JP2010037377A - Photosensitive element - Google Patents

Photosensitive element Download PDF

Info

Publication number
JP2010037377A
JP2010037377A JP2008199508A JP2008199508A JP2010037377A JP 2010037377 A JP2010037377 A JP 2010037377A JP 2008199508 A JP2008199508 A JP 2008199508A JP 2008199508 A JP2008199508 A JP 2008199508A JP 2010037377 A JP2010037377 A JP 2010037377A
Authority
JP
Japan
Prior art keywords
dye
titanium oxide
phthalocyanine
phthalocyanine dye
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008199508A
Other languages
Japanese (ja)
Other versions
JP5360534B2 (en
Inventor
Hiroaki Sagane
宏明 砂金
Akiyuki Matsushita
明行 松下
Yutaka Kagaya
豊 加賀屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008199508A priority Critical patent/JP5360534B2/en
Publication of JP2010037377A publication Critical patent/JP2010037377A/en
Application granted granted Critical
Publication of JP5360534B2 publication Critical patent/JP5360534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photosensitive resin that eliminates difficulty in imparting a sensitization function by a phthalocyanine pigment and is sensitized in high efficiency. <P>SOLUTION: The phthalocyanine pigment containing pentavalent antimony is synthesized by a method disclosed by patent number 4038572 (inventor; Hiroaki Sunagane and Okutoyo Kaga), especially a pigment containing a tert-butyl group as a peripheral group is described in detail in J. Inorg. Biochem., 102 (2008) 380. In this invention, a finding is obtained that a phthalocyanine pigment which comprises pentavalent antimony as a central atom and a hydroxy group introduced as an axial ligand has remarkably high affinity for a photosensitive material such as fine particle titanium oxide and the finding is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光の励起により所定の機能が発現される感光性材料の表面がフタロシアニン色素で修飾された感光性素子に関する。   The present invention relates to a photosensitive element in which the surface of a photosensitive material that exhibits a predetermined function by light excitation is modified with a phthalocyanine dye.

従来より、この種感光性素子としては、フタロシアニン色素を吸着した微粒子酸化チタンが知られている。
この微粒子酸化チタンは、感光性素子の一用途である湿式太陽電池・光触媒に頻繁に用いられる。
酸化チタン自身は紫外光に良く応答するものの、可視光にはほとんど応答しないため、屋内での使用が制限される。
そこで酸化チタン微粒子の表面を有機色素で化学修飾し、可視光への応答性を向上させる試みが活発になされており、色素で化学修飾された酸化チタンを用いた太陽電池・光触媒はそれぞれ色素増感太陽電池・色素増感光触媒と呼ばれている。
しかしながら有機色素の光化学的な安定性に問題があり、この試みは解決すべき問題が少なくない。
フタロシアニン(Pc)は大環状のπ電子系の有機色素であり、その金属錯体(図7)は光に対して安定であることが知られており、太陽電池・光触媒用増感色素として注目を集めている。
Conventionally, fine particle titanium oxide adsorbing a phthalocyanine dye is known as this type of photosensitive element.
This fine particle titanium oxide is frequently used for wet solar cells and photocatalysts, which are one application of photosensitive elements.
Titanium oxide itself responds well to ultraviolet light, but hardly responds to visible light, limiting its use indoors.
Therefore, active attempts have been made to chemically modify the surface of titanium oxide fine particles with organic dyes to improve the response to visible light. Solar cells and photocatalysts using titanium oxide chemically modified with dyes are each dye-enhanced. It is called a solar cell / dye-sensitized photocatalyst.
However, there are problems with the photochemical stability of organic dyes, and this attempt has many problems to be solved.
Phthalocyanine (Pc) is a macrocyclic π-electron organic dye, and its metal complex (Figure 7) is known to be stable to light, and has attracted attention as a sensitizing dye for solar cells and photocatalysts. Collecting.

しかし、単純にフタロシアニン色素を修飾してもその濃度が不十分なために、その濃度を向上するため、非特許文献1-5に示すように、フタロシアニン色素に周辺置換基としてカルボキシル基やスルホン酸基等を導入し、それをアンカーとして酸化チタンに固定させる方法がとられていた。
非特許文献1ではフタロシアニン色素を酸化チタンに固定させるために酸化チタンを高価な有機リチウム試薬を用いて処理している。
非特許文献6及び特許文献1では、フタロシアニン色素を固定するためにカルボキシル基を有するピリジンを軸配位子として導入しているが、そのために高価なルテニウムを用いている。
このような従来の方法は、フタロシアニン自体がTiO2とは相互作用が弱いため(TiO2に引っかかるものが無いため)であり、例えばtert-butyl基を有するフタロシアニンは、一般的な溶媒に大変良く溶けるが、TiO2には直接には吸着しないということによるものである。
http://www.jpo.go.jp/shiryou/s_sonota /hyoujun_gijutsu/solar_cell/4_c_5.htm Angewandte Chemie, 119 (2007) 8510, J.-J. Cid, et al., 第88春季年会講演要旨集2PC081、 安田和正他 Inorganic Chemistry, 4 (1965) 469, J. H. Weber and D. H. Bush Journal of Porphyrins and Phthalocyanines, 3 (1999), 230, Md. K. Nazeeruddin, et al. Chemical Communications, 1998, 719, Md. K. Nazeeruddin, et al. WO/1993/009124(PCT/GB-92/02061)
However, even if the phthalocyanine dye is simply modified, its concentration is insufficient, so that the concentration is improved. As shown in Non-Patent Document 1-5, the phthalocyanine dye has a carboxyl group or sulfonic acid as a peripheral substituent. A method has been employed in which a group or the like is introduced and fixed to titanium oxide as an anchor.
In Non-Patent Document 1, titanium oxide is treated with an expensive organolithium reagent in order to fix the phthalocyanine dye to titanium oxide.
In Non-Patent Document 6 and Patent Document 1, pyridine having a carboxyl group is introduced as an axial ligand for fixing a phthalocyanine dye, and therefore expensive ruthenium is used.
Such a conventional method is because phthalocyanine itself has a weak interaction with TiO2 (because there is nothing caught by TiO2). For example, phthalocyanine having a tert-butyl group is very well soluble in general solvents. This is because TiO2 does not adsorb directly.
http://www.jpo.go.jp/shiryou/s_sonota /hyoujun_gijutsu/solar_cell/4_c_5.htm Angewandte Chemie, 119 (2007) 8510, J.-J.Cid, et al., Abstracts of the 88th Spring Annual Meeting 2PC081, Kazumasa Yasuda and others Inorganic Chemistry, 4 (1965) 469, JH Weber and DH Bush Journal of Porphyrins and Phthalocyanines, 3 (1999), 230, Md.K.Nazeeruddin, et al. Chemical Communications, 1998, 719, Md.K.Nazeeruddin, et al. WO / 1993/009124 (PCT / GB-92 / 02061)

本発明は、上記のようなフタロシアニン色素による増感機能の付与の困難性を無くし、より高能率な増感された感光性素子を提供することを目的とする。   It is an object of the present invention to provide a highly efficient sensitized photosensitive element that eliminates the difficulty of imparting a sensitizing function with the phthalocyanine dye as described above.

本発明において用いた5価アンチモンを含むフタロシアニン色素は、特許第4038572号(発明者;砂金宏明、加賀屋豊)に開示された方法で合成し、特に周辺置換基としてtert-butyl基を有する色素についてはJ.Inorg.Biochem.,102(2008)380に詳細に記述されている。
本発明は、この5価アンチモンを中心原子とし、かつ軸配位子として水酸基を導入することにより得られたフタロシアニン色素が微粒子酸化チタン等の感光性材料と著しく高い親和性を有することを知見するに至り、それを利用したものである。
The phthalocyanine dye containing pentavalent antimony used in the present invention is synthesized by the method disclosed in Japanese Patent No. 4085772 (inventor; Hiroaki Sanakin, Yutaka Kagaya), and particularly a dye having a tert-butyl group as a peripheral substituent. Is described in detail in J. Inorg. Biochem., 102 (2008) 380.
The present invention finds that a phthalocyanine dye obtained by introducing this pentavalent antimony as a central atom and introducing a hydroxyl group as an axial ligand has a remarkably high affinity with a photosensitive material such as fine particle titanium oxide. It is what used it.

発明1の感光性素子は、感光性材料を修飾するフタロシアニン色素が五価アンチモンを中心原子とし、かつ軸配位子として水酸基が導入されてなる親水性フタロシアニン色素であることを特徴とする。   The photosensitive element of the invention 1 is characterized in that the phthalocyanine dye for modifying the photosensitive material is a hydrophilic phthalocyanine dye having pentavalent antimony as a central atom and a hydroxyl group introduced as an axial ligand.

発明2は、発明1の感光性素子において、感光性材料が酸化チタン粉末であることを特徴とする。   Invention 2 is the photosensitive element of Invention 1, characterized in that the photosensitive material is titanium oxide powder.

本発明では、微粒子酸化チタン等の感光性材料をフタロシアニン色素で化学修飾するにあたり、容易に充分な濃度のものが得られた。その方法の具体例は図1に示すようなものである。
中心元素として五価アンチモンを導入し、軸配位子として水酸基を持たせることにより著しく親水性を高めたフタロシアニン錯体(図2)を、錯体が溶解する適当な溶媒中で微粒子酸化チタンと混合し、ろ過または遠心分離によって溶媒(過剰の色素ならびに不純物を含む)を除去することにより得られる。
一般にフタロシアニンを酸化チタン上に固定する場合は、フタロシアニンのベンゼン環上の1個乃至複数の水素原子をカルボキシル基(エステル基を含む)やスルフォン酸基またはこれらの官能基を含む側鎖で化学修飾し、また酸化チタン微粒子を有機リチウム試薬等により活性化する必要があるが、本発明による方法は、そのような操作を必要としない。
また、得られた濃度も、従来のような複雑な工程を経たものと損傷はなく、それ以上の高濃度にすることも期待できる物であった。
In the present invention, when a photosensitive material such as fine particle titanium oxide is chemically modified with a phthalocyanine dye, a material having a sufficient concentration can be easily obtained. A specific example of the method is as shown in FIG.
A phthalocyanine complex (Fig. 2), in which pentavalent antimony is introduced as a central element and a hydroxyl group is provided as an axial ligand to significantly increase hydrophilicity, is mixed with fine titanium oxide in a suitable solvent in which the complex is dissolved. Obtained by removing the solvent (containing excess dye as well as impurities) by filtration or centrifugation.
In general, when phthalocyanine is immobilized on titanium oxide, one or more hydrogen atoms on the phthalocyanine benzene ring are chemically modified with carboxyl groups (including ester groups), sulfonic acid groups, or side chains containing these functional groups. In addition, although it is necessary to activate the titanium oxide fine particles with an organolithium reagent or the like, the method according to the present invention does not require such an operation.
Also, the obtained concentration was not damaged as compared with the conventional complicated process, and it could be expected to be higher than that.

本発明に用いるアンチモン−フタロシアニン錯体においては、五価アンチモンならびに軸配位子である水酸基(OH基)の存在が、酸化チタンへの特異な吸着の原動力であると考えられる。
五価のアンチモンが存在しない場合、例えば無金属体(図7におけるM=H2)の場合は色素の吸着は起こらずに溶液中にとどまり、他の金属錯体(M=Zn,Co,Cu)の場合は吸着しても親和性が弱く、洗浄中に大半の色素は溶液中に遊離する。
また同じアンチモンでも三価の錯体の場合は脱金属化が起こり、無金属体(図7におけるM=H2)が溶液中に遊離し、酸化チタンには吸着されない。
また五価のアンチモンの錯体でも、軸配位子が塩化物イオン(Cl-)の場合では、フタロシアニン色素の還元ならびにそれに引き続く脱金属反応が起こる。
以上のことから、以下の範囲の組成を持つアンチモン錯体が本発明と同様の特性を示すものと予想される。
In the antimony-phthalocyanine complex used in the present invention, the presence of pentavalent antimony and a hydroxyl group (OH group) which is an axial ligand is considered to be a driving force for specific adsorption onto titanium oxide.
In the absence of pentavalent antimony, for example, in the case of a metal-free substance (M = H 2 in FIG. 7), dye adsorption does not occur and remains in the solution, and other metal complexes (M = Zn, Co, Cu) In this case, the affinity is weak even after adsorption, and most of the dye is released into the solution during washing.
Further, even in the case of the same antimony, in the case of a trivalent complex, demetallation occurs, and a metal-free substance (M = H 2 in FIG. 7) is liberated in the solution and is not adsorbed by titanium oxide.
Even in the pentavalent antimony complex, when the axial ligand is chloride ion (Cl ), reduction of the phthalocyanine dye and subsequent metal removal reaction occur.
From the above, it is expected that an antimony complex having a composition in the following range exhibits the same characteristics as those of the present invention.

1.軸配位子である水酸基の数
1〜2個 実施例では水酸基の数が2個のものしか示していないが、1個しかない場合でも同様の効果があるものと予想される。
1. Number of hydroxyl groups that are axial ligands
1 to 2 In the examples, only two hydroxyl groups are shown, but even when only one hydroxyl group is present, the same effect is expected.

2.周辺置換基(図2におけるR1-8)の種類
実施例では炭化水素基の例としてtert-butyl基、含ヘテロ原子炭化水素の例としてn-butoxy基および4-tert-butyl-phenoxy基を示しているが、これらの置換基は主にフタロシアニン色素の有機溶媒への溶解度を高めるために導入されているため、特に酸化チタンへの吸着には寄与していない。
カルボキシル基やスルフォン酸基等の極性基が存在する場合、酸化チタンへの吸着という点においてOH基と競合する可能性はあるが、本発明はこのような置換基が存在しなくても酸化チタンへの吸着が起こるように分子設計された色素を用いているので、これらの置換基が妨害するものではない。
さらにハロゲンやニトロ基、シアノ基のような置換基だけを持ち、炭化水素基のような置換基をもたないフタロシアニン色素は有機溶媒への溶解度が著しく低いため、実用上の観点からは本発明に用いるには相応しくないと考えられるが、ここで除外する理由は無い。
従って五価アンチモンと軸配位子としてのOH基が存在すれば、基本的にどのような周辺置換基をもつフタロシアニン色素でも実施例と同様のことが予想される。
2. Peripheral substituents (R in FIG. 2 1 - 8) In Type Example tert-butyl group as examples of the hydrocarbon group, the n-butoxy group and a 4-tert-butyl-phenoxy group examples of heteroatom-containing hydrocarbon As shown, these substituents are introduced mainly to increase the solubility of the phthalocyanine dye in an organic solvent, and thus do not particularly contribute to adsorption to titanium oxide.
When polar groups such as carboxyl groups and sulfonic acid groups are present, there is a possibility of competing with OH groups in terms of adsorption to titanium oxide. These substituents are not hindered because they use dyes that are molecularly designed to adsorb to the surface.
Furthermore, phthalocyanine dyes having only substituents such as halogen, nitro group, and cyano group and not having substituents such as hydrocarbon groups have extremely low solubility in organic solvents. There is no reason to exclude it here.
Accordingly, if pentavalent antimony and an OH group as an axial ligand are present, basically any phthalocyanine dye having a peripheral substituent is expected to be the same as in the examples.

3.対陰イオン(図1におけるZ-
本発明に用いているアンチモン−フタロシアニン錯体は陽イオン種であるため、その電荷を中和するために対陰イオンが付随する。
実施例では三ヨウ化物イオン(I3 -)だけを示しているが、これは五価アンチモン錯体を合成する際の原料が三価アンチモン錯体のI3 -塩であることに由来し、またI3 -イオンの存在が特段の不都合をもたらさないためである。
また本発明品を色素増感太陽電池に応用する場合、電解質として用いられるのはI3 -塩であることが多いので、むしろ好都合であることが予想される。
しかしながら、フタロシアニン色素の酸化チタン微粒子への吸着には対陰イオンは寄与しないため、基本的にはどのような陰イオンでも、酸化チタンやアンチモン−フタロシアニン錯体と反応しない限り、実施例と同様のことが予想される。
3. Counter anion (Z in Figure 1 -)
Since the antimony-phthalocyanine complex used in the present invention is a cationic species, a counter anion is accompanied to neutralize its charge.
Shows only, this raw material in the synthesis of pentavalent antimony complex I 3 trivalent antimony complexes - triiodide ion in the embodiment (I 3) - from the fact salts, also I This is because the presence of 3 - ions does not cause any particular inconvenience.
In the case of applying the present invention product in a dye-sensitized solar cell, for use as an electrolyte I 3 - since it is often a salt, it is expected to be rather advantageous.
However, since the counter anion does not contribute to the adsorption of the phthalocyanine dye to the titanium oxide fine particles, basically any anion does not react with titanium oxide or the antimony-phthalocyanine complex. Is expected.

4.感光性材料
実施例ではAEROXIDERP25(日本アエロジル(株))およびDN-1-0(古河ケミカルズ)の2例の微粒子酸化チタンについて記載しているが、これらは代表的な微粒子酸化チタンであるので、他の製品についてもその比表面積に応じて同様の効果が予想される。
また、フタロシアニン色素による修飾により増感作用が認められている感光性材料については、本発明を適用することも可能と考えられる。
4). Photosensitive material In the examples, AEROXIDERP25 (Nippon Aerosil Co., Ltd.) and DN-1-0 (Furukawa Chemicals) fine particle titanium oxide are described, but these are typical fine particle titanium oxides, Similar effects are expected for other products depending on the specific surface area.
In addition, it is considered that the present invention can be applied to a photosensitive material that has been sensitized by modification with a phthalocyanine dye.

5.溶媒
実施例ではジクロロメタン、ジクロロベンゼン、アセトン、アセトニトリルについてのみ記載しているが、溶媒の役割は色素分子を溶液中に分散させ、酸化チタンとの接触面積を増やすことであるので、フタロシアニン色素と溶媒が化学反応を起こさず、かつその溶媒中で十分な溶解度(>10-4M以上の濃度が確保できることが望ましい)をもちさえすれば特に溶媒を特定する理由はない。
溶解度があまり高くない溶媒(10-6M<飽和濃度<10-4M)でも吸着に用いる溶媒の量を多く用いれば良いので、請求範囲から除外する理由はない。
5). Solvent In the examples, only dichloromethane, dichlorobenzene, acetone, and acetonitrile are described, but the role of the solvent is to disperse the dye molecules in the solution and increase the contact area with the titanium oxide. Therefore, the phthalocyanine dye and the solvent However, there is no reason to specify a solvent as long as it does not cause a chemical reaction and has sufficient solubility in the solvent (preferably a concentration of> 10 −4 M or more can be secured).
There is no reason to exclude from the claims, even if the solvent is not so high (10-6M <saturation concentration <10-4M), the amount of solvent used for adsorption should be large.

本発明であるフタロシアニン色素担持酸化チタン微粒子の製造方法を図1に示す。
図1においてフタロシアニン色素は[SbPc(OH)2]+Z-という記号で記されており、図2に示すような構造を持つ(図2については後で詳細に説明する)。
この色素を溶媒(CH2Cl2)に溶解する。
溶媒の種類については後で詳細に説明するが、その量には特に制限は無く、色素を溶かすのに必要最小量があれば良い。
次に、tert-butyl基を持つフタロシアニン色素について記す。
一方、予め酸化チタン微粒子(この例ではAEROXIDEP25)を同じ溶媒に懸濁させておき、液をろ過または遠心分離により除いた後に、上記のフタロシアニン色素を含む溶液と1/2分間混合し、遠心分離またはろ過によって混合物から溶液を除く。
この溶液には吸着されなかった色素と不純物が含まれている。
さらに固体を同じ溶媒で洗浄し、洗浄した後の液がほとんど無色になるまで繰り返す(この例では3回)。
得られた固体を乾燥させて目的の色素担持酸化チタン微粒子が得られる。
A method for producing phthalocyanine dye-supported titanium oxide fine particles according to the present invention is shown in FIG.
In FIG. 1, the phthalocyanine dye is represented by the symbol [SbPc (OH) 2 ] + Z and has a structure as shown in FIG. 2 (FIG. 2 will be described in detail later).
This dye is dissolved in a solvent (CH 2 Cl 2 ).
The type of the solvent will be described in detail later, but the amount is not particularly limited, and it is sufficient that there is a minimum amount necessary for dissolving the dye.
Next, a phthalocyanine dye having a tert-butyl group will be described.
On the other hand, titanium oxide fine particles (AEROXIDEP25 in this example) are suspended in the same solvent in advance, and after removing the liquid by filtration or centrifugation, the mixture is mixed with the solution containing the phthalocyanine dye for 1/2 minute and centrifuged. Or remove the solution from the mixture by filtration.
This solution contains dyes and impurities that were not adsorbed.
Further, the solid is washed with the same solvent, and this is repeated until the liquid after washing is almost colorless (in this example, 3 times).
The obtained solid is dried to obtain the target dye-supported titanium oxide fine particles.

図2は本発明で用いたフタロシアニン色素の構造であり、フタロシアニン色素の中心元素として5価のアンチモンを採用し、さらに軸配位子として水酸基(OH基)を持たせることにより、著しく親水性を高めている。
図中のR1〜R8は周辺置換基と呼ばれる側鎖基であり、ここでは一般的に溶剤に溶け難いフタロシアニン色素の溶解度を高くするための役割を担っている。
従って当該実施例(表1)に示した通り、炭化水素や含ヘテロ原子(酸素、硫黄等)炭化水素を採用している。
FIG. 2 shows the structure of the phthalocyanine dye used in the present invention. By adopting pentavalent antimony as the central element of the phthalocyanine dye and further having a hydroxyl group (OH group) as the axial ligand, the hydrophilicity is remarkably increased. It is increasing.
R 1 to R 8 in the figure are side chain groups called peripheral substituents, and here play a role in increasing the solubility of phthalocyanine dyes that are generally difficult to dissolve in a solvent.
Therefore, hydrocarbons and heteroatom-containing (oxygen, sulfur, etc.) hydrocarbons are employed as shown in the examples (Table 1).

R1〜R8はすべて同じでも良く、また逆に全て異なっていても良い。
また一部の周辺置換基が単に水素原子であってもかまわない。
図中右側のZ-は対陰イオンを表しており、5価アンチモンを含む当該フタロシアニン色素が分子全体で+1に帯電しているために、その電荷を中和するために存在している。
本発明における実施例では、Z-としてI3 -の例を示しているが、それは当該色素を合成する過程においてI3 -として得られただけの理由である。
従って必要であれば、イオン交換によって容易に他の塩(例えばBF4 -,PF6 -,ClO4 -等)に変換することができる。
R 1 to R 8 may all be the same or, conversely, all may be different.
Some peripheral substituents may be simply hydrogen atoms.
Z on the right side of the figure represents a counter anion, and the phthalocyanine dye containing pentavalent antimony is charged +1 in the whole molecule, and is present to neutralize the charge.
In an embodiment of the present invention, Z - is shown an example of it in the course of synthesizing the dye I 3 - - I 3 as the reason for only obtained as.
Therefore, if necessary, it can be easily converted into another salt (for example, BF 4 , PF 6 , ClO 4 etc.) by ion exchange.

しかしながら、色素増感太陽電池の分野で用いられる電解質が一般にI3 -を含むことに鑑みると、対陰イオンがI3 -であると不都合が生じない限りは、敢えて他の塩に変換する必要性を考えつかないため、当該実施例では他の対陰イオンに変換しなかった。
図3は図1の方法で得られたフタロシアニン色素担持酸化チタン微粒子の写真(右)であり、比較のために色素を含まない溶媒と同様の処理をした酸化チタン微粒子(左)の写真も示している。
図4はフタロシアニン色素担持酸化チタン微粒子の光吸収スペクトル(黒の実線)であり、720nm付近に特徴的な強い吸収を示す。
赤の実線は同じ色素の吸収スペクトルをCH2Cl2溶液中で測定したものであるが、ほとんど同じ波長に吸収のピークを持つ。
However, the electrolyte used in the field of dye-sensitized solar cell is generally I 3 - in view to including, counteranion is I 3 - unless inconvenience to be the need to convert dare to another salt In this example, it was not converted into another counter anion because the nature was unthinkable.
FIG. 3 is a photograph of the phthalocyanine dye-supported titanium oxide fine particles obtained by the method of FIG. 1 (right). For comparison, a photograph of titanium oxide fine particles (left) treated in the same manner as a solvent containing no dye is also shown. ing.
FIG. 4 is a light absorption spectrum (black solid line) of the phthalocyanine dye-supported titanium oxide fine particles, and shows a characteristic strong absorption around 720 nm.
The red solid line is the absorption spectrum of the same dye measured in CH 2 Cl 2 solution, but has an absorption peak at almost the same wavelength.

このことからこの方法で色素が酸化チタン微粒子に吸着されており、しかも複数の分子が固まっているのではなく、個々の分子が酸化チタン微粒子上に分散して存在していることを示している。
青の実線は色素を担持しない酸化チタン微粒子の吸収スペクトルであり、可視部には光の吸収を示さないことを示している。
図5はフタロシアニン色素担持酸化チタン微粒子のIRスペクトル(黒の実線)を、色素を担持しない酸化チタン微粒子(赤実線)ならびに色素だけ(青実線)のIRスペクトルと比較したものである。
This indicates that the dye is adsorbed to the titanium oxide fine particles by this method, and that a plurality of molecules are not solidified, but individual molecules are dispersed on the titanium oxide fine particles. .
The blue solid line is the absorption spectrum of the fine titanium oxide particles that do not carry the pigment, and indicates that no light is absorbed in the visible region.
FIG. 5 compares the IR spectrum of the phthalocyanine dye-supported titanium oxide fine particles (black solid line) with the IR spectrum of the titanium oxide fine particles not supported by the dye (red solid line) and the dye alone (blue solid line).

3000cm-1付近にtert-butyl基に由来するC-H伸縮振動に伴うピークが観測される他、色素自身が示すピークに対応する吸収帯が600-1800cm-1の領域に観測される。
しかし吸収帯の位置は必ずしも色素自身のスペクトルと一致しているわけではなく、また色素自身のスペクトルに見られる吸収帯が色素担持酸化チタン微粒子のスペクトルに現れなかったり、その逆の場合もあるので、色素が酸化チタン微粒子に単に吸着しているのではなく、酸化チタンと何らかの化学結合を持つことを示している。
図6は酸化チタン微粒子単位質量の当りに吸着される色素の量を調べた結果であり、横軸に酸化チタン微粒子に加えた色素の量、縦軸に実際に吸着された色素の量を記している。
酸化チタン微粒子に吸着された色素の量は、加えた量から吸着されなかった量を差し引くことで評価している。
A peak associated with CH stretching vibration derived from the tert-butyl group is observed in the vicinity of 3000 cm −1 , and an absorption band corresponding to the peak exhibited by the dye itself is observed in the region of 600-1800 cm −1 .
However, the position of the absorption band does not necessarily match the spectrum of the dye itself, and the absorption band seen in the spectrum of the dye itself does not appear in the spectrum of the dye-supported titanium oxide fine particles, or vice versa. This indicates that the dye is not simply adsorbed on the titanium oxide fine particles but has some chemical bond with titanium oxide.
FIG. 6 shows the results of examining the amount of the dye adsorbed per unit mass of the titanium oxide fine particles. The horizontal axis indicates the amount of the dye added to the titanium oxide fine particles, and the vertical axis indicates the amount of the dye actually adsorbed. ing.
The amount of the dye adsorbed on the titanium oxide fine particles is evaluated by subtracting the amount not adsorbed from the added amount.

吸着されなかった色素の量は図1の固液分離後の溶液と洗浄液を合わせた溶液の体積と723nm(CH2Cl2を用いた場合)における吸光度を正確に求め、既知のモル吸光係数から算出した。
酸化チタン微粒子に担持される色素の量は、加える量が少ないうちは加えた色素の量に比例して吸着されるが、やがてある一定量に達するとそれ以上担持されなくなり、過剰の色素は溶液中に遊離する。
この例では酸化チタン微粒子として古河ケミカルズ(株)製のDN-1-0、溶剤としてCH2Cl2をそれぞれ用いているが、単位質量当りに担持される色素の量は用いた酸化チタン微粒子や溶剤の種類によって異なる。
The amount of dye that was not adsorbed was calculated from the known molar extinction coefficient by accurately calculating the volume of the solution after the solid-liquid separation in FIG. 1 and the washing solution and the absorbance at 723 nm (when CH 2 Cl 2 was used). Calculated.
The amount of the dye supported on the titanium oxide fine particles is adsorbed in proportion to the amount of the added dye when the amount added is small, but when it reaches a certain amount, it is not supported any more, and the excess dye is in solution. Free in.
In this example, DN-1-0 manufactured by Furukawa Chemicals Co., Ltd. is used as the titanium oxide fine particles, and CH 2 Cl 2 is used as the solvent. However, the amount of the dye supported per unit mass is Varies depending on the type of solvent.

DN-1-0より比表面積が小さい日本アエロジル(株)製のAEROXIDEP25では、酸化チタン微粒子100mgあたりの最大担持量は1.0x10-6mol(約1/10程度)であり、また同じDN-1-0を用いた場合でも溶剤としてo-ジクロロベンゼンを用いると最大担持量はCH2Cl2を用いた場合の61%であり、またアセトンやアセトニトリルを用いた場合はさらに低く、それぞれ70%,26%程度であった(注;アセトニトリル中では酸化チタン微粒子と混合直後に副反応が生じ、アンチモンが色素から抜けているらしいことが吸収スペクトルから示唆された)。 With AEROXIDEP25 manufactured by Nippon Aerosil Co., Ltd., which has a smaller specific surface area than DN-1-0, the maximum supported amount per 100 mg of titanium oxide fine particles is 1.0x10 -6 mol (about 1/10), and the same DN-1 Even when using o-dichlorobenzene as the solvent, the maximum loading is 61% when using CH 2 Cl 2 and even lower when using acetone or acetonitrile, 70%, respectively. It was about 26% (Note; in acetonitrile, a side reaction occurred immediately after mixing with the titanium oxide fine particles, and the absorption spectrum suggested that antimony seems to be missing from the pigment).

本発明により得られた感光性素子は、
・ 可視光による工業排水等の浄化(有害有機物質の分解、無毒化)
・ 燃料電池(可視光による水の酸素+水素への分解)
・ 湿式太陽電池(グレッツェル型太陽電池)等に有効に利用できる。
The photosensitive element obtained by the present invention is
・ Purification of industrial wastewater by visible light (decomposition and detoxification of harmful organic substances)
・ Fuel cell (decomposition of water into oxygen + hydrogen by visible light)
-It can be used effectively for wet solar cells (Gretzel type solar cells).

フタロシアニン色素の酸化チタンへの吸着過程のフローチャートFlow chart of adsorption process of phthalocyanine dye on titanium oxide 本発明で用いるアンチモン(V)−フタロシアニン錯体Antimony (V) -phthalocyanine complex used in the present invention フタロシアニン色素を吸着させた酸化チタンの写真Photograph of titanium oxide adsorbed with phthalocyanine dye 酸化チタン微粒子に固定した色素の光吸収スペクトルOptical absorption spectra of dyes fixed on titanium oxide particles. 酸化チタン微粒子に固定した色素のIRスペクトルIR spectrum of dye fixed on titanium oxide fine particles 酸化チタンへのフタロシアニン色素の吸着量とその限界Adsorption of phthalocyanine dye on titanium oxide and its limit フタロシアニンの図Phthalocyanine illustration

Claims (2)

光の励起により所定の機能が発現される感光性材料の表面がフタロシアニン色素で修飾された感光性素子であって、前記フタロシアニン色素が五価アンチモンを中心原子とし、かつ軸配位子として水酸基が導入されてなる親水性フタロシアニン色素であることを特徴とする感光性素子。   A photosensitive element in which a surface of a photosensitive material exhibiting a predetermined function by light excitation is modified with a phthalocyanine dye, wherein the phthalocyanine dye has pentavalent antimony as a central atom and a hydroxyl group as an axial ligand. A photosensitive element, which is a hydrophilic phthalocyanine dye introduced. 請求項1に記載の感光性素子において、前記感光性材料が酸化チタン粉末であることを特徴とする感光性素子。   2. The photosensitive element according to claim 1, wherein the photosensitive material is a titanium oxide powder.
JP2008199508A 2008-08-01 2008-08-01 Photosensitive element Expired - Fee Related JP5360534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008199508A JP5360534B2 (en) 2008-08-01 2008-08-01 Photosensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008199508A JP5360534B2 (en) 2008-08-01 2008-08-01 Photosensitive element

Publications (2)

Publication Number Publication Date
JP2010037377A true JP2010037377A (en) 2010-02-18
JP5360534B2 JP5360534B2 (en) 2013-12-04

Family

ID=42010262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199508A Expired - Fee Related JP5360534B2 (en) 2008-08-01 2008-08-01 Photosensitive element

Country Status (1)

Country Link
JP (1) JP5360534B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155131A1 (en) * 2010-06-07 2011-12-15 国立大学法人九州工業大学 Dye-adsorbed semiconductor electrode for dye-sensitized solar cell, dye-sensitized solar cell, and process for production of dye-adsorbed semiconductor electrode
JP2012024757A (en) * 2010-06-24 2012-02-09 Kyushu Univ Light hydrogen generation catalyst consisting of base metal complex and titanium dioxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500832A (en) * 1991-11-08 1995-01-26 ジョンソン マッセイ パブリック リミティド カンパニー photosensitizers
JPH09199744A (en) * 1996-01-12 1997-07-31 Yamamoto Chem Inc Phthalocyanine compound and wet-type solar cell
JP2000122319A (en) * 1997-11-25 2000-04-28 Lexmark Internatl Inc Oxo-titanyl phthalocyanine having enhanced photoconductivity
JP2002091038A (en) * 2000-09-20 2002-03-27 Fuji Denki Gazo Device Kk Electrophotographic photoreceptor and method for manufacturing the same
JP2004244580A (en) * 2003-02-17 2004-09-02 National Institute For Materials Science Phthalocyanine near infrared pigment, thin film, and method for producing the same
JP2005072164A (en) * 2003-08-22 2005-03-17 Mitsubishi Paper Mills Ltd Photoelectric transducer
JP4038572B2 (en) * 2003-08-15 2008-01-30 独立行政法人物質・材料研究機構 Method for producing phthalocyanine-based near-infrared absorbing dye

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500832A (en) * 1991-11-08 1995-01-26 ジョンソン マッセイ パブリック リミティド カンパニー photosensitizers
JPH09199744A (en) * 1996-01-12 1997-07-31 Yamamoto Chem Inc Phthalocyanine compound and wet-type solar cell
JP2000122319A (en) * 1997-11-25 2000-04-28 Lexmark Internatl Inc Oxo-titanyl phthalocyanine having enhanced photoconductivity
JP2002091038A (en) * 2000-09-20 2002-03-27 Fuji Denki Gazo Device Kk Electrophotographic photoreceptor and method for manufacturing the same
JP2004244580A (en) * 2003-02-17 2004-09-02 National Institute For Materials Science Phthalocyanine near infrared pigment, thin film, and method for producing the same
JP4038572B2 (en) * 2003-08-15 2008-01-30 独立行政法人物質・材料研究機構 Method for producing phthalocyanine-based near-infrared absorbing dye
JP2005072164A (en) * 2003-08-22 2005-03-17 Mitsubishi Paper Mills Ltd Photoelectric transducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155131A1 (en) * 2010-06-07 2011-12-15 国立大学法人九州工業大学 Dye-adsorbed semiconductor electrode for dye-sensitized solar cell, dye-sensitized solar cell, and process for production of dye-adsorbed semiconductor electrode
JP5816620B2 (en) * 2010-06-07 2015-11-18 国立大学法人九州工業大学 Dye-adsorbed semiconductor electrode for dye-sensitized solar cell, dye-sensitized solar cell, and method for producing dye-adsorbed semiconductor electrode
JP2012024757A (en) * 2010-06-24 2012-02-09 Kyushu Univ Light hydrogen generation catalyst consisting of base metal complex and titanium dioxide

Also Published As

Publication number Publication date
JP5360534B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
Youssef et al. Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification
Silva et al. Zinc (II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides
Granados-Oliveros et al. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation
Sun et al. Sensitization of TiO2 with aluminum phthalocyanine: factors influencing the efficiency for chlorophenol degradation in water under visible light
Ranjit et al. Iron (III) phthalocyanine-modified titanium dioxide: A novel photocatalyst for the enhanced photodegradation of organic pollutants
Zanjanchi et al. Sulphonated cobalt phthalocyanine–MCM-41: an active photocatalyst for degradation of 2, 4-dichlorophenol
Kim et al. Visible light photocatalysts based on homogeneous and heterogenized tin porphyrins
Schneider et al. PHOTOOXIDATION OF 2‐MERCAPTOETHANOL BY VARIOUS WATER‐SOLUBLE PHTHALOCYANINES IN AQUEOUS ALKALINE SOLUTION UNDER IRRADIATION WITH VISIBLE LIGHT
Lin et al. Facile synthesis of direct Z-scheme UiO-66-NH2/PhC2Cu heterojunction with ultrahigh redox potential for enhanced photocatalytic Cr (VI) reduction and NOR degradation
Zinatloo-Ajabshir et al. Novel rod-like [Cu (phen) 2 (OAc)]· PF6 complex for high-performance visible-light-driven photocatalytic degradation of hazardous organic dyes: DFT approach, Hirshfeld and fingerprint plot analysis
Dąbrowski et al. New hybrid materials based on halogenated metalloporphyrins for enhanced visible light photocatalysis
El-Mekkawi et al. Removal of a synthetic dye “Direct Fast Blue B2RL” via adsorption and photocatalytic degradation using low cost rutile and Degussa P25 titanium dioxide
Panda et al. Highly durable covalent organic framework for the simultaneous ultrasensitive detection and removal of noxious Hg2+
Gorduk et al. Hydrothermal in situ preparation of phthalocyanine–TiO 2 nanocomposites for photocatalytic activity under visible light irradiation
Garazhian et al. {Mo72Fe30} nanoclusters for the visible-light-driven photocatalytic degradation of organic dyes
Rahimi et al. Investigation of the synergistic effect of porphyrin photosensitizer on graphene–TiO2 nanocomposite for visible light photoactivity improvement
Krishnan et al. Chlorophyll sensitized and salicylic acid functionalized TiO2 nanoparticles as a stable and efficient catalyst for the photocatalytic degradation of ciprofloxacin with visible light
Wang et al. Preparation and photocatalytic activity of chitosan‐supported cobalt phthalocyanine membrane
Zugle et al. Comparative phototransformation of environmental pollutants using metallophthalocyanines supported on electrospun polymer fibers
Ashfaq et al. Synthesis of α-Anderson polyoxometalates-porphyrin polymeric hybrid as an efficient photosensitizer
JP5360534B2 (en) Photosensitive element
Essawy et al. Ultrasonic-mediated synthesis and characterization of TiO 2-loaded chitosan-grafted-polymethylaniline nanoparticles of potent efficiency in dye uptake and sunlight driven self-cleaning applications
Singh et al. Modulation of photocatalytic properties through counter-ion substitution: tuning the bandgaps of aromatic sulfonium octamolybdates for efficient photo-degradation of rhodamine B
Dozzi et al. Effects of phase composition and surface area on the photocatalytic paths on fluorinated titania
Li et al. Constructing AgBr/BiOBr@ silkworm cocoons photocatalytic degradation and antibacterial material: Based on the excellent adsorption properties of silkworm cocoons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5360534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees