JP2010036529A - Flowability improver for biomass powder, molding using flowability improver, and manufacturing method for molding - Google Patents

Flowability improver for biomass powder, molding using flowability improver, and manufacturing method for molding Download PDF

Info

Publication number
JP2010036529A
JP2010036529A JP2008204631A JP2008204631A JP2010036529A JP 2010036529 A JP2010036529 A JP 2010036529A JP 2008204631 A JP2008204631 A JP 2008204631A JP 2008204631 A JP2008204631 A JP 2008204631A JP 2010036529 A JP2010036529 A JP 2010036529A
Authority
JP
Japan
Prior art keywords
powder
molding
biomass
hot water
bamboo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008204631A
Other languages
Japanese (ja)
Other versions
JP4898750B2 (en
Inventor
Hiroyuki Sugimoto
宏行 杉元
Kozo Kanayama
公三 金山
Tsunehisa Miki
恒久 三木
Eiji Udaka
英二 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008204631A priority Critical patent/JP4898750B2/en
Publication of JP2010036529A publication Critical patent/JP2010036529A/en
Application granted granted Critical
Publication of JP4898750B2 publication Critical patent/JP4898750B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biomass flowability improver can obtain a biomass molding raw material flowable at low temperature, and a molding using the same. <P>SOLUTION: This flowability improver for enhancing flowability of biomass powder contains a hot-water extract obtained by extraction-treating a bamboo material with hot water, and the molding is molded by heating and pressurizing the molding raw material with the flowability improver added to the raw material containing the biomass powder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バイオマス粉体の流動性向上剤、並びに流動性向上剤を用いた成形体及び成形体の製造方法に関する。   The present invention relates to a fluidity improver for biomass powder, a molded body using the fluidity improver, and a method for producing the molded body.

プラスチックは、複雑な三次元形状の製品が比較的容易に大量生産でき、多くの分野で利用されている。また、その成形技術や成形装置についても多種多様なものが開発されている。しかし、大部分のプラスチックは、自然界で容易に分解せず、環境に与える負荷が大きいために深刻な問題となっている。さらに、化石資源である石油を原料としたプラスチックの使用を続ければ、石油の枯渇を招くだけでなく、廃棄の際には炭酸ガスなどを発生するので、地球規模での炭酸ガスを増加させ地球温暖化を招き、将来の地球環境維持に対する脅威であるとも言われている。   Plastic is relatively easy to mass-produce products having a three-dimensional shape, and is used in many fields. A variety of molding techniques and molding apparatuses have been developed. However, most plastics are serious problems because they are not easily decomposed in nature and have a large environmental load. Furthermore, if you continue to use plastics made from petroleum, which is a fossil resource, not only will you run out of oil, but carbon dioxide will be generated when you dispose of it. It is said to be a threat to global warming and the future maintenance of the global environment.

これに対処するひとつの方向として、バイオマス系の原料を用いた生分解性のプラスチックの開発が進んでいる。生分解性のプラスチックは、炭素の生態系でのリサイクルが可能で、持続的生産によっても炭酸ガスの増加をもたらさないとされている。代表的な生分解性のプラスチックは、植物原料であるトウモロコシやサツマイモなどに含まれるデンプンを酵母により乳酸とし、乳酸から乳酸系のプラスチックとしたものである。乳酸系のプラスチックは、乳酸が得られれば、従来の石油系のプラスチックで開発された、プラスチック生産技術や成形技術が利用でき、生分解性があり、環境負荷が小さい製品を製造することができる。   One way to deal with this is the development of biodegradable plastics using biomass-based raw materials. Biodegradable plastics can be recycled in the carbon ecosystem, and sustainable production is said not to increase carbon dioxide. Typical biodegradable plastics are those in which starch contained in plant materials such as corn and sweet potato is converted to lactic acid by yeast, and lactic acid is converted to lactic acid based plastic. If lactic acid can be obtained, lactic acid-based plastics can use plastic production technology and molding technology developed with conventional petroleum-based plastics, and can produce products that are biodegradable and have a low environmental impact. .

乳酸系のプラスチックは、現状の石油系のプラスチックに較べ製造コスト面で劣っており、現在では生産量は限られている。将来は、環境問題及び石油供給価格の上昇に伴い、植物を原料とした乳酸系のプラスチックは、さらに実用領域を拡げると考えられる。しかし、乳酸系のプラスチックは、デンプンを原料としているため、トウモロコシやサツマイモなど高デンプン質の植物が必要であるが、ほとんどの場合、高デンプン質の植物は食用植物であり、石油系のプラスチックのように大量に生産しようとすれば、食料供給への影響の恐れがある。   Lactic acid-based plastics are inferior in terms of production costs compared to current petroleum-based plastics, and production is limited at present. In the future, with environmental problems and rising oil supply prices, lactic acid-based plastics made from plants are expected to expand the practical field. However, since lactic acid plastics are made from starch, high starchy plants such as corn and sweet potato are required, but in most cases, high starchy plants are edible plants, and petroleum-based plastics If you try to produce in large quantities, there is a risk of affecting food supply.

一方、木質系バイオマスを材料として用いる加工技術は昔から存在し、「切る」「削る」「接合する」といった手法により、希望する形状を得てきた。また、木質チップ、木粉、木繊維などを原料とした木質系ボードなども実用化されている。例えば、繊維板、パーティクルボードなどがある。パーティクルボードは、木質チップや木粉にバインダを混合して加熱圧縮成形したボードであり、建材、家具などに使用されている。一般的に木質系バイオマスは、丸太の状態から板材や柱材に加工されてから、又は前記の木質系ボードとして成形されてから、材料として使われ、さらに「切る」「削る」「接合する」などの加工を経て製品の形状になる。プラスチック製品のように、原料から一気に複雑な三次元形状の製品を製造することは容易ではない。   On the other hand, processing technology using woody biomass as a material has existed for a long time, and the desired shape has been obtained by methods such as “cut”, “shave” and “join”. In addition, wood-based boards made from wood chips, wood flour, wood fibers, etc. have been put into practical use. For example, there are a fiber board and a particle board. The particle board is a board obtained by mixing a wood chip or wood powder with a binder and heat compression molding, and is used for building materials and furniture. Generally, woody biomass is used as a material after being processed from a log state into a plate or pillar material, or after being molded as the woody board, and is further cut, cut, and joined. It becomes the shape of the product through such processing. Like plastic products, it is not easy to manufacture products with complicated three-dimensional shapes from raw materials.

そこで、バイオマス系の素材をそのまま原料として使用し、プラスチック成形品のように、任意の三次元形状を付与した製品を製造するための技術が検討されている。特許文献1には、微粉状の木質材料とマレイン酸変性樹脂などの溶融混合樹脂とシリカヒュームやフライアッシュなどの球状素材を混合した、原料からの押出成形品や射出成形品の製造技術が開示されている。この技術においては、溶融混合樹脂が微粉状の木質材料に流動性を付与し、微粉の球状素材がさらに微粉状の木質材料の流動性を向上させて、微粉状の木質材料を主体にした原料の成形性を高めている。   Therefore, a technique for manufacturing a product having an arbitrary three-dimensional shape, such as a plastic molded product, using a biomass-based material as it is as a raw material has been studied. Patent Document 1 discloses a technique for manufacturing an extruded product or an injection-molded product from a raw material in which a fine powdery wood material, a molten mixed resin such as maleic acid-modified resin, and a spherical material such as silica fume or fly ash are mixed. Has been. In this technology, the melt-mixed resin imparts fluidity to the finely divided woody material, and the finely divided spherical material further improves the fluidity of the finely powdered wooden material. Has improved moldability.

特許文献2には、鋸屑・鉋屑などの木屑にホルムアルデヒド系のバインダ樹脂を混入して原料に流動性を持たせて加圧成形する方法に代えて、木粉・鋸屑・鉋屑・木チップなどの木屑を水系バインダとともに成形型に封入して加熱加圧することにより原料木材中のリグニンをバインダとして利用する成形方法が提案されている。原料木材中のリグニンを利用することで、従来使用されていたホルムアルデヒドを発生させるバインダを使用しなくてもよくなり、人体への影響がない複雑な形状の成形体が安価に製造できるとされている。   In Patent Document 2, instead of a method in which formaldehyde-based binder resin is mixed into wood chips such as sawdust and sawdust to make the raw material fluid and pressure-molded, wood powder, sawdust, sawdust, wood chips, etc. There has been proposed a molding method in which lignin in raw material wood is used as a binder by enclosing wood chips together with a water-based binder in a mold and heating and pressing. By using lignin in raw material wood, it is not necessary to use a binder that generates formaldehyde, which has been used in the past, and it is said that a compact shaped product that does not affect the human body can be manufactured at low cost. Yes.

特許文献3には、バイオマス系材料の粉体を加熱加圧して、ヘミセルロース熱分解流動化物を生成し、このヘミセルロース熱分解流動化物によるバイオマス系材料粉体の流動性を利用して、プラスチック類似の成形品を製造するする成形方法が提案されている。例えば、バイオマス系材料粉体として竹粉を利用した場合、20〜40分間の加熱加圧処理により、竹粉は流動化することが開示されている。   In Patent Document 3, a biomass-based material powder is heated and pressurized to produce a hemicellulose pyrolysis fluidized product, and the fluidity of the biomass-based material powder by this hemicellulose pyrolysis fluidized product is used to resemble plastic. A molding method for manufacturing a molded product has been proposed. For example, it is disclosed that when bamboo powder is used as biomass-based material powder, the bamboo powder is fluidized by a heat and pressure treatment for 20 to 40 minutes.

特許文献4には、バイオマス系材料を粉体化することなく、繊維を残したまま加熱加圧してバイオマス系材料を流動化させ、プラスチック類似の繊維を有する押出成形品や射出成形品を製造する技術が開示されている。特許文献3と類似の考え方を発展させたものと考えられる。
特開2004−230663号公報 特開2007−044966号公報 特開2006−123443号公報 特開2006−247974号公報
In Patent Document 4, the biomass-based material is fluidized by heating and pressurizing the biomass-based material without pulverizing the biomass-based material to produce an extrusion-molded product or an injection-molded product having plastic-like fibers. Technology is disclosed. It is thought that the idea similar to Patent Document 3 was developed.
JP 2004-230663 A JP 2007-044966 A JP 2006-123443 A JP 2006-247974 A

上述のように、資源問題、廃棄物問題、地球環境問題など多くの問題を抱えるプラスチック系成形品に代わるバイオマス系成形品の開発が進められている。しかし、特許文献1に記載の成形方法では、溶融用の石油系樹脂を数十パーセント必要とし、資源問題、廃棄物問題、地球環境問題などの抜本的解決にはなりにくいと考えられる。特許文献2に記載の成形品においては、バッチ式のプレス成形であるため大量生産には不向きである。   As described above, the development of biomass-based molded products that are replacing plastic-based molded products having many problems such as resource problems, waste problems, and global environmental problems is underway. However, the molding method described in Patent Document 1 requires several tens of percent of a petroleum-based resin for melting, and is considered not to be a fundamental solution for resource problems, waste problems, global environmental problems, and the like. The molded article described in Patent Document 2 is not suitable for mass production because it is batch press molding.

特許文献3、4に記載の成形体は、バイオマス系の原料を加熱加圧することで流動化させ、金型に導入して成形しているので、射出成形が可能と考えられる。しかし、原料粉体の種類により、ヘミセルロース流動化物を生成する量や時間にばらつきが大きいと考えられる。原料が木粉の場合、ヘミセルロースを分解してヘミセルロース流動化物を生成するのには、220〜240℃の比較的高温が必要と考えられる。また、ヘミセルロース流動化物を生成する時間が必要となり、本発明者らの検討によれば、200℃程度の低温領域でヘミセルロース流動化物を生成するには、木粉は竹粉の4倍程度の時間が必要であった。   Since the molded bodies described in Patent Documents 3 and 4 are fluidized by heating and pressurizing biomass-based raw materials and introduced into a mold and molded, it is considered that injection molding is possible. However, it is considered that there is a large variation in the amount and time for generating the fluidized hemicellulose depending on the type of raw material powder. When the raw material is wood flour, it is considered that a relatively high temperature of 220 to 240 ° C. is necessary to decompose hemicellulose to produce a hemicellulose fluidized product. Further, it takes time to produce a fluidized hemicellulose, and according to the study by the present inventors, in order to produce a fluidized hemicellulose in a low temperature region of about 200 ° C., the wood flour is about four times as long as the bamboo flour. Was necessary.

本発明の目的は、上記の問題点を踏まえて、低温でも流動性を有するバイオマス系成形原料を得られるバイオマス系の流動性向上剤、並びにこれを用いた成形体及び成形体の製造方法を提供することである。   An object of the present invention is to provide a biomass-based fluidity improver capable of obtaining a biomass-based molding raw material having fluidity even at a low temperature, and a molded body using the same and a method for producing the molded body, in view of the above problems It is to be.

本発明は、竹材を熱水抽出処理して得られる熱水抽出物を含むことを特徴とするバイオマス系の粉体の流動性を向上させる流動性向上剤であり、好ましくは、前記熱水抽出処理は、60〜180℃、常圧〜2MPaの熱水により、10秒以上抽出処理した後に液体を蒸発させて得られることを特徴とする前記流動性向上剤である。   The present invention is a fluidity improver for improving the fluidity of biomass-based powder, characterized by comprising a hot water extract obtained by subjecting bamboo to hot water extraction treatment, preferably the hot water extraction The treatment is the fluidity improver obtained by evaporating the liquid after extracting with hot water at 60 to 180 ° C. and normal pressure to 2 MPa for 10 seconds or more.

本発明は、バイオマス系の粉体を含む原料に前記流動性向上剤を添加した後に、加熱、加圧して成形したことを特徴とする成形体であり、好ましくは、前記バイオマス系の粉体は、木粉、又は竹粉であることを特徴とする前記成形体である。   The present invention is a molded body characterized in that the fluidity improver is added to a raw material containing biomass-based powder, and then molded by heating and pressurizing. Preferably, the biomass-based powder is It is the said molded object characterized by being a wood powder or a bamboo powder.

本発明は、バイオマス系の粉体、及び前記流動性向上剤を含む成形原料を加熱して流動体とする加熱工程と、前記流動体を成形して加熱成形体とする成形工程と、前記加熱成形体を冷却して成形体とする冷却工程とを含むことを特徴とする成形体の製造方法であり、好ましくは、150〜250℃の成形温度で成形することを特徴とする前記成形体の製造方法である。   The present invention includes a heating step of heating a forming raw material containing biomass powder and the fluidity improver to form a fluid, a forming step of forming the fluid to form a thermoformed body, and the heating And a cooling step of cooling the molded body to form a molded body, and preferably, the molded body is molded at a molding temperature of 150 to 250 ° C. It is a manufacturing method.

本発明は、バイオマス系の粉体、及び前記流動性向上剤を含む成形原料を射出成形、又は押出成形して成形体を製造することを特徴とする成形体の製造方法であり、好ましくは、150〜250℃の成形温度で成形することを特徴とする前記成形体の製造方法である。   The present invention is a method for producing a molded body characterized by producing a molded body by injection molding or extrusion molding a biomass-based powder and a molding raw material containing the fluidity improver, preferably, It is the manufacturing method of the said molded object characterized by shape | molding at the shaping | molding temperature of 150-250 degreeC.

本発明は、比較的低い温度域でも流動性を有するバイオマス系成形原料を得るためのバイオマス由来の流動性向上剤、並びにこれを用いた成形体及び成形体の製造方法を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a biomass-derived fluidity improver for obtaining a biomass-based forming raw material having fluidity even in a relatively low temperature range, a molded body using the same, and a method for producing the molded body.

本発明の流動性向上剤は、竹材を熱水抽出処理して得られる熱水抽出物を含む流動性向上剤であって、バイオマス系の粉体の流動性を向上することを特徴とする。竹材の原料である竹の種類は、特に制限されるものではないが、大きく成長し、一般に竹材として使用されているモウソウチク、マダケ、又はハチクなどが好ましい。   The fluidity improver of the present invention is a fluidity improver containing a hot water extract obtained by subjecting bamboo material to a hot water extraction treatment, and is characterized by improving the fluidity of biomass powder. The type of bamboo that is the raw material of the bamboo is not particularly limited, but it is preferable to use Moso bamboo, mushroom, or bee that grows large and is generally used as bamboo.

本発明の流動性向上剤は、図1に示すように、竹材から有効成分を熱水で抽出すればよい。竹材の熱水抽出処理は、粉砕して抽出し易くした竹材を60〜180℃、常圧〜2MPaの熱水により、10秒以上抽出処理することが好ましい。熱水抽出温度は、高温である方が抽出速度が速く生産性が高い。しかし、熱水抽出温度が100℃を超えると加圧装置が必要となり、装置が大がかりとなる。熱水抽出物は、水分を除去して乾燥させ本発明の流動性向上剤となる。なお、乾燥の際に熱水抽出物が粗粒化した場合は、粗粒化した熱水抽出物を粉砕し、粉体化して本発明の流動性向上剤とすることが好ましい。   As shown in FIG. 1, the fluidity improver of the present invention may be obtained by extracting an active ingredient from bamboo with hot water. In the hot water extraction treatment of bamboo material, it is preferable to extract the bamboo material that has been pulverized and easily extracted with hot water at 60 to 180 ° C. and normal pressure to 2 MPa for 10 seconds or more. As the hot water extraction temperature is higher, the extraction speed is faster and the productivity is higher. However, when the hot water extraction temperature exceeds 100 ° C., a pressurizing device is required, and the device becomes large. The hot water extract is dried after removing moisture, and becomes the fluidity improver of the present invention. When the hot water extract is coarsened during drying, the coarse hot water extract is preferably pulverized and powdered to obtain the fluidity improver of the present invention.

本発明における熱水抽出物とバイオマス系の粉体の混合物の流動性を調べる実験を行った。図2に示すようなキャピラリーレオメーター式の流動性評価装置に200メッシュのふるいを通過した乾燥竹粉(全乾竹粉ともいう。)を充填し、200℃に加熱し、ピストンにより142MPaで圧縮した。全乾竹粉の圧縮時におけるピストン位置の経時変化を図3に示す。圧縮当初、ピストンの高さがおよそ5mmあったものが、加熱と圧縮により2〜3分で全乾竹粉が流動化し始め、下部のキャピラリから流出し、およそ30分でほとんど流出し、ピストンが最下点に到達した。   An experiment was conducted to examine the fluidity of the mixture of hot water extract and biomass powder in the present invention. A capillary rheometer type fluidity evaluation apparatus as shown in FIG. 2 is filled with dry bamboo powder (also called whole dry bamboo powder) that has passed through a 200-mesh sieve, heated to 200 ° C., and compressed by a piston at 142 MPa. did. FIG. 3 shows the change over time of the piston position when all dry bamboo powder is compressed. At the beginning of compression, the piston was about 5 mm high, but the whole dry bamboo powder began to flow in 2 to 3 minutes due to heating and compression, and it flowed out from the lower capillary, almost out in about 30 minutes. Reached the lowest point.

次に、上記の全乾竹粉を90〜98℃の熱水で2時間抽出した後、抽出残(抽出後竹粉という。)を乾燥させて、この抽出後竹粉について、上記と同様にして、流動性を調べる実験を行った。その結果、図3のグラフに示すように、抽出後竹粉は、およそ50分間は、ほとんど流動せず、その後120分までの70分間で流動化して、キャピラリから流出した。   Next, after extracting the above-mentioned completely dried bamboo powder with hot water at 90 to 98 ° C. for 2 hours, the extraction residue (hereinafter referred to as bamboo powder after extraction) is dried, and this extracted bamboo powder is the same as described above. An experiment was conducted to check the fluidity. As a result, as shown in the graph of FIG. 3, the bamboo powder after extraction hardly flowed for about 50 minutes, and then fluidized in 70 minutes up to 120 minutes and flowed out of the capillary.

この2つの実験結果から、竹粉中の熱水抽出物(竹熱水抽出物という。)が竹粉の流動化促進に影響しているものと考えられる。一方で、それぞれの材料の熱分解挙動を把握するために、全乾竹粉、竹熱水抽出物、抽出後竹粉をそれぞれ熱重量測定(TG)を行った。その結果を図4のグラフに示す。竹熱水抽出物は、140℃付近から重量減少が始まり、180℃で10%、220℃で20%の重量減少が生じ、さらに同じような速度で重量減少が進んでいく。一方、抽出後竹粉は、重量減少が起こりにくく、200℃まではほとんど重量が変わらず、250℃になっても10%弱しか重量が減少しない。全乾竹粉の重量減少は、竹熱水抽出物と抽出後竹粉の中間であり、比較的抽出後竹粉の結果に近かった。   From these two experimental results, it is considered that the hot water extract in bamboo powder (referred to as bamboo hot water extract) has an effect on the promotion of fluidization of bamboo powder. On the other hand, in order to grasp the thermal decomposition behavior of each material, thermogravimetric measurement (TG) was performed on all dry bamboo powder, bamboo hot water extract, and bamboo powder after extraction. The result is shown in the graph of FIG. Bamboo hot water extract begins to lose weight at around 140 ° C., 10% at 180 ° C., 20% at 220 ° C., and further at a similar rate. On the other hand, the weight of bamboo powder after extraction hardly decreases, the weight hardly changes up to 200 ° C., and the weight decreases only 10% even at 250 ° C. The weight loss of all dry bamboo powder was intermediate between the bamboo hot water extract and the bamboo powder after extraction, which was relatively close to the result of bamboo powder after extraction.

これらの結果から、竹熱水抽出物中の熱分解性物質が竹粉の流動性に影響していることが示唆される。本発明者らは、竹熱水抽出物が流動性を向上するメカニズムは、次のようなものと推定している。200℃に加熱された竹熱水抽出物からは熱分解物が発生するが、142MPaという高圧の状態では、熱分解物は気体の状態を保つことができずに液体となり、又は臨界状態の流体となり、加圧された密閉空間内に拡散する。拡散した液体又は臨界状態の流体が竹粉同士の間に存在することで潤滑剤の役目を果たし、竹粉の流動が起こり易くなっていると考えられる。   From these results, it is suggested that the thermally decomposable substance in the bamboo hot water extract affects the fluidity of bamboo powder. The present inventors presume that the mechanism by which bamboo hot water extract improves fluidity is as follows. A pyrolyzate is generated from the bamboo hot water extract heated to 200 ° C., but in a high pressure state of 142 MPa, the pyrolyzate cannot be kept in a gas state but becomes a liquid, or a fluid in a critical state And diffuses into the pressurized sealed space. It is considered that the presence of a diffused liquid or a fluid in a critical state between the bamboo powders serves as a lubricant and facilitates the flow of the bamboo powder.

本発明の成形体は、バイオマス系の粉体を含む原料に、上述の流動性向上剤を添加し、加熱加圧して成形されたことを特徴とする。上述の竹熱水抽出物の流動性向上効果は、竹粉に対してだけでなく、各種の粉体に対して有効であり、バイオマス系の粉体全てに応用できる。本発明におけるバイオマス系の粉体は、木粉、竹粉、草類の粉末が挙げられるが、その中でも木粉、竹粉が原料の入手のしやすさから好ましい。これらのバイオマス系の粉体は、乾燥した粉体であることが好ましく、また、粉体の平均粒径は、特に限定はされないが、1000μm以下、好ましくは500μm以下、さらに好ましくは200μm以下とすることが望ましい。さらに、粉体には、数cm程度の大きさのチップ程度のものが含まれていても問題はないが、可能な限り取り除いた方がよい。   The molded body of the present invention is characterized in that the above-described fluidity improver is added to a raw material containing biomass-based powder, and is molded by heating and pressing. The fluidity improving effect of the bamboo hot water extract described above is effective not only for bamboo powder but also for various powders, and can be applied to all biomass powders. Examples of the biomass powder in the present invention include wood powder, bamboo powder, and grass powder. Among these, wood powder and bamboo powder are preferable because of easy availability of raw materials. These biomass powders are preferably dried powders, and the average particle diameter of the powders is not particularly limited, but is 1000 μm or less, preferably 500 μm or less, more preferably 200 μm or less. It is desirable. Furthermore, there is no problem even if the powder contains a chip of about several centimeters in size, but it is better to remove it as much as possible.

本発明の成形体の製造方法は、バイオマス系の粉体と、竹材を熱水抽出処理して得られる熱水抽出物とを含む成形原料を加熱して流動体とする加熱工程と、前記流動体を成形して加熱成形体とする成形工程と、前記加熱成形体を冷却して成形体とする冷却工程とを含むことを特徴とする。バイオマス系の粉体は、すでに説明した粉末が用いられる。加熱工程においては、加圧しながら加熱することが好ましく、加熱温度としては、150〜250℃、好ましくは、180〜200℃、加圧条件は、10〜500MPa、好ましくは80〜200MPaとすることが望ましい。成形工程は、流動体が成形型中に十分に充填される時間があればよく、成形型は、加熱工程の加熱温度と同じか、およそ5〜10℃低めにしておくことが好ましい。冷却工程においては、成形型を冷却水等で冷却することが好ましく、加熱成形体が固化するまで放冷してもよい。成形型中の加熱成形体が冷却され、固化した成形体となったら成形型から取り出せばよい。   The method for producing a molded body of the present invention includes a heating step of heating a molding raw material including a biomass powder and a hot water extract obtained by subjecting bamboo to hot water extraction, It includes a molding step of forming a body to form a thermoformed body, and a cooling step of cooling the thermoformed body to form a molded body. As the biomass powder, the powder already described is used. In the heating step, it is preferable to heat while applying pressure, and the heating temperature is 150 to 250 ° C., preferably 180 to 200 ° C., and the pressing condition is 10 to 500 MPa, preferably 80 to 200 MPa. desirable. The molding process only needs to have sufficient time for the fluid to be sufficiently filled in the mold, and the mold is preferably the same as the heating temperature of the heating process or lower by about 5 to 10 ° C. In the cooling step, the mold is preferably cooled with cooling water or the like, and may be allowed to cool until the thermoformed body is solidified. When the thermoformed body in the mold is cooled and becomes a solidified molded body, it may be taken out from the mold.

本発明の成形体の製造方法としては、バイオマス系の粉体、及び竹材を熱水抽出処理して得られる熱水抽出物を含む成形原料を、射出成形又は押出成形により成形体を製造することを特徴とする。射出成形又は押出成形は、通常の石油系のプラスチックの射出成形又は押出成形に倣って行えばよい。また、石油系のプラスチックのプレス成形機、射出成形機又は押出成形機を用いて、上述の加熱工程、成形工程、冷却工程を踏襲してもよい。   As a method for producing a molded article according to the present invention, a molded article containing a hot powder extracted from a biomass powder and a hot water extract obtained by subjecting bamboo to hot water is produced by injection molding or extrusion molding. It is characterized by. The injection molding or extrusion molding may be performed following the normal injection molding or extrusion molding of petroleum-based plastics. Moreover, you may follow the above-mentioned heating process, a shaping | molding process, and a cooling process using the press molding machine, injection molding machine, or extrusion molding machine of a petroleum-type plastic.

本発明の成形体の製造方法としては、バイオマス系の原料として、粉体の他にバイオマス系のチップや繊維質を混合してもよい。例えば、竹材チップ、木片、鉋くず、わらくず、もみ殻、ケナフ、木綿くずなどの廃棄物を利用することもできる。   As a method for producing a molded body of the present invention, biomass chips and fibers may be mixed in addition to powder as a biomass raw material. For example, wastes such as bamboo chips, wood chips, sawdust, straw scraps, rice husks, kenaf, and cotton scraps can be used.

(比較例)
チップ状のスギ材を、丸鋸を利用した粉砕機で粉砕して、105℃で乾燥させ、さらに200メッシュのふるいにかけて粗大粉を除いて全乾木粉を作製した。この全乾木粉を標準試料として用い、図2に示すような高圧の流動性評価装置に充填し、200℃に加熱するとともに、142MPaのピストン圧力で圧縮し、経時変化を観察した。
(Comparative example)
The chip-shaped cedar material was pulverized with a pulverizer using a circular saw, dried at 105 ° C., and passed through a 200-mesh sieve to remove coarse powder to produce whole dry wood flour. The whole dry wood powder was used as a standard sample, filled in a high-pressure fluidity evaluation apparatus as shown in FIG. 2, heated to 200 ° C. and compressed with a piston pressure of 142 MPa, and the change with time was observed.

全乾木粉の流動性評価装置による圧縮時におけるピストン位置の経時変化を図5に示す。ピストン位置は、圧縮当初、0.5mm程度下がったが、充填状態が十分でなかった影響によるものと考えられる。ピストン圧力が正常な圧力になってからは、ピストンの高さがおよそ4.5mmあったものが、加熱と圧縮によりゆっくりと全乾木粉が流動化し始め、下部のキャピラリから流出し、およそ30分で約10質量%が流出し、60分で約30質量%強が流出し、75分で約50質量%強が流出し、全部流出してしまうまでに120分以上かかった。   FIG. 5 shows the change over time of the piston position during compression by the apparatus for evaluating the fluidity of all dry wood flour. The piston position was lowered by about 0.5 mm at the beginning of compression, but it is considered to be due to the effect that the filling state was not sufficient. After the piston pressure reaches normal pressure, the piston height is about 4.5 mm, but the whole dry wood powder begins to fluidize slowly by heating and compression and flows out from the lower capillary, about 30 mm. About 10% by mass flowed out in about 60 minutes, about 30% by mass flowed out in 60 minutes, about 50% by mass flowed out in 75 minutes, and it took 120 minutes or more to completely flow out.

(実施例)
図1に示す製造工程により竹熱水抽出物を得た。まず、2〜3年もののモウソウチクを裁断してチップにし(鋸断工程)、このチップを丸鋸を利用した粉砕機で粉砕して(粉砕工程)、105℃で乾燥させ、さらに200メッシュ(約100μmの目開きを持つ。)のふるいにかけて粗大粉を除いて全乾竹粉を作製した(分級工程)。この全乾竹粉を100℃で30分間熱水抽出した後、抽出残(抽出後竹粉)を取り除き竹熱水抽出物溶液を得た(熱水抽出工程)。この熱水抽出物溶液の水分を除去し(濃縮工程)、105℃で乾燥させて竹熱水抽出物とした。竹熱水抽出物の全乾竹粉に対する収率は、5質量%であった。この竹熱水抽出物は、本発明の流動性向上剤である。
(Example)
A bamboo hot water extract was obtained by the production process shown in FIG. First, a 2 to 3 year old moso-chiku is cut into chips (saw cutting process), this chip is pulverized with a pulverizer using a circular saw (crushing process), dried at 105 ° C., and further 200 mesh (about approx. All dry bamboo powder was produced by removing the coarse powder (classifying step). The whole dry bamboo powder was subjected to hot water extraction at 100 ° C. for 30 minutes, and then the extraction residue (bamboo powder after extraction) was removed to obtain a bamboo hot water extract solution (hot water extraction step). Water was removed from the hot water extract solution (concentration step) and dried at 105 ° C. to obtain a bamboo hot water extract. The yield of the bamboo hot water extract based on the total dry bamboo powder was 5% by mass. This bamboo hot water extract is the fluidity improver of the present invention.

比較例と同じ方法で作製した標準試料である全乾木粉に10質量%の竹熱水抽出物を混合した混合木粉を、図2に示すような流動性評価装置に充填し、200℃に加熱するとともに、142MPaのピストン圧力で圧縮した。流動性評価装置のキャピラリ出口部分に歯車型のキャビティーを有する金型をセットし、キャピラリから流出した流出物が充填されるようにした。   A mixed wood flour obtained by mixing 10% by mass of bamboo hot water extract with all dry wood flour, which is a standard sample prepared by the same method as in the comparative example, is filled in a fluidity evaluation apparatus as shown in FIG. And compressed with a piston pressure of 142 MPa. A mold having a gear-shaped cavity was set at the capillary outlet portion of the fluidity evaluation apparatus so that the effluent flowing out from the capillary was filled.

混合木粉の圧縮時におけるピストン位置の経時変化を図5に示す。圧縮当初、ピストンの高さがおよそ5mmあったものが、加熱と圧縮により2〜3分で混合木粉が流動化し始め、下部のキャピラリから流出し、およそ15分で約50質量%が流出し、30分で約95質量%が流出し、60分でほぼすべて流出し、ピストンが最下点に到達した。また、流動性評価装置の下部にセットしておいた金型には、図6に示すような歯車形の成形品が形成されていた。これは、一種の射出成形品と言える。   FIG. 5 shows the change over time of the piston position when the mixed wood flour is compressed. At the beginning of compression, the piston was about 5 mm in height, but mixed wood powder started to flow in 2 to 3 minutes by heating and compression, and flowed out from the lower capillary, and about 50% by mass flowed out in about 15 minutes. , About 95% by mass flowed out in 30 minutes, almost all flowed out in 60 minutes, and the piston reached the lowest point. Further, a gear-shaped molded product as shown in FIG. 6 was formed on the mold set in the lower part of the fluidity evaluation apparatus. This can be said to be a kind of injection molded product.

図5に示した結果からわかるように、全乾木粉だけでも流動化現象は起こり、長時間たてば、全乾木粉であっても成形することができると考えられる。しかし、実施例と比較例を比較すると、明らかに混合木粉の流動化が早く、全乾木粉の流動化は遅い。すなわち、押出成形、射出成形、プレス成形においても、全乾木粉に較べて混合木粉の成形性が良好であることが分かる。   As can be seen from the results shown in FIG. 5, the fluidization phenomenon occurs only with all dry wood powder, and it is considered that even if it is a long dry wood, it can be molded even with all dry wood powder. However, when the examples and the comparative examples are compared, the fluidization of the mixed wood flour is clearly fast, and the fluidization of the whole dry wood flour is slow. That is, it can be seen that, in extrusion molding, injection molding, and press molding, the moldability of mixed wood powder is better than that of all dry wood powder.

本発明は、バイオマス系の粉体、特に大量に発生する木材系の廃材や端材などを利用して、プラスチック製品に代わる成形品の製造を可能にするものである。さらに、成形用の流動性向上剤として、竹からの熱水抽出物を使用しているので、竹材の有効利用にもつながり、環境負荷の低減にも寄与する。   The present invention makes it possible to produce a molded product in place of a plastic product by using biomass-based powders, particularly wood-based waste materials and scraps generated in large quantities. Furthermore, since a hot water extract from bamboo is used as a fluidity improver for molding, it leads to effective use of bamboo and contributes to reduction of environmental burden.

竹からの竹熱水抽出物の製造工程イメージ図Image of manufacturing process of bamboo hot water extract from bamboo 流動性評価装置(押出機、プレス機)の概略図Schematic diagram of fluidity evaluation equipment (extruder, press) 全乾竹粉と熱水抽出後竹粉の流動性試験結果Fluidity test results of all dry bamboo powder and bamboo powder after hot water extraction 全乾竹粉、竹熱水抽出物、熱水抽出後竹粉の熱重量測定結果Thermogravimetric measurement results of all dry bamboo powder, bamboo hot water extract, and bamboo powder after hot water extraction 全乾木粉と本発明の流動性向上剤を添加した混合木粉の流動性試験結果Fluidity test results of whole dry wood flour and mixed wood flour with added fluidity improver of the present invention 本発明の流動性向上剤を添加した混合木粉の成形体A molded body of mixed wood powder to which the fluidity improver of the present invention is added

Claims (7)

竹材を熱水抽出処理して得られる熱水抽出物を含むことを特徴するバイオマス系の粉体の流動性を向上させる流動性向上剤。   A fluidity improver that improves the fluidity of a biomass-based powder, comprising a hot water extract obtained by subjecting bamboo to a hot water extraction treatment. 前記熱水抽出処理は、60〜180℃、常圧〜2MPaの熱水により、10秒以上抽出する処理であることを特徴とする請求項1に記載の流動性向上剤。   The fluidity improver according to claim 1, wherein the hot water extraction treatment is a treatment of extracting for 10 seconds or more with hot water at 60 to 180 ° C and normal pressure to 2 MPa. バイオマス系の粉体を含む原料に請求項1又は2に記載の流動性向上剤を添加して、加熱、加圧して成形することを特徴とする成形体。   A molded article obtained by adding the fluidity improver according to claim 1 or 2 to a raw material containing biomass powder and heating and pressurizing the molded article. 前記バイオマス系の粉体は、木粉、又は竹粉であることを特徴とする請求項3に記載の成形体。   The molded body according to claim 3, wherein the biomass-based powder is wood powder or bamboo powder. バイオマス系の粉体、及び請求項1又は2に記載の流動性向上剤を含む成形原料を加熱して易流動体とする加熱工程と、前記易流動体を加熱成形して加熱成形体とする成形工程と、前記加熱成形体を冷却して成形体とする冷却工程とを含むことを特徴とする成形体の製造方法。   A heating step of heating a forming raw material containing the biomass-based powder and the fluidity improver according to claim 1 or 2 to make it an easy fluid, and thermoforming the easily fluid to make a thermoformed body The manufacturing method of the molded object characterized by including the shaping | molding process and the cooling process which cools the said thermoformed body and makes it a molded object. バイオマス系の粉体、及び請求項1又は2に記載の流動性向上剤を含む成形原料を射出成形、又は押出成形して成形体を製造することを特徴とする成形体の製造方法。   A method for producing a molded article, comprising producing a molded article by injection molding or extrusion molding a biomass-based powder and a molding raw material containing the fluidity improver according to claim 1 or 2. 150〜250℃の成形温度で成形することを特徴とする請求項5又は6に記載の成形体の製造方法。   It shape | molds at the shaping | molding temperature of 150-250 degreeC, The manufacturing method of the molded object of Claim 5 or 6 characterized by the above-mentioned.
JP2008204631A 2008-08-07 2008-08-07 Fluidity improver for biomass powder, molded body using fluidity improver, and method for producing molded body Expired - Fee Related JP4898750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204631A JP4898750B2 (en) 2008-08-07 2008-08-07 Fluidity improver for biomass powder, molded body using fluidity improver, and method for producing molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204631A JP4898750B2 (en) 2008-08-07 2008-08-07 Fluidity improver for biomass powder, molded body using fluidity improver, and method for producing molded body

Publications (2)

Publication Number Publication Date
JP2010036529A true JP2010036529A (en) 2010-02-18
JP4898750B2 JP4898750B2 (en) 2012-03-21

Family

ID=42009561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204631A Expired - Fee Related JP4898750B2 (en) 2008-08-07 2008-08-07 Fluidity improver for biomass powder, molded body using fluidity improver, and method for producing molded body

Country Status (1)

Country Link
JP (1) JP4898750B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011749A (en) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd Manufacturing method and heat and flow molding material of plant-based biomass molding
JP2021024250A (en) * 2019-08-08 2021-02-22 永大産業株式会社 Method for separating bamboo structure
US11602565B2 (en) 2019-02-05 2023-03-14 Griffith Foods International, Inc. Bamboo extract anti-caking and flow agents for dry powdered foods, food ingredients, pharmaceuticals and nutraceuticals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011109A (en) * 2001-07-04 2003-01-15 National Institute Of Advanced Industrial & Technology Method for manufacturing woody heat and pressure molding material
JP2004181737A (en) * 2002-12-03 2004-07-02 Mie Prefecture Plastic-like molded article made of bamboo powder and its production method
JP2005288901A (en) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology Molding material and its manufacturing method
JP2006123443A (en) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology Biomass-based thermopressure molded body and its manufacturing process and apparatus
JP2006247974A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology Vegetable hot press molding material having fibers and its manufacturing method
JP2007261159A (en) * 2006-03-29 2007-10-11 Aichi Prefecture Manufacturing process of molding made of woody material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011109A (en) * 2001-07-04 2003-01-15 National Institute Of Advanced Industrial & Technology Method for manufacturing woody heat and pressure molding material
JP2004181737A (en) * 2002-12-03 2004-07-02 Mie Prefecture Plastic-like molded article made of bamboo powder and its production method
JP2005288901A (en) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology Molding material and its manufacturing method
JP2006123443A (en) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology Biomass-based thermopressure molded body and its manufacturing process and apparatus
JP2006247974A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology Vegetable hot press molding material having fibers and its manufacturing method
JP2007261159A (en) * 2006-03-29 2007-10-11 Aichi Prefecture Manufacturing process of molding made of woody material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011749A (en) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd Manufacturing method and heat and flow molding material of plant-based biomass molding
US11602565B2 (en) 2019-02-05 2023-03-14 Griffith Foods International, Inc. Bamboo extract anti-caking and flow agents for dry powdered foods, food ingredients, pharmaceuticals and nutraceuticals
JP2021024250A (en) * 2019-08-08 2021-02-22 永大産業株式会社 Method for separating bamboo structure
JP7280145B2 (en) 2019-08-08 2023-05-23 永大産業株式会社 Separation method of bamboo tissue

Also Published As

Publication number Publication date
JP4898750B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4081579B2 (en) Lignocellulosic material and use thereof
Shaw Feedstock and process variables influencing biomass densification
MX2012014374A (en) Methods for the manufacture of fuel pellets and other products from lignocellulosic biomass.
CN102634072A (en) Degradable thermoplastic rubber membrane using agricultural plant resources as main material and preparation method of degradable thermoplastic rubber membrane
CN102076772A (en) Composition cured by applying heat/pressure thereto
JP2010024393A (en) Biomass fuel using grass plants, wood branches and leaves as main raw materials, and method for producing the same
JP4898750B2 (en) Fluidity improver for biomass powder, molded body using fluidity improver, and method for producing molded body
Zafari et al. Effect of temperature, pressure and moisture content on durability of cattle manure pellet in open-end die method
JP4502848B2 (en) Plant-based hot-press molding material having fibers and method for producing the same
KR101442769B1 (en) Fuel pellet for powdered coal boiler and it&#39;s manufacturing process by using palm oil byproduct
JP2011162705A (en) Woody resin composition and woody pellet
Wang et al. Process optimization of corn stover compression molding experiments based on response surface method
JP2018502757A (en) Production method of injection-molded products, corresponding injection-molded products and the use of specially prepared sunflower shell fibers as additives
JP5946226B2 (en) Oil palm derived biomass powder and method for producing the same, biomass composite molded body and method for producing the same
JP2008155531A (en) Method for manufacturing plant fragment containing molded article
JP4843141B2 (en) COMPOSITION FOR PRODUCING MOLDED BODY AND METHOD FOR PRODUCING MOLDED BODY COMPRISING THE SAME
US20160303767A1 (en) Biodegradable thermoplastic moulding and extrusion compounds made from biomass
CN104073008A (en) Plant straw and biogum compound material and preparation method thereof
JP2008037022A (en) Method for injection-molding of lignocellulosic resin composition into case and ligunocellulosic resin composition
CN107474394A (en) A kind of high-performance bio-based composite material and preparation method thereof
Clarizio et al. Tensile strength, elongation, hardness, and tensile and flexural moduli of injection-molded TPS filled with glycerol-plasticized DDGS
US8524130B2 (en) Biodegradable disposable tableware and methods for making same
CN104558693A (en) Environment-friendly plant starch meal box and preparation method thereof
CN101871190A (en) Method for manufacturing plant fiber injection molded product
TWI604041B (en) A method of producing biofuels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees