JP2010032400A - Biochip reader - Google Patents

Biochip reader Download PDF

Info

Publication number
JP2010032400A
JP2010032400A JP2008195585A JP2008195585A JP2010032400A JP 2010032400 A JP2010032400 A JP 2010032400A JP 2008195585 A JP2008195585 A JP 2008195585A JP 2008195585 A JP2008195585 A JP 2008195585A JP 2010032400 A JP2010032400 A JP 2010032400A
Authority
JP
Japan
Prior art keywords
biochip
excitation light
optical system
reader
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008195585A
Other languages
Japanese (ja)
Inventor
Takeo Tanaami
健雄 田名網
Yumiko Sugiyama
由美子 杉山
Yoshinao Naito
嘉直 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008195585A priority Critical patent/JP2010032400A/en
Publication of JP2010032400A publication Critical patent/JP2010032400A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biochip reader capable of suppressing the change in the quantity of exciting light based on the positional shift in the optical axis direction of the biochip to suppress the lowering of reading precision. <P>SOLUTION: An illumination optical system 20 is constituted so that an exciting light beam vertically illuminates the whole surface 11 of the biochip 1. Accordingly, the intensity of the exciting light beam is not changed even if the position of the surface 11 of the biochip 1 is shifted from a regular position in the P-direction (optical axis direction) shown by Fig.1. As a result, a change in the intensity of the exciting light or the lowering of detection precision caused by intensity irregularity can be prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バイオチップの表面に励起光を照射する照明光学系を備え、前記励起光に基づく蛍光像を読取るバイオチップ読取装置に関する。   The present invention relates to a biochip reader that includes an illumination optical system that irradiates the surface of a biochip with excitation light and reads a fluorescent image based on the excitation light.

バイオチップの表面に励起光を照射し、励起光によって励起された蛍光が作る蛍光像を読取るバイオチップ読取装置が知られている。この装置では、バイオチップ表面の蛍光像を受光器上に結像させ、受光器で検出された受光量に基づいて試料の蛍光強度を検出している。
特開2003−28799号公報
There is known a biochip reader that irradiates the surface of a biochip with excitation light and reads a fluorescence image formed by fluorescence excited by the excitation light. In this apparatus, a fluorescence image of the biochip surface is formed on a light receiver, and the fluorescence intensity of the sample is detected based on the amount of light received detected by the light receiver.
JP 2003-28799 A

しかしながら、従来の装置では、バイオチップの表面が励起光の焦点位置に正確に配置されていなければ、充分な蛍光強度を得ることができず、高い読取精度を得ることはできない。   However, in the conventional apparatus, unless the surface of the biochip is accurately arranged at the focal position of the excitation light, sufficient fluorescence intensity cannot be obtained, and high reading accuracy cannot be obtained.

すなわち、バイオチップの表面が励起光の焦点位置から外れると、バイオチップの表面に照射される励起光の単位面積あたりの光強度が低下するので、励起される蛍光の強度も低下し、受光器に結像する蛍光像が暗くなってしまう。   That is, when the biochip surface deviates from the focal position of the excitation light, the light intensity per unit area of the excitation light irradiated on the biochip surface decreases, so the intensity of the excited fluorescence also decreases. The fluorescent image formed on the screen becomes dark.

バイオチップの位置がずれる原因には、バイオチップを保持するサンプルホルダーの加工精度や、サンプルホルダーと光学系との組立精度などがあるが、バイオチップ自身の寸法精度も大きく関係している。   The cause of the position of the biochip is the processing accuracy of the sample holder holding the biochip and the assembly accuracy of the sample holder and the optical system, but the dimensional accuracy of the biochip itself is also greatly related.

一般に、バイオチップ読取装置は、図5(a)に示す如く、バイオチップ100をサンプルホルダー400により保持し、バイオチップ100の表面が光学系(対物レンズ)300の焦点位置に来るように配置している。   In general, as shown in FIG. 5A, the biochip reader is arranged so that the biochip 100 is held by a sample holder 400 and the surface of the biochip 100 is at the focal position of the optical system (objective lens) 300. ing.

ここで、図5(b)のように、サンプルホルダー400にホコリなどの異物450が付着した場合には、バイオチップ100の表面が傾き、場所によっては焦点位置から外れてしまう。   Here, as shown in FIG. 5B, when a foreign substance 450 such as dust adheres to the sample holder 400, the surface of the biochip 100 is tilted and deviates from the focal position depending on the location.

また、図5(c)〜(e)は、バイオチップ100における寸法精度の様子を示したものである。図5(c)はバイオチップ100の平面度、図5(d)はバイオチップ100の厚さの公差、図5(e)はバイオチップ100の歪みや重量による撓みの様子を示したものである。   5C to 5E show the dimensional accuracy of the biochip 100. FIG. 5 (c) shows the flatness of the biochip 100, FIG. 5 (d) shows the tolerance of the thickness of the biochip 100, and FIG. 5 (e) shows the deformation of the biochip 100 due to distortion and weight. is there.

このように、種々の原因によりバイオチップの表面位置が焦点からずれると、検出される蛍光強度が大幅に低下するため、高い読取精度を得ることができない。   As described above, when the surface position of the biochip deviates from the focus due to various causes, the fluorescence intensity to be detected is greatly reduced, so that high reading accuracy cannot be obtained.

JIS R3703によれば、バイオチップ用の素材としても用いられる顕微鏡用のスライドガラスの場合、厚さの公差は厚い方向に+0.1mm、薄い方向に−0.2mmまで、1包装中であっても±0.1mmと規定されており、平面度も0.05mm以下と規定されている。このため、読取装置はバイオチップ表面に常に一定強度以上の励起光を照射するためには、平面度だけを考慮しても±50μm、厚さ公差も考慮すると±100μm以上の焦点深度を持たせる必要がある。   According to JIS R3703, in the case of a glass slide for a microscope that is also used as a material for a biochip, the thickness tolerance is +0.1 mm in the thick direction and -0.2 mm in the thin direction. Is defined as ± 0.1 mm, and the flatness is also defined as 0.05 mm or less. For this reason, in order to constantly irradiate the biochip surface with excitation light having a certain intensity or more, the reading device has a depth of focus of ± 50 μm even when considering only flatness, and ± 100 μm or more considering thickness tolerance. There is a need.

また、図6は従来の励起方式を示すもので、図6(a)はシングルビームの場合、図6(b)はマルチビームの場合を示している。一般に、従来の読取装置では、バイオチップに励起光を照射するレンズと蛍光を受光するレンズとを共用しているために、レンズの焦点深度を深くすることができず、上記のような焦点深度を持たせることはできなかった。言い換えれば、図に示す如く、励起光の広がり角φまたは入射角δが大きくなっている。   FIG. 6 shows a conventional excitation method. FIG. 6A shows a single beam case, and FIG. 6B shows a multi-beam case. In general, in the conventional reader, since the lens that irradiates the biochip with the excitation light and the lens that receives the fluorescence are shared, the focal depth of the lens cannot be increased. Could not have In other words, as shown in the figure, the spread angle φ or the incident angle δ of the excitation light is large.

本発明は、上記のような従来装置の欠点をなくし、バイオチップの光軸方向の位置ずれに基づく読取精度の低下を抑制することのできるバイオチップ読取装置を簡単な構成により実現することを目的としたものである。   An object of the present invention is to realize a biochip reader with a simple configuration that eliminates the drawbacks of the conventional device as described above and can suppress a decrease in reading accuracy based on a positional deviation of the biochip in the optical axis direction. It is what.

本発明のバイオチップ読取装置は、バイオチップの表面に励起光を照射する照明光学系を備え、前記励起光に基づく蛍光像を読取るバイオチップ読取装置において、前記照明光学系は、前記バイオチップの表面に対して前記励起光を垂直かつ平行に照射することを特徴とする。
このバイオチップ読取装置によれば、バイオチップの表面に対し励起光が垂直に照射されるので、バイオチップの光軸方向の位置ずれに基づく励起光量の変化を抑制でき読取精度の低下を抑制できる。
The biochip reader of the present invention includes an illumination optical system that irradiates the surface of the biochip with excitation light, and in the biochip reader that reads a fluorescent image based on the excitation light, the illumination optical system includes the biochip. The excitation light is irradiated perpendicularly and parallel to the surface.
According to this biochip reader, since the excitation light is irradiated perpendicularly to the surface of the biochip, it is possible to suppress the change in the amount of excitation light based on the displacement of the biochip in the optical axis direction and to suppress the decrease in reading accuracy. .

前記照明光学系は、励起光の広がり角を狭角に調整し、バイオチップ表面に垂直に近い入射角で照射するように構成され、励起光学系の焦点深度がスライドガラスのばらつきの範囲で影響を受けないように焦点深度±50μm以上となるように構成されてもよい。   The illumination optical system is configured to adjust the divergence angle of the excitation light to a narrow angle and irradiate at an incident angle close to perpendicular to the biochip surface, and the focal depth of the excitation optical system is affected in the range of variation of the slide glass. It may be configured to have a depth of focus of ± 50 μm or more so as not to receive light.

本発明のバイオチップ読取装置によれば、バイオチップの表面に対し励起光が垂直に照射されるので、バイオチップの光軸方向の位置ずれに基づく励起光量の変化を抑制でき読取精度の低下を抑制できる。   According to the biochip reader of the present invention, since the excitation light is irradiated perpendicularly to the surface of the biochip, it is possible to suppress the change in the amount of excitation light based on the positional deviation in the optical axis direction of the biochip and to reduce the reading accuracy. Can be suppressed.

以下、図1〜図4を参照して、本発明によるバイオチップ読取装置の一実施形態について説明する。   Hereinafter, an embodiment of a biochip reader according to the present invention will be described with reference to FIGS.

図1は、本実施形態のバイオチップ読取装置における光学系の構成を示す図である。   FIG. 1 is a diagram illustrating a configuration of an optical system in the biochip reader according to the present embodiment.

図1に示すように、本実施形態のバイオチップ読取装置は、バイオチップ1の表面11に励起光を照射する照明光学系20と、照明光学系20により照射された励起光に基づく蛍光像を結像させる結像光学系30と、バイオチップ1を保持する機構(サンプルホルダー)40とを備える。   As shown in FIG. 1, the biochip reader of this embodiment includes an illumination optical system 20 that irradiates the surface 11 of the biochip 1 with excitation light, and a fluorescent image based on the excitation light irradiated by the illumination optical system 20. An imaging optical system 30 that forms an image and a mechanism (sample holder) 40 that holds the biochip 1 are provided.

バイオチップ1の表面11には、蛍光試薬でラベル付けされた試料から成る複数のサイト12が2次元配置されている。バイオチップ1はバイオチップ保持用のサンプルホルダー40の上に保持されている。   A plurality of sites 12 made of a sample labeled with a fluorescent reagent are two-dimensionally arranged on the surface 11 of the biochip 1. The biochip 1 is held on a sample holder 40 for holding a biochip.

照明光学系20は、レーザ光を励起光として発生させるレーザ光源21と、レーザ光源21からのレーザ光を平行光にするレンズ22と、マイクロレンズ23aが形成された透明な回転板23と、集光のためのレンズ24および25と、励起光のみを選択的に反射させ蛍光のみを選択的に透過させるダイクロイックミラー26を備える。回転板23はモータ27の回転軸28に取り付けられ、モータ27の駆動力により回転される。レンズ22からの平行光が回転板23に入射すると、レーザ光は各マイクロレンズ23aによりそれぞれ集光されてバイオチップ1を照射する。 The illumination optical system 20 includes a laser light source 21 that generates laser light as excitation light, a lens 22 that converts the laser light from the laser light source 21 into parallel light, a transparent rotating plate 23 on which a microlens 23a is formed, Lenses 24 and 25 for light, and a dichroic mirror 26 that selectively reflects only excitation light and selectively transmits only fluorescence. The rotating plate 23 is attached to the rotating shaft 28 of the motor 27 and is rotated by the driving force of the motor 27. When the parallel light from the lens 22 enters the rotating plate 23, the laser light is condensed by each microlens 23a and irradiates the biochip 1.

モータ27により回転板23を回転させると、バイオチップ1の表面11が各マイクロレンズ23aで絞られた励起光ビームにより走査される。マイクロレンズ23aは、その各ビームがバイオチップ1の各サイト12を個別に走査できるような空間位置関係で回転板23上に配置されている。このような構成により、レーザ光によるスペックルノイズの発生を防ぐことができる。   When the rotating plate 23 is rotated by the motor 27, the surface 11 of the biochip 1 is scanned with the excitation light beam narrowed by each microlens 23a. The microlens 23a is arranged on the rotating plate 23 in a spatial positional relationship such that each beam can individually scan each site 12 of the biochip 1. With such a configuration, generation of speckle noise due to laser light can be prevented.

結像光学系30は、レンズ31と、励起光を除去し蛍光のみを選択的に透過させるバリアフィルタ32と、対物レンズ33と、を備える。励起光により励起されたバイオチップ1のサイト12からの蛍光は、レンズ31、バリアフィルタ32、対物レンズ33を介して受光器4に入射し、受光器4に結像する。   The imaging optical system 30 includes a lens 31, a barrier filter 32 that removes excitation light and selectively transmits only fluorescence, and an objective lens 33. The fluorescence from the site 12 of the biochip 1 excited by the excitation light is incident on the light receiver 4 through the lens 31, the barrier filter 32, and the objective lens 33 and forms an image on the light receiver 4.

本実施形態のバイオチップ読取装置では、励起光ビームがバイオチップ1の表面11の全面に垂直に照射されるように、照明光学系20が構成されている。このため、バイオチップ1の表面11の位置が正規位置から図1に示すP方向(光軸方向)にずれても、励起光ビームの強度が変わらない。したがって、励起光の強度の変動や強度ムラに起因する検出精度の低下を防止できる。   In the biochip reader of the present embodiment, the illumination optical system 20 is configured so that the excitation light beam is irradiated perpendicularly to the entire surface 11 of the biochip 1. For this reason, even if the position of the surface 11 of the biochip 1 is shifted from the normal position in the P direction (optical axis direction) shown in FIG. 1, the intensity of the excitation light beam does not change. Therefore, it is possible to prevent a decrease in detection accuracy due to fluctuations in the intensity of excitation light and intensity unevenness.

図2は広がり角φを持つ励起光を、バイオチップ表面に入射角δで照射した場合の焦点深度の関係を示すものである。図3は焦点深度と最大入射角の関係をバイオチップで多く使用されるCy5色素の励起波長である波長640nmの条件で図示したものである。図3に示すように、励起光は平行でなくても、励起光の広がり角を狭角に、バイオチップ表面に垂直に近い入射角にそれぞれ調整することにより、最大入射角が±4.6度の場合に±50μm、±3.3度の場合に±100μmの焦点深度を得ることが可能である。   FIG. 2 shows the relationship of the depth of focus when the excitation light having the divergence angle φ is irradiated onto the biochip surface at the incident angle δ. FIG. 3 illustrates the relationship between the depth of focus and the maximum incident angle under the condition of a wavelength of 640 nm, which is the excitation wavelength of the Cy5 dye often used in biochips. As shown in FIG. 3, even if the excitation light is not parallel, the maximum incident angle is ± 4.6 by adjusting the divergence angle of the excitation light to a narrow angle and the incident angle close to perpendicular to the biochip surface. It is possible to obtain a focal depth of ± 50 μm in the case of degrees and ± 100 μm in the case of ± 3.3 degrees.

励起光により励起された蛍光は、サイト12の試料から放射状にすべての方向に放射される。本実施形態のバイオチップ読取装置では、励起系と受光系の経路が別になっているため、励起系と受光系の開口数を別に設定することができる。このため、本バイオチップ読取装置の受光系は受光光量を増加させ検出感度を高めるために開口数が極力大きくなるように結像光学系30を構成している。   The fluorescence excited by the excitation light is emitted radially from the sample at the site 12 in all directions. In the biochip reader according to the present embodiment, the excitation system and the light receiving system have different paths, so that the numerical apertures of the excitation system and the light receiving system can be set separately. For this reason, the imaging optical system 30 is configured such that the numerical aperture of the light receiving system of the biochip reader increases as much as possible in order to increase the amount of received light and increase the detection sensitivity.

図4は、正規の焦点位置からのずれ量と受光量との関係を例示する実測例である。図4において、実線51は本発明によるバイオチップ読取装置における関係を、点線52は従来型の読取装置による比較例における関係を、それぞれ示している。正規の焦点位置の受光量から10%減少する点の範囲を見ると本発明が250μm、従来型が18μmで本発明が深い焦点深度を達成していることがわかる。   FIG. 4 is an actual measurement example illustrating the relationship between the amount of deviation from the normal focal position and the amount of received light. In FIG. 4, a solid line 51 represents the relationship in the biochip reader according to the present invention, and a dotted line 52 represents the relationship in the comparative example using the conventional reader. Looking at the range of points where the amount of received light at the regular focal position decreases by 10%, it can be seen that the present invention achieves a deep depth of focus with 250 μm for the present invention and 18 μm for the conventional type.

以上説明したように、本発明のバイオチップ読取装置によれば、バイオチップの表面に対し励起光が垂直に照射、または励起光を許容される焦点深度となるような広がり角と入射角で照射されるので、バイオチップの光軸方向の位置ずれに基づく励起光量の変化を抑制でき読取精度の低下を抑制できる。   As described above, according to the biochip reader of the present invention, the excitation light is irradiated perpendicularly to the surface of the biochip, or the excitation light is irradiated at a divergence angle and an incident angle that give an allowable depth of focus. Therefore, a change in the amount of excitation light based on the positional deviation of the biochip in the optical axis direction can be suppressed, and a decrease in reading accuracy can be suppressed.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、バイオチップの表面に励起光を照射する照明光学系を備え、前記励起光に基づく蛍光像を読取るバイオチップ読取装置に対し、広く適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention can be widely applied to a biochip reader that includes an illumination optical system that irradiates the surface of a biochip with excitation light and reads a fluorescent image based on the excitation light.

本発明のバイオチップ読取装置における光学系の一実施例を示す構成図。The block diagram which shows one Example of the optical system in the biochip reader of this invention. 焦点深度の理論式を示す図。The figure which shows the theoretical formula of a focal depth. 例示波長における焦点深度と入射角の関係を示す図。The figure which shows the relationship between the focal depth and incident angle in an example wavelength. 正規位置からのずれ量と受光量との関係を例示する図。The figure which illustrates the relationship between the deviation | shift amount from a regular position, and light reception amount. 従来のバイオチップ読取装置の構成およびバイオチップの寸法精度を示す図。The figure which shows the structure of the conventional biochip reader, and the dimensional accuracy of a biochip. 従来のバイオチップ読取装置における励起方式を示す図。The figure which shows the excitation system in the conventional biochip reader.

符号の説明Explanation of symbols

1、100 バイオチップ
11 表面
20 照明光学系
30 結像光学系
40 バイオチップ保持機構
DESCRIPTION OF SYMBOLS 1,100 Biochip 11 Surface 20 Illumination optical system 30 Imaging optical system 40 Biochip holding mechanism

Claims (2)

バイオチップの表面に励起光を照射する照明光学系を備え、前記励起光に基づく蛍光像を読取るバイオチップ読取装置において、
前記照明光学系は、前記バイオチップの表面に対して前記励起光を垂直に照射することを特徴とするバイオチップ読取装置。
In a biochip reader that includes an illumination optical system that irradiates the surface of the biochip with excitation light and reads a fluorescent image based on the excitation light,
The biochip reader is characterized in that the illumination optical system irradiates the excitation light perpendicularly to the surface of the biochip.
バイオチップの表面に励起光を照射する照明光学系を備え、前記励起光に基づく蛍光像を読取るバイオチップ読取装置において、
前記照射光学系は、励起光の広がり角を狭角に調整し、バイオチップ表面に垂直に近い入射角で照射するように構成され、励起光学系の焦点深度が50μm以上となるように構成されることを特徴とするバイオチップ読取装置。
In a biochip reader that includes an illumination optical system that irradiates the surface of the biochip with excitation light and reads a fluorescent image based on the excitation light,
The irradiation optical system is configured to adjust the divergence angle of excitation light to a narrow angle and irradiate at an incident angle near to the biochip surface perpendicularly, and is configured so that the focal depth of the excitation optical system is 50 μm or more. A biochip reader characterized by that.
JP2008195585A 2008-07-30 2008-07-30 Biochip reader Pending JP2010032400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195585A JP2010032400A (en) 2008-07-30 2008-07-30 Biochip reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195585A JP2010032400A (en) 2008-07-30 2008-07-30 Biochip reader

Publications (1)

Publication Number Publication Date
JP2010032400A true JP2010032400A (en) 2010-02-12

Family

ID=41737042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195585A Pending JP2010032400A (en) 2008-07-30 2008-07-30 Biochip reader

Country Status (1)

Country Link
JP (1) JP2010032400A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171415A (en) * 1990-11-02 1992-06-18 Nikon Corp Long-focus depth high-resolution irradiating optical system
JP2002174769A (en) * 2000-12-08 2002-06-21 Olympus Optical Co Ltd Optical system and optical device
JP2002357549A (en) * 2001-05-30 2002-12-13 Olympus Optical Co Ltd Fluorescence reading device
JP2003028799A (en) * 2001-05-10 2003-01-29 Yokogawa Electric Corp Biochip reader
JP2003057557A (en) * 2001-08-09 2003-02-26 Yokogawa Electric Corp Biochip reader
JP2006226998A (en) * 2005-01-18 2006-08-31 F Hoffmann La Roche Ag Imaging of fluorescent signal using telecentric optical element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171415A (en) * 1990-11-02 1992-06-18 Nikon Corp Long-focus depth high-resolution irradiating optical system
JP2002174769A (en) * 2000-12-08 2002-06-21 Olympus Optical Co Ltd Optical system and optical device
JP2003028799A (en) * 2001-05-10 2003-01-29 Yokogawa Electric Corp Biochip reader
JP2002357549A (en) * 2001-05-30 2002-12-13 Olympus Optical Co Ltd Fluorescence reading device
JP2003057557A (en) * 2001-08-09 2003-02-26 Yokogawa Electric Corp Biochip reader
JP2006226998A (en) * 2005-01-18 2006-08-31 F Hoffmann La Roche Ag Imaging of fluorescent signal using telecentric optical element

Similar Documents

Publication Publication Date Title
JP5340799B2 (en) Laser scanning microscope
US20100202043A1 (en) Slit-scanning confocal microscope
CN101031837A (en) Method and apparatus for fluorescent confocal microscopy
US10191263B2 (en) Scanning microscopy system
JP6171970B2 (en) Laser scanning microscope apparatus and control method
US10634890B1 (en) Miniaturized microscope for phase contrast and multicolor fluorescence imaging
CN113631980A (en) Confocal microscope unit and confocal microscope
JP2008203813A (en) Scanning microscope
JP2018146239A (en) Defect inspection apparatus, and manufacturing method of defect inspection apparatus
JP2010066575A (en) Confocal optical scanner
JP5734758B2 (en) Laser microscope
JP2008051576A (en) Shape-measuring apparatus and shape-measuring method
CN113631981B (en) Scanning microscope unit
Wang et al. Parallel detection experiment of fluorescence confocal microscopy using DMD
JP2006317428A (en) Face position detector
JP2010032400A (en) Biochip reader
JP2005140956A (en) Focal point detection device and fluorescent microscope
US9091525B2 (en) Method for focusing an object plane and optical assembly
JP3797489B2 (en) Biochip reader
JP4345739B2 (en) Biochip reader
JP2010286799A (en) Scanning microscope
JP2018503134A (en) Optical arrangement for laser scanner system
EP4060392B1 (en) Confocal scanner and confocal microscope
JP2008039605A (en) Fluorescence detector
EP4102283A1 (en) Confocal scanner, confocal scanner system, and confocal microscope system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130425