JP2010029760A - Method of preparing iron-oxide adsorbent, and method of cleaning molybdenum-containing waste water using the adsorbent - Google Patents

Method of preparing iron-oxide adsorbent, and method of cleaning molybdenum-containing waste water using the adsorbent Download PDF

Info

Publication number
JP2010029760A
JP2010029760A JP2008193109A JP2008193109A JP2010029760A JP 2010029760 A JP2010029760 A JP 2010029760A JP 2008193109 A JP2008193109 A JP 2008193109A JP 2008193109 A JP2008193109 A JP 2008193109A JP 2010029760 A JP2010029760 A JP 2010029760A
Authority
JP
Japan
Prior art keywords
molybdenum
adsorbent
ferric
ions
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008193109A
Other languages
Japanese (ja)
Other versions
JP4953464B2 (en
Inventor
Toyohisa Fujita
豊久 藤田
Gjergj Dodbiba
ジョルジ・ドドビバ
Yuji Tanimura
裕次 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
University of Tokyo NUC
Original Assignee
Nittetsu Mining Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd, University of Tokyo NUC filed Critical Nittetsu Mining Co Ltd
Priority to JP2008193109A priority Critical patent/JP4953464B2/en
Publication of JP2010029760A publication Critical patent/JP2010029760A/en
Application granted granted Critical
Publication of JP4953464B2 publication Critical patent/JP4953464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of preparing an iron-oxide adsorbent suitable for isolating an oxyacid ion of molybdenum contained in acidic waste water of pH2 or lower, and a method of cleaning molybdenum-containing waste water suitable for isolating an oxyacid ion of molybdenum from acidic waste water of pH2 or lower using the adsorbent. <P>SOLUTION: The method of preparing an iron-oxide adsorbent is characterized by adding an alkali into a solution comprising ferric ions and mixing them for neutralizing the solution to form a precipitate, drying the resulting precipitate at a temperature of 60 to 100°C to obtain a ferric hydroxide powder, and further calcining the resulting ferric hydroxide powder at a temperature of 300 to 700°C. The method of cleaning molybdenum-containing waste water comprises treating molybdenum-containing waste water by allowing it to flow through a column filled with the adsorbent and isolating molybdenum anions from the molybdenum-containing waste water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、モリブデンの酸素酸イオンを含有する排水処理に好適に使用できる酸化鉄系吸着剤の製造方法及びモリブデン含有排水の浄化方法に関する。
より詳しくは、pH2以下の酸性の排水中に含有されるモリブデンの酸素酸イオンを分離するのに好適な酸化鉄系吸着剤の製造方法、及びそれを用いるpH2以下の酸性の排水からモリブデンの酸素酸イオンを分離するのに好適なモリブデン含有排水の浄化方法に関する。
The present invention relates to a method for producing an iron oxide-based adsorbent that can be suitably used for wastewater treatment containing molybdenum oxygenate ions and a method for purifying molybdenum-containing wastewater.
More specifically, a method for producing an iron oxide-based adsorbent suitable for separating molybdenum oxygenate ions contained in acidic wastewater having a pH of 2 or lower, and oxygen of molybdenum from acidic wastewater having a pH of 2 or lower using the same. The present invention relates to a method for purifying molybdenum-containing wastewater suitable for separating acid ions.

近年、科学技術の発展に伴って多種多様な化学物質が製造・使用されており、このような物質には人の健康や生態系に有害な影響を及ぼすものも多く存在している。
そこで、日本では平成5年3月に水質環境基準が改訂され、要監視項目が付け加えられ、重金属類としてモリブデン、アンチモン、及びニッケル等が新たに指定された。
これらモリブデン、アンチモン等に代表され、クロム、セレン、ヒ素等をも含む重金属陰イオン、すなわち重金属の酸素酸イオンを排水から除去する実用可能な手法の確立が急務であり、各種提案がなされている。
In recent years, with the development of science and technology, a wide variety of chemical substances are manufactured and used, and many of these substances have harmful effects on human health and ecosystems.
Therefore, in Japan, the water quality environmental standards were revised in March 1993, monitoring items were added, and molybdenum, antimony, nickel, etc. were newly designated as heavy metals.
These are represented by molybdenum, antimony, etc., and there is an urgent need to establish a practical method for removing heavy metal anions containing chromium, selenium, arsenic, etc., that is, oxygenates of heavy metals from wastewater, and various proposals have been made. .

特開平9−323079号公報JP 9-323079 A 特開平11−19661号公報Japanese Patent Laid-Open No. 11-19661 特開2000−117265号公報JP 2000-117265 A 特開2003−103265号公報JP 2003-103265 A 特開2003−62458号公報JP 2003-62458 A 特開2003−334542号公報JP 2003-334542 A 特開2005−270933号公報JP 2005-270933 A

本発明者は、それら重金属陰イオンの中でも、今回はモリブデンに着目し、その陰イオンを含有する排水からモリブデンを好適に分離することができる技術を開発すべく鋭意検討を開始した。
そのモリブデン陰イオン、すなわちモリブデンの酸素酸イオンを含有する排水には、半導体製造工場、ステンレス製造工場あるいは電子部品製造工場等から排出されるモリブデン陰イオン含有排水があり、その排水処理には既に数種のものが提案されている。
Among the heavy metal anions, the present inventor has focused on molybdenum this time, and has started intensive studies to develop a technique capable of suitably separating molybdenum from waste water containing the anion.
Wastewater containing molybdenum anions, that is, oxygenate ions of molybdenum, includes molybdenum anion-containing wastewater discharged from semiconductor manufacturing plants, stainless steel manufacturing plants, electronic component manufacturing plants, etc. Kinds have been proposed.

それには、(1)モリブデン陰イオンを含有する排水にジチオカルバミン酸ナトリウム及び活性炭を添加し、かつ排水をpH5以下に調整する方法(特許文献1)、あるいは(2)モリブデン陰イオンを含有する排水に硫化物処理剤を添加して硫黄イオンをまず遊離し、次いで水溶性金属化合物を添加して排水中のモリブデンを難溶性固体化合物に転化する方法(特許文献2)等がある。   For this purpose, (1) a method of adding sodium dithiocarbamate and activated carbon to wastewater containing molybdenum anions and adjusting the wastewater to pH 5 or lower (Patent Document 1), or (2) wastewater containing molybdenum anions. There is a method in which a sulfide treatment agent is added to release sulfur ions first, and then a water-soluble metal compound is added to convert molybdenum in wastewater into a hardly soluble solid compound (Patent Document 2).

さらに、(3)反応槽中のモリブデン含有排水に第2鉄イオンを添加し、添加後酸又はアルカリ剤でpHを4〜8として水酸化第2鉄を生成することによりモリブデンを共沈した懸濁物質を形成し、次いで固液分離して得られた固体(汚泥)の一部を反応槽に循環する方法(特許文献3)、あるいは(4)鉄を陽極として、低濃度のモリブデンを含有する酸性排水を電解して鉄イオンを溶出させ、その鉄イオンを鉄又は鉄化合物として陰極に析出させると同時にモリブデンも共析させ、その後pHを3.5〜5.5にした後、電解処理排水を固液分離し、分離後分離液にアルカリ物質を混合してpHを6〜8に調整し、再度固液分離して鉄化合物を除去する方法(特許文献4)等もある。   Furthermore, (3) Suspension in which molybdenum is coprecipitated by adding ferric ions to the molybdenum-containing wastewater in the reaction vessel, and generating ferric hydroxide by adding acid or alkaline agent to pH 4-8 after the addition. Method to circulate part of solid (sludge) obtained by solid-liquid separation after forming turbid material (Patent Document 3) or (4) Containing low concentration molybdenum with iron as anode Electrolyzes the acidic waste water to elute iron ions, precipitates the iron ions as iron or iron compounds at the same time as the eutectoid of molybdenum, and then adjusts the pH to 3.5 to 5.5, followed by electrolytic treatment There is also a method (Patent Document 4) in which wastewater is solid-liquid separated, an alkaline substance is mixed with the separated liquid after separation to adjust the pH to 6 to 8, and solid-liquid separation is performed again to remove the iron compound.

そして、これら方法はいずれも化学反応により固体物質を形成し、この固体物質を固液分離することにより排水中のモリブデン陰イオンを除去して浄化する技術であるが、これ以外の方法も既に提案されており、それは特定組成の吸着剤を用いることにより、砒素、モリブデンあるいはアンチモン等の重金属陰イオン含有水から重金属を分離するものであり、それにはゼオライト及び(PbO)x(FeO)y(Fe231-x-y・aH2O(式中0.1≦x≦0.9、0≦y≦0.9、0≦a≦10)で表される鉛化合物から成る重金属の吸着剤を用いるものがある(特許文献5)。 All of these methods are technologies that form solid substances by chemical reaction and remove the molybdenum anions in the wastewater by solid-liquid separation to purify the solid substances, but other methods have already been proposed. It separates heavy metals from water containing heavy metal anions such as arsenic, molybdenum or antimony by using an adsorbent having a specific composition, which includes zeolite and (PbO) x (FeO) y (Fe 2 O 3 ) 1-xy · aH 2 O (wherein 0.1 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.9, 0 ≦ a ≦ 10) (Patent Document 5).

前記吸着剤は、ゼオライトに加えて鉛及び鉄の酸化物を含有する複雑な組成であるが、より単純な組成の鉄の水酸化物系物質からなる重金属分離用の吸着剤も既に提案されている。
それには鉄イオン溶液にアルカリを加えることにより得られる非晶質の水酸化鉄系の沈殿生成物からなる陰イオン吸着剤(特許文献6)あるいは前記沈殿生物を60〜100℃で乾燥させて得られた微結晶質の水酸化鉄系物質を合成樹脂粉末で加熱・焼成することにより得られる連通多孔性成形体に担持させた陰イオン吸着剤等がある(特許文献7)。
The adsorbent has a complicated composition containing lead and iron oxides in addition to zeolite. However, an adsorbent for separating heavy metals composed of iron hydroxides having a simpler composition has already been proposed. Yes.
For this purpose, an anion adsorbent composed of an amorphous iron hydroxide-based precipitation product obtained by adding an alkali to an iron ion solution (Patent Document 6) or obtained by drying the precipitated organism at 60 to 100 ° C. There is an anion adsorbent or the like supported on a continuous porous molded body obtained by heating and baking the obtained microcrystalline iron hydroxide material with synthetic resin powder (Patent Document 7).

前記した水酸化鉄系物質の吸着剤は本発明者らが開発したものであり、その開発の際には重金属陰イオンの中でも主として砒素の分離に着目して開発したものである。
また、吸着剤による重金属陰イオンの分離は、吸着剤を充填したカラム内に重金属陰イオンを含有する排水を通液するだけで重金属陰イオンを分離できる簡便な処理であるのに対し、特許文献1ないし4に記載の方法は、いずれも化学反応による沈殿形成と、それに続く固液分離処理とを行うものであることから、吸着分離処理に比較し煩雑で多くの処理時間を要するものである。
The above-mentioned adsorbents for iron hydroxide-based materials have been developed by the present inventors, and were developed by focusing mainly on the separation of arsenic among heavy metal anions.
In addition, separation of heavy metal anions by an adsorbent is a simple process that can separate heavy metal anions simply by passing wastewater containing heavy metal anions through a column packed with adsorbent, whereas patent literature The methods described in 1 to 4 all involve precipitation formation by a chemical reaction and subsequent solid-liquid separation treatment, and thus are complicated and require a lot of treatment time compared to adsorption separation treatment. .

吸着剤による重金属陰イオンの分離は、先のような長所を有することから、前記した水酸化鉄系物質の吸着剤を用いてモリブデン陰イオンを含有する排水、特に酸性排水から同陰イオンの分離を試みたところ、期待するほどの吸着性能を発揮することができなかったし、更には排水の酸性の度合いが高まるのに伴って吸着剤が溶解することもわかった。
しかしながら、吸着剤を利用する重金属陰イオンの分離には前記したとおりの長所があり、かつ水酸化鉄系物質の吸着剤は、前記したとおり特許文献5に記載の吸着剤に比し、組成が単純であるという利点もあるので、更に検討を進めることにした。
Separation of heavy metal anions with adsorbents has the above-mentioned advantages, so that separation of the same anions from wastewater containing molybdenum anions, especially acidic wastewater, using the adsorbent of iron hydroxide-based material described above. As a result, it was found that the adsorption performance as expected could not be exhibited, and that the adsorbent dissolved as the acidity of the wastewater increased.
However, the separation of heavy metal anions using an adsorbent has the advantages as described above, and the adsorbent of the iron hydroxide-based material has a composition compared to the adsorbent described in Patent Document 5 as described above. Since it has the advantage of simplicity, we decided to proceed with further studies.

その結果、水酸化鉄系物質の吸着剤は、特許文献5の吸着剤のように鉛を含有しないものであることから、その溶出に伴う環境への悪影響を回避できる利点があることもわかった。
本発明者らは、水酸化鉄系物質の吸着剤は前記のとおりの利点あるいは長所を有することから、前記した問題を解消すべく、引き続き水酸化鉄系物質の吸着剤の範囲において研究開発に鋭意努め、その結果開発に成功したのが本発明である。
As a result, since the adsorbent of the iron hydroxide-based material does not contain lead like the adsorbent of Patent Document 5, it has also been found that there is an advantage that it is possible to avoid adverse effects on the environment due to the elution. .
Since the adsorbent for iron hydroxide-based materials has the advantages or advantages as described above, the inventors have continued research and development in the range of adsorbents for iron hydroxide-based materials in order to solve the above problems. The present invention is a result of diligent efforts and successful development as a result.

すなわち、本発明者らは、従前の研究においては水酸化物鉄系物質は100℃を超えて乾燥した場合には特許文献7の段落[0015]に記載のとおり水酸化物鉄系物質の結晶化が進行し、重金属陰イオンの吸着には不適と考えていた。
しかしながら、水酸化鉄系物質の吸着剤に関し、その長所を生かすべく各種視点から鋭意検討を進めたところ、意外にも300℃を超えた特定の範囲の温度で熱処理して水酸化物鉄系物質を焼結した場合には、強い酸性下の排水中でも吸着剤が溶解することもなく、かつ重金属陰イオン、特にモリブデン陰イオンの分離には極めて優れた吸着性能を発現することを見出した。
That is, the present inventors, in the previous research, when the hydroxide iron-based material was dried at a temperature exceeding 100 ° C., as described in paragraph [0015] of Patent Document 7, It was considered unsuitable for adsorption of heavy metal anions.
However, with regard to the adsorbent for iron hydroxide materials, we have intensively studied from various viewpoints in order to take advantage of the advantages, and unexpectedly heat-treated at a temperature in a specific range exceeding 300 ° C. It has been found that the adsorbent does not dissolve even in sewage under strong acidity and exhibits excellent adsorption performance for separating heavy metal anions, especially molybdenum anions.

したがって、本発明はこの新たな知見に基づいて開発に成功したものであり、pH2以下の酸性の排水中に含有されるモリブデンの酸素酸イオンを分離するのに好適な酸化鉄系吸着剤の製造方法、及びそれを用いるpH2以下の酸性の排水からモリブデンの酸素酸イオンを分離するのに好適なモリブデン含有排水の浄化方法を提供することを発明の解決すべき課題、すなわち目的とするものである。   Therefore, the present invention has been successfully developed based on this new knowledge, and the production of an iron oxide-based adsorbent suitable for separating molybdenum oxyacid ions contained in acidic wastewater having a pH of 2 or lower. It is an object of the present invention to provide a method and a method for purifying molybdenum-containing wastewater suitable for separating molybdenum oxyacid ions from acidic wastewater having a pH of 2 or less using the method. .

本発明は、前記課題を達成するための酸化鉄系吸着剤の製造方法、及びそれを用いるモリブデン含有排水の浄化方法を提供するものであり、前者の酸化鉄系吸着剤の製造方法は、第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に300〜700℃で焼成することを特徴とするものである。   The present invention provides a method for producing an iron oxide-based adsorbent for achieving the above-mentioned problems, and a method for purifying molybdenum-containing wastewater using the same, and the former method for producing an iron oxide-based adsorbent comprises: A solution containing ferric ions is mixed with an alkali agent and neutralized to form a precipitate, and the obtained precipitation product is dried at 60 to 100 ° C. to obtain ferric hydroxide powder. 2 iron powder is further baked at 300-700 degreeC.

また、好ましくは、その酸化鉄系吸着剤の製造方法は、第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に300〜700℃で焼成することを特徴とし、その吸着剤はモリブデンの酸素酸イオン分離用のものであり、より好ましくは、第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に400〜600℃で焼成することを特徴とし、その吸着剤はpH2以下の酸性中のモリブデンの酸素酸イオン分離用のものである。   Preferably, in the method for producing the iron oxide-based adsorbent, a solution containing ferric ions is mixed with an alkali agent and neutralized to form a precipitate, and the obtained precipitation product is formed at 60 to 100 ° C. In order to obtain ferric hydroxide powder, which is further calcined at 300 to 700 ° C., and the adsorbent is for separating oxygenate ions of molybdenum, More preferably, a solution containing ferric ions is mixed with an alkali agent and neutralized to form a precipitate, and the obtained precipitation product is dried at 60 to 100 ° C. to obtain ferric hydroxide powder. The ferric hydroxide powder is further calcined at 400 to 600 ° C., and the adsorbent is for separating oxygenate ions of molybdenum in an acidic pH of 2 or less.

そして、後者のモリブデン含有排水の浄化方法は、第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に300〜700℃で焼成した酸化鉄系吸着剤をカラム内に充填し、該カラム内にモリブデンの酸素酸イオンを含有する排水を通液して接触させることによりモリブデンの酸素酸イオンを分離することを特徴とするものである。   And the latter purification method of molybdenum-containing wastewater is obtained by mixing a neutralizing agent with a solution containing ferric ions to neutralize it to form a precipitate, and drying the obtained precipitation product at 60 to 100 ° C. Wastewater containing iron oxide adsorbent obtained by obtaining ferric hydroxide powder and further baking this ferric hydroxide powder at 300 to 700 ° C., and containing molybdenum oxygenate ions in the column It is characterized by separating molybdenum oxyacid ions by passing the liquid through and contacting.

また、その浄化方法は、好ましくは第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に400〜600℃で焼成した酸化鉄系吸着剤をカラム内に充填し、該カラム内にpH2以下のモリブデンの酸素酸イオンを含有する排水を通液して接触させることによりモリブデンの酸素酸イオンを分離することを特徴とするものである。
Further, the purification method preferably comprises mixing a neutralizing agent with a solution containing ferric ions to neutralize to form a precipitate, and drying the obtained precipitation product at 60 to 100 ° C. The iron oxide adsorbent obtained by obtaining two iron powders and calcining this ferric hydroxide powder at 400 to 600 ° C. is filled in the column, and the waste water containing molybdenum oxyacid ions having a pH of 2 or less is contained in the column. It is characterized by separating molybdenum oxyacid ions by passing the liquid through and contacting.

本発明の酸化鉄系吸着剤の製造方法及びモリブデン含有排水の浄化方法は以下のとおりの卓越した作用効果を奏することができる。
(1)本発明の製造方法で製造した酸化鉄系吸着剤は300℃以上、好ましくは400℃以上の高温で焼結したものであり、それは100℃以下で乾燥した水酸化鉄系吸着剤に比し吸着性能に優れており、特にモリブデン陰イオンの吸着分離性能に優れている。
(2)前記酸化鉄系吸着剤は、酸性溶液、特にpH2以下の酸性溶液中でも溶解することなく安定して優れた吸着性能を発現することができる。
(3)特に前記酸化鉄系吸着剤は、特許文献4に記載の自動車の前照灯用等に使用するタングステンフィラメントの製造時等に発生する低濃度のモリブデンを含有する強酸性排水の浄化処理に好適に使用できる。
The method for producing an iron oxide-based adsorbent and the method for purifying molybdenum-containing waste water according to the present invention can provide the following excellent effects.
(1) The iron oxide-based adsorbent produced by the production method of the present invention is sintered at a high temperature of 300 ° C. or higher, preferably 400 ° C. or higher. In comparison, the adsorption performance is excellent, and in particular, the adsorption separation performance of molybdenum anions is excellent.
(2) The iron oxide-based adsorbent can stably exhibit excellent adsorption performance without dissolving in an acidic solution, particularly an acidic solution having a pH of 2 or less.
(3) In particular, the iron oxide-based adsorbent is used to purify strongly acidic wastewater containing low-concentration molybdenum that is generated during the production of tungsten filaments used for automobile headlamps described in Patent Document 4. Can be suitably used.

さらに、本発明は以下のとおりの卓越した作用効果を奏することができる。
(4)特許文献1ないし4に記載のモリブデン陰イオンの分離のように化学反応により固体物質を形成し、この固体物質を更に固液分離する方法に比し、吸着剤が充填されているカラム内に重金属陰イオンを含有する排水を通液するだけで排水処理ができ、排水の浄化処理が簡便である。
(5)特許文献5に記載の吸着剤のように複雑な組成でなく、かつ吸着剤は鉛を含有するものでもないから、簡便な組成であり、かつ吸着処理中あるいは処理後に鉛を溶出することもないので環境への悪影響を懸念する必要もない。
Furthermore, the present invention can provide the following excellent operational effects.
(4) A column packed with an adsorbent as compared with a method in which a solid substance is formed by a chemical reaction, such as separation of molybdenum anions described in Patent Documents 1 to 4, and this solid substance is further separated into solid and liquid. Wastewater treatment can be performed simply by passing wastewater containing heavy metal anions inside, and wastewater purification treatment is simple.
(5) Since the adsorbent described in Patent Document 5 does not have a complicated composition, and the adsorbent does not contain lead, it has a simple composition and elutes lead during or after the adsorption treatment. There is no need to worry about adverse environmental impacts.

以下において、本発明について発明を実施するための最良の形態を含む実施の形態に関し詳述するが、本発明は、この実施の形態によって何等限定されるものではなく、特許請求の範囲によって特定されるものであることはいうまでもない。
本発明者は、前記したとおり第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に300〜700℃で焼成することを特徴とする酸化鉄系吸着剤の製造方法及びその酸化鉄系吸着剤を用いたモリブデン含有排水の浄化方法である。
Hereinafter, the present invention will be described in detail with respect to an embodiment including the best mode for carrying out the invention, but the present invention is not limited in any way by this embodiment, and is specified by the scope of claims. Needless to say, it is something.
As described above, the present inventor mixes an alkali agent with a solution containing ferric ions and neutralizes it to form a precipitate. The obtained precipitation product is dried at 60 to 100 ° C. A method for producing an iron oxide-based adsorbent characterized by obtaining iron powder and further firing the ferric hydroxide powder at 300 to 700 ° C., and a method for purifying molybdenum-containing wastewater using the iron oxide-based adsorbent It is.

すなわち、第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に300〜700℃で焼成した酸化鉄系吸着剤をカラム内に充填し、該カラム内にモリブデンの酸素酸イオンを含有する排水を通液して接触させることによりモリブデンの酸素酸イオンを分離することを特徴とするモリブデン含有排水の浄化方法である。   That is, an alkaline agent is mixed in a solution containing ferric ions and neutralized to form a precipitate, and the obtained precipitation product is dried at 60 to 100 ° C. to obtain ferric hydroxide powder. An iron oxide-based adsorbent obtained by further firing ferric hydroxide powder at 300 to 700 ° C. is packed in a column, and a wastewater containing molybdenum oxyacid ions is passed through the column for contact with molybdenum. This is a method for purifying molybdenum-containing wastewater, characterized by separating oxygenate ions.

本発明の酸化鉄系吸着剤の製造方法において用いる第2鉄イオンを含有する溶液については、水に溶解して第2鉄イオンを形成する化合物であれば特に制限されることなく各種化合物が使用でき、それには硫酸第2鉄、硝酸第2鉄、塩化第2鉄、あるいはポリ硫酸第2鉄等が例示でき、アルカリについても同様に水に溶解して塩基性を示す化合物であれば特に制限されることなく各種化合物が使用でき、それには水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化バリウム等の水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩が例示できる。   Regarding the solution containing ferric ions used in the method for producing an iron oxide-based adsorbent of the present invention, various compounds are used without particular limitation as long as they are compounds that dissolve in water to form ferric ions. Examples thereof include ferric sulfate, ferric nitrate, ferric chloride, polyferric sulfate, etc., and alkali is also particularly limited as long as it is a compound that dissolves in water and exhibits basicity. Various compounds can be used without being treated, such as hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, etc. An example is carbonate.

第2鉄イオンを含有する溶液とアルカリ剤とを混合する際には、第2鉄イオンを含有する溶液に固体のアルカリ剤を混合しても良いが、アルカリ剤を予め水に溶解して水溶液化した後に混合するのが反応性の点でよく、その際の濃度は10〜30%程度がよい。その混合の際には、第2鉄イオンを含有する溶液中にアルカリ剤を添加するのがよいが、逆にアルカリ剤水溶液液中に第2鉄イオンを含有する溶液を添加することにより混合することもできる。なお、中和後のpHは6〜8程度にするのがよい。   When mixing the solution containing ferric ions and the alkali agent, a solid alkali agent may be mixed in the solution containing ferric ions, but the alkali agent is dissolved in water in advance to form an aqueous solution. The reaction may be carried out after mixing, and the concentration at that time is preferably about 10 to 30%. At the time of mixing, it is preferable to add an alkali agent to a solution containing ferric ions. Conversely, mixing is performed by adding a solution containing ferric ions to an aqueous solution of an alkali agent. You can also. The pH after neutralization is preferably about 6-8.

中和により形成された沈殿物の乾燥は、特に制限されることなく各種乾燥機が使用でき、それには熱風式乾燥機、通風型乾燥機、噴霧乾燥機あるいは気流乾燥機等が例示できる。沈殿物はそのまま乾燥してもよいが、予め固液分離した後乾燥する方が沈殿物中の水分量が低く、エネルギー効率に優れているので、乾燥は固液分離後行うのがよい。
その際の固液分離には各種固液分離手段が特段制限されことなく使用でき、それには真空脱水機、遠心脱水機あるいはフィルタープレス等が例示できる。
The drying of the precipitate formed by neutralization is not particularly limited, and various dryers can be used, and examples thereof include a hot air dryer, a ventilating dryer, a spray dryer, and an air dryer. The precipitate may be dried as it is, but drying after solid-liquid separation in advance has a lower water content in the precipitate and is excellent in energy efficiency. Therefore, drying is preferably performed after solid-liquid separation.
Various solid-liquid separation means can be used for solid-liquid separation at that time without particular limitation, and examples thereof include a vacuum dehydrator, a centrifugal dehydrator, a filter press, and the like.

乾燥後は得られた水酸化第2鉄粉を焼結することになるが、その際の熱処理温度は300〜700℃とすることが必要であり、この温度範囲で熱処理することにより水酸化第2鉄粉は焼結し結晶構造を有する酸化第2鉄系の化合物となり、重金属陰イオンの吸着性能に優れた吸着剤が得られる。また400〜600℃の温度範囲で熱処理することにより、より結晶の高い酸化第2鉄系の化合物の焼結物となり、より重金属陰イオンの吸着性能に優れた吸着剤が得られる。   After drying, the obtained ferric hydroxide powder is sintered, and the heat treatment temperature at that time is required to be 300 to 700 ° C. The ferric powder is sintered to become a ferric oxide compound having a crystal structure, and an adsorbent excellent in heavy metal anion adsorption performance is obtained. Moreover, by heat-treating in a temperature range of 400 to 600 ° C., a sintered product of a ferric oxide compound having higher crystallinity is obtained, and an adsorbent having higher adsorption performance of heavy metal anions is obtained.

本発明の製造方法により製造された酸化鉄系吸着剤は、モリブデン陰イオンの吸着分離に好適に使用でき、優れた吸着性能を発現することは前記したとおりであるが、モリブデン以外の重金属陰イオンも勿論吸着することができるので、モリブデン以外の重金属陰イオンを含有する排水の浄化処理にも勿論使用できる。
なお、本発明の製造方法により製造された酸化鉄系吸着剤は、カラム内に充填し、該カラム内に重金属陰イオンを含有する排水を通液して接触させることにより重金属陰イオンを分離でき、それが好ましい排水処理ではあり、本発明の浄化方法ではそれを採用しているが、他の手法により重金属陰イオンを含有する排水と吸着剤を接触させても勿論重金属は分離できる。
As described above, the iron oxide-based adsorbent produced by the production method of the present invention can be suitably used for adsorption separation of molybdenum anions and exhibits excellent adsorption performance, but heavy metal anions other than molybdenum Of course, since it can be adsorbed, it can of course be used for purification treatment of waste water containing heavy metal anions other than molybdenum.
The iron oxide-based adsorbent produced by the production method of the present invention can be separated into heavy metal anions by filling the column and letting the waste water containing heavy metal anions flow into and contact the column. This is a preferable waste water treatment, and this is adopted in the purification method of the present invention. Of course, heavy metals can be separated even if waste water containing heavy metal anions is brought into contact with an adsorbent by other methods.

[吸着剤の製造方法]
塩化第2鉄の6水和物(FeCl3・6H2O)の結晶を25℃にて、Fe3+濃度1mol/Lとなるように純水に溶解し、これに25%の水酸化ナトリウム(NaOH)水溶液を一定の速度で滴下し、pHを7に調整した。得られた懸濁液を純水で洗浄しながら濾過して沈殿物を得た。この沈殿物を70℃で72時間乾燥した後、めのう乳鉢中で粉砕して微細粉を得た。得られた微細粉末を200℃〜800℃の範囲において100℃間隔で各各温度にて個別に約1時間熱処理し、各熱処理温度にて焼成物を作成した。
[Method for producing adsorbent]
Ferric chloride hexahydrate (FeCl 3 .6H 2 O) crystals are dissolved in pure water at 25 ° C. to a Fe 3+ concentration of 1 mol / L. An aqueous solution of (NaOH) was added dropwise at a constant rate to adjust the pH to 7. The obtained suspension was filtered while washing with pure water to obtain a precipitate. The precipitate was dried at 70 ° C. for 72 hours and then pulverized in an agate mortar to obtain a fine powder. The obtained fine powder was heat-treated individually at each temperature at intervals of 100 ° C. in the range of 200 ° C. to 800 ° C. for about 1 hour, and a fired product was prepared at each heat treatment temperature.

[吸着性能試験]
(1)試験方法
陰イオンの形態のMoを10mg/Lで含むHNO3溶液(HNO3:630g/L)1Lに対して、前記した所定の各温度で熱処理した焼成物を10gづつ添加し、室温にてマグネチックスタラーで2.5時間攪拌した。その後メンブランフィルターで濾過を行い、各濾液についてICP−MSにてMo濃度の分析を行った。
[Adsorption performance test]
(1) Test method To 1 L of HNO 3 solution (HNO 3 : 630 g / L) containing 10 mg / L of Mo in the form of anion, 10 g of the calcined product heat-treated at each of the predetermined temperatures described above is added. The mixture was stirred at room temperature with a magnetic stirrer for 2.5 hours. Thereafter, the membrane was filtered, and each filtrate was analyzed for Mo concentration by ICP-MS.

(2)試験結果
各熱処理温度にて得られた各焼成物による、Moの吸着率及びMo吸着後のHNO3溶液中のMoの残留濃度を図1に図示する。
図1の結果から、焼成温度300〜700℃の範囲で得られた各焼成物からなる各吸着剤は、Mo陰イオンの吸着率が80%以上と高く、300℃未満及び700℃以上ではMo陰イオンの吸着率が急激に低下することがわかる。また、焼成温度400〜600℃の範囲の温度で得られた各焼成物からなる各吸着剤は、Mo陰イオンの吸着率がより一層高いことがわかる。
(2) Test Results FIG. 1 shows the Mo adsorption rate and the residual concentration of Mo in the HNO 3 solution after the Mo adsorption by each fired product obtained at each heat treatment temperature.
From the results of FIG. 1, each adsorbent made of each calcined product obtained at a firing temperature of 300 to 700 ° C. has a high Mo anion adsorption rate of 80% or more, and at less than 300 ° C. and 700 ° C. or more, Mo It turns out that the adsorption rate of an anion falls rapidly. Moreover, it turns out that each adsorbent which consists of each baked product obtained by the temperature of the range of 400-600 degreeC of firing temperature has much higher adsorption rate of Mo anion.

[吸着剤の耐酸性試験(溶解試験)]
(1)試験方法
陰イオン形態のMoを10mg/Lで含む水溶液を硫酸又は塩酸を添加してpH0.5〜3の酸性側に調整して各種pHの試験液を調製し、調製した各種pHの試験液1Lに各種温度で1時間熱処理して得られた焼成物10gを添加して、室温にてマグネチックスタラーで2時間攪拌した。その後メンブランフィルターで濾過を行い、各濾液についてICP−MSにてFe濃度の分析を行った。
[Acid adsorption acid resistance test (dissolution test)]
(1) Test method An aqueous solution containing 10 mg / L of anionic form of Mo was adjusted to an acidic side of pH 0.5 to 3 by adding sulfuric acid or hydrochloric acid to prepare test solutions of various pHs, and various pHs prepared. 10 g of a fired product obtained by heat treatment at various temperatures for 1 hour was added to 1 L of the test solution, and stirred at room temperature with a magnetic stirrer for 2 hours. Thereafter, the membrane was filtered, and each filtrate was analyzed for Fe concentration by ICP-MS.

(2)試験結果
その結果得られた各種pHの試験液による、各熱処理温度において得られた各焼成物に対する溶解試験の結果を図2に図示する。
図2の結果から、熱処理温度300℃及び500℃の焼成物からなる吸着剤は、試験液がpH0.6〜0.9の強酸性であっても吸着剤はほとんど溶解しないことがわかる。
熱処理温度70℃及び200℃においては、吸着剤が約10〜20%程度溶解することが確認できる。
(2) Test result The result of the dissolution test with respect to each baked product obtained in each heat processing temperature by the test solution of various pH obtained as a result is illustrated in FIG.
From the results of FIG. 2, it can be seen that the adsorbent composed of the calcined product at the heat treatment temperatures of 300 ° C. and 500 ° C. hardly dissolves the adsorbent even when the test solution is strongly acidic at pH 0.6 to 0.9.
At heat treatment temperatures of 70 ° C. and 200 ° C., it can be confirmed that the adsorbent is dissolved by about 10 to 20%.

[吸着剤の結晶構造調査]
70℃、300℃、500℃及び700℃の各温度で熱処理して得られた焼成物等について、X線回折試験を行った。得られた結果は図3に図示する。
図3によれば、300℃以上の温度で熱処理された焼成物についてはヘマタイト(Fe23)の結晶構造がわずかに形成されている事実が確認できる程度であったが、500℃及び700℃においてはヘマタイトの結晶構造が多く形成されていることが確認できる。
[Survey of crystal structure of adsorbent]
An X-ray diffraction test was performed on the fired products obtained by heat treatment at temperatures of 70 ° C, 300 ° C, 500 ° C, and 700 ° C. The results obtained are illustrated in FIG.
According to FIG. 3, the fact that the crystal structure of hematite (Fe 2 O 3 ) is slightly formed can be confirmed for the fired product heat-treated at a temperature of 300 ° C. or higher. It can be confirmed that a large number of hematite crystal structures are formed at ℃.

700℃の温度で熱処理して得られた焼成物のX線回折試験結果は、前記したとおり500℃で得られた焼成物の場合とほぼ同様である。
しかしながら、その700℃の温度で熱処理して得られた焼成物は、図1によれば300℃で得られた、わずかに結晶構造がみられる焼成物と同程度の吸着性能しかなく、500℃で得られた焼成物に比較し、吸着性能は劣ることになるものの、その理由については現在のまでのところ解明するまでには至っていない。
The X-ray diffraction test result of the fired product obtained by heat treatment at 700 ° C. is almost the same as that of the fired product obtained at 500 ° C. as described above.
However, the fired product obtained by heat treatment at 700 ° C. has an adsorption performance similar to that of the fired product obtained at 300 ° C. according to FIG. Although the adsorption performance is inferior to that of the fired product obtained in step 1, the reason has not been elucidated so far.

各熱処理温度において得られた各焼成物による、Moの吸着率及びMo吸着後のHNO3溶液中のMoの残留濃度を図示する。The Mo adsorption rate and the residual concentration of Mo in the HNO 3 solution after Mo adsorption by each fired product obtained at each heat treatment temperature are illustrated. 各種pHの試験液による、各熱処理温度において得られた各焼成物に対する溶解試験の結果を図示する。The result of the dissolution test with respect to each baked product obtained in each heat processing temperature by the test liquid of various pH is illustrated. 各温度で熱処理して得られた焼成物等についてX線回折試験を行った結果を図示する。The result of having performed the X-ray-diffraction test about the baked material etc. which were heat-processed at each temperature is shown in figure.

Claims (5)

第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に300〜700℃で焼成することを特徴とする酸化鉄系吸着剤の製造方法。   A solution containing ferric ions is mixed with an alkali agent and neutralized to form a precipitate, and the obtained precipitation product is dried at 60 to 100 ° C. to obtain ferric hydroxide powder. A method for producing an iron oxide-based adsorbent, wherein the ferric iron powder is further fired at 300 to 700 ° C. 第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に300〜700℃で焼成することを特徴とする、モリブデンの酸素酸イオン分離用の酸化鉄系吸着剤の製造方法。   A solution containing ferric ions is mixed with an alkali agent and neutralized to form a precipitate, and the obtained precipitation product is dried at 60 to 100 ° C. to obtain ferric hydroxide powder. A method of producing an iron oxide-based adsorbent for separating oxygenate ions of molybdenum, wherein the ferric iron powder is further fired at 300 to 700 ° C. 第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に400〜600℃で焼成することを特徴とする、pH2以下の酸性中のモリブデンの酸素酸イオン分離用の酸化鉄系吸着剤の製造方法。   A solution containing ferric ions is mixed with an alkali agent and neutralized to form a precipitate, and the obtained precipitation product is dried at 60 to 100 ° C. to obtain ferric hydroxide powder. A method for producing an iron oxide-based adsorbent for separating oxygenate ions of molybdenum in an acidic pH of 2 or less, wherein the ferric iron powder is further calcined at 400 to 600 ° C. 第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に300〜700℃で焼成した酸化鉄系吸着剤をカラム内に充填し、該カラム内にモリブデンの酸素酸イオンを含有する排水を通液して接触させることによりモリブデンの酸素酸イオンを分離することを特徴とするモリブデン含有排水の浄化方法。   A solution containing ferric ions is mixed with an alkali agent and neutralized to form a precipitate, and the obtained precipitation product is dried at 60 to 100 ° C. to obtain ferric hydroxide powder. The iron oxide adsorbent obtained by further firing the ferric iron powder at 300 to 700 ° C. is filled in the column, and the wastewater containing molybdenum oxyacid ions is passed through the column and brought into contact therewith. A method for purifying molybdenum-containing wastewater, characterized by separating acid ions. 第2鉄イオンを含有する溶液にアルカリ剤を混合し中和して沈殿を形成し、得られた沈殿生成物を60〜100℃で乾燥して水酸化第2鉄粉を得、この水酸化第2鉄粉を更に400〜600℃で焼成した酸化鉄系吸着剤をカラム内に充填し、該カラム内にpH2以下のモリブデンの酸素酸イオンを含有する排水を通液して接触させることによりモリブデンの酸素酸イオンを分離することを特徴とするモリブデン含有排水の浄化方法。   A solution containing ferric ions is mixed with an alkali agent and neutralized to form a precipitate, and the obtained precipitation product is dried at 60 to 100 ° C. to obtain ferric hydroxide powder. By filling the column with iron oxide-based adsorbent obtained by further firing ferric powder at 400 to 600 ° C., and passing the waste water containing molybdenum oxygenate ions having a pH of 2 or less into the column for contact. A method for purifying molybdenum-containing wastewater, characterized by separating oxygenate ions of molybdenum.
JP2008193109A 2008-07-28 2008-07-28 Method for producing iron oxide-based adsorbent and method for purifying molybdenum-containing waste water using the same Active JP4953464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008193109A JP4953464B2 (en) 2008-07-28 2008-07-28 Method for producing iron oxide-based adsorbent and method for purifying molybdenum-containing waste water using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008193109A JP4953464B2 (en) 2008-07-28 2008-07-28 Method for producing iron oxide-based adsorbent and method for purifying molybdenum-containing waste water using the same

Publications (2)

Publication Number Publication Date
JP2010029760A true JP2010029760A (en) 2010-02-12
JP4953464B2 JP4953464B2 (en) 2012-06-13

Family

ID=41734907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008193109A Active JP4953464B2 (en) 2008-07-28 2008-07-28 Method for producing iron oxide-based adsorbent and method for purifying molybdenum-containing waste water using the same

Country Status (1)

Country Link
JP (1) JP4953464B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261690A (en) * 1985-09-13 1987-03-18 Hitachi Ltd Method for separating metal ion
JP2003334542A (en) * 2002-03-15 2003-11-25 Tohoku Techno Arch Co Ltd Anion adsorbent, method for removing anion using the adsorbent, method for regenerating anion adsorbent, and method for recovering element
JP2004243206A (en) * 2003-02-13 2004-09-02 National Institute Of Advanced Industrial & Technology Humidifying agent and its manufacturing method, and humidifying method
JP2005270933A (en) * 2004-03-26 2005-10-06 Nittetsu Mining Co Ltd Anion adsorbent, elimination method of anion, recycle method of anion adsorbent, and recovery method of elements
JP2006192332A (en) * 2005-01-11 2006-07-27 Toyobo Co Ltd Organic compound-adsorbing/removing agent and its manufacturing method
WO2006088083A1 (en) * 2005-02-16 2006-08-24 Japan Science And Technology Agency Method for producing iron oxyhydroxide and adsorbing material comprising iron oxyhydroxide
JP2009514659A (en) * 2005-07-27 2009-04-09 シェブロン マイニング インコーポレイテッド Method using rare earths to remove oxyanions from aqueous streams

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261690A (en) * 1985-09-13 1987-03-18 Hitachi Ltd Method for separating metal ion
JP2003334542A (en) * 2002-03-15 2003-11-25 Tohoku Techno Arch Co Ltd Anion adsorbent, method for removing anion using the adsorbent, method for regenerating anion adsorbent, and method for recovering element
JP2004243206A (en) * 2003-02-13 2004-09-02 National Institute Of Advanced Industrial & Technology Humidifying agent and its manufacturing method, and humidifying method
JP2005270933A (en) * 2004-03-26 2005-10-06 Nittetsu Mining Co Ltd Anion adsorbent, elimination method of anion, recycle method of anion adsorbent, and recovery method of elements
JP2006192332A (en) * 2005-01-11 2006-07-27 Toyobo Co Ltd Organic compound-adsorbing/removing agent and its manufacturing method
WO2006088083A1 (en) * 2005-02-16 2006-08-24 Japan Science And Technology Agency Method for producing iron oxyhydroxide and adsorbing material comprising iron oxyhydroxide
JP2009514659A (en) * 2005-07-27 2009-04-09 シェブロン マイニング インコーポレイテッド Method using rare earths to remove oxyanions from aqueous streams

Also Published As

Publication number Publication date
JP4953464B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
Shahid et al. Magnetite synthesis using iron oxide waste and its application for phosphate adsorption with column and batch reactors
CN103212364B (en) Ferro-manganese composite oxide as well as preparation method and application thereof in removing arsenic in water
WO2015083840A1 (en) Magnetic hydrotalcite composite and process for manufacturing same
JP5913436B2 (en) Boron remover
CN112169748B (en) Adsorbent and preparation method and application thereof
JP6671343B2 (en) Ruthenium adsorbent in aqueous solution and method for adsorbing ruthenium in aqueous solution
JP2013116429A (en) Photocatalyst, method for production thereof, and method for treating water containing nitrate nitrogen
CN107311263B (en) Method for treating wastewater containing chromium ions and by-producing chromium-containing catalyst
WO2009096597A1 (en) Selective adsorbent material, and method for production thereof
JP2010100875A (en) Methods for oxidizing hypophosphoric acid ion and phosphorous acid ion, method for cleaning electroless nickel plating waste liquid, and method for recycling phosphate
JP6448820B2 (en) Adsorbent particles
WO2017046252A1 (en) A core-shell composition for purifying contaminated water and/or biological-medical systems such as tissues, cells or blood
JP2007237075A (en) Treatment method for wastewater containing fluoride ion, and wastewater treatment agent
TW576825B (en) Method for liquid chromate ion and oxy-metal ions removal and stabilization
JP2013132636A (en) Manufacturing method for phosphorus adsorbent and phosphorus adsorbent
JP2008254944A (en) Porous iron oxide and its manufacturing method, and method for processing water to be treated
JP2010274206A (en) Water purifying material, water purifying method, phosphatic fertilizer precursor, and method of manufacturing phosphatic fertilizer precursor
JP2007001835A (en) Phosphorus adsorbent
JP4953464B2 (en) Method for producing iron oxide-based adsorbent and method for purifying molybdenum-containing waste water using the same
JPWO2005100253A1 (en) Method for treating strongly acidic wastewater containing hazardous substances
CN103721689A (en) Magnetic meso-porous silicon, preparation method of magnetic meso-porous silicon, magnetic meso-porous silicon adsorbent, preparation method and application of magnetic meso-porous silicon adsorbent
Liang et al. A novel Fe recycling method from pickling wastewater producing a KFeS 2 whisker for electroplating wastewater treatment
JP3764009B2 (en) Adsorbent and water treatment method
JP4936559B2 (en) Arsenic remover
JP2005028312A (en) Fluorine adsorbent and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4953464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250