JP2010037278A - Method for producing dibenzylidene alditol - Google Patents

Method for producing dibenzylidene alditol Download PDF

Info

Publication number
JP2010037278A
JP2010037278A JP2008202490A JP2008202490A JP2010037278A JP 2010037278 A JP2010037278 A JP 2010037278A JP 2008202490 A JP2008202490 A JP 2008202490A JP 2008202490 A JP2008202490 A JP 2008202490A JP 2010037278 A JP2010037278 A JP 2010037278A
Authority
JP
Japan
Prior art keywords
reaction
sorbitol
aromatic aldehyde
alditol
dibenzylidene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008202490A
Other languages
Japanese (ja)
Other versions
JP5426120B2 (en
Inventor
Kazuo Kageyama
和夫 影山
Naomi Kobayashi
直美 小林
三奈 ▲濱▼松
Mina Hamamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANKAI KAGAKU KOGYO KK
Original Assignee
NANKAI KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANKAI KAGAKU KOGYO KK filed Critical NANKAI KAGAKU KOGYO KK
Priority to JP2008202490A priority Critical patent/JP5426120B2/en
Publication of JP2010037278A publication Critical patent/JP2010037278A/en
Application granted granted Critical
Publication of JP5426120B2 publication Critical patent/JP5426120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practical method for stably producing high-purity dibenzylidene alditols by an easily controllable reaction and enabling recycled use of the reaction liquid. <P>SOLUTION: The method for producing dibenzylidene alditols comprises condensation reaction of an aromatic aldehyde with alditol in an aqueous medium in the presence of an acid catalyst and neutralization of the reaction liquid to obtain dibenzylidene alditols. In the production method, a compatibilizer for the aromatic aldehyde and the alditol is added to the aqueous medium in an amount of 3-7 times weight based on the aromatic aldehyde. The production method enables easy recovery of the reaction liquid and recycled use of the reaction liquid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、有機液体のゲル化剤、ポリオレフィン類の透明核剤等として用いられている、ジベンジリデンソルビトール等のジベンジリデンアルジトール類の製造方法に関し、特に溶媒として水を用いた場合の製造方法に関する。   The present invention relates to a method for producing dibenzylidene alditols such as dibenzylidene sorbitol, which is used as a gelling agent for organic liquids, a transparent nucleating agent for polyolefins, and the like, and in particular, a method for producing water when using water as a solvent. About.

ベンズアルデヒド等の芳香族アルデヒドと、ソルビトール等のアルジトールとを、酸触媒の存在下、反応して得られるジベンジリデンソルビトール等のジベンジリデンアルジトール類は、有機液体のゲル化剤、ポリオレフィン類の透明核剤、塗料の増粘剤等として有用であり、従来から、反応媒体の性質に基づいて、二つのタイプの製法を挙げることができる。   Dibenzylidene alditols such as dibenzylidene sorbitol obtained by reacting aromatic aldehydes such as benzaldehyde and alditols such as sorbitol in the presence of an acid catalyst are organic liquid gelling agents and transparent nuclei of polyolefins. It is useful as an agent, a thickener for paints, and the like, and conventionally, there are two types of production methods based on the properties of the reaction medium.

一つは、溶媒として有機溶剤を用いる方法で「溶剤法」と呼ばれる製法で、他は、溶媒として水を用いる方法で「水法」と呼ばれる製法である。   One is a production method called an “solvent method” using an organic solvent as a solvent, and the other is a production method called a “water method” using a water as a solvent.

例えば、特許文献1には、シクロヘキサンと炭素数6〜10の飽和炭化水素の1種または2種以上の有機溶剤を反応溶媒とした溶剤法が、特許文献2には、シクロヘキサンとヘキサンの混合溶媒を反応溶媒とした溶剤法が、特許文献3には、シクロヘキサンとメタノールの混合溶媒による溶剤法が記されている。   For example, Patent Document 1 discloses a solvent method using one or more organic solvents of cyclohexane and a saturated hydrocarbon having 6 to 10 carbon atoms as a reaction solvent, and Patent Document 2 discloses a mixed solvent of cyclohexane and hexane. As a solvent method using the above as a reaction solvent, Patent Document 3 describes a solvent method using a mixed solvent of cyclohexane and methanol.

この様に、溶剤法はシクロヘキサンを主溶媒としたものであるが、溶剤を大量に使用すること、縮合反応であるため生成水を除去する必要があり、水とシクロヘキサンとの共沸点70〜80℃で反応する必要があること等から危険性が高く特定の危険物対応設備が必要とか、さらに溶剤を蒸留回収する設備が必要になるとか費用面では不利である。また、シクロヘキサンは、低濃度では臭いがほとんど無いので、気づかずに吸引した場合、頭痛などの症状が発生し人体への影響が懸念される。   As described above, the solvent method uses cyclohexane as the main solvent. However, it is necessary to remove a large amount of the solvent and to remove the generated water because it is a condensation reaction. The azeotropic point of water and cyclohexane is 70 to 80. It is disadvantageous in terms of cost because it is necessary to react at a temperature of 0 ° C., which requires high risk and requires equipment for dealing with specific hazardous materials, and further requires equipment for recovering the solvent by distillation. Moreover, since cyclohexane has almost no odor at low concentrations, symptoms such as headache occur when inhaled without being aware of it, and there is a concern about the influence on the human body.

それに対して、水法と呼ばれる製法は、危険物を大量に使用しないので安全性が高い、
人体への影響が少ない、さらに、生成物であるジベンジリデンアルジトール類が水に溶けず析出するため、生成水を反応系外に取り出すことなく、生成物を生産できる等のメリットがある。しかし、デメリットとして、水に難溶の芳香族アルデヒドとアルジトール水溶液とが不均一に混在した水性反応媒体中で行われるので、反応液がゲル化し易いという問題点があり、これは高収率かつ高純度のジベンジリデンアルジトール類を得ることを困難にしている。
On the other hand, the manufacturing method called the water method is highly safe because it does not use a large amount of dangerous goods.
There is an advantage that the product can be produced without taking out the produced water out of the reaction system because the product dibenzylidene alditols are not dissolved in water and are precipitated without being affected by the human body. However, as a disadvantage, since it is carried out in an aqueous reaction medium in which an aromatic aldehyde that is hardly soluble in water and an aqueous alditol solution are heterogeneously mixed, there is a problem that the reaction solution is easily gelled. It is difficult to obtain high-purity dibenzylidene alditols.

例えば、特許文献4には、反応の第1段階でゲル特性が発現した後、第2段階として反応媒体の希釈を行う2段階反応と、その後、熟成工程を設けた水法が開示されているが、生成したジベンジリデンソルビトールの収率は、反応直後で55%、熟成後で70%であり、純度も90%が限界である上に、工程が複雑すぎて、実用的ではない。   For example, Patent Document 4 discloses a two-stage reaction in which a reaction medium is diluted as a second stage after the gel characteristics are expressed in the first stage of the reaction, and then a water method in which an aging process is provided. However, the yield of the dibenzylidene sorbitol produced is 55% immediately after the reaction, 70% after the aging, the purity is limited to 90%, and the process is too complicated to be practical.

特許文献5には、1段階反応の水法が開示されているが、ゲル化の解決法の記載がなく、収率は、用いたアルジトールの質量に対するジアセタールの質量割合で示され、純度もジアセタールとトリアセタールの合計質量に対するジアセタールの質量割合でしか示されていない。ベンズアルデヒドとソルビトールとをパラトルエンスルホン酸を用いて反応させる本文献記載の実施例4に基づいて、本発明者等が、製法トレース実験で確認したところ、開示された反応時間の5.5時間でゲル化した。生成物の収率は55%で、HPLC((株)島津製作所製、高速液体クロマトグラフィー)分析によるジベンジリデンソルビトールの純度も77.6%と低いものであった。   Patent Document 5 discloses a water method of a one-step reaction, but there is no description of a solution for gelation, the yield is shown by the mass ratio of diacetal to the mass of alditol used, and the purity is also diacetal. And the mass ratio of diacetal to the total mass of triacetal. Based on Example 4 described in this document in which benzaldehyde and sorbitol are reacted with p-toluenesulfonic acid, the present inventors have confirmed by a manufacturing method trace experiment that the disclosed reaction time is 5.5 hours. Gelled. The yield of the product was 55%, and the purity of dibenzylidene sorbitol by HPLC (manufactured by Shimadzu Corporation, high performance liquid chromatography) analysis was as low as 77.6%.

特許文献6には、反応媒体がゲル化することを前提に、生成するジアセタール類の理論量が15〜50重量%の範囲である反応系で行われることを条件に、強力強制攪拌により攪拌を継続する水法が開示されているが、この製法は前記条件下では事実上2段階反応であるし、リボン翼を有する特殊な攪拌機を必要とし、エネルギーコストも掛かるので実用的ではない。なお、ジベンジリデンソルビトール等の90%収率や95%以上の純度が記載されているが、それらの測定法の記載はなく、したがって、それらの具体的な意味内容が不明である。   In Patent Document 6, on the premise that the reaction medium is gelled, stirring is performed by vigorous forced stirring under the condition that the reaction is performed in a reaction system in which the theoretical amount of the generated diacetals is in the range of 15 to 50% by weight. Although a continuous water method is disclosed, this production method is practically a two-stage reaction under the above conditions, and requires a special stirrer having a ribbon blade, which is not practical because it requires high energy costs. Although 90% yield and purity of 95% or more of dibenzylidene sorbitol and the like are described, there is no description of their measuring method, and therefore their specific meaning is unknown.

特公昭48−43748号公報Japanese Patent Publication No. 48-43748 特開平9−12579号公報Japanese Patent Laid-Open No. 9-12579 特開平10−204089号公報JP-A-10-204089 特公昭61−17833号公報Japanese Patent Publication No. 61-17833 特開昭63−267777号公報JP-A 63-267777 特開2001−131183号公報JP 2001-131183 A

以上のごとく、水法では、反応液のゲル化傾向が強ので、安定して、高純度のジベンジリデンアルジトール類を生産でき、かつ反応液がリサイクルに利用できる実用的な製造方法は提供されていないのが現状である。   As described above, the water method has a strong tendency to gel the reaction solution, so that a practical production method can be provided which can stably produce high-purity dibenzylidene alditols and can be used for recycling the reaction solution. The current situation is not.

そこで、本発明の目的は、水媒体中、酸触媒の存在下に、芳香族アルデヒドとアルジトールとを、縮合させてジベンジリデンアルジトール類を製造する方法において、反応制御が簡単で、かつ、安定して高純度のジベンジリデンアルジトール類を生産でき、かつ反応液がリサイクルに利用できる、実用的な製造方法を提供することにある。   Therefore, an object of the present invention is to provide a method for producing dibenzylidene alditols by condensing an aromatic aldehyde and an alditol in an aqueous medium in the presence of an acid catalyst, wherein the reaction control is simple and stable. Another object of the present invention is to provide a practical production method in which high-purity dibenzylidene alditols can be produced and the reaction solution can be used for recycling.

上記課題を解決する為に、本発明者等は次の推論を立てた。すなわち、前記特許文献5において実施例4の詳細記述として記載されている「25%の乾分(1モル)を含むソルビトール水溶液728g、パラトルエンスルホン酸215g(1.25モル)及びベンズアルデヒド190.8g(1.8モル)を攪拌しながら、30℃で、5時間30分反応させる製法」のトレースの際、反応開始後1〜2時間程度で、攪拌羽根やフラスコの底に蝋状物が付着し始めたが、5.5時間後にはその蝋状物が集合してゲル化したと感じられた。その蝋状物のHPLCによる分析結果は、比較的柔らかい表層部がジベンジリデンソルビトール26%とベンズアルデヒド44%であり、蝋状で堅い内層部がジベンジリデンソルビトール0.4%とベンズアルデヒド96%であった。   In order to solve the above problems, the present inventors made the following inference. That is, as described in detail in Example 4 in Patent Document 5, "728 g of sorbitol aqueous solution containing 25% dry matter (1 mol), 215 g (1.25 mol) of paratoluenesulfonic acid and 190.8 g of benzaldehyde. (1.8 mol) while stirring, at the time of tracing the production method of reacting at 30 ° C. for 5 hours and 30 minutes ”, waxy material adheres to the bottom of the stirring blade or flask in about 1 to 2 hours after the start of the reaction. However, after 5.5 hours, it was felt that the wax-like substances gathered and gelled. As a result of HPLC analysis of the waxy material, the relatively soft surface layer portion was 26% dibenzylidene sorbitol and 44% benzaldehyde, and the waxy and hard inner layer portion was 0.4% dibenzylidene sorbitol and 96% benzaldehyde. .

この分析結果は、反応液を攪拌した際、ベンズアルデヒドは大きな油滴になるが、それらの油滴の表層部から反応が進んだことを示唆している。従って、ベンズアルデヒドの油滴を限りなく微細なものにするか、完全に溶解した反応液にすることができれば、ゲル化は防止できると考えた。   This analysis result suggests that when the reaction solution is stirred, benzaldehyde becomes large oil droplets, but the reaction proceeds from the surface layer portion of these oil droplets. Therefore, it was considered that gelation could be prevented if the oil droplets of benzaldehyde were made as fine as possible or made into a completely dissolved reaction solution.

本発明者等は、研究を重ねた結果、アルコール系溶剤、及び/又は、セロソルブ系溶剤のある一定量を水媒体に加えれば、ベンズアルデヒドが油滴ではなく、完溶した反応液が得られることを見出した。   As a result of repeated research, the present inventors have found that if a certain amount of alcohol solvent and / or cellosolve solvent is added to the aqueous medium, a reaction solution in which benzaldehyde is completely dissolved, not oil droplets, can be obtained. I found.

したがって、酸触媒の存在下に、芳香族アルデヒドとアルジトールとを含む水媒体に、相溶化剤としてアルコール系溶剤、及び/又は、セロソルブ系溶剤のある一定量を加えた場合、水に難溶の芳香族アルデヒドが完溶した反応液になるが、この反応液は、驚くべきことに、192時間まで反応させてもゲル化することなく、ゲル化を防止でき、その結果、高純度のジベンジリデンソルビトール類を得られることを見出し、実用的な製造方法としての本発明を完成するに至った。また、ゲル化を防止できることから生成物を濾過して未中和の母液を回収することにより、該母液中に含まれる酸触媒は活性状態で回収されるので、回収した母液に、生成物に含まれて系外に出た原料を補給して反応液を調整すれば、繰り返し、リサイクルが可能である。   Therefore, when a certain amount of alcohol solvent and / or cellosolve solvent is added as a compatibilizing agent to an aqueous medium containing an aromatic aldehyde and alditol in the presence of an acid catalyst, it is hardly soluble in water. Although the reaction solution is completely dissolved in the aromatic aldehyde, this reaction solution is surprisingly capable of preventing gelation without causing gelation even when reacted up to 192 hours. As a result, high-purity dibenzylidene The inventors have found that sorbitols can be obtained, and have completed the present invention as a practical production method. In addition, since the gelation can be prevented, the acid catalyst contained in the mother liquor is recovered in an active state by filtering the product and recovering the unneutralized mother liquor. If the reaction liquid is adjusted by replenishing the raw materials contained outside the system, it can be recycled repeatedly.

すなわち、請求項1記載の発明は、水媒体中、酸触媒の存在下に、芳香族アルデヒドとアルジトールとを、縮合反応させ、次いで反応液を中和してジベンジリデンアルジトール類を得るジベンジリデンアルジトール類の製造方法において、前記水媒体中に、前記芳香族アルデヒドと前記アルジトールとの相溶化剤を、芳香族アルデヒドの配合量に対して、重量比で、3〜7倍量を、配合してなることを特徴とする下記一般式(1)で表わされるジベンジリデンアルジトール類の製造方法である。   That is, the invention according to claim 1 is a dibenzylidene which obtains dibenzylidene alditols by subjecting an aromatic aldehyde and alditol to a condensation reaction in an aqueous medium in the presence of an acid catalyst and then neutralizing the reaction solution. In the method for producing alditols, in the aqueous medium, the compatibilizer of the aromatic aldehyde and the alditol is blended in an amount 3 to 7 times by weight with respect to the blended amount of the aromatic aldehyde. This is a method for producing dibenzylidene alditols represented by the following general formula (1).

Figure 2010037278
(式中,R1及びR2は、同一又は異なって、水素原子、炭素原子数1〜4のアルキル基または炭素原子数1〜3のアルコキシル基を表す。X及びYは、同一又は異なって、1〜5を示し、nは0又は1を示す。)
Figure 2010037278
Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxyl group having 1 to 3 carbon atoms. X and Y are the same or different. 1 to 5 and n represents 0 or 1.)

また、請求項2記載の発明は、前記相溶化剤がメタノール、エタノール、イソプロパノール、1−プロパノールから選ばれる少なくとも1種のアルコール系溶剤、及び/又は、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブから選ばれる少なくとも1種のセロソルブ系溶剤であることを特徴とする請求項1記載のジベンジリデンアルジトール類の製造方法であり、請求項3記載の発明は、前記中和の前に生成ジベンジリデンアルジトール類を濾過して母液を回収し、該母液に含まれる芳香族アルデヒド、アルジトール、酸触媒、相溶化剤等を利用して、繰り返し前記縮合反応を行い、リサイクルに供することを特徴とする請求項1又は2記載のジベンジリデンアルジトール類の製造方法である。   The invention according to claim 2 is characterized in that the compatibilizer is at least one alcohol solvent selected from methanol, ethanol, isopropanol, and 1-propanol, and / or at least selected from methyl cellosolve, ethyl cellosolve, and butyl cellosolve. The method for producing dibenzylidene alditols according to claim 1, which is a cellosolve-type solvent, and the invention according to claim 3 is characterized in that the dibenzylidene alditols produced before the neutralization are produced. The mother liquor is recovered by filtration, and the condensation reaction is repeatedly performed using an aromatic aldehyde, alditol, acid catalyst, compatibilizing agent, etc. contained in the mother liquor, and then used for recycling. 2. The method for producing dibenzylidene alditols according to 2.

本発明で用いる芳香族アルデヒドとしては、一般式(2)

Figure 2010037278
(式中,R1は、水素原子、炭素原子数1〜4のアルキル基または炭素原子数1〜3のアルコキシル基を表し、Xは1〜5を示す。)
で表されるものであるが、好ましくは炭素数1〜4のアルキル基を有するアルキルベンズアルデヒドを用いるとよい。具体的には、ベンズアルデヒド、o−トルアルデヒド、m−トルアルデヒド、p−トルアルデヒド、o−エチルベンズアルデヒド、m−エチルベンズアルデヒド、p−エチルベンズアルデヒド、2,3−ジメチルベンズアルデヒド、2,4−ジメチルベンズアルデヒド、2,5−ジメチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、3,5−ジメチルベンズアルデヒド、2,4,5−トリメチルベンズアルデヒド等が例示される。芳香族アルデヒドの配合割合は、アルジトール1モルに対して1.5〜1.9モルにするのが好ましく、より好ましくは1.7〜1.8モルである。1.5モル未満では収率が低下し、1.9モルを超えるとトリベンジリデンアルジトール類(トリアセタール体)が増え、純度が低下する傾向にあるからである。 As an aromatic aldehyde used by this invention, general formula (2)
Figure 2010037278
(In the formula, R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxyl group having 1 to 3 carbon atoms, and X represents 1 to 5).
However, it is preferable to use an alkylbenzaldehyde having an alkyl group having 1 to 4 carbon atoms. Specifically, benzaldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, o-ethylbenzaldehyde, m-ethylbenzaldehyde, p-ethylbenzaldehyde, 2,3-dimethylbenzaldehyde, 2,4-dimethylbenzaldehyde 2,5-dimethylbenzaldehyde, 3,4-dimethylbenzaldehyde, 3,5-dimethylbenzaldehyde, 2,4,5-trimethylbenzaldehyde and the like. The blending ratio of the aromatic aldehyde is preferably 1.5 to 1.9 mol, more preferably 1.7 to 1.8 mol with respect to 1 mol of alditol. If the amount is less than 1.5 mol, the yield decreases, and if it exceeds 1.9 mol, tribenzylidene alditols (triacetal form) increase and the purity tends to decrease.

本発明に用いるアルジトールは、ソルビトール又はキシリトールである。アルジトール水溶液の好ましい濃度は、反応を徐々に確実に進行させるため、30%以下であり、より好ましくは15〜25%である。   The alditol used in the present invention is sorbitol or xylitol. A preferable concentration of the alditol aqueous solution is 30% or less, more preferably 15 to 25%, in order to allow the reaction to proceed gradually and reliably.

本発明に用いる相溶化剤とは、水媒体中において前記芳香族アルデヒドと前記アルジトールとを均一化する溶剤をいい、本発明の目的に寄与するものあれば特に限定されないが、好ましくは、アルコール系溶剤及び/又はセロソルブ系溶剤等を用いるのがよく、具体的には請求項2記載の発明の如く、メタノール、エタノール、イソプロパノール、1−プロパノールから選ばれる少なくとも1種のアルコール系溶剤、及び/又は、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブから選ばれる少なくとも1種のセロソルブ系溶剤を用いるとよい。   The compatibilizer used in the present invention refers to a solvent that homogenizes the aromatic aldehyde and the alditol in an aqueous medium, and is not particularly limited as long as it contributes to the object of the present invention. It is preferable to use a solvent and / or a cellosolve solvent. Specifically, as in the invention of claim 2, at least one alcohol solvent selected from methanol, ethanol, isopropanol, 1-propanol, and / or It is preferable to use at least one cellosolve solvent selected from methyl cellosolve, ethyl cellosolve, and butyl cellosolve.

相溶化剤としての、アルコール系溶剤、及び/又は、セロルブ系溶剤等の好ましい配合割合は、芳香族アルデヒドの重量に対して、重量比で、3〜7倍量であり、より好ましくは3.5〜5.0倍量である。3倍量未満では反応液に濁りが残り相溶性不十分であるし、7倍量を超えると反応が極端に遅くなる上、安全面も不利になるし、コストも高くなり過ぎるからである。   A preferable blending ratio of the alcohol solvent and / or cellolb solvent as the compatibilizer is 3 to 7 times by weight with respect to the weight of the aromatic aldehyde, more preferably 3. 5 to 5.0 times the amount. If the amount is less than 3 times, turbidity remains in the reaction solution and the compatibility is insufficient. If the amount exceeds 7 times, the reaction becomes extremely slow, the safety becomes disadvantageous, and the cost becomes too high.

本発明にかかる、一般式(1)で表されるジベンジリデンアルジトール類の製造方法として、好ましい一例を挙げると、水媒体中、酸触媒の存在下に、一般式(2)の芳香族アルデヒドと、ソルビトール又はキシリトールの水溶液と、該芳香族アルデヒドの配合量に対して、重量比で、3〜7倍量の前記相溶化剤とを、混合し、30℃付近の温度で、所定時間縮合反応させることによりジベンジリデンアルジトール類を生成させ、次いで反応液を中和したのち、濾別、水洗、乾燥の各工程を経て生成物を得ることができる。この場合、中和前の反応液は縮合反応がそれ以上進行しない状態に達してもゲル化しないため、請求項3記載の発明の如く、該反応液に含まれる芳香族アルデヒド、アルジトール、酸触媒、相溶化剤等を利用して、繰り返し前記縮合反応を行い、リサイクルに供することができる。   A preferred example of the method for producing dibenzylidene alditols represented by the general formula (1) according to the present invention is an aromatic aldehyde of the general formula (2) in an aqueous medium in the presence of an acid catalyst. Are mixed with an aqueous solution of sorbitol or xylitol and the compatibilizer in an amount of 3 to 7 times by weight with respect to the blended amount of the aromatic aldehyde, and condensed at a temperature of about 30 ° C. for a predetermined time. Dibenzylidene alditols are produced by the reaction, and after neutralizing the reaction solution, the product can be obtained through the steps of filtration, washing with water, and drying. In this case, since the reaction solution before neutralization does not gel even when the condensation reaction reaches a state where it does not proceed any more, the aromatic aldehyde, alditol, acid catalyst contained in the reaction solution as in the invention of claim 3 The condensation reaction can be repeatedly performed using a compatibilizing agent and the like, and can be used for recycling.

この発明の製造方法は、以上説明したように、水媒体中、酸触媒の存在下に、芳香族アルデヒドとアルジトールとを、縮合反応させ、次いで反応液を中和してジベンジリデンアルジトール類を得るジベンジリデンアルジトール類の製造方法において、水に難溶の芳香族アルデヒドと水に易溶のアルジトールとの相溶化剤として、アルコール系溶剤、及び/又は、セロソルブ系溶剤等を配合するものであり、反応液がゲル化することなく、通常の攪拌のみで生産でき、非常に簡単、かつ、安定して高純度のジベンジリデンアルジトール類を生産できる実用的な製造方法である。また、中和前の反応液を回収することにより、リサイクルも可能な製造方法でもある。製造した、ジベンジリデンアルジトール類は高純度品が得られるので、有機液体のゲル化剤、ポリオレフィン類の透明核剤、塗料の増粘剤等として有用である。   In the production method of the present invention, as described above, an aromatic aldehyde and alditol are condensed in an aqueous medium in the presence of an acid catalyst, and then the reaction solution is neutralized to obtain dibenzylidene alditols. In the method for producing the obtained dibenzylidene alditols, an alcohol-based solvent and / or a cellosolve-based solvent or the like is blended as a compatibilizing agent for an aromatic aldehyde that is hardly soluble in water and an alditol that is easily soluble in water. It is a practical production method that can be produced only by ordinary stirring without gelation of the reaction solution, and that can produce dibenzylidene alditols of very simple and stable high purity. It is also a production method that can be recycled by collecting the reaction solution before neutralization. The produced dibenzylidene alditols are useful as organic liquid gelling agents, polyolefin transparent nucleating agents, paint thickeners, and the like because high purity products can be obtained.

(1)芳香族アルデヒドとして、ベンズアルデヒド、p−トルアルデヒド、p−エチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド若しくは2,4−ジメチルベンズアルデヒドと、(2)アルジトールとして、ソルビトール若しくはキシリトールと、(3)酸触媒として、例えば、p−トルエンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ドデシルベンゼンスルホン酸、硫酸若しくは塩酸と、(3)水と、(4)相溶化剤として、メタノール、エタノール、イソプロパノール、1−プロパノール、メチルセロソルブ、エチルセロソルブ若しくはブチルセロソルブの一種又は2種以上を用い、
(1)は、(2)1モルに対して1.5〜1.9モルとし、
(4)は(1)に対して、重量比で、3〜7倍量として、
(1)〜(4)をそれぞれ反応容器に投入し、500〜700rpmの回転数で攪拌しながら、反応温度を30±2℃に保って、所定時間反応させるとよい。
(1) aromatic aldehydes as benzaldehyde, p-tolualdehyde, p-ethylbenzaldehyde, 3,4-dimethylbenzaldehyde or 2,4-dimethylbenzaldehyde; (2) alditol as sorbitol or xylitol; and (3) acid. Examples of the catalyst include p-toluenesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, dodecylbenzenesulfonic acid, sulfuric acid or hydrochloric acid, (3) water, and (4) compatibilizers such as methanol, ethanol, isopropanol, 1 -Using one or more of propanol, methyl cellosolve, ethyl cellosolve or butyl cellosolve,
(1) is 1.5 to 1.9 moles per mole of (2),
(4) is 3 to 7 times the weight ratio of (1),
(1) to (4) may be respectively charged into a reaction vessel, and the reaction temperature may be maintained at 30 ± 2 ° C. while stirring at a rotational speed of 500 to 700 rpm, and the reaction may be performed for a predetermined time.

この場合、反応液はゲル化することなく平衡に達し、反応がそれ以上進行しない状態になることから、湿潤状態の生成物を濾捌して母液と分離し、中和、水洗及び乾燥すれば、ジベンジリデンソルビトール若しくはジベンジリデンキシリトール、ジ(p−メチルベンジリデン)ソルビトール若しくはジ(p−メチルベンジリデン)キシリトール、ジ(p−エチルベンジリデン)ソルビトール若しくはジ(p−エチルベンジリデン)キシリトール、ジ(3,4−ジメチルベンジリデン)ソルビトール若しくはジ(3,4−ジメチルベンジリデン)キシリトール、ジ(2,4−ジメチルベンジリデン)ソルビトール若しくはジ(2,4−ジメチルベンジリデン)キシリトールの生成物(粉末)が、約50%以上の収率(理論収量に対する実反応収量の割合)で得られる。   In this case, the reaction solution reaches equilibrium without gelation, and the reaction does not proceed any further, so that the wet product is filtered and separated from the mother liquor, neutralized, washed with water and dried. Dibenzylidene sorbitol or dibenzylidene xylitol, di (p-methylbenzylidene) sorbitol or di (p-methylbenzylidene) xylitol, di (p-ethylbenzylidene) sorbitol or di (p-ethylbenzylidene) xylitol, di (3,4 -Product (powder) of dimethylbenzylidene) sorbitol or di (3,4-dimethylbenzylidene) xylitol, di (2,4-dimethylbenzylidene) sorbitol or di (2,4-dimethylbenzylidene) xylitol is about 50% or more. Yield (actual yield relative to theoretical yield) Obtained by the ratio).

そして、未中和の母液は、湿潤状態の生成物として除去した量に相当する反応成分を補充して、簡単にリサイクル反応に供することができる。   Then, the unneutralized mother liquor can be easily supplied to the recycle reaction by supplementing the reaction components corresponding to the amount removed as a wet product.

以下に、実施例を挙げて本発明を、更に、具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

芳香族アルデヒドとしてはベンズアルデヒド又はp−トルアルデヒド、アルジトールとしては共通してソルビトール、触媒としては共通してp−トルエンスルホン酸・一水和物、相溶化剤としてはメタノール又はエチルセロソルブを用いて配合した実施例1〜6の配合成分及び前記相溶化剤を用いない比較例1,2において、それらの配合成分と、反応時間と、生成物の収率、純度とをまとめて表にすると、表1に示す通りとなる。   Benzaldehyde or p-tolualdehyde is used as aromatic aldehyde, sorbitol is commonly used as alditol, p-toluenesulfonic acid monohydrate is commonly used as catalyst, and methanol or ethyl cellosolve is used as compatibilizer. In Comparative Examples 1 and 2 in which the blending components of Examples 1 to 6 and the compatibilizing agent are not used, those blending components, reaction time, product yield, and purity are summarized in a table. As shown in FIG.

Figure 2010037278
Figure 2010037278

以下、各実施例、比較例の詳細を記述する。
(実施例1)
汎用攪拌機のスリーワンモータ600G(新東科学(株)製)と錨形の攪拌羽根を備えた、2Lのセパラブルフラスコに、純水234gと70%ソルビトール130g(0.5モル)を仕込み、回転数500rpmで攪拌してソルビトールを溶解した。次いで、攪拌しながら、p−トルエンスルホン酸・一水和物119g(0.625モル)を加えて溶解した後に、気相を窒素置換し、30℃に昇温してからメタノール380g(重量比で、ベンズアルデヒドの4倍量)を加えて均一液とした。最後に、ベンズアルデヒド95g(0.9モル)を加えて、反応を開始した。反応は、反応温度30℃で、回転数500rpmの条件を維持しながら行い、6時間後にはスラリー状態となり、そのまま24時間継続してから反応を終了した。
Details of each example and comparative example are described below.
Example 1
A 2L separable flask equipped with a three-motor 600G (manufactured by Shinto Kagaku Co., Ltd.), a general-purpose stirrer, and a bowl-shaped stirring blade, was charged with 234 g of pure water and 130 g (0.5 mol) of 70% sorbitol and rotated. The sorbitol was dissolved by stirring at several 500 rpm. Next, with stirring, 119 g (0.625 mol) of p-toluenesulfonic acid monohydrate was added and dissolved, the gas phase was replaced with nitrogen, the temperature was raised to 30 ° C., and 380 g of methanol (weight ratio) And 4 times the amount of benzaldehyde) was added to obtain a uniform solution. Finally, 95 g (0.9 mol) of benzaldehyde was added to start the reaction. The reaction was carried out at a reaction temperature of 30 ° C. while maintaining the condition of a rotation speed of 500 rpm. After 6 hours, the reaction was in a slurry state, and continued for 24 hours as it was, thereby completing the reaction.

24時間反応後の液状態は、粘度3.3Pa・sのスラリーであった。次いで、反応液を吸引濾過して、生成物と母液とを分離した。濾別した生成物を5倍量の水に再懸濁し、20%水酸化ナトリウム溶液で中和した後、60℃に昇温して2時間攪拌し、生成物を濾別後、再度、生成物を、60℃の温水で2時間洗浄した。その後、再度、吸引濾過し、湿潤率約67%の生成物を90℃で12時間乾燥し、粉砕して、ジベンジリデンソルビトールの白色粉末80.4g(理論収量に対する収率50.1%)を得た。   The liquid state after the reaction for 24 hours was a slurry having a viscosity of 3.3 Pa · s. Subsequently, the reaction liquid was subjected to suction filtration to separate the product and the mother liquor. The product separated by filtration was resuspended in 5 times the amount of water, neutralized with 20% sodium hydroxide solution, heated to 60 ° C. and stirred for 2 hours. The material was washed with warm water at 60 ° C. for 2 hours. Thereafter, the mixture was filtered again with suction, and the product having a wetness of about 67% was dried at 90 ° C. for 12 hours and pulverized to obtain 80.4 g of dibenzylidene sorbitol as a white powder (yield 50.1% based on the theoretical yield). Obtained.

この場合の収率の計算方法は、以下の通りである。
ベンズアルデヒドをBA、ソルビトールをSor、ジベンジリデンソルビトールをDBSとし、分子量をカッコ内に示すと本反応式は、
2×BA(106)+Sor(182)⇒DBS(358)+2H2O(18)となり、BAの仕込量は95gなので、DBSの理論収量は(95/212)×358g=160.4gとなる。
しかるに、DBSの収量は80.4gであることから、理論収量に対する収率(以下、単に収率という。)は(80.4/160.4)×100=50.1%になる。なお、HPLC((株)島津製作所製、高速液体クロマトグラフィー)分析のチャート(図1)より、ジベンジリデンソルビトールの純度は97.7%(面積比で算出)であった。
The yield calculation method in this case is as follows.
When benzaldehyde is BA, sorbitol is Sor, dibenzylidene sorbitol is DBS, and molecular weight is shown in parentheses, this reaction formula is
Since 2 × BA (106) + Sor (182) => DBS (358) + 2H 2 O (18) and the amount of BA charged is 95 g, the theoretical yield of DBS is (95/212) × 358 g = 160.4 g.
However, since the yield of DBS is 80.4 g, the yield with respect to the theoretical yield (hereinafter simply referred to as “yield”) is (80.4 / 160.4) × 100 = 50.1%. The purity of dibenzylidene sorbitol was 97.7% (calculated by area ratio) from a chart (FIG. 1) of HPLC (manufactured by Shimadzu Corporation, high performance liquid chromatography) analysis.

(実施例2)
反応時間以外は実施例1と同様に反応を行い、反応時間を実施例1より延長してその影響を検討した。以下に示すように、反応を最大192時間まで延長しても、反応後の液状態は粘度3.1Pa・sのスラリーでゲル化傾向は全く見られないばかりか、収率、純度も実施例1の場合とほとんど変わらなかった。
(Example 2)
The reaction was conducted in the same manner as in Example 1 except for the reaction time, and the effect was examined by extending the reaction time from that in Example 1. As shown below, even if the reaction is extended to a maximum of 192 hours, the liquid state after the reaction is a slurry having a viscosity of 3.1 Pa · s and no gelation tendency is observed. It was almost the same as the case of 1.

Figure 2010037278
Figure 2010037278

(実施例3)
汎用攪拌機のスリーワンモータ600G(新東科学(株)製)と錨形の攪拌羽根を備えた、2Lのセパラブルフラスコに、実施例1から回収した未中和の母液716.8gを仕込み、回転数500rpmで攪拌しながら、純水21.9g、70%ソルビトール71.6g、p−トルエンスルホン酸・一水和物21.8gを補充して溶解した後に、気相を窒素置換し、30℃に昇温してからメタノール69.6gを補充して均一液とし、最後に、ベンズアルデヒド56.3gを補充して、湿潤状態の生成物の濾別により系外に出た原料を補充して反応液を調整した。反応は、反応温度30℃で、回転数500rpmの条件を維持しながら行い、6時間後にはスラリー状態となり、そのまま24時間継続してから反応を終了した。
(Example 3)
A non-neutralized mother liquor 716.8g recovered from Example 1 was charged into a 2 L separable flask equipped with a three-purpose motor 600G (manufactured by Shinto Kagaku Co., Ltd.) and a bowl-shaped stirring blade, and rotated. While stirring at several 500 rpm, 21.9 g of pure water, 71.6 g of 70% sorbitol, and 21.8 g of p-toluenesulfonic acid monohydrate were replenished and dissolved, and then the gas phase was replaced with nitrogen. After the temperature was increased to 69.6 g of methanol, a uniform solution was obtained. Finally, 56.3 g of benzaldehyde was added, and the raw material that had flowed out of the system by filtration of the wet product was replenished. The liquid was adjusted. The reaction was carried out at a reaction temperature of 30 ° C. while maintaining the condition of a rotation speed of 500 rpm. After 6 hours, the reaction was in a slurry state, and continued for 24 hours as it was, thereby completing the reaction.

24時間反応後の液状態は、粘度3.2Pa・sのスラリーであった。次いで、反応液を吸引濾過して、生成物と母液に分離した。生成物を5倍量の水に再懸濁し、20%水酸化ナトリウム溶液で中和した後、60℃に昇温して2時間攪拌し、生成物を濾捌後、再度、生成物を、60℃の温水で2時間洗浄した。その後、再度、吸引濾過し、湿潤率約67%の生成物を90℃で12時間乾燥し、粉砕して、ジベンジリデンソルビトールの白色粉末82.6g(収率51.5%)を得た。   The liquid state after the reaction for 24 hours was a slurry having a viscosity of 3.2 Pa · s. The reaction solution was then filtered with suction to separate the product and mother liquor. The product was resuspended in 5 volumes of water, neutralized with 20% sodium hydroxide solution, heated to 60 ° C. and stirred for 2 hours. After filtering the product, the product was again filtered. Washed with warm water at 60 ° C. for 2 hours. Thereafter, the mixture was filtered again with suction, and the product having a wetness of about 67% was dried at 90 ° C. for 12 hours and pulverized to obtain 82.6 g (yield 51.5%) of white powder of dibenzylidene sorbitol.

なお、ベンズアルデヒド等の補充量は、濾捌して除去した湿潤率67%の生成物に含まれるベンズアルデヒド等の量を補充量として、次のようにして算出し、その分を補充した。
すなわち、
2×BA(106)+Sor(182)⇒DBS(358)+2H2O(18)の反応式において、実施例1では、DBS収率50%、湿潤DBSの湿潤率67%であるから、DBSの固形分重量は160.4g×0.5=80.2gであり、湿潤率67%DBSの重量は80.2×3=240.6gである。したがって、吸引濾過により湿潤DBSを分離した母液の残存係数は、(958(初期量)−80.2×3(湿潤DBS重量))/(958−80.2(乾燥DBS重量))=0.817であり、これを用いて各成分の補充量を次表の如く算出した。なお、次表において、MeOHはメタノール、PTSはp−トルエンスルホン酸・一水和物を示す。
The replenishment amount of benzaldehyde and the like was calculated as follows using the amount of benzaldehyde and the like contained in the product having a wet rate of 67% removed by filtration as a replenishment amount, and the amount was replenished.
That is,
In the reaction formula of 2 × BA (106) + Sor (182) => DBS (358) + 2H 2 O (18), in Example 1, the DBS yield was 50% and the wet DBS wet rate was 67%. The solid content weight is 160.4 g × 0.5 = 80.2 g, and the wet weight of 67% DBS is 80.2 × 3 = 240.6 g. Therefore, the residual coefficient of the mother liquor from which the wet DBS was separated by suction filtration was (958 (initial amount) −80.2 × 3 (wet DBS weight)) / (958-80.2 (dry DBS weight)) = 0. 817, and using this, the replenishment amount of each component was calculated as shown in the following table. In the following table, MeOH represents methanol, and PTS represents p-toluenesulfonic acid monohydrate.

Figure 2010037278
Figure 2010037278

HPLC分析により、ジベンジリデンソルビトールの純度は97.8%であった。したがって、本件リサイクル法により製造されたジベンジリデンソルビトールの純度と収率は、リサイクル前の反応である実施例1で得られたものと同等であった。   According to HPLC analysis, the purity of dibenzylidene sorbitol was 97.8%. Therefore, the purity and yield of dibenzylidene sorbitol produced by the present recycling method were equivalent to those obtained in Example 1, which is a reaction before recycling.

また、このリサイクル反応を、5サイクル繰り返した時のトータル収率は、次に示すように84%に達する。
すなわち、収率50%、湿潤DBSの湿潤率67%であり、吸引濾過により湿潤DBSを分離した母液の残存係数は0.817であることから、初回〜リサイクル5回の反応のDBS収量は、次のようになり、合計収量は135gになることから、これをDBSの前記理論収量160.4gで除し、収率を計算すると84.2%となる。
The total yield when this recycling reaction is repeated for 5 cycles reaches 84% as shown below.
That is, the yield is 50%, the wet DBS wet rate is 67%, and the residual coefficient of the mother liquor from which the wet DBS was separated by suction filtration is 0.817. Since the total yield is 135 g as follows, this is divided by the theoretical yield of DBS of 160.4 g and the yield is calculated to be 84.2%.

初回 160.4g×0.5=80.2g
リサイクル1 80.2g×0.817×0.5=32.8g
リサイクル2 32.8g×0.817×0.5=13.4g
リサイクル3 13.4g×0.817×0.5= 5.5g
リサイクル4 5.5g×0.817×0.5= 2.2g
リサイクル5 2.2g×0.817×0.5= 0.9g
First time 160.4g × 0.5 = 80.2g
Recycle 1 80.2g x 0.817 x 0.5 = 32.8g
Recycle 2 32.8g × 0.817 × 0.5 = 13.4g
Recycle 3 13.4g x 0.817 x 0.5 = 5.5g
Recycle 4 5.5g x 0.817 x 0.5 = 2.2g
Recycle 5 2.2g x 0.817 x 0.5 = 0.9g

実施例1〜3で得られたジベンジリデンソルビトールの純度は、97%以上であり、HPLCによる同一の分析条件で発明者が分析したジベンジリデンソルビトールの市販品の純度、すなわち、(株)エーピーアイコーポレーション製EC−1(商品名)及び新日本理化(株)製ゲルオールD(商品名)のそれぞれの純度94.9%及び純度94.9%に比べて、高純度品である。   The purity of the dibenzylidene sorbitol obtained in Examples 1 to 3 was 97% or more, and the purity of the commercial product of dibenzylidene sorbitol analyzed by the inventors under the same analysis conditions by HPLC, ie, API Corporation. Compared to the EC 9 (trade name) manufactured by Corporation and the gelall D (trade name) manufactured by Shin Nippon Rika Co., Ltd., the purity is 94.9% and the purity is 94.9%, respectively.

(実施例4)
汎用攪拌機のスリーワンモータ600G(新東科学(株)製)と錨形の攪拌羽根を備えた、2Lのセパラブルフラスコに、純水234gと70%ソルビトール130g(0.5モル)を仕込み、回転数500rpmで攪拌してソルビトールを溶解した。次いで、攪拌しながら、p−トルエンスルホン酸・一水和物119g(0.625モル)を加えて溶解した後に、気相を窒素置換し、30℃に昇温してからエチルセロソルブ378g(重量比で、p−トルアルデヒドの3.5倍量)を加えて均一液とした。最後に、p−トルアルデヒド108g(0.9モル)を加えて、反応を開始した。反応は、反応温度30℃で、回転数500rpmの条件を維持しながら行い、2時間後にはスラリー状態となり、そのまま48時間継続してから反応を終了した。
Example 4
A 2L separable flask equipped with a three-motor 600G (manufactured by Shinto Kagaku Co., Ltd.), a general-purpose stirrer, and a bowl-shaped stirring blade, was charged with 234 g of pure water and 130 g (0.5 mol) of 70% sorbitol and rotated. The sorbitol was dissolved by stirring at several 500 rpm. Next, with stirring, 119 g (0.625 mol) of p-toluenesulfonic acid monohydrate was added and dissolved, the gas phase was replaced with nitrogen, the temperature was raised to 30 ° C., and 378 g of ethyl cellosolve (weight) In ratio, 3.5 times the amount of p-tolualdehyde) was added to obtain a uniform solution. Finally, 108 g (0.9 mol) of p-tolualdehyde was added to start the reaction. The reaction was carried out at a reaction temperature of 30 ° C. while maintaining the condition of a rotation speed of 500 rpm. After 2 hours, the reaction was in a slurry state and continued for 48 hours as it was before the reaction was terminated.

48時間反応後の液状態は、粘度2.7Pa・sのスラリーであった。次いで、反応液を吸引濾過して、生成物と母液に分離した。生成物を5倍量の水に再懸濁し、20%水酸化ナトリウム溶液で中和した後、60℃に昇温して2時間攪拌し、生成物を濾別後、再度、生成物を60℃の温水で2時間洗浄した。その後、再度、吸引濾過し、湿潤率約67%の生成物を90℃で12時間乾燥し、粉砕して、ジ(p−メチルベンジリデン)ソルビトールの白色粉末117.4g(収率67.6%)を得た。   The liquid state after the reaction for 48 hours was a slurry having a viscosity of 2.7 Pa · s. The reaction solution was then filtered with suction to separate the product and mother liquor. The product was resuspended in 5 times the amount of water, neutralized with 20% sodium hydroxide solution, heated to 60 ° C. and stirred for 2 hours, the product was filtered off, and the product was filtered again. Washed with warm water at 0 ° C. for 2 hours. Thereafter, the mixture was filtered again with suction, and the product having a wetness of about 67% was dried at 90 ° C. for 12 hours, pulverized, and 117.4 g of a white powder of di (p-methylbenzylidene) sorbitol (yield 67.6%). )

HPLC分析により、ジ(p−メチルベンジリデン)ソルビトールの純度は94.9%であった。次いで、純度94.9%の白色粉末を、水/エチルセロソルブ(重量比40/60)の混合溶媒中、5重量%濃度で、60℃24時間洗浄し、濾過、乾燥、粉砕した。再洗浄後の、HPLC分析によるジ(p−メチルベンジリデン)ソルビトールの純度は、98.9%であった。   According to HPLC analysis, the purity of di (p-methylbenzylidene) sorbitol was 94.9%. Next, the white powder having a purity of 94.9% was washed in a mixed solvent of water / ethyl cellosolve (weight ratio 40/60) at a concentration of 5% by weight at 60 ° C. for 24 hours, filtered, dried and pulverized. After rewashing, the purity of di (p-methylbenzylidene) sorbitol by HPLC analysis was 98.9%.

(実施例5)
反応時間以外は実施例4と同様に反応を行い、反応を167時間まで継続してから反応を終了した。反応を167時間まで継続しても、反応後の液状態は、粘度2.6Pa・sのスラリーで、ゲル化傾向は全く見られなかった。白色粉末117.6g(収率67.7%)を得た。HPLC分析により、ジ(p−メチルベンジリデン)ソルビトールの純度は94.5%であった。
(Example 5)
The reaction was conducted in the same manner as in Example 4 except for the reaction time, and the reaction was continued until 167 hours, and then the reaction was terminated. Even if the reaction was continued up to 167 hours, the liquid state after the reaction was a slurry with a viscosity of 2.6 Pa · s, and no gelation tendency was observed. 117.6 g (yield 67.7%) of white powder was obtained. According to HPLC analysis, the purity of di (p-methylbenzylidene) sorbitol was 94.5%.

(実施例6〕
汎用攪拌機のスリーワンモータ600G(新東科学(株)製)と錨形の攪拌羽根を備えた、2Lのセパラブルフラスコに、実施例4から回収した未中和の母液616gを仕込み、回転数500rpmで攪拌しながら、純水39.5g、70%ソルビトール93.3g、p−トルエンスルホン酸・一水和物32.9gを補充して溶解した後に、気相を窒素置換し、30℃に昇温してからエチルセロソルブ104.6gを補充して均一液とし、最後に、p−トルアルデヒド82.7gを補充して、湿潤状態の生成物の濾別により系外に出た原料を補充して反応液を調整した。反応は、反応温度30℃で、回転数500rpmの条件を維持しながら行い、3時間後にはスラリー状態となり、そのまま48時間継続してから反応を終了した。なお、p−トルアルデヒド等の補充量は、実施例3で説明したと同様にして算出した。
Example 6
A non-neutralized mother liquor recovered from Example 4 was charged in a 2 L separable flask equipped with a three-motor 600G (manufactured by Shinto Kagaku Co., Ltd.), a general-purpose stirrer, and a bowl-shaped stirring blade, and the rotational speed was 500 rpm. After stirring, the solution was replenished with 39.5 g of pure water, 93.3 g of 70% sorbitol, and 32.9 g of p-toluenesulfonic acid monohydrate, and the gas phase was replaced with nitrogen and the temperature was raised to 30 ° C. After heating, 104.6 g of ethyl cellosolve is replenished to make a uniform solution, and finally 82.7 g of p-tolualdehyde is replenished to replenish the raw materials that have come out of the system by filtration of the wet product. To prepare a reaction solution. The reaction was performed at a reaction temperature of 30 ° C. while maintaining the condition of a rotation speed of 500 rpm. After 3 hours, the reaction was in a slurry state and continued for 48 hours as it was before the reaction was terminated. Note that the replenishment amount of p-tolualdehyde and the like was calculated in the same manner as described in Example 3.

48時間反応後の液状態は、粘度2.8Pa・sのスラリーであった。次いで、反応液を吸引ろ過して、生成物と母液に分離した。生成物を5倍量の水に再懸濁し、20%水酸化ナトリウム溶液で中和した後、60℃に昇温して2時間攪拌し、生成物を濾捌後、再度、生成物を、60℃の温水で2時間洗浄した。その後、再度、吸引ろ過し、湿潤率約67%の生成物を90℃で12時間乾燥し、粉砕して、白色粉末114.6g(収率66.0%)を得た。HPLC分析により、ジ(p−メチルベンジリデン)ソルビトールの純度は94.4%であった。したがって、本件リサイクル法により製造されたジ(p−メチルベンジリデン)ソルビトールの純度と収率は、リサイクル前の反応である実施例4で得られたものと同等であった。また、このリサイクル反応を、5サイクル繰り返した時のトータル収率は、実施例3で説明したと同様にして算出すると、90%に達する。   The liquid state after the reaction for 48 hours was a slurry having a viscosity of 2.8 Pa · s. Subsequently, the reaction liquid was subjected to suction filtration to separate the product and the mother liquor. The product was resuspended in 5 volumes of water, neutralized with 20% sodium hydroxide solution, heated to 60 ° C. and stirred for 2 hours. After filtering the product, the product was again filtered. Washed with warm water at 60 ° C. for 2 hours. Thereafter, the mixture was filtered again with suction, and the product having a wetness of about 67% was dried at 90 ° C. for 12 hours and pulverized to obtain 114.6 g (yield 66.0%) of a white powder. According to HPLC analysis, the purity of di (p-methylbenzylidene) sorbitol was 94.4%. Therefore, the purity and yield of di (p-methylbenzylidene) sorbitol produced by the present recycling method were equivalent to those obtained in Example 4, which is a reaction before recycling. Further, when this recycling reaction is repeated 5 cycles, the total yield reaches 90% when calculated in the same manner as described in Example 3.

実施例4〜6で得られた、ジ(p−メチルベンジリデン)ソルビトールの純度はいずれも94%以上であり、得られた、純度94%以上の白色粉末を、水/エチルセロソルブ(重量比40/60)の混合溶媒中、5重量%濃度で、60℃24時間洗浄すれば、純度99%に近い精製ジ(p−メチルベンジリデン)ソルビトールが得られる。   The purity of di (p-methylbenzylidene) sorbitol obtained in Examples 4 to 6 was 94% or higher, and the obtained white powder having a purity of 94% or higher was mixed with water / ethyl cellosolve (weight ratio 40). / 60) in a mixed solvent at a concentration of 5% by weight at 60 ° C. for 24 hours, purified di (p-methylbenzylidene) sorbitol with a purity close to 99% is obtained.

これは、HPLCによる同一の分析条件で発明者が分析したジ(p−メチルベンジリデン)ソルビトールの市販品の純度、すなわち、(株)エーピーアイコーポレーション製ヨシクリアMS(商品名)の純度96.6%に比べて、高純度品である。   This is the purity of a commercial product of di (p-methylbenzylidene) sorbitol analyzed by the inventors under the same analysis conditions by HPLC, that is, the purity of Yoshiclear MS (trade name) manufactured by API Corporation 96.6%. Compared to, it is a high purity product.

(比較例1)
汎用攪拌機のスリーワンモータ600G(新東科学(株)製)と錨形の攪拌羽根を備えた、1Lのセパラブルフラスコに、純水234gと70%ソルビトール130g(0.5モル)を仕込み、回転数500rpmで攪拌してソルビトールを溶解した。次いで、攪拌しながら、p−トルエンスルホン酸・一水和物119g(0.625モル)を加えて溶解した後に、気相を窒素置換し、30℃に昇温し、ベンズアルデヒド95g(0.9モル)を加えて、反応を開始した。反応は、反応温度30℃で、回転数500rpmの条件を維持しながら行ったが、5.5時間後に反応液がゲル化したため、攪拌不能となり反応を終了した。次いで、ゲル化物を取り出し、フラスコの付着物を洗い出し、吸引濾過して、生成物を分離した。
(Comparative Example 1)
A 1 L separable flask equipped with a general-purpose stirrer Three One Motor 600G (manufactured by Shinto Kagaku Co., Ltd.) and a bowl-shaped stirring blade was charged with 234 g of pure water and 130 g (0.5 mol) of 70% sorbitol and rotated. The sorbitol was dissolved by stirring at several 500 rpm. Next, with stirring, 119 g (0.625 mol) of p-toluenesulfonic acid monohydrate was added and dissolved, the gas phase was replaced with nitrogen, the temperature was raised to 30 ° C., and 95 g (0.9 g) of benzaldehyde was added. Mol) was added to initiate the reaction. The reaction was carried out at a reaction temperature of 30 ° C. while maintaining the condition of a rotation speed of 500 rpm. However, the reaction solution gelled after 5.5 hours, and thus the reaction was terminated due to the impossibility of stirring. The gelled product was then removed, the flask deposits were washed out and suction filtered to separate the product.

分離した生成物を、5倍量の水に再懸濁し、20%水酸化ナトリウム溶液で中和した後、60℃に昇温して2時間攪拌し、生成物を濾別後、再度、60℃の温水で2時間洗浄した。その後、再度、吸引濾過し、湿潤率約67%の生成物を90℃で12時間乾燥し、粉砕して、白色粉末88.7g(収率55.3%)を得た。HPLC分析により、ジベンジリデンソルビトールの純度は77.6%で、純度の低いものであった。   The separated product was resuspended in 5 times the amount of water, neutralized with 20% sodium hydroxide solution, heated to 60 ° C. and stirred for 2 hours. The product was filtered off and filtered again. Washed with warm water at 0 ° C. for 2 hours. Thereafter, the mixture was filtered again with suction, and the product having a wetness of about 67% was dried at 90 ° C. for 12 hours and pulverized to obtain 88.7 g (yield 55.3%) of a white powder. According to HPLC analysis, the purity of dibenzylidene sorbitol was 77.6%, which was low.

(比較例2)
汎用攪拌機のスリーワンモータ600G(新東科学(株)製)と錨形の攪拌羽根を備えた、1Lのセパラブルフラスコに、純水234gと70%ソルビトール130g(0.5モル)を仕込み、回転数500rpmで攪拌してソルビトールを溶解した。次いで、攪拌しながら、p−トルエンスルホン酸・一水和物119g(0.625モル)を加えて溶解した後に、気相を窒素置換し、30℃に昇温し、p−トルアルデヒド108g(0.9モル)を加えて、反応を開始した。反応は、反応温度30℃で、回転数500rpmの条件を維持しながら行ったが、6時間後に反応液がゲル化したため、攪拌不能となり反応を終了した。次いで、ゲル化物を取出し、フラスコの付着物を洗い出し、吸引濾過して、生成物を分離した。
(Comparative Example 2)
A 1 L separable flask equipped with a general-purpose stirrer Three One Motor 600G (manufactured by Shinto Kagaku Co., Ltd.) and a bowl-shaped stirring blade was charged with 234 g of pure water and 130 g (0.5 mol) of 70% sorbitol and rotated. The sorbitol was dissolved by stirring at several 500 rpm. Next, with stirring, 119 g (0.625 mol) of p-toluenesulfonic acid monohydrate was added and dissolved, the gas phase was replaced with nitrogen, the temperature was raised to 30 ° C., and 108 g of p-tolualdehyde was added ( 0.9 mol) was added to initiate the reaction. The reaction was carried out at a reaction temperature of 30 ° C. while maintaining the condition of a rotational speed of 500 rpm. However, the reaction solution gelled after 6 hours, so that the reaction became impossible and stirring was terminated. The gel was then removed, the flask deposits washed out and suction filtered to separate the product.

分離した生成物を、5倍量の水に再懸濁し、20%水酸化ナトリウム溶液で中和した後、60℃に昇温して2時間攪拌し、生成物を濾別後、再度、生成物を、60℃の温水で2時間洗浄した。その後、再度、吸引濾過し、湿潤率約67%のケーキを90℃で12時間乾燥し、粉砕して、白色粉末107.2g(収率61.7%)を得た。HPLC分析により、ジ(p−メチルベンジリデン)ソルビトールの純度は15.3%で、純度の非常に低いものであった。   The separated product was resuspended in 5 times the amount of water, neutralized with 20% sodium hydroxide solution, heated to 60 ° C. and stirred for 2 hours. The material was washed with warm water at 60 ° C. for 2 hours. Thereafter, the mixture was filtered again with suction, and the cake having a wetness of about 67% was dried at 90 ° C. for 12 hours and pulverized to obtain 107.2 g (yield 61.7%) of a white powder. According to HPLC analysis, the purity of di (p-methylbenzylidene) sorbitol was 15.3%, which was very low purity.

は、実施例1で得られたジベンジリデンソルビトール(溶出時間:32.175)をHPLC分析した時のチャートである。なお、モノベンジリデンソルビトールとトリベンジリデンソルビトールは検出されなかった。These are the charts when the HPLC analysis of the dibenzylidene sorbitol (elution time: 32.175) obtained in Example 1 is carried out. Monobenzylidene sorbitol and tribenzylidene sorbitol were not detected.

符号の説明Explanation of symbols

1:ジベンジリデンソルビトール
2:ベンズアルデヒド
3:同定されない不純物
1: Dibenzylidene sorbitol 2: Benzaldehyde 3: Unidentified impurity

Claims (3)

水媒体中、酸触媒の存在下に、芳香族アルデヒドとアルジトールとを、縮合反応させ、次いで反応液を中和してジベンジリデンアルジトール類を得るジベンジリデンアルジトール類の製造方法において、前記水媒体中に、前記芳香族アルデヒドと前記アルジトールとの相溶化剤を、芳香族アルデヒドの配合量に対して、重量比で、3〜7倍量を、配合してなることを特徴とする下記一般式(1)で表わされるジベンジリデンアルジトール類の製造方法。
Figure 2010037278
(式中,R1及びR2は、同一又は異なって、水素原子、炭素原子数1〜4のアルキル基又は炭素原子数1〜3のアルコキシル基を表す。X及びYは、同一又は異なって、1〜5を示し、nは0又は1を示す。)
In the method for producing dibenzylidene alditols, an aromatic aldehyde and alditol are subjected to a condensation reaction in an aqueous medium in the presence of an acid catalyst, and then the reaction solution is neutralized to obtain dibenzylidene alditols. In the medium, the compatibilizer of the aromatic aldehyde and the alditol is blended in an amount of 3 to 7 times by weight with respect to the blending amount of the aromatic aldehyde. A process for producing dibenzylidenealditols represented by the formula (1).
Figure 2010037278
(In the formula, R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxyl group having 1 to 3 carbon atoms. X and Y are the same or different. 1 to 5 and n represents 0 or 1.)
前記相溶化剤がメタノール、エタノール、イソプロパノール、1−プロパノールから選ばれる少なくとも1種のアルコール系溶剤、及び/又は、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブから選ばれる少なくとも1種のセロソルブ系溶剤であることを特徴とする請求項1記載のジベンジリデンアルジトール類の製造方法。 The compatibilizer is at least one alcohol solvent selected from methanol, ethanol, isopropanol, and 1-propanol, and / or at least one cellosolve solvent selected from methyl cellosolve, ethyl cellosolve, and butyl cellosolve. The method for producing dibenzylidene alditols according to claim 1, 前記中和の前に生成ジベンジリデンアルジトール類を濾過して母液を回収し、該母液に含まれる芳香族アルデヒド、アルジトール、酸触媒、相溶化剤等を利用して、繰り返し前記縮合反応を行い、リサイクルに供することを特徴とする請求項1又は2記載のジベンジリデンアルジトール類の製造方法。 Before the neutralization, the produced dibenzylidene alditols are filtered to recover the mother liquor, and the condensation reaction is repeated using aromatic aldehyde, alditol, acid catalyst, compatibilizing agent, etc. contained in the mother liquor. The method for producing dibenzylidene alditols according to claim 1 or 2, wherein the method is used for recycling.
JP2008202490A 2008-08-06 2008-08-06 Method for producing dibenzylidene alditols Active JP5426120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202490A JP5426120B2 (en) 2008-08-06 2008-08-06 Method for producing dibenzylidene alditols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202490A JP5426120B2 (en) 2008-08-06 2008-08-06 Method for producing dibenzylidene alditols

Publications (2)

Publication Number Publication Date
JP2010037278A true JP2010037278A (en) 2010-02-18
JP5426120B2 JP5426120B2 (en) 2014-02-26

Family

ID=42010178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202490A Active JP5426120B2 (en) 2008-08-06 2008-08-06 Method for producing dibenzylidene alditols

Country Status (1)

Country Link
JP (1) JP5426120B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843748B1 (en) * 1969-10-06 1973-12-20 New Japan Chem Co Ltd
JPS6117833B2 (en) * 1978-11-29 1986-05-09 Iishii Kagaku Kogyo Kk
JPS63267777A (en) * 1987-04-07 1988-11-04 ロケット フレール エス.アー High purity argitol diacetal without trace of organic solvent and manufacture
JPH04139189A (en) * 1990-05-23 1992-05-13 Ii C Kagaku Kk Production of benzylidene derivative of polyhydric alcohol
JPH0912579A (en) * 1995-06-26 1997-01-14 Mitsui Toatsu Chem Inc Production of 1,3-2,4-dibenzylidene sorbitol
JPH1025295A (en) * 1989-09-20 1998-01-27 Milliken Res Corp Bis(3,4-dialkylbenzylidene)sorbitol acetal, composition containing the same, and container and packaging material using the same
JP2000198787A (en) * 1999-01-05 2000-07-18 New Japan Chem Co Ltd Production of diacetal
JP2001131183A (en) * 1999-08-25 2001-05-15 Yoshitomi Fine Chemicals Ltd Production of diacetals and diacetals
JP2004508374A (en) * 2000-09-01 2004-03-18 ミリケン・アンド・カンパニー Novel fluorinated and alkylated alditol derivatives, compositions containing them and polyolefin articles
JP2005145834A (en) * 2003-11-12 2005-06-09 New Japan Chem Co Ltd Method for producing diacetal compound
JP2007534827A (en) * 2004-04-26 2007-11-29 ミリケン・アンド・カンパニー Method for nucleating polyolefin compositions using acetal compounds

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843748B1 (en) * 1969-10-06 1973-12-20 New Japan Chem Co Ltd
JPS6117833B2 (en) * 1978-11-29 1986-05-09 Iishii Kagaku Kogyo Kk
JPS63267777A (en) * 1987-04-07 1988-11-04 ロケット フレール エス.アー High purity argitol diacetal without trace of organic solvent and manufacture
JPH1025295A (en) * 1989-09-20 1998-01-27 Milliken Res Corp Bis(3,4-dialkylbenzylidene)sorbitol acetal, composition containing the same, and container and packaging material using the same
JPH04139189A (en) * 1990-05-23 1992-05-13 Ii C Kagaku Kk Production of benzylidene derivative of polyhydric alcohol
JPH0912579A (en) * 1995-06-26 1997-01-14 Mitsui Toatsu Chem Inc Production of 1,3-2,4-dibenzylidene sorbitol
JP2000198787A (en) * 1999-01-05 2000-07-18 New Japan Chem Co Ltd Production of diacetal
JP2001131183A (en) * 1999-08-25 2001-05-15 Yoshitomi Fine Chemicals Ltd Production of diacetals and diacetals
JP2004508374A (en) * 2000-09-01 2004-03-18 ミリケン・アンド・カンパニー Novel fluorinated and alkylated alditol derivatives, compositions containing them and polyolefin articles
JP2005145834A (en) * 2003-11-12 2005-06-09 New Japan Chem Co Ltd Method for producing diacetal compound
JP2007534827A (en) * 2004-04-26 2007-11-29 ミリケン・アンド・カンパニー Method for nucleating polyolefin compositions using acetal compounds

Also Published As

Publication number Publication date
JP5426120B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP2694961B2 (en) Production method of high-purity alditol diacetal free of traces of organic solvents
JP5376453B2 (en) Gelling agent containing fluoroalkyl group derivative
FR2941943A1 (en) BRANCHED CARBOXYLIC ACID DIESTERS
JPH10291987A (en) Production of acetal
JP5887359B2 (en) Method for producing acetal
FR2966150A1 (en) PROCESS FOR THE PREPARATION OF 2-HYDROXYBUTYROLACTONE
JP5426120B2 (en) Method for producing dibenzylidene alditols
JP2005281675A (en) Preparation process of resorcinol/formaldehyde resin
JP5887360B2 (en) Method for producing alditol acetal
WO1981003331A1 (en) Process for preparing a dibenzylidenesorbitol or a dibenzylidenexylitol
JPH0899923A (en) Preparation of unsaturated ether
JP2011105762A (en) Method for preparing 1-hydroperoxy-16-oxabicyclo[10.4.0]hexadecane
JPH04173757A (en) Production of alpha-alkylacrolein
TWI473782B (en) Recovery of alcohols from purification residue
JP3890792B2 (en) Method for producing diacetals
JP2872294B2 (en) Diacetal manufacturing method
JPH10265459A (en) 1,2,3,6tetrahydro2,2,6,6methylpyridinn-oxyl
JP3908310B2 (en) Method for producing ether compounds
JP4448684B2 (en) Method for producing acyloxybenzenesulfonic acid or salt thereof
JPH10310585A (en) Production of diacetal
EP3164383B1 (en) Method for producing metal dithiocarbamates
JP3908382B2 (en) Method for producing fluorine-containing ether compound
JP3769693B2 (en) Method for producing trimethylolalkane
WO2001051461A1 (en) NOVEL PROCESS FOR THE PREPARATION OF α-(2-4-DISULFOPHENYL)-N-TERT-BUTYLNITRONE AND PHARMACEUTICALLY ACCEPTABLE SALTS THEREOF
JP5310329B2 (en) Method for producing resorcin / formaldehyde / aliphatic ketone resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250