間材34に依存することはできない。しかし、本体64の根元部をロータヘッド26に直接に固定し、羽60の曲げ強度や剛性に比べて捩れ剛性の低い構造、例えば図5に示すような開断面構造とすることにより、本体の端部64a,64bが風力に応じて補助本体65を摺動するので、羽60の全ての部位で最適なピッチ角に調整できる。なお、本体64を、上記の放射方向及びこれに直交する方向に延びる複数の繊維で構成してもよい。   In the wing 60, the cross-sectional shape of the main body 64 cannot be changed when the pitch angle is adjusted, and the bending strength and rigidity of the wing 60 cannot depend on the intermediate material 34 of the first embodiment. However, by fixing the base portion of the main body 64 directly to the rotor head 26 and having a structure with low torsional rigidity compared to the bending strength and rigidity of the wing 60, for example, an open cross-sectional structure as shown in FIG. Since the end portions 64a and 64b slide on the auxiliary main body 65 according to the wind force, the pitch angle can be adjusted to an optimum pitch angle in all parts of the wing 60. The main body 64 may be composed of a plurality of fibers extending in the radial direction and in a direction perpendicular to the radial direction.

本発明の風力発電装置の一例の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of an example of the wind power generator of this invention. (a)は、定格風速時の羽を示す横断面図(図1の二点鎖線で示す断面図)であり、(b)は、強風時の羽を示す横断面図(図1の二点鎖線で示す断面図)である。(A) is a cross-sectional view (cross-sectional view indicated by a two-dot chain line in FIG. 1) showing a wing at the rated wind speed, and (b) is a cross-sectional view (two points in FIG. 1) showing a wing at a strong wind. It is sectional drawing shown with a dashed line. 羽をその長手方向に切断して示す縦断面図である。It is a longitudinal cross-sectional view which cuts and shows a wing | blade in the longitudinal direction. 補強材を組み込んだ羽を示す横断面図である。It is a cross-sectional view showing a wing incorporating a reinforcing material. 実施例2の羽を示す横断面図(図1の二点鎖線で示す断面図と同様)である。It is a cross-sectional view (similar to the cross-sectional view shown by the two-dot chain line in FIG. 1) showing the wing of Example 2. 図5に示す羽の縦断面図である。It is a longitudinal cross-sectional view of the wing | blade shown in FIG. 従来の高出力型の風力発電装置の一例を示す斜視図である。It is a perspective view which shows an example of the conventional high output type wind power generator. 定格風速における一般的な従来の羽の半径方向各部の横断面形状を示す模式図である。It is a schematic diagram which shows the cross-sectional shape of each radial direction part of the general conventional wing | wing at a rated wind speed. 風力が定格風速を超えた場合(強風時)における従来の羽の長手方向中央部の断面図である。It is sectional drawing of the longitudinal direction center part of the conventional wing | blade in case a wind force exceeds a rated wind speed (at the time of a strong wind).

符号の説明Explanation of symbols

20 風力発電装置
26 ロータヘッド
28 ピッチ角調整部材
30,60 羽
32,62 心材
34 中間部材
36,64 本体
38,66 摺動部
39,68 接続部
20 Wind power generator 26 Rotor head 28 Pitch angle adjusting member 30, 60 Wings 32, 62 Core material 34 Intermediate member 36, 64 Main body 38, 66 Sliding part 39, 68 Connection part

Claims (9)

鉛直方向に延びる支柱と、その上端部に回転自在に固定されたロータヘッドと、該ロータヘッドに収容されたピッチ角調整部材とを備えた風力発電装置における、前記ロータヘッドにその根元部が固定されると共に、前記ロータヘッドを中心にした放射方向に延びる風力発電用羽において、
前記ピッチ角調整部材にその根元部が固定されると共に前記放射方向に延びる、剛体からなる心材と、
その根元部が前記ロータヘッドに固定されて前記心材を取り囲むように前記放射方向に延びる、その先端部が前記心材の先端部に固定された可撓性で筒状の本体と、
前記心材の外周面に接触してこの外周面を覆うと共に、この外周面上を摺動する摺動部と、
該摺動部を前記本体に接続させる接続部とを備えたことを特徴とする風力発電用羽。
In a wind turbine generator including a vertically extending column, a rotor head rotatably fixed to an upper end portion thereof, and a pitch angle adjusting member accommodated in the rotor head, the root portion is fixed to the rotor head. And in the blade for wind power generation extending in the radial direction around the rotor head,
A core made of a rigid body, the root of which is fixed to the pitch angle adjusting member and extends in the radial direction;
A flexible and cylindrical main body whose root is fixed to the rotor head and extends in the radial direction so as to surround the core, and whose tip is fixed to the tip of the core;
A sliding part that contacts the outer peripheral surface of the core material and covers the outer peripheral surface, and slides on the outer peripheral surface;
A wing for wind power generation comprising a connecting portion for connecting the sliding portion to the main body.
前記本体、前記摺動部、及び前記連結部は一体に構成されたものであることを特徴とする請求項1に記載の風力発電用羽。 The wing for wind power generation according to claim 1, wherein the main body, the sliding portion, and the connecting portion are integrally formed. 前記心材は、前記本体の横断面の中心位置よりもその回転方向及び風上方向にそれぞれ偏心した位置に、その中心が配置されたものであることを特徴とする請求項1又は2に記載の風力発電用羽。 3. The center of the core material according to claim 1, wherein the center of the core is disposed at a position that is eccentric in the rotational direction and the windward direction from the center position of the cross section of the main body. Wind power wings. 前記本体は、前記放射方向及びこれに直交する方向に延びる複数の繊維で構成されたものであることを特徴とする請求項1、2、又は3に記載の風力発電用羽。 The wing for wind power generation according to claim 1, 2, or 3, wherein the main body is composed of a plurality of fibers extending in the radial direction and in a direction perpendicular thereto. 鉛直方向に延びる支柱と、その上端部に回転自在に固定されたロータヘッドと、該ロータヘッドに収容されたピッチ角調整部材とを備えた風力発電装置における、前記ロータヘッドにその根元部が固定されると共に、前記ロータヘッドを中心にした放射方向に延びる風力発電用羽において、
前記ピッチ角調整部材にその根元部が固定されると共に前記放射方向に延びる、剛体からなる心材と、
その根元部が前記ロータヘッドに固定されて前記心材を取り囲むように前記放射方向に延びる、剛体からなる中間部材と、
該中間部材を取り囲むように前記放射方向に延びると共に、その先端部が前記心材の先端部に固定された可撓性で筒状の本体と、
前記中間部材の外周面に接触してこの外周面を覆うと共に、この外周面上を摺動する摺動部と、
該摺動部を前記本体に接続させる接続部とを備えたことを特徴とする風力発電用羽。
In a wind turbine generator including a vertically extending column, a rotor head rotatably fixed to an upper end portion thereof, and a pitch angle adjusting member accommodated in the rotor head, the root portion is fixed to the rotor head. And in the blade for wind power generation extending in the radial direction around the rotor head,
A core made of a rigid body, the root of which is fixed to the pitch angle adjusting member and extends in the radial direction;
An intermediate member made of a rigid body, the root portion of which is fixed to the rotor head and extends in the radial direction so as to surround the core material;
A flexible and cylindrical main body extending in the radial direction so as to surround the intermediate member and having a distal end portion fixed to the distal end portion of the core material;
A sliding part that contacts the outer peripheral surface of the intermediate member and covers the outer peripheral surface, and slides on the outer peripheral surface;
A wing for wind power generation comprising a connecting portion for connecting the sliding portion to the main body.
前記本体、前記摺動部、及び前記接続部は一体に構成されたものであることを特徴とする請求項5に記載の風力発電用羽。 The wing for wind power generation according to claim 5, wherein the main body, the sliding portion, and the connecting portion are integrally formed. 前記中間部材は、その横断面の形状が楕円形のものであることを特徴とする請求項5又は6に記載の風力発電用羽。 The wing for wind power generation according to claim 5 or 6, wherein the intermediate member has an elliptical cross-sectional shape. 前記本体は、風下側の面が風上側の面よりも撓み易いものであることを特徴とする請求項1から7までのうちのいずれか一項に記載の風力発電用羽。 The wing for wind power generation according to any one of claims 1 to 7, wherein the main body has a surface on the leeward side that is more easily bent than a surface on the leeward side. 請求項1から8までのうちのいずれか一項に記載の風力発電用羽を備えたことを特徴とする風力発電装置。 A wind turbine generator comprising the wind turbine blade according to any one of claims 1 to 8.
JP2008202575A 2008-08-06 2008-08-06 Blade for wind power generation, and wind power generator Pending JP2010038049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202575A JP2010038049A (en) 2008-08-06 2008-08-06 Blade for wind power generation, and wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202575A JP2010038049A (en) 2008-08-06 2008-08-06 Blade for wind power generation, and wind power generator

Publications (1)

Publication Number Publication Date
JP2010038049A true JP2010038049A (en) 2010-02-18

Family

ID=42010853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202575A Pending JP2010038049A (en) 2008-08-06 2008-08-06 Blade for wind power generation, and wind power generator

Country Status (1)

Country Link
JP (1) JP2010038049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103511193A (en) * 2012-06-29 2014-01-15 新昌县冠阳技术开发有限公司 Self-adaptive vane device for wind driven generator
KR101515995B1 (en) * 2014-03-31 2015-05-04 윤양운 Rotor blade

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103511193A (en) * 2012-06-29 2014-01-15 新昌县冠阳技术开发有限公司 Self-adaptive vane device for wind driven generator
CN103511193B (en) * 2012-06-29 2017-10-20 国电联合动力技术有限公司 A kind of self-adaption leaf blade device for wind-driven generator
KR101515995B1 (en) * 2014-03-31 2015-05-04 윤양운 Rotor blade

Similar Documents

Publication Publication Date Title
US9945357B2 (en) Flexible flap arrangement for a wind turbine rotor blade
ES2966169T3 (en) Wind turbine blade with narrow shoulder and relatively thick airfoil profiles
DK2357358T3 (en) Rotor blade of a wind turbine
US9239040B2 (en) Root end assembly configuration for a wind turbine rotor blade and associated forming methods
JP5479388B2 (en) Wind turbine blade and wind power generator equipped with the same
JP5506033B2 (en) Wind turbine for wind power generation and manufacturing method thereof
WO2010107592A3 (en) Wind turbine blade with damping element
DK2784301T3 (en) Rotor blade device for wind turbine with load reduction characteristics
EP3453872A1 (en) Methods for mitigating noise during high wind speed conditions of wind turbines
JP5200117B2 (en) Wind turbine rotor design method, wind turbine rotor design support device, wind turbine rotor design support program, and wind turbine rotor
JP2013245564A (en) Blade for vertical axial wind turbine and vertical axial wind turbine
EP2362091A1 (en) Rotor blade vibration damping system
US20130259697A1 (en) Enhanced wind turbine blade
JP2010038049A (en) Blade for wind power generation, and wind power generator
JP4875770B2 (en) Windmill semi-flexible mount
BRPI0901706A2 (en) wind turbine blades with twisted tips
JP5711500B2 (en) Wind power generator
JP2009191744A (en) Vertical shaft wind turbine
JP3842254B2 (en) Wind turbine structure in wind turbine generator
US20140234115A1 (en) Wind turbine blade having twisted spar web
JP6158019B2 (en) Axial turbine generator
KR101337622B1 (en) Wind power generator
JP6130680B2 (en) Vertical axis fluid power generator
JP4940961B2 (en) Vertical axis drag type windmill
KR101345711B1 (en) Wind power generator