JP2010034307A - Heat processing method - Google Patents

Heat processing method Download PDF

Info

Publication number
JP2010034307A
JP2010034307A JP2008195069A JP2008195069A JP2010034307A JP 2010034307 A JP2010034307 A JP 2010034307A JP 2008195069 A JP2008195069 A JP 2008195069A JP 2008195069 A JP2008195069 A JP 2008195069A JP 2010034307 A JP2010034307 A JP 2010034307A
Authority
JP
Japan
Prior art keywords
temperature
furnace
heat treatment
substrate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008195069A
Other languages
Japanese (ja)
Inventor
Takehiro Hisatomi
健博 久富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008195069A priority Critical patent/JP2010034307A/en
Publication of JP2010034307A publication Critical patent/JP2010034307A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve processing efficiency of heat processing more with respect to a heat processing method of heat-processing a semiconductor silicon substrate at high temperature in a vertical heat processing furnace. <P>SOLUTION: The heat processing method includes a feeding step of feeding the semiconductor silicon substrate into the vertical heat processing furnace, a heat processing step of raising the in-furnace temperature to perform heat processing in the vertical heat processing furnace, and a taking-out step of lowering the in-furnace temperature and taking the semiconductor silicon substrate out of the vertical heat processing furnace, the in-furnace temperature of the taking-out step being set higher than the in-furnace temperature of the feeding process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、縦型熱処理炉内に半導体シリコン基板を投入し、炉内温度を調整して半導体シリコン基板を熱処理した後前記縦型熱処理炉内から取り出す、熱処理方法に関する。   The present invention relates to a heat treatment method in which a semiconductor silicon substrate is placed in a vertical heat treatment furnace, the semiconductor temperature is adjusted by adjusting the temperature in the furnace, and then taken out from the vertical heat treatment furnace.

LSIデバイス製造プロセスで処理される半導体シリコン基板(以下、単に「基板」とも言う)は、酸化、拡散および成膜等の工程において、高温の熱処理(アニール処理)を繰り返されて製造される。この基板の熱処理に際し、縦型熱処理炉(以下、単に「熱処理炉」又は「炉」とも言う)を用いる縦型熱処理装置は、設置スペースを小さくでき、大口径の基板を多量に熱処理するのに適していることから、基板の各種熱処理に用いられる装置として採用されている。   A semiconductor silicon substrate (hereinafter, also simply referred to as “substrate”) processed in an LSI device manufacturing process is manufactured by repeating high-temperature heat treatment (annealing) in steps such as oxidation, diffusion, and film formation. In the heat treatment of the substrate, the vertical heat treatment apparatus using a vertical heat treatment furnace (hereinafter also simply referred to as “heat treatment furnace” or “furnace”) can reduce the installation space and can heat a large-diameter substrate in a large amount. Since it is suitable, it is adopted as an apparatus used for various heat treatments of a substrate.

また、縦型熱処理装置で熱処理を行なう場合、複数の半導体シリコン基板を、熱処理治具(熱処理ボート、又は、単にボートともいう)に上下に間隔をあけて重なるように載置して、ボートを熱処理炉に投入して所定の熱処理を行なう。
一方、基板に高温の熱処理を行なう場合、生産効率をより向上させるために、熱処理炉内を予め熱しておいて基板を投入して加熱する時間を短縮できるようにした熱処理方法も提案されている。
When heat treatment is performed with a vertical heat treatment apparatus, a plurality of semiconductor silicon substrates are placed on a heat treatment jig (also referred to as a heat treatment boat or simply a boat) so as to overlap each other with a space therebetween. A predetermined heat treatment is performed in a heat treatment furnace.
On the other hand, in the case of performing high-temperature heat treatment on a substrate, a heat treatment method has also been proposed in which the inside of a heat treatment furnace is heated in advance so that the time for heating the substrate can be shortened in order to improve production efficiency. .

しかし、ボートの熱処理炉への投入温度及び取り出し温度が比較的高い場合には、炉内外の温度差によって基板がボート上ではねるなどして、基板若しくはボート、或いはその両方に傷を発生し、基板にパーティクルが発生する原因となる場合がある。つまり、熱処理炉への投入,取り出し温度とパーティクル発生数とはトレードオフの関係がある。
そこで、炉内を予め熱しておく場合に、基板の炉内への投入時や取り出し時に、パーティクル発生数が許容できないほどの増大しない程度に、投入時や取り出し時の炉内温度の加熱を抑える技術が提案されている。
However, when the temperature at which the boat is charged and taken out from the heat treatment furnace is relatively high, the substrate may be bounced on the boat due to a temperature difference between the inside and outside of the furnace, causing damage to the substrate and / or the boat, There are cases where particles are generated on the substrate. That is, there is a trade-off relationship between the temperature at which the heat treatment furnace is charged and taken out and the number of particles generated.
Therefore, when the furnace is heated in advance, the heating of the furnace temperature at the time of loading and unloading is suppressed to the extent that the number of particles generated does not increase unacceptably when the substrate is loaded or unloaded into the furnace. Technology has been proposed.

例えば、特許文献1には、投入,取り出し温度が比較的低い場合には基板中に酸素析出核が生成されないか若しくは生成されても成長しない場合があるという点に着目して、基板の熱処理炉内への投入温度や取り出し温度をウェーハの熱処理温度よりも低く抑えて、投入時,取り出し時に基板が急激な温度変化によりボート上ではねてボートをたたき傷付くことによるパーティクル発生を抑制する技術が提案されている。もちろん、投入後は、炉内温度を投入温度から必要な熱処理温度まで高めて、熱処理後には炉内温度を取り出し温度まで低下させる。   For example, Patent Document 1 focuses on the fact that oxygen precipitation nuclei are not generated in a substrate or may not grow even if the input and extraction temperatures are relatively low. Technology that suppresses the generation of particles caused by hitting the boat and knocking it on the boat due to a rapid temperature change at the time of loading and unloading by keeping the temperature at the inside and the temperature at the inside lower than the heat treatment temperature of the wafer. Proposed. Of course, after the charging, the furnace temperature is raised from the charging temperature to the necessary heat treatment temperature, and after the heat treatment, the furnace temperature is lowered to the take-out temperature.

また、基板に高温の熱処理を行なう場合に、生産効率をより向上させるために、熱処理炉内を加速冷却する技術も提案されている(特許文献2〜4)。
特許文献2には、ボートに複数の基板(半導体ウェーハ)を搭載し、これをプロセスチューブ内に装入し、プロセスチューブを加熱して半導体ウェーハに熱処理を施した後、プロセスチューブ外壁に冷却空気を送入して冷却する工程において、冷却空気を送入する送風機を高温時には低速回転させて徐冷した後、送風機を高速回転させて急冷することで、急速冷却によって生じるウェーハ表面のスリップ発生を防止する熱処理方法が提案されている。
In addition, in order to further improve the production efficiency when performing high-temperature heat treatment on a substrate, techniques for accelerating cooling inside the heat treatment furnace have also been proposed (Patent Documents 2 to 4).
In Patent Document 2, a plurality of substrates (semiconductor wafers) are mounted on a boat, loaded into a process tube, the process tube is heated to heat-treat the semiconductor wafer, and cooling air is then applied to the outer wall of the process tube. In the process of cooling by feeding in, the blower that feeds cooling air rotates slowly by rotating at low speed at high temperatures, and then rapidly cooling by rotating the blower at high speed, thereby generating slippage on the wafer surface caused by rapid cooling. A heat treatment method for preventing it has been proposed.

特許文献3には、反応容器を単管にすることによって熱容量を減少させて、昇降温が迅速に行えるようにすることや、反応容器の上方に延出される排気配管接続部およびこれに接続される排気配管の温度を精度よく制御できるようにして、パーティクルの発生を効果的に防止することができるようにすることや、排気配管接続部を屈曲させることによって、反応容器の放射熱による排気配管接続部及び排気配管への熱放射を防止し、これらの温度制御を容易にすること等が提案さている。   In Patent Document 3, the reaction vessel is made into a single tube to reduce the heat capacity so that the temperature can be quickly raised and lowered, and the exhaust pipe connecting portion extending above the reaction vessel and the connection to this. Exhaust piping due to radiant heat of the reaction vessel by enabling precise control of the temperature of the exhaust piping to be able to effectively prevent the generation of particles and bending the exhaust piping connection part It has been proposed to prevent the radiation of heat to the connection part and the exhaust pipe and to facilitate the temperature control thereof.

特許文献4には、加熱処理装置において、熱処理炉の熱容量を小さくして昇降温速度を速くすることにより、熱処理時間を短縮するとともに、加熱処理装置を構成する各部の温度制御を容易にして、パーティクル発生のおそれを低減する熱処理装置が提案されている。
特開2004−63685号公報 特開2002−299269号公報 特開2003−209063号公報 特開2004−119510号公報
In Patent Document 4, in the heat treatment apparatus, by reducing the heat capacity of the heat treatment furnace and increasing the temperature raising / lowering speed, the heat treatment time is shortened, and the temperature control of each part constituting the heat treatment apparatus is facilitated. Heat treatment apparatuses that reduce the risk of particle generation have been proposed.
JP 2004-63685 A JP 2002-299269 A JP 2003-209063 A JP 2004-119510 A

上述の特許文献1のように、基板の熱処理炉内への投入温度や取り出し温度をウェーハの熱処理温度よりも低く抑えて、投入時,取り出し時に基板が急激な温度変化に起因して基板上でのパーティクルの発生を抑制する技術や、上述の特許文献2〜4のように、基板上でのパーティクルの発生を抑制しながら炉内温度を冷却風によって強制的に低下させる技術により、基板上でのパーティクル発生を抑制しながら、高温での熱処理を速やかに行なえるようになるが、これらの技術を導入しても、高温での熱処理の場合、やはり、炉内温度の低下には一定以上の時間を要する。   As in the above-mentioned Patent Document 1, the temperature at which the substrate is put into and taken out from the heat treatment furnace is kept lower than the heat treatment temperature of the wafer, and the substrate is placed on the substrate due to a rapid temperature change at the time of loading and unloading. On the substrate by the technology for suppressing the generation of particles and the technology for forcibly lowering the furnace temperature by cooling air while suppressing the generation of particles on the substrate as in the above-mentioned Patent Documents 2 to 4. Although heat treatment at high temperatures can be performed quickly while suppressing the generation of particles, even if these technologies are introduced, the heat treatment at high temperatures still reduces the temperature inside the furnace above a certain level. It takes time.

このため、基板の熱処理にかかる生産性の更なる向上が要望されている。特に、縦型熱処理炉をより時間効率よく使用できるようにして、限られた設備においてより多くの基板を熱処理することができるようにする技術の開発が望まれている。
本発明はこのような課題に鑑み案出されたもので、縦型熱処理炉内で半導体シリコン基板を高温で熱処理する際に、処理効率をより向上させることができるようにした、熱処理方法を提供することを目的とする。
For this reason, the further improvement of productivity concerning the heat processing of a board | substrate is desired. In particular, it is desired to develop a technique that allows a vertical heat treatment furnace to be used in a time-efficient manner so that more substrates can be heat-treated in a limited facility.
The present invention has been devised in view of such problems, and provides a heat treatment method capable of further improving the treatment efficiency when heat treating a semiconductor silicon substrate at a high temperature in a vertical heat treatment furnace. The purpose is to do.

上記目標を達成するため、本発明の熱処理方法は、半導体シリコン基板を縦型熱処理炉内に投入する投入工程と、炉内温度を上昇させて前記縦型熱処理炉内で熱処理する熱処理工程と、その後、炉内温度を低下させて前記縦型熱処理炉内から取り出す取出工程とをそなえた、熱処理方法であって、前記取出工程の炉内温度を、前記投入工程の炉内温度よりも高く設定することを特徴としている。   In order to achieve the above-mentioned goal, the heat treatment method of the present invention includes a charging step of putting a semiconductor silicon substrate into a vertical heat treatment furnace, a heat treatment step of increasing the furnace temperature and heat-treating in the vertical heat treatment furnace, Thereafter, a heat treatment method comprising an extraction step of lowering the furnace temperature and taking out from the vertical heat treatment furnace, wherein the furnace temperature of the extraction step is set higher than the furnace temperature of the charging step It is characterized by doing.

前記投入工程の炉内温度は室温〜400℃であって、前記取出工程の炉内温度は500〜700℃であることが好ましい。
炉内温度を予め500℃以上に加熱しておいて、基板を炉内に投入すると、投入前に室温状態で保持されていた基板は、先ず当該基板外周から熱せられ、該当基板の外周と中心間で急激な面内温度差が生じ変形する。この急激な変形による熱振動から、基板と基板を支持する部材間で発塵が生じ、炉内で鉛直下方に配置された他の基板へ当該発塵物が付着し、この付着物がその後の熱処理に悪影響して基板の品質を落とす要因となるが、投入工程の炉内温度を室温〜400℃とすることで、かかる熱振動を抑制することができ、基板の品質低下が防止される。
The furnace temperature in the charging step is room temperature to 400 ° C., and the furnace temperature in the take-out step is preferably 500 to 700 ° C.
When the temperature in the furnace is heated to 500 ° C. or more in advance and the substrate is put into the furnace, the substrate held at room temperature before the loading is first heated from the outer periphery of the substrate, and the outer periphery and the center of the corresponding substrate are heated. A sudden in-plane temperature difference occurs and deforms. Due to the thermal vibration due to this sudden deformation, dust is generated between the substrate and the member supporting the substrate, and the generated dust adheres to another substrate disposed vertically below in the furnace. Although it is a factor that adversely affects the heat treatment and degrades the quality of the substrate, by setting the furnace temperature in the charging process to room temperature to 400 ° C., it is possible to suppress such thermal vibration and prevent degradation of the substrate quality.

また、取出工程の炉内温度を500℃以上とすると、上記の熱振動が生じて、基板と基板を支持する部材間で発塵が生じ他の基板へ当該発塵物が付着するが、熱処理後に付着した発塵物は基板の熱処理層自体に悪影響を及ぼさない。ただし、取出工程の炉内温度を700℃以上とすると、取出時に、縦型熱処理炉の開口から放出される熱により、開口周辺の機器への熱影響(例えば、ゴムパッキンの熱損傷)を与えるので、取出工程の炉内温度は500〜700℃とすることで、何らかの支障を招くことなく、取出工程を早めることができる。   Further, if the furnace temperature in the take-out process is 500 ° C. or higher, the above-described thermal vibration occurs, dust is generated between the substrate and the member supporting the substrate, and the dust is attached to other substrates. The dust generated later does not adversely affect the heat treatment layer itself of the substrate. However, if the furnace temperature in the extraction process is 700 ° C. or higher, the heat released from the opening of the vertical heat treatment furnace at the time of extraction will affect the equipment around the opening (for example, heat damage of rubber packing). Therefore, by setting the furnace temperature in the extraction process to 500 to 700 ° C., the extraction process can be accelerated without causing any trouble.

本発明の熱処理は、例えば600℃以上のドナーキラーアニールや、常圧CVD法によるポリシリコンの成膜処理、1000〜1200℃の水素アニール、アルゴンアニール又は1300℃以上のSIMOXアニールといった熱処理を施す際等に適用できるが、特に、水素アニール,アルゴンアニール,SIMOXアニールといった1000℃以上の温度を要する熱処理の場合、熱処理完了の取出工程までの炉内温度の低下に時間を要し、生産性効率の向上の妨げになっていたが、取出工程の炉内温度を投入工程の炉内温度よりも高く設定することで、これらの熱処理の効率を上げて生産効率の向上を図ることができる。   The heat treatment of the present invention is performed when heat treatment such as donor killer annealing at 600 ° C. or higher, polysilicon film formation by atmospheric pressure CVD method, hydrogen annealing at 1000 to 1200 ° C., argon annealing, or SIMOX annealing at 1300 ° C. or higher is performed. In particular, in the case of heat treatment that requires a temperature of 1000 ° C. or higher, such as hydrogen annealing, argon annealing, and SIMOX annealing, it takes time to lower the furnace temperature until the heat removal completion process, which increases productivity efficiency. Although the improvement has been hindered, by setting the furnace temperature in the take-out process higher than the furnace temperature in the charging process, it is possible to increase the efficiency of these heat treatments and improve the production efficiency.

また、前記取出工程後、前記半導体シリコン基板上の付着物を除去する洗浄工程をそなえていることが好ましい。上述のように、取出工程の炉内温度を投入工程の炉内温度よりも高く設定すると、取出時の、基板の熱振動により、基板と基板を支持する部材間で発塵が生じ他の基板へ当該発塵物が付着するが、この発塵物は基板の熱処理層自体に悪影響を及ぼさないものの基板の表面は平滑化されていなくてはならない。この点、洗浄工程により半導体シリコン基板上の付着物が除去されるので、基板の表面が平滑化される。   Moreover, it is preferable to provide the washing | cleaning process which removes the deposit | attachment on the said semiconductor silicon substrate after the said extraction process. As described above, if the furnace temperature in the take-out process is set higher than the furnace temperature in the input process, dust generation occurs between the board and the member supporting the board due to thermal vibration of the board at the time of take-out. Although the dust generation material adheres to the substrate, the dust generation material does not adversely affect the heat treatment layer itself of the substrate, but the surface of the substrate must be smoothed. In this respect, since the deposit on the semiconductor silicon substrate is removed by the cleaning process, the surface of the substrate is smoothed.

さらに、前記取出工程後、前記縦型熱処理炉内を強制冷却する炉内冷却工程をそなえていることが好ましい。縦型熱処理炉は、1ロットの半導体シリコン基板の熱処理を終えたら、次のロットの半導体シリコン基板の熱処理に使用されるが、取出工程の温度よりも投入工程の温度を低下させる必要がある。この点で、取出工程後縦型熱処理炉内を強制冷却することで、次のロットの熱処理の開始を早めることができ、熱処理の効率を上げて生産効率の向上を図ることができる。   Furthermore, it is preferable to provide a furnace cooling step for forcibly cooling the inside of the vertical heat treatment furnace after the extraction step. The vertical heat treatment furnace is used for heat treatment of the semiconductor silicon substrate of the next lot after finishing the heat treatment of one lot of the semiconductor silicon substrate, but it is necessary to lower the temperature of the charging process than the temperature of the extraction process. In this regard, by forcibly cooling the inside of the vertical heat treatment furnace after the extraction process, the start of the heat treatment of the next lot can be accelerated, and the efficiency of the heat treatment can be increased to improve the production efficiency.

本発明の熱処理方法によれば、取出工程の炉内温度を投入工程の炉内温度よりも高く設定するので、炉内温度が熱処理工程の温度から投入工程の温度まで低下するのも待つことなく、半導体シリコン基板を縦型熱処理炉内から取り出すので、取出工程の炉内温度と投入工程の炉内温度との差に対応して、半導体シリコン基板の縦型熱処理炉内への投入から取出までの時間を短縮させることができ、半導体シリコン基板の熱処理効率を向上させることができ、生産効率を向上させることができる。   According to the heat treatment method of the present invention, the furnace temperature in the take-out process is set higher than the furnace temperature in the charging process, so it is possible to wait for the furnace temperature to decrease from the temperature in the heat treatment process to the temperature in the charging process. Since the semiconductor silicon substrate is taken out from the vertical heat treatment furnace, it corresponds to the difference between the furnace temperature in the extraction process and the furnace temperature in the input process, from the introduction to the removal of the semiconductor silicon substrate into the vertical heat treatment furnace. , The heat treatment efficiency of the semiconductor silicon substrate can be improved, and the production efficiency can be improved.

以下、図面により、本発明の実施の形態について説明する。
図1〜図8は本発明の一実施形態にかかる熱処理方法を説明するもので、図1はその熱処理パターン図、図2はその処理フローチャート、図3はその縦型熱処理炉の縦断面図、図4はその熱処理治具の斜視図、図5はその半導体シリコン基板の載置状態を示す図、図6はその冷却効果を説明する図、図7は本方法を常圧CVD法によるポリシリコンの成膜処理に適用した場合の熱処理パターン図、図8は本方法をSIMOX法による高温熱処理に適用した場合の熱処理パターン図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 8 illustrate a heat treatment method according to an embodiment of the present invention. FIG. 1 is a heat treatment pattern diagram, FIG. 2 is a flow chart of the treatment, and FIG. 3 is a longitudinal sectional view of the vertical heat treatment furnace. FIG. 4 is a perspective view of the heat treatment jig, FIG. 5 is a diagram showing the mounting state of the semiconductor silicon substrate, FIG. 6 is a diagram for explaining the cooling effect, and FIG. FIG. 8 is a heat treatment pattern diagram when this method is applied to a high temperature heat treatment by the SIMOX method.

[縦型熱処理装置]
まず、本実施形態にかかる縦型熱処理装置の炉(縦型熱処理炉)について説明する。
図3に示すように、本実施形態の縦型熱処理炉3は、複数の半導体シリコン基板1を載置する基板支持治具(ボート)2を収容するチューブ(プロセスチューブ、保護管)4と、このチューブ4の周囲のヒーター室5Aに配置された複数のヒーター(加熱装置)5と、ヒーター室5Aの外周(側方及び上方)に装備されたヒーター室断熱壁断熱材6と、ヒーター室5Aの下方に装備された断熱材7とをそなえている。
[Vertical heat treatment equipment]
First, a furnace (vertical heat treatment furnace) of the vertical heat treatment apparatus according to the present embodiment will be described.
As shown in FIG. 3, the vertical heat treatment furnace 3 of the present embodiment includes a tube (process tube, protective tube) 4 that houses a substrate support jig (boat) 2 on which a plurality of semiconductor silicon substrates 1 are placed, A plurality of heaters (heating devices) 5 disposed in a heater chamber 5A around the tube 4, a heater chamber insulating wall insulator 6 provided on the outer periphery (side and upper) of the heater chamber 5A, and a heater chamber 5A And a heat insulating material 7 equipped below.

また、縦型熱処理炉3には、そのチューブ4の下方に、熱緩衝治具8がボート昇降ロボット9上に備えられている。ボート2はこの熱緩衝治具8の上に載置される。
さらに、縦型熱処理炉3には、そのチューブ4の上方に、ヒーター室5Aと連通する排風ダクト(急速冷却用ダクト)10が装備され、排風ダクト10の下流部には、排風機(急速冷却用ファン)11が備えられている。特に、排風ダクト10は、ヒーター室5Aの上部(ここでは、中央上部)から上方(鉛直上方)に突出した後側方(水平方向)に屈曲形成されて更に下方(鉛直下方)に屈曲形成された後再び側方(水平方向)に屈曲形成されており、排風機11は下方に形成された水平方向部分に装備されている。
Further, the vertical heat treatment furnace 3 is provided with a heat buffering jig 8 on a boat elevating robot 9 below the tube 4. The boat 2 is placed on the heat buffering jig 8.
Further, the vertical heat treatment furnace 3 is equipped with an exhaust air duct (rapid cooling duct) 10 communicating with the heater chamber 5A above the tube 4. (Fast cooling fan) 11 is provided. In particular, the exhaust duct 10 is bent to the rear side (horizontal direction) protruding upward (vertically upward) from the upper portion (here, the central upper portion) of the heater chamber 5A and further bent downward (vertically downward). Then, it is bent to the side (horizontal direction) again, and the exhaust fan 11 is mounted on the horizontal portion formed below.

なお、ヒーター室5Aと排風ダクト10との接続部分には、両者5A,10の連通を適宜遮断できるシャッタ12をそなえていてもよい。
このように排風ダクト10が鉛直上向きから水平方向に屈曲形成されることにより、チューブ4を加熱しているヒーター5からの放射熱が、排風ダクト10の配管接続部端部等に形成されている図示しないフランジ部などに直接照射することがないため、これらの部材の温度制御が容易になる。また、本実施形態では、排風ダクト10が鉛直上向きから水平方向に屈曲形成された後、鉛直下方に屈曲形成され再び水平方向に屈曲形成されることにより、コンパクトなスペースで排風口までの距離を長く取ることができ、長い排風ダクト10を経ることにより排風ダクト10から排出される排風温度を低下させることができ、高温排風の悪影響を極力低下させることができる。
Note that a connecting portion between the heater chamber 5 </ b> A and the exhaust duct 10 may be provided with a shutter 12 that can appropriately block communication between the both 5 </ b> A and 10.
In this way, the exhaust duct 10 is bent from the vertically upward direction to the horizontal direction, so that the radiant heat from the heater 5 heating the tube 4 is formed at the end of the pipe connection portion of the exhaust duct 10 and the like. Since it does not irradiate directly to the flange part etc. which are not shown in figure, temperature control of these members becomes easy. Further, in the present embodiment, the exhaust duct 10 is bent in the horizontal direction from the vertically upward direction, then bent downward in the vertical direction, and bent in the horizontal direction again, so that the distance to the exhaust port in a compact space. The exhaust air temperature discharged from the exhaust air duct 10 can be lowered by passing through the long exhaust air duct 10, and the adverse effect of the high temperature exhaust air can be reduced as much as possible.

[基板支持治具(ボート)]
半導体シリコン基板1を支持する熱処理治具(ボート)2は、高純度のSiC,Si,または石英製によって、図4に示すように、縦向きに複数立設された支柱部21と、これらの支柱部21を上下位置でそれぞれ固定する上部天板22および下部天板23とから構成されている。そして、複数の支柱部21により囲繞される空間が基板収納空間24として構成される。また、基板収納空間24の側方から半導体シリコン基板を出し入れできるように、複数の支柱部21間の一部の間隔が拡大されて開口部25が形成されている。
[Board support jig (boat)]
A heat treatment jig (boat) 2 for supporting the semiconductor silicon substrate 1 is made of high-purity SiC, Si, or quartz, and as shown in FIG. It is comprised from the upper top plate 22 and the lower top plate 23 which fix the support | pillar part 21 in an up-down position, respectively. A space surrounded by the plurality of support columns 21 is configured as a substrate storage space 24. In addition, an opening 25 is formed by enlarging a part of the space between the plurality of support columns 21 so that the semiconductor silicon substrate can be taken in and out from the side of the substrate storage space 24.

各支柱部21の内側には、上下方向に等間隔に溝が形成されており、各溝間には、基板収納空間24に向けて突出した基板支持部26が複数列設され、開口部25側から、半導体シリコン基板1を各支柱部21の基板支持部26に載置(図5参照)した後、縦型熱処理炉3に投入されて所定の熱処理が行なわれるようになっている。   Grooves are formed at equal intervals in the vertical direction inside each support column 21, and a plurality of substrate support portions 26 projecting toward the substrate storage space 24 are provided between the grooves. From the side, the semiconductor silicon substrate 1 is placed on the substrate support portion 26 of each support column 21 (see FIG. 5), and then placed in the vertical heat treatment furnace 3 to perform a predetermined heat treatment.

[熱処理]
上述のようなボート2及び縦型熱処理炉3を用いて、本実施形態にかかる熱処理が行なわれる。この熱処理について図1,図2を参照して説明する。
本発明では、基板1を縦型熱処理炉3内に投入する際(投入工程)の炉内温度(投入温度)が室温〜400℃に設定されているが、本実施形態では、図2に示すように、縦型熱処理炉3内をその内部温度(以下、炉内温度ともいう)が予め設定された投入温度(例えば、400℃)となるようにヒーター5を作動させて予熱しておくものとする(ステップS10、予熱工程)。
[Heat treatment]
The heat treatment according to the present embodiment is performed using the boat 2 and the vertical heat treatment furnace 3 described above. This heat treatment will be described with reference to FIGS.
In the present invention, the furnace temperature (input temperature) when the substrate 1 is input into the vertical heat treatment furnace 3 (input process) is set to room temperature to 400 ° C., but in this embodiment, it is shown in FIG. As described above, the interior of the vertical heat treatment furnace 3 is preheated by operating the heater 5 so that its internal temperature (hereinafter also referred to as furnace temperature) becomes a preset charging temperature (for example, 400 ° C.). (Step S10, preheating step).

この投入温度が500℃以上の場合、投入前に室温状態で保持されていた基板は、先ず当該基板外周から熱せられ、該当基板の外周と中心間で急激な面内温度差が生じ変形する。この急激な変形による熱振動から、基板と基板を支持する部材間で発塵が生じ、炉内で鉛直下方に配置された他の基板へ当該発塵物が付着し、この付着物がその後の熱処理に悪影響して基板の品質を落とす要因となるが、投入温度を400℃以下とすることで、かかる熱振動を抑制することができ、基板の品質低下が防止される。   When the charging temperature is 500 ° C. or more, the substrate that has been held at room temperature before the charging is first heated from the outer periphery of the substrate, and a sudden in-plane temperature difference occurs between the outer periphery and the center of the corresponding substrate, causing deformation. Due to the thermal vibration due to this sudden deformation, dust is generated between the substrate and the member supporting the substrate, and the generated dust adheres to another substrate disposed vertically below in the furnace. Although it is a factor that adversely affects the heat treatment and degrades the quality of the substrate, by setting the input temperature to 400 ° C. or less, such thermal vibration can be suppressed and deterioration of the quality of the substrate is prevented.

そして、所定の投入温度(ここでは、400℃)に予熱された縦型熱処理炉3内に基板1を投入する(ステップS20、投入工程)。この投入時には、ボート昇降ロボット9を下降させて、これにより縦型熱処理炉3の下部に位置する熱緩衝治具8の上に、予め多数(1ロット)の基板1を積載したボート2を載せる。
その後、ボート昇降ロボット9を上昇させて、ボート2をチューブ4内に配置して、図1,図2に示すように、ヒーター5を更に高温に作動させて炉内(チューブ4内)の温度を上昇(昇温)させる(ステップS30、昇温工程)。
Then, the substrate 1 is charged into the vertical heat treatment furnace 3 preheated to a predetermined charging temperature (here, 400 ° C.) (step S20, charging process). At this time, the boat raising / lowering robot 9 is lowered, and thereby the boat 2 on which a large number (one lot) of substrates 1 are loaded in advance is placed on the heat buffer jig 8 located at the bottom of the vertical heat treatment furnace 3. .
Thereafter, the boat elevating robot 9 is raised, the boat 2 is placed in the tube 4, and the heater 5 is operated to a higher temperature as shown in FIGS. 1 and 2, and the temperature in the furnace (in the tube 4). Is raised (temperature raised) (step S30, temperature raising step).

炉内(チューブ4内)が所定の熱処理温度に達したら、予め設定された所定時間だけこの熱処理温度を保って熱処理を実施する(ステップS40、熱処理工程)。所定時間が経過し熱処理を終えたら、ヒーター5を停止させて炉内(チューブ4内)の温度を降下(降温)させる(ステップS50、降温工程)。
そして、炉内温度が、投入温度よりも高い温度に設定された取り出し時の炉内温度(取出温度、500〜700℃の内の設定された温度)に達したら、縦型熱処理炉3内からボート2を取り出す(ステップS60、取出工程)。
When the inside of the furnace (inside the tube 4) reaches a predetermined heat treatment temperature, the heat treatment is performed while maintaining the heat treatment temperature for a predetermined time (step S40, heat treatment step). When the predetermined time has elapsed and the heat treatment is completed, the heater 5 is stopped and the temperature in the furnace (in the tube 4) is lowered (temperature reduction) (step S50, temperature reduction process).
Then, when the furnace temperature reaches the furnace temperature at the time of take-out set to a temperature higher than the input temperature (take-out temperature, set temperature of 500 to 700 ° C.), from inside the vertical heat treatment furnace 3 The boat 2 is taken out (step S60, take-out process).

シャッタ12を備えている場合には、予熱工程から取出工程までの間は、シャッタ12を閉鎖しておく。
そして、縦型熱処理炉3内から取り出された基板1の表面(ボート2に載せられた際の上面)を洗浄処理する(ステップS60、洗浄工程)。
また、次ロットを連続して熱処理する場合には、判定ステップ(ステップS80)を経て、炉3内を投入温度まで強制冷却する(ステップS90、炉内冷却工程)。次ロットを連続して熱処理しなければ、炉3内を自然冷却するが、この場合にも、ステップS90と同様又はこれよりもゆっくりと炉3内を強制冷却してもよい。
When the shutter 12 is provided, the shutter 12 is closed during the period from the preheating process to the take-out process.
Then, the surface of the substrate 1 taken out from the vertical heat treatment furnace 3 (the upper surface when placed on the boat 2) is cleaned (step S60, cleaning process).
Further, when the next lot is continuously heat-treated, the inside of the furnace 3 is forcibly cooled to the charging temperature through a determination step (step S80) (step S90, furnace cooling process). If the next lot is not continuously heat-treated, the inside of the furnace 3 is naturally cooled, but in this case as well, the inside of the furnace 3 may be forcibly cooled as in step S90 or slower than this.

シャッタ12を備えている場合には、ステップS90の炉内冷却工程でシャッタ12を開放する。
この炉内冷却工程では、排風機11を作動させて、排風ダクト10を通じてヒーター室5Aの高温空気を排出して、冷たい(室温程度)の外気を図示しない外気導入口からヒーター室5A内に取り込んでヒーター室5Aを強制冷却することにより、炉内(チューブ4内)を強制冷却する。
When the shutter 12 is provided, the shutter 12 is opened in the furnace cooling process in step S90.
In this in-furnace cooling process, the exhaust fan 11 is operated, the high temperature air in the heater chamber 5A is exhausted through the exhaust duct 10, and cold (about room temperature) outside air enters the heater chamber 5A from an outside air inlet (not shown). By taking in and forcibly cooling the heater chamber 5A, the inside of the furnace (inside the tube 4) is forcibly cooled.

[作用及び効果]
このように、本方法によれば、取出温度(取出工程S60の炉内温度)を投入温度(投入工程S20の炉内温度)よりも高く設定しているので、炉内温度が熱処理工程S40の温度から投入工程S20と同レベルの温度まで低下するのも待つことなく、基板1を縦型熱処理炉3内から取り出すので、取出温度と投入温度との差の分だけ、基板1の縦型熱処理炉3内への投入から取出までの時間を短縮させることができ、基板1の熱処理効率を向上させることができ、生産効率を向上させることができる。
[Action and effect]
Thus, according to this method, since the extraction temperature (in-furnace temperature in the extraction step S60) is set higher than the input temperature (in-furnace temperature in the input step S20), the in-furnace temperature of the heat treatment step S40 is set. Since the substrate 1 is taken out from the vertical heat treatment furnace 3 without waiting for the temperature to fall to the same level as the loading step S20, the vertical heat treatment of the substrate 1 is performed by the difference between the removal temperature and the charging temperature. It is possible to shorten the time from introduction to extraction into the furnace 3, to improve the heat treatment efficiency of the substrate 1, and to improve the production efficiency.

特に、水素アニール,アルゴンアニール,SIMOXアニールといった1000℃以上の温度を要する熱処理の場合、熱処理完了の取出工程までの炉内温度の低下に時間を要し、生産性効率の向上の妨げになっていたが、取出工程の炉内温度を投入工程の炉内温度よりも高く設定することで、これらの熱処理の効率を上げて生産効率の向上を図ることができる。   In particular, in the case of heat treatment that requires a temperature of 1000 ° C. or higher, such as hydrogen annealing, argon annealing, and SIMOX annealing, it takes time to lower the temperature in the furnace until the heat removal completion process, which hinders improvement in productivity efficiency. However, by setting the in-furnace temperature in the take-out process higher than the in-furnace temperature in the charging process, it is possible to increase the efficiency of these heat treatments and improve the production efficiency.

特に、投入温度は室温〜400℃なので、基板の急激な温度変化により生じる熱振動を抑制することができ、基板の品質低下が防止される。
また、出工程の炉内温度は500〜700℃としているが、取出工程の炉内温度を500℃以上とすると、熱振動が生じて、基板1と基板1を支持する部材(ボート)2との間で発塵が生じ下方の基板1へこの発塵物が付着するが、熱処理後に付着した発塵物は基板の熱処理層自体に悪影響を及ぼさない。本実施形態の場合、熱処理後に付着した発塵物はステップS60の洗浄工程で除去されるので、熱処理されたウェーハの表面が平滑化され、熱処理されたウェーハの品質は確保される。
In particular, since the charging temperature is from room temperature to 400 ° C., thermal vibration caused by a rapid temperature change of the substrate can be suppressed, and deterioration of the substrate quality is prevented.
Moreover, although the furnace temperature of the extraction process is set to 500 to 700 ° C., when the furnace temperature of the extraction process is set to 500 ° C. or more, thermal vibration occurs, and the substrate 1 and the member (boat) 2 that supports the substrate 1 During this period, dust is generated and this dust is attached to the lower substrate 1. However, the dust generated after the heat treatment does not adversely affect the heat treatment layer itself of the substrate. In the case of the present embodiment, dust generated after the heat treatment is removed in the cleaning process of step S60, so that the surface of the heat-treated wafer is smoothed and the quality of the heat-treated wafer is ensured.

また、取出工程の炉内温度を700℃以上とすると、取出時に、縦型熱処理炉の開口から放出される熱により、開口周辺の機器への熱影響(例えば、ゴムパッキンの熱損傷)を与えるが、これも回避される。
さらに、取出工程後、縦型熱処理炉3内を強制冷却する炉内冷却工程S90をそなえているので、例えば、一般に、500℃〜室温の間の温度域では、炉3内の余熱により温度冷却速度が1〜2℃/分以下まで低下するため、500℃程度よりも温度を自然冷却によって低下させていくには大幅に時間がかかるが、炉3内のチューブ4とヒーター壁6で囲まれたヒーター室5A内の余熱を、装置外部に設置した排気ファン11で強制的に排出し、炉3内を強制的に冷却することで500℃〜室温間の温度域の温度冷却速度を3〜4℃/分まで上昇させることが可能となる。これによって、図6に示すように、例えば600℃から200℃まで400℃冷却する場合を考えると、冷却機能を使用しない時の温度冷却速度が2℃/分、冷却機能を使用した時の温度冷却速度が4℃/分とすると、温度低下にかかる時間は200分から100分に短縮することが出来る。したがって、この短縮した時間内に次の処理に向けた準備と開始を効率的に行なうことが可能となる。
Further, if the furnace temperature in the extraction process is set to 700 ° C. or higher, the heat released from the opening of the vertical heat treatment furnace at the time of extraction gives a thermal influence on the equipment around the opening (for example, heat damage of rubber packing). However, this is also avoided.
Furthermore, since the furnace cooling step S90 for forcibly cooling the inside of the vertical heat treatment furnace 3 is provided after the take-out process, for example, generally in the temperature range between 500 ° C. and room temperature, the temperature is cooled by the residual heat in the furnace 3. Since the speed is reduced to 1 to 2 ° C./min or less, it takes much time to lower the temperature by natural cooling than about 500 ° C., but it is surrounded by the tube 4 and the heater wall 6 in the furnace 3. The remaining heat in the heater chamber 5A is forcibly exhausted by the exhaust fan 11 installed outside the apparatus, and the furnace 3 is forcibly cooled, so that the temperature cooling rate in the temperature range between 500 ° C. and room temperature is 3 to 3. The temperature can be increased up to 4 ° C./min. As a result, as shown in FIG. 6, for example, when considering cooling at 400 ° C. from 600 ° C. to 200 ° C., the temperature cooling rate when the cooling function is not used is 2 ° C./min, and the temperature when the cooling function is used. When the cooling rate is 4 ° C./min, the time required for temperature reduction can be shortened from 200 minutes to 100 minutes. Therefore, it is possible to efficiently prepare and start the next process within the shortened time.

[具体的なアニール処理への適用]
本発明にかかる熱処理は、600℃以上のドナーキラーアニールや、常圧CVD法によるポリシリコンの成膜処理、1000〜1200℃の水素アニール、アルゴンアニール又は1300℃以上のSIMOXアニールといった熱処理を施す際等に適用できるが、具体的には以下のように適用することができる。
[Application to specific annealing treatment]
The heat treatment according to the present invention is a heat treatment such as donor killer annealing at 600 ° C. or higher, polysilicon film formation by atmospheric pressure CVD method, hydrogen annealing at 1000 to 1200 ° C., argon annealing, or SIMOX annealing at 1300 ° C. or higher. However, the present invention can be applied as follows.

例えば、300mmφの基板1に対する常圧CVD法によるポリシリコンの成膜処理に適用する場合には、例えば図7(a)に示すように、基板の投入温度を300℃として、その後、炉内を昇温させて、炉内温度650℃で所定時間熱処理を行なうことになる。
図7(b)に示すように、熱処理温度650℃で基板の投入を行なうと、熱振動から、基板と基板を支持する部材間で発塵が生じ、炉内で鉛直下方に配置された他の基板へ当該発塵物が付着し、この付着物がその後の熱処理に悪影響して基板の品質を落とす要因となるが、基板の投入を400℃以下(この例では、300℃)とすれば、かかる熱振動を抑制することができ、基板の品質低下が防止される。
For example, in the case of applying to the film forming process of polysilicon by the atmospheric pressure CVD method on the 300 mmφ substrate 1, for example, as shown in FIG. The temperature is raised and heat treatment is performed at a furnace temperature of 650 ° C. for a predetermined time.
As shown in FIG. 7B, when the substrate is loaded at a heat treatment temperature of 650 ° C., dust is generated between the substrate and the member supporting the substrate due to thermal vibration, and the other is arranged vertically downward in the furnace. The generated dust adheres to the substrate, and this deposit adversely affects the subsequent heat treatment and degrades the quality of the substrate. If the substrate is charged at 400 ° C. or lower (300 ° C. in this example), The thermal vibration can be suppressed, and the deterioration of the substrate quality can be prevented.

また、取出温度を投入温度レベルまで低下させるには、大幅に時間を要するが本方法では取出温度を投入温度よりも高く設定しているので、比較的早く熱処理後の基板を取り出すことができる。
また、例えば300mmφ基板に対するSIMOX法による高温熱処理に適用する場合には、例えば図8(a)に示すように、基板の投入温度を200℃として、その後、炉内を昇温させて、炉内温度1350℃で所定時間熱処理を行なうことになる。
Although it takes a long time to lower the take-out temperature to the input temperature level, in this method, since the take-out temperature is set higher than the input temperature, the substrate after the heat treatment can be taken out relatively quickly.
Further, for example, when applied to a high temperature heat treatment by a SIMOX method for a 300 mmφ substrate, as shown in FIG. 8A, for example, the temperature of the substrate is set to 200 ° C. Heat treatment is performed at a temperature of 1350 ° C. for a predetermined time.

図8(b)に示すように、熱処理温度600℃で基板の投入を行なうと、熱振動から、基板と基板を支持する部材間で発塵が生じ、炉内で鉛直下方に配置された他の基板へ当該発塵物が付着し、この付着物がその後の熱処理に悪影響して基板の品質を落とす要因となるが、基板の投入を400℃以下(この例では、200℃)とすれば、かかる熱振動を抑制することができ、基板の品質低下が防止される。   As shown in FIG. 8B, when the substrate is charged at a heat treatment temperature of 600 ° C., dust is generated between the substrate and the member supporting the substrate due to thermal vibration. The generated dust adheres to the substrate, and this adhered matter adversely affects the subsequent heat treatment and degrades the quality of the substrate. However, if the substrate is charged at 400 ° C. or lower (in this example, 200 ° C.) The thermal vibration can be suppressed, and the deterioration of the substrate quality can be prevented.

また、取出温度を投入温度レベルまで低下させるには、大幅に時間を要するが本方法では取出温度を投入温度よりも高く設定しているので、比較的早く熱処理後の基板(SIMOXアニール)を取り出すことができる。   Although it takes a long time to lower the extraction temperature to the input temperature level, in this method, the extraction temperature is set higher than the input temperature, so that the substrate after heat treatment (SIMOX annealing) is taken out relatively quickly. be able to.

[その他]
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
[Others]
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation is possible in the range which does not deviate from the meaning of this invention.

また、本発明では、温度に関し、略50℃単位の大まかな基準で捉えており、例示する投入温度、熱処理温度、取出温度はこのような観点から数値を例示している。   Moreover, in this invention, regarding temperature, it is grasped | ascertained by the rough reference | standard of about 50 degreeC unit, and the illustrated input temperature, heat processing temperature, and extraction temperature have illustrated the numerical value from such a viewpoint.

本発明の一実施形態にかかる熱処理方法を説明する半導体シリコン基板への熱処理パターン図である。It is the heat processing pattern figure to the semiconductor silicon substrate explaining the heat processing method concerning one Embodiment of this invention. 本発明の一実施形態にかかる熱処理方法を説明する処理フローチャートである。It is a process flowchart explaining the heat processing method concerning one Embodiment of this invention. 本発明の一実施形態にかかる縦型熱処理炉の縦断面図である。It is a longitudinal cross-sectional view of the vertical heat processing furnace concerning one Embodiment of this invention. 本発明の一実施形態にかかる熱処理治具の斜視図である。It is a perspective view of the heat treatment jig concerning one embodiment of the present invention. 本発明の一実施形態にかかる熱処理治具への半導体シリコン基板の載置状態を示す図である。It is a figure which shows the mounting state of the semiconductor silicon substrate to the heat processing jig | tool concerning one Embodiment of this invention. 本発明の一実施形態にかかる熱処理方法における冷却効果を説明する図である。It is a figure explaining the cooling effect in the heat treatment method concerning one embodiment of the present invention. 本発明の一実施形態にかかる熱処理方法を常圧CVD法によるポリシリコンの成膜処理に適用した場合の熱処理パターン図であって、(a)は本熱処理方法に関し、(b)はその比較例を示す。It is the heat processing pattern figure at the time of applying the heat processing method concerning one Embodiment of this invention to the film-forming process of the polysilicon by an atmospheric pressure CVD method, Comprising: (a) is related with this heat processing method, (b) is the comparative example. Indicates. 本発明の一実施形態にかかる熱処理方法をSIMOX法による高温熱処理に適用した場合の熱処理パターン図であって、(a)は本熱処理方法に関し、(b)はその比較例を示す。It is the heat processing pattern figure at the time of applying the heat processing method concerning one Embodiment of this invention to the high temperature heat processing by a SIMOX method, (a) is related with this heat processing method, (b) shows the comparative example.

符号の説明Explanation of symbols

1 半導体シリコン基板(基板)
2 基板支持治具(ボート)
3 縦型熱処理炉
4 チューブ
5 ヒーター
5A ヒーター室
6 ヒーター室断熱壁
7 断熱材
8 熱緩衝治具
9 ボート昇降ロボット
10 排風ダクト(急速冷却用ダクト)
11 排風機(急速冷却用ファン)
12 シャッタ
21 支柱部
22 上部天板
23 下部天板
24 基板収納空間
25 開口部
26 基板支持部
1 Semiconductor silicon substrate (substrate)
2 Substrate support jig (boat)
DESCRIPTION OF SYMBOLS 3 Vertical heat treatment furnace 4 Tube 5 Heater 5A Heater room 6 Heater room heat insulation wall 7 Heat insulation material 8 Thermal buffer jig 9 Boat raising / lowering robot 10 Exhaust duct (rapid cooling duct)
11 Blower (rapid cooling fan)
12 Shutter 21 Supporting part 22 Upper top plate 23 Lower top plate 24 Substrate storage space 25 Opening portion 26 Substrate support portion

Claims (4)

半導体シリコン基板を縦型熱処理炉内に投入する投入工程と、炉内温度を上昇させて前記縦型熱処理炉内で熱処理する熱処理工程と、その後、炉内温度を低下させて前記縦型熱処理炉内から取り出す取出工程とをそなえた、熱処理方法であって、
前記取出し程の炉内温度を、前記投入工程の炉内温度よりも高く設定する
ことを特徴とする、熱処理方法。
An introduction step of introducing a semiconductor silicon substrate into the vertical heat treatment furnace, a heat treatment step of increasing the furnace temperature and heat-treating in the vertical heat treatment furnace, and then reducing the furnace temperature to reduce the furnace temperature. A heat treatment method comprising an extraction step to take out from the inside,
A heat treatment method, wherein the temperature in the furnace in the removal step is set higher than the temperature in the furnace in the charging step.
前記投入工程の炉内温度は室温〜400℃であって、
前記取出工程の炉内温度は500〜700℃である
ことを特徴とする、請求項1記載の熱処理方法。
The furnace temperature in the charging step is room temperature to 400 ° C.,
The heat treatment method according to claim 1, wherein the temperature in the furnace in the extraction step is 500 to 700 ° C.
前記取出工程後、前記半導体シリコン基板上の付着物を除去する洗浄工程をそなえている
ことを特徴とする、請求項1又は2項に記載の熱処理方法。
The heat treatment method according to claim 1, further comprising a cleaning step of removing deposits on the semiconductor silicon substrate after the extraction step.
前記取出工程後、前記縦型熱処理炉内を強制冷却する炉内冷却工程をそなえている
ことを特徴とする、請求項1〜3の何れか1項に記載の熱処理方法。
The heat treatment method according to any one of claims 1 to 3, further comprising an in-furnace cooling step of forcibly cooling the inside of the vertical heat treatment furnace after the extraction step.
JP2008195069A 2008-07-29 2008-07-29 Heat processing method Pending JP2010034307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195069A JP2010034307A (en) 2008-07-29 2008-07-29 Heat processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195069A JP2010034307A (en) 2008-07-29 2008-07-29 Heat processing method

Publications (1)

Publication Number Publication Date
JP2010034307A true JP2010034307A (en) 2010-02-12

Family

ID=41738439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195069A Pending JP2010034307A (en) 2008-07-29 2008-07-29 Heat processing method

Country Status (1)

Country Link
JP (1) JP2010034307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556311A (en) * 2018-05-30 2019-12-10 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556311A (en) * 2018-05-30 2019-12-10 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method

Similar Documents

Publication Publication Date Title
JP3504784B2 (en) Heat treatment method
KR101399177B1 (en) Cleaning method, method of manufacturing semiconductor device, substrate processing apparatus and recording medium
JP5028957B2 (en) Film forming method, film forming apparatus, and storage medium
WO2005064254A1 (en) Vertical heat treatment device and method of controlling the same
JP6262333B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP2011066106A (en) Method of manufacturing semiconductor device, and substrate processing device
US10676820B2 (en) Cleaning method and film forming method
JP2010034307A (en) Heat processing method
US20220005717A1 (en) Method of Manufacturing Semiconductor Device, Substrate Processing Apparatus and Non-transitory Computer-readable Recording Medium
TWI770478B (en) Substrate processing apparatus, manufacturing method of semiconductor device, recording medium, and substrate processing program
JP2006261285A (en) Substrate treatment equipment
JP2007067196A (en) Substrate processing method
JP6680895B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP4453257B2 (en) Wafer heat treatment method, heat treatment apparatus, and heat treatment boat
JP2004228462A (en) Method and device for thermally treating wafer
JP2010283270A (en) Heat processing device
TWI797779B (en) Vertical heat treatment furnaces processing boat and heat treatment method of semiconductor wafer
JP2013080771A (en) Substrate processing apparatus and manufacturing method of semiconductor device
JP2001156011A (en) Heat treatment equipment for semiconductor wafer
JP2006100303A (en) Substrate manufacturing method and heat treatment apparatus
JP2004111715A (en) Substrate treating device and method of manufacturing semiconductor device
JPH08130192A (en) Thermal treatment equipment
JP2010045198A (en) Method of manufacturing semiconductor device
JP2008071939A (en) Substrate treatment device
JP2006135296A (en) Method of manufacturing semiconductor apparatus, and heat treatment apparatus