JP2010033880A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2010033880A
JP2010033880A JP2008194582A JP2008194582A JP2010033880A JP 2010033880 A JP2010033880 A JP 2010033880A JP 2008194582 A JP2008194582 A JP 2008194582A JP 2008194582 A JP2008194582 A JP 2008194582A JP 2010033880 A JP2010033880 A JP 2010033880A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
temperature
fuel cell
flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008194582A
Other languages
English (en)
Other versions
JP5383111B2 (ja
Inventor
Eizo Matsui
栄造 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008194582A priority Critical patent/JP5383111B2/ja
Publication of JP2010033880A publication Critical patent/JP2010033880A/ja
Application granted granted Critical
Publication of JP5383111B2 publication Critical patent/JP5383111B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】熱交換器内を流れる水に含まれる成分が析出することを抑制し、熱交換器が腐食することを抑制できる燃料電池を提供する。
【解決手段】燃料電池セル1と、燃料電池セル1の発電により生じる排ガスと水とで熱交換を行なう熱交換器13と、熱交換器13で熱交換された水を貯水するための貯湯タンク18と、熱交換器13と貯湯タンク18との間で水を循環させるための循環配管17と、循環配管17に設けられた循環ポンプ16と、循環ポンプ16の動作を制御する制御装置14とを具備するとともに、熱交換器13内に、熱交換器13内を流れる水の温度を測定するための水温測定用センサ22を具備することから、熱交換器13内を流れる水に含まれる成分が析出することが抑制でき、熱交換器13が腐食することを抑制できる。
【選択図】図1

Description

本発明は、燃料電池の発電により生じる排ガスと水とで熱交換を行なう燃料電池に関する。
近年、次世代エネルギーとして、水素含有ガスと酸素含有ガス(通常、空気である)とを用いて電力を得ることができる燃料電池セルと、この燃料電池セルを稼動するための補機類とを外装ケース内に収納してなる燃料電池装置と、給湯システムとを組み合わせてなる燃料電池およびその運転方法が種々提案されている。
このような燃料電池においては、燃料電池装置内に収納された熱交換器と、貯湯タンクとを循環配管にて接続することにより、燃料電池セルの発電等により生じた排ガスの熱と循環配管を流れる水とで熱交換することでお湯を生成することができ、発電効率のよい燃料電池とすることができる。
また、このような燃料電池においては、熱交換器入口や出口の近傍に位置する循環配管に設けられた温度センサが測定する循環配管を流れる水の温度に基づいて、循環ポンプの動作を制御することが知られている(たとえば、特許文献1参照。)。
特開2006−24430号公報
ところで、上述したような燃料電池においては、燃料電池セルの発電等により生じる排ガスの熱量が急激に増大した場合において、熱交換器内を流れる水の温度と、熱交換器の出口に接続された循環配管を流れる水の温度(出口水温)とが差を生じる場合や、熱交換器内を流れる水の温度が上昇してから温度センサがその温度上昇を検知するまでの間に大きなタイムラグが生じる場合がある。
この場合に、特に熱交換器内を流れる水の温度が上昇すると、熱交換器内にて熱交換器内を流れる水が蒸発して水に含まれる成分(カルシウム等)が析出し、その析出物(スケール)が熱交換器に付着することで、熱交換器が腐食するおそれがある。
それゆえ、本発明においては、熱交換器を流れる水の温度を適切に検知できるとともに、熱交換器内を流れる水に含まれる成分が析出し、熱交換器が腐食することを抑制するこを可能とする燃料電池を提供することを目的とする。
本発明の燃料電池は、燃料電池セルと、該燃料電池セルの発電により生じる排ガスと水とで熱交換を行なう熱交換器と、該熱交換器で熱交換された水を貯水するための貯湯タンクと、前記熱交換器と前記貯湯タンクとの間で水を循環させるための循環配管と、該循環配管に設けられた循環ポンプと、該循環ポンプの動作を制御する制御装置とを具備する燃料電池装置であって、前記熱交換器内に、該熱交換器内を流れる水の温度を測定するための水温測定用センサを具備することを特徴とする。
このような燃料電池においては、熱交換器内に、熱交換器内を流れる水の温度を測定するための水温測定用センサを配置することにより、熱交換器内を流れる水の温度を適切に検知することができる。そして水温測定センサが測定した水温に基づき、例えば、熱交換器内を流れる水の量を適宜調整することで、熱交換器内を流れる水の温度を下げることができ、それにより、熱交換器内を流れる水の蒸発を抑制し、水に含まれる成分の析出を抑制して、熱交換器の腐食を抑制することができる。
また、本発明の燃料電池は、前記水温測定用センサが、前記熱交換器内を流れる水の出口近傍に設けられていることが好ましい。
このような燃料電池においては、水温測定用センサを、熱交換器内を流れる水の出口近傍に設けることにより、熱交換器内を流れる水が特に高温となる部位にて、熱交換器内を流れる水の温度を測定することができる。そして水温測定センサが測定した水温に基づき、例えば、熱交換器内を流れる水の量を適宜調整することで、熱交換器内を流れる水の温度を下げることができ、それにより、熱交換器内を流れる水の蒸発を抑制し、水に含まれる成分の析出を効率よく抑制して、熱交換器の腐食を抑制することができる。
また、本発明の燃料電池は、前記水温測定用センサにより測定される前記熱交換器内を流れる水の温度が、前記貯湯タンクに貯水する水の貯湯設定温度から水に含まれる成分が析出する温度の範囲内で設定される第1の設定温度以上となった場合に、前記循環配管を流れる水の流量を増大させるように、前記循環ポンプの動作を制御することが好ましい。
このような燃料電池においては、水温測定用センサが測定する熱交換器内を流れる水の温度が貯湯タンクに貯水する水の貯湯設定温度から水に含まれる成分が析出する温度の範囲内で設定される第1の設定温度以上となった場合に、循環配管を流れる水の流量を増大させるように、循環ポンプの動作を制御することにより、熱交換器内を流れる水の温度を下げることができ、それにより、熱交換器内を流れる水の蒸発を抑制し、水に含まれる成分の析出を抑制して、熱交換器の腐食を抑制することができる。また、第1の設定温度が、貯湯タンクに貯水する水の貯湯設定温度から水に含まれる成分が析出する温度の範囲内で設定されることから、貯湯タンクに供給する水の温度を下げることなく、熱交換器の腐食を抑制することができる。
また、本発明の燃料電池は、前記制御装置は、前記水温測定用センサが測定する前記熱交換器内を流れる水の温度が前記第1の設定温度以上を所定時間継続した場合に、前記燃料電池の発電量を低下させるかもしくは停止するように制御することが好ましい。
このような燃料電池においては、水温測定用センサが測定する熱交換器内を流れる水の温度が第1の設定温度以上を所定時間継続した場合に、燃料電池の発電量を低下させるかもしくは停止することにより、熱交換器内を流れる水の温度を低下することができる。それゆえ、熱交換器内を流れる水の蒸発を抑制し、水に含まれる成分の析出を抑制して、熱交換器の腐食を抑制することができる。またあわせて、燃料電池の寿命を長くすることができる。
本発明の燃料電池は、燃料電池セルと、該燃料電池セルの発電により生じる排ガスと水とで熱交換を行なう熱交換器と、該熱交換器で熱交換された水を貯水するための貯湯タンクと、前記熱交換器と前記貯湯タンクとの間で水を循環させるための循環配管と、該循環配管に設けられた循環ポンプと、該循環ポンプの動作を制御する制御装置、とを具備する燃料電池であって、前記熱交換器内に、該熱交換器内を流れる水の温度を測定するための水温測定用センサを具備することから、熱交換器内を流れる水の温度を適切に測定することができ、その水温測定用センサにより測定される水温に基づいて、循環ポンプの動作を制御することで、熱交換器の腐食を抑制することができる。
図1は、本発明の燃料電池の構成の一例を示した構成図であり、図2は本発明の燃料電池を構成する熱交換器の一例を示す外観斜視図である。まず、図1および図2を用いて本発明の燃料電池の構成の一例について説明し、その後燃料電池の運転について説明する
図1においては、燃料電池セル1や燃料電池セル1の発電に必要な補機類を収納してなる発電ユニットと、貯湯タンク18を具備する貯湯ユニットと、これらのユニット間を水が循環するための循環配管17とあわせて、本発明の燃料電池が構成されている。
図1に示す発電ユニットは、燃料電池セル1、天然ガスや灯油等の被改質ガスを供給する被改質ガス供給手段2、酸素含有ガスを燃料電池セル1に供給するための酸素含有ガス供給手段3、被改質ガスと水蒸気により水蒸気改質する改質器4を具備している。なお、燃料電池セル1は、収納容器内に収納することで燃料電池モジュール1とすることができ、また改質器4を燃料電池セル1とあわせて収納容器内に収納することもできる。
また、図1に示す発電ユニットにおいては、燃料電池セル1の発電により生じた排ガス(排熱)と水とで熱交換を行なう熱交換器13、熱交換により生成された凝縮水を処理する凝縮水処理装置19、熱交換器13で生成された凝縮水を凝縮水処理装置19に供給するための凝縮水供給管21が設けられており、凝縮水処理装置19にて処理された凝縮水は、水タンク10に貯水された後、水ポンプ11により改質器4に供給される。なお、凝縮水を処理するための凝縮水処理手段(例えば、イオン交換樹脂等。図示せず。)は、凝縮水処理装置19のほか、凝縮水供給管21等にも設けることができる。
一方、凝縮水処理装置19に供給される凝縮水の量が少ない場合や凝縮水処理手段で処理された後の凝縮水の純度が低い場合においては、外部より供給される水(水道水等)を純水に処理して改質器4に供給することもでき、図1においては外部から供給される水を純水に処理する手段として各水処理装置を具備している。
ここで、外部より供給される水を改質器4に供給するための各水処理装置としては、水を浄化するための活性炭フィルタ装置7、逆浸透膜装置8および浄化された水を純水にするためのイオン交換樹脂装置9の各装置のうち、少なくともイオン交換樹脂装置9(好ましくは全ての装置)を具備する。そして、イオン交換樹脂装置9にて生成された純水は水タンク10に貯水される。なお、図1においては、水処理装置として、上記各装置全てを備えるとともに、外部より供給される水の量を調整するための給水弁6が設けられている。また、凝縮水処理装置19と水タンク10とがタンク連結管20にて連結されている。なお、凝縮水のみを改質器4に供給する場合には、凝縮水処理装置19と改質器4とを水ポンプ11を介して接続することも可能である。
また、改質器4に水を供給するための各水処理装置および凝縮水処理装置をあわせて、水供給装置Xとして表し、図1においては一点鎖線により囲って示している(なお、改質器4と水ポンプ11を接続する給水管5、タンク連結管20、凝縮水供給管21も水供給装置Xに含まれるものとする。)。
さらに図1に示す発電ユニットは、燃料電池セル1にて発電された直流電力を交流電力に切り替え外部負荷に供給するためのパワーコンディショナ12、熱交換器13の出口に設けられ熱交換器13の出口を流れる水(循環水流)の温度を測定するための出口水温センサ15のほか、制御装置14が設けられており、循環ポンプ16とあわせて発電ユニットが構成されている。なお、制御装置14については後に詳述する。そして、これら発電ユニットを構成する各装置を、外装ケース内に収納することで、設置や持ち運び等が容易な燃料電池装置とすることができる。また図示していないが、被改質ガス供給手段2と改質器4との間に、被改質ガスを加湿するための被改質ガス加湿器を設けることも可能である。
また、貯湯ユニットは、熱交換後の湯水を貯湯するための貯湯タンク18を具備して構成されている。なお、貯湯タンク18の下部側に貯湯タンクに水を供給するための水供給管が接続されており、貯湯タンク18に貯湯されたお湯は上部側より、給湯ラインに供給される。
なお、図中の矢印は、被改質ガス、酸素含有ガス、水の流れ方向を示したものであり、また破線は制御装置14に伝送される主な信号経路、または制御装置14より伝送される主な信号経路を示している。また、同一の構成については同一の番号を付するものとし、以下同様である。
続いて図2を用いて本発明の燃料電池における熱交換器13の一例について説明する。なお熱交換器13としては、一般に市販されている熱交換器を用いることができ、プレートフィン型のほか、配管の外壁に接して複数のフィンが接続されているチューブフィンタイプ等、適宜選択して使用することができる。以下の説明においてはプレートフィン型熱交換器について説明する。なお、図2において太い矢印は、燃料電池セル1の発電等により生じる排ガスの流れを示している。
図2で示す熱交換器13は、いわゆるプレートフィン型熱交換器13であり、プレート23を複数積層して形成されている。そして、このプレート23を複数積層することにより、熱交換器13の内部に、水が流れる水流路24と排ガスが流れるガス流路25とが互いに隣接して、排ガスがガス流路25を上から下に流通し、循環配管17を流れる水が水流路24を下から上に流通するように形成されている。それにより、排ガスと水との流れが対向流となり、効率よく熱交換することができる。
そして、図2においては、熱交換器13内を流れる水の温度を測定するための水温測定用センサ22が設けられており、熱交換器13内を流れる水の温度を適切に検知することができる。
なお、熱交換器13の上面および下面には、ガス流路25に連結する空間26が設けられ、それにより、排ガスの管路圧損が低減し、燃料電池セル1の発電により生じる排ガスをスムーズに熱交換器13内に流通することが可能となる。
また熱交換器13の下方には、燃料電池セル1の発電により生じる排ガスと循環配管17を流れる水とで熱交換する際に生じる凝縮水とを分離するための分離部材29が設けられており、分離された凝縮水は、分離部材29の底面に接続された凝縮水供給管21(図示せず)に流れ、分離された熱交換後の排ガスは、分離部材29の側面に設けられた排気口30より排気される。
なお熱交換器13には、側面部に循環配管17を流れる水を熱交換器13内に供給するための水流入部(入口)と、熱交換後の水(湯水)を貯湯タンク18側へ流すための水流出部(出口)が設けられており、図2を用いて説明する場合においては、それぞれに接続された循環配管17を、入水管27、出水管28として説明する。ここで、出水管28は各プレート23間を流れる水を熱交換器13より出水するために、各プレート23を貫通するように接続されている。
以上のような構成により本発明の燃料電池が構成されるが、必要に応じて適宜その構成を変更することができる。
続いて、図1に示した燃料電池の運転方法について説明する。燃料電池セル1の発電に用いられる改質ガス(燃料ガス)を生成するために水蒸気改質を行なうにあたり、改質器4で使用される水(純水)は、熱交換器13において燃料電池セル1の発電により生じた排ガスと循環配管17を流れる水との熱交換により生成される凝縮水が用いられる。熱交換器13にて生成された凝縮水は、凝縮水供給管21を流れて凝縮水処理装置19に供給される。凝縮水処理装置19に備える凝縮水処理手段(イオン交換樹脂等)にて処理された凝縮水(純水)は、タンク連結管20を介して水タンク10に供給される。水タンク10に貯水された水は、水ポンプ11により改質器4に供給され、被改質ガス供給手段2より供給される被改質ガスとで水蒸気改質が行われ、生成された改質ガス(燃料ガス)が燃料電池セル1に供給される。燃料電池セル1においては、改質ガスと酸素含有ガス供給手段3より供給される酸素含有ガスとを用いて発電が行われる。以上の方法により、凝縮水を有効に利用することにより、水自立運転を行うことができる。
一方で、凝縮水の生成量が少ない場合や、凝縮水処理装置19にて処理された凝縮水の純度が低い場合においては、外部より供給される水(水道水等)を用いることもできる。
この場合においては、まず給水弁6(例えば、電磁弁やエア駆動バルブ等)が開放され、水道水等の外部から供給される水が、給水管5を通して活性炭フィルタ7に供給される。活性炭フィルタ7にて処理された水は、続いて逆浸透膜装置8に供給される。逆浸透膜装置8にて処理された水は、引き続きイオン交換樹脂装置9に供給され、イオン交換樹脂装置9で処理されることにより生成された純水が、水タンク10に貯水される。水タンク10に貯水された純水は、上述した方法により、燃料電池セル1の発電に利用される。
そして、図1に示す燃料電池の構成においては、熱交換器13と貯湯タンク18とを接続する循環配管17(出水管28)の熱交換器13の出口側に、出口水温センサ15を配置し、出口水温センサ15により測定された温度が、貯湯タンク18に貯水する水の貯湯設定温度となるように、制御装置14が循環ポンプ16の動作を制御する。
具体的には、出口水温センサ15が測定する温度が貯湯設定温度以下の場合には、制御装置14は循環ポンプ16の動作を、循環配管17を流れる水の流量を減少させるもしくは停止するように制御する。それにより、熱交換器13の出口を流れる水の温度を上昇させることができる。
一方、出口水温センサ15が測定する温度が、貯湯設定温度より高い場合には、制御装置14は、熱交換器13の出口を流れる水の温度を低下させるべく、循環配管17を流れる水の流量を増大させるように循環ポンプ16の動作を制御する。それにより、熱交換器13の出口を流れる水の温度を低下させることができる。
なお、貯湯設定温度とは、貯湯タンク18の構造等に基づいて適宜設定することができ、例えば65℃〜75℃範囲で適宜設定することができる。
ところで、上述したような燃料電池において、燃料電池セル1の発電等により生じる排ガスの熱量が急激に増大した場合に、熱交換器13内を流れる水の温度と、熱交換器13の出口に接続された循環配管17(出水管28)を流れる水の温度(出口水温)との間に大きな温度差を生じる場合や、熱交換器13内を流れる水の温度が上昇してから出口水温センサ15がその温度上昇を検知までの間に大きなタイムラグが生じる場合がある。
この場合に、熱交換器13内を流れる水の温度が水の蒸発温度まで上昇すると、熱交換器13内を流れる水が蒸発することにより、熱交換器13内を流れる水に含まれる成分(カルシウム等)が析出する場合がある。そしてその析出物(スケール)が熱交換器13内に付着することで、熱交換器13が腐食するおそれがある。
そこで、本発明においては、熱交換器13内に、熱交換器13内を流れる水の温度を測定するための水温測定用センサ22を設けている。なお、水温測定用センサ22は、熱交換器13内の温度のうち特に高温となる部位を測定することが好ましく、特には熱交換器13の出口近傍に設けることが好ましい。それゆえ、図2においては、各プレートフィン23を貫通して出水管28に接続される部位(出口近傍)に設けた例を示している。またチューブフィン型の熱交換器の場合には、チューブフィン型熱交換器を構成する配管の出口部位に設けることができる。それにより、熱交換器13内を流れる水の温度を適切に検知することができる。
そして、制御装置14が、水温測定用センサ22により測定された温度に基づいて、熱交換器13内を流れる流量を増大させるように循環ポンプ16の動作を制御することで、熱交換器13内を流れる水の温度が低下する。それにより、熱交換器13内を流れる水に含まれる成分(カルシウム等)の析出を抑制でき、その析出物(スケール)により熱交換器13が腐食することを抑制することができる。
具体的には、水温測定用センサ22が測定する熱交換器13内を流れる水の温度が第1の設定温度以上となった場合に、制御装置14は循環配管17を流れる水の流量を増大させるように循環ポンプ16を制御する。ここで、第1の設定温度は、貯湯タンク18に貯水する水の貯湯設定温度から水に含まれる成分が析出する温度の範囲内で設定され、例えば80℃〜90℃の範囲で適宜設定することができる。それにより、熱交換器13内を流れる水の温度を低下させることができ、それに伴い熱交換器13内を流れる水に含まれる成分(カルシウム等)の析出を抑制でき、その析出物(スケール)により熱交換器13が腐食することを抑制できる。
また、水温測定用センサ22を配置するにあたり、熱交換器13内を流れる水が、水温測定用センサ22が配置された場所から熱交換器13の出口までの間を流れる間に、熱交換されることでさらに温度が上昇する場合がある。その際、燃料電池セル1より供給される排ガスの熱量により、熱交換器内を流れる水の温度上昇に幅が生じる場合があるため、熱交換器13の出口水温を制御することが難しくなるおそれがある。
したがって、循環配管17の熱交換器13の出口近傍に出口水温センサ15を設け、出口水温センサ15により測定される温度が貯湯設定温度となるように、循環ポンプ16の動作を制御することが好ましい。それにより、安定して所定の温度の水を貯湯タンク18に供給することができる。
なお、水温測定用センサ22により測定された熱交換器13内を流れる水の温度が第1の設定温度以上となった場合においては、制御装置14は、出口水温センサ15により測定された温度に基づく循環ポンプ16の制御よりも優先して、水温測定用センサ22により測定された温度に基づいて循環ポンプ16を制御することが好ましい。
また、水温測定用センサ22により測定された熱交換器13内を流れる水の温度が第1の設定温度未満となった場合には、制御装置14は、水温測定用センサ22により測定された温度に基づく循環ポンプ16の制御を、出口水温センサ15により測定された温度に基づく循環ポンプ16の制御に切り替えることが好ましい。それにより、安定して所定の温度の水を貯湯タンク18に供給することができる。
なお、水温測定用センサ22により測定される熱交換器13内を流れる水の温度が第1の設定温度以上となった場合に、制御装置14は、循環配管17を流れる水の流量を増大させるように循環ポンプ16の動作を制御するが、水温測定用センサ22が測定する熱交換器13内を流れる水の温度が第1の設定温度以上を所定時間継続する場合には、燃料電池(セル)の発電量を低下させるか停止するように制御することが好ましい。
水温測定用センサ22が測定する熱交換器13内を流れる水の温度が、第1の設定温度以上を所定時間継続する場合に、燃料電池の発電量を低下させるかもしくは停止させることにより、熱交換器13内を流れる水の温度を低下させることができ、それに伴い熱交換器13内を流れる水に含まれる成分(カルシウム等)の析出を抑制でき、その析出物(スケール)により熱交換器13が腐食することを抑制できる。また、それに伴い燃料電池の寿命を長くすることができる。なお、所定時間とは熱交換器13内を流れる水の流量や、熱交換器13の大きさ等により適宜設定することができ、例えば3〜10分の間で適宜設定することができる。
以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。
例えば、水温測定用センサ22を設けるにあたり、水温測定用センサ22を熱交換器13内の出口に設けることができる場合においては、出口水温センサ15を設けることなく、制御装置14は水温測定用センサ22が測定する温度に基づいて、循環ポンプ16の動作を制御することもできる。
この場合において、制御装置14は、通常時においては水温測定用センサ22が測定する水温が貯湯設定温度となるように循環ポンプ16の動作を制御する。そして、水温測定用センサ22が測定する水温が、第1の設定温度以上となった場合には、循環ポンプ16により循環配管17を流れる水の流量が増大するように、循環ポンプ16の動作を制御する。そして、水温測定用センサ22が測定する水温が、第1の設定温度未満となった場合には、水温測定用センサ22が測定する水温が貯湯設定温度となるように循環ポンプ16の動作を制御する。
本発明の燃料電池の構成を示す構成図である。 本発明の燃料電池を構成する熱交換器を示す外観斜視図である。
符号の説明
1:燃料電池(セル)
13:熱交換器
14:制御装置
15:出口水温センサ
16:循環ポンプ
17:循環配管
18:貯湯タンク
22:水温測定用センサ

Claims (4)

  1. 燃料電池セルと、該燃料電池セルの発電により生じる排ガスと水とで熱交換を行なう熱交換器と、該熱交換器で熱交換された水を貯水するための貯湯タンクと、前記熱交換器と前記貯湯タンクとの間で水を循環させるための循環配管と、該循環配管に設けられた循環ポンプと、該循環ポンプの動作を制御する制御装置とを具備する燃料電池であって、前記熱交換器内に、該熱交換器内を流れる水の温度を測定するための水温測定用センサを具備することを特徴とする燃料電池。
  2. 前記水温測定用センサが、前記熱交換器内を流れる水の出口近傍に設けられていることを特徴とする請求項1に記載の燃料電池。
  3. 前記制御装置は、前記水温測定用センサにより測定される前記熱交換器内を流れる水の温度が、前記貯湯タンクに貯水する水の貯湯設定温度から水に含まれる成分が析出する温度の範囲内で設定される第1の設定温度以上となった場合に、前記循環配管を流れる水の流量を増大させるように、前記循環ポンプの動作を制御することを特徴とする請求項1または請求項2に記載の燃料電池。
  4. 前記制御装置は、前記水温測定用センサが測定する前記熱交換器内を流れる水の温度が前記第1の設定温度以上を所定時間継続した場合に、前記燃料電池の発電量を低下させるかもしくは停止するように制御することを特徴とする請求項3に記載の燃料電池。




JP2008194582A 2008-07-29 2008-07-29 燃料電池 Active JP5383111B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194582A JP5383111B2 (ja) 2008-07-29 2008-07-29 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194582A JP5383111B2 (ja) 2008-07-29 2008-07-29 燃料電池

Publications (2)

Publication Number Publication Date
JP2010033880A true JP2010033880A (ja) 2010-02-12
JP5383111B2 JP5383111B2 (ja) 2014-01-08

Family

ID=41738115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194582A Active JP5383111B2 (ja) 2008-07-29 2008-07-29 燃料電池

Country Status (1)

Country Link
JP (1) JP5383111B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204462A (ja) * 2010-03-25 2011-10-13 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
JP2012204238A (ja) * 2011-03-28 2012-10-22 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
EP2555302A4 (en) * 2010-03-29 2015-05-20 Jx Nippon Oil & Energy Corp FUEL CELL SYSTEM
JP2015111582A (ja) * 2015-01-16 2015-06-18 大阪瓦斯株式会社 固体酸化物形燃料電池システム
JP2017037848A (ja) * 2016-10-03 2017-02-16 大阪瓦斯株式会社 燃料電池システム用熱交換器
WO2020137388A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 全固体電池及び全固体電池の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337707A (ja) * 1999-05-28 2000-12-08 Toto Ltd 給湯機
JP2001027447A (ja) * 1999-07-13 2001-01-30 Toshiba Electric Appliance Co Ltd 貯湯式給湯装置
JP2002352835A (ja) * 2001-05-28 2002-12-06 Nissan Motor Co Ltd 燃料電池冷却系の凍結防止装置
JP2003083607A (ja) * 2001-06-29 2003-03-19 Matsushita Electric Ind Co Ltd ヒートポンプ給湯システム
JP2006336937A (ja) * 2005-06-01 2006-12-14 Denso Corp 貯湯式給湯装置
JP2008135356A (ja) * 2006-10-27 2008-06-12 Kyocera Corp 燃料電池装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337707A (ja) * 1999-05-28 2000-12-08 Toto Ltd 給湯機
JP2001027447A (ja) * 1999-07-13 2001-01-30 Toshiba Electric Appliance Co Ltd 貯湯式給湯装置
JP2002352835A (ja) * 2001-05-28 2002-12-06 Nissan Motor Co Ltd 燃料電池冷却系の凍結防止装置
JP2003083607A (ja) * 2001-06-29 2003-03-19 Matsushita Electric Ind Co Ltd ヒートポンプ給湯システム
JP2006336937A (ja) * 2005-06-01 2006-12-14 Denso Corp 貯湯式給湯装置
JP2008135356A (ja) * 2006-10-27 2008-06-12 Kyocera Corp 燃料電池装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204462A (ja) * 2010-03-25 2011-10-13 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
EP2555302A4 (en) * 2010-03-29 2015-05-20 Jx Nippon Oil & Energy Corp FUEL CELL SYSTEM
JP2012204238A (ja) * 2011-03-28 2012-10-22 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
JP2015111582A (ja) * 2015-01-16 2015-06-18 大阪瓦斯株式会社 固体酸化物形燃料電池システム
JP2017037848A (ja) * 2016-10-03 2017-02-16 大阪瓦斯株式会社 燃料電池システム用熱交換器
WO2020137388A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 全固体電池及び全固体電池の製造方法
CN113196545A (zh) * 2018-12-28 2021-07-30 松下知识产权经营株式会社 全固体电池和全固体电池的制造方法

Also Published As

Publication number Publication date
JP5383111B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5383111B2 (ja) 燃料電池
JP5142604B2 (ja) 燃料電池装置
JP2011023168A (ja) 燃料電池システム
JP5063189B2 (ja) 燃料電池装置
JP5132205B2 (ja) 燃料電池装置
JP5178042B2 (ja) 燃料電池装置
JP2008300058A (ja) 燃料電池装置
JP5173302B2 (ja) 燃料電池装置
JP5361125B2 (ja) 燃料電池装置
JP2008135271A (ja) 燃料電池装置
JP2008159467A (ja) 燃料電池装置
JP5153178B2 (ja) 燃料電池装置
JP2008135356A (ja) 燃料電池装置
JP5388463B2 (ja) 燃料電池装置
JP5460208B2 (ja) 燃料電池コージェネレーションシステム
JP5153177B2 (ja) 燃料電池装置
JP5305689B2 (ja) 燃料電池装置
JP5534775B2 (ja) 燃料電池コージェネレーションシステム
JP2011029116A (ja) 燃料電池装置
JP5219712B2 (ja) 燃料電池装置
JP5178020B2 (ja) 燃料電池装置
JP5178041B2 (ja) 燃料電池装置
JP2010009752A (ja) 燃料電池装置
JP5178095B2 (ja) 燃料電池装置
JP4158468B2 (ja) 燃料電池発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5383111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150