JP2010029119A - Method for producing d-lactic acid - Google Patents

Method for producing d-lactic acid Download PDF

Info

Publication number
JP2010029119A
JP2010029119A JP2008195751A JP2008195751A JP2010029119A JP 2010029119 A JP2010029119 A JP 2010029119A JP 2008195751 A JP2008195751 A JP 2008195751A JP 2008195751 A JP2008195751 A JP 2008195751A JP 2010029119 A JP2010029119 A JP 2010029119A
Authority
JP
Japan
Prior art keywords
lactic acid
fermentation
cysteine
acid
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008195751A
Other languages
Japanese (ja)
Other versions
JP5217736B2 (en
Inventor
Keishu Ra
景洙 羅
Hideki Sawai
秀樹 澤井
Masanari Yamada
勝成 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008195751A priority Critical patent/JP5217736B2/en
Publication of JP2010029119A publication Critical patent/JP2010029119A/en
Application granted granted Critical
Publication of JP5217736B2 publication Critical patent/JP5217736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provided a method for producing D-lactic acid which uses a fermentation medium (natural biomass) containing cysteine and a low concentration nitrogen, and has a simple operation to produce the D-lactic acid having a high optical purity in high productivity stably and inexpensively, and also reduce the concentrations of byproducts. <P>SOLUTION: This method for producing D-lactic acid by using bacteria belonging to the genus Sporolactobacillus is provided by using a fermentation raw material containing ≥0.6 mg/L of cysteine, and 0.1 to 0.5 g/L of nitrogen source other than cysteine. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発酵法によるD−乳酸の製造方法に関する。さらに詳しくは、スポロラクトバチルス属に属する細菌を用いた発酵法によるD−乳酸の製造方法に関するものである。   The present invention relates to a method for producing D-lactic acid by a fermentation method. More specifically, the present invention relates to a method for producing D-lactic acid by a fermentation method using bacteria belonging to the genus Sporolactocillus.

生分解性ポリマーであるポリ乳酸は、CO問題やエネルギー問題の顕在化と共にサスティナビリティー(持続可能性)およびライフサイクルアセスメント(LCA)対応型製品として強い注目を浴びており、その原料である乳酸には効率的で安価な製造法が求められている。 Polylactic acid, a biodegradable polymer, has attracted strong attention as a sustainability and life cycle assessment (LCA) compatible product with the emergence of CO 2 and energy problems. There is a demand for an efficient and inexpensive production method for lactic acid.

現在主に生産されているポリ乳酸はL−乳酸ポリマーであるが、乳酸にはL−乳酸とD−乳酸の2種類の光学異性体があり、D−乳酸についてもポリマー原料、農薬および医薬の中間体として近年注目が集まりつつある。   Currently produced polylactic acid is an L-lactic acid polymer, but lactic acid has two optical isomers, L-lactic acid and D-lactic acid, and D-lactic acid is also used for polymer raw materials, agricultural chemicals and pharmaceuticals. In recent years, it has attracted attention as an intermediate.

自然界には乳酸菌などの乳酸を効率良く生産する微生物が存在し、それらを用いた乳酸製造法が既に確立している。例えば、L−乳酸を効率良く生産させる細菌として、ラクトバシラス・ラムノサス(Lactobacillus rhamnosus)などがあり(特許文献1と2参照。)、またD−乳酸を効率良く生産させる細菌として、バシラス・ラエボラクティカス(Bacillus laevolacticus)などが高い光学純度でD−乳酸を生産することが知られている(特許文献3参照。)。   In nature, there are microorganisms that efficiently produce lactic acid such as lactic acid bacteria, and a method for producing lactic acid using them has already been established. Examples of bacteria that can efficiently produce L-lactic acid include Lactobacillus rhamnosus (see Patent Documents 1 and 2), and examples of bacteria that can efficiently produce D-lactic acid include Bacillus laevolacti. It is known that cas (Bacillus lavolacticus) and the like produce D-lactic acid with high optical purity (see Patent Document 3).

また、自然界に存在する乳酸菌の他、乳酸合成酵素を組み込んだ微生物による乳酸の製造方法も知られており、ゲノム情報が豊富で、遺伝子組換え宿主としての実績が十分にある酵母や大腸菌でD−乳酸を生産させる試みがなされている。例えば、大腸菌を組換え宿主として、D−乳酸を生産させた試みが提案されている(特許文献4参照。)。また、既知のラクトバシラス・プランタラム(Lactobacillus plantarmu)由来のD−乳酸デヒドロゲナーゼ遺伝子を導入することにより酵母によってD−乳酸を生産させようとする試みも存在している(特許文献5参照。)。   In addition to lactic acid bacteria that exist in nature, lactic acid production methods using microorganisms that incorporate lactic acid synthase are also known. -Attempts have been made to produce lactic acid. For example, an attempt to produce D-lactic acid using E. coli as a recombinant host has been proposed (see Patent Document 4). There is also an attempt to produce D-lactic acid by yeast by introducing a D-lactic acid dehydrogenase gene derived from a known Lactobacillus plantarum (see Patent Document 5).

しかしながら、これまでのD−乳酸の発酵生産では、発酵培地に窒素源が多く含まれることによる高濃度の副生産物の産生が問題となっている。このような高濃度の副生産物は、続く精製プロセスでの費用を高める原因になり、全乳酸生産工程でのコストを上げる可能性があって懸念される。そのため、回分式発酵法または流加式発酵(Fed−Batch)法、連続発酵などのいずれの発酵法でも、より安価でのかつ高収率でのD−乳酸の生産や高い光学純度のD−乳酸の生産と共に副生産物の生産抑制することで更なる効率的な生産方法が望まれ、また飛躍的な生産速度の向上が求められていた。
特開2007−215427号公報 特開2007−215428号公報 特開2003−088392号公報 特開2005−102625号公報 特開2002−136293号公報
However, in the conventional fermentation production of D-lactic acid, the production of a high concentration by-product due to a large amount of nitrogen source contained in the fermentation medium has been a problem. Such a high concentration of by-products causes an increase in costs in the subsequent purification process, and there is a concern that it may increase costs in the entire lactic acid production process. Therefore, any fermentation method such as batch fermentation, fed-batch fermentation (Fed-Batch) method, continuous fermentation, etc. can produce D-lactic acid at a low cost and in a high yield, and D- with high optical purity. There has been a demand for a more efficient production method by suppressing the production of by-products along with the production of lactic acid, and a dramatic improvement in production speed has been demanded.
JP 2007-215427 A JP 2007-215428 A JP 2003-088392 A JP 2005-102625 A JP 2002-136293 A

そこで本発明の目的は、微生物を用いた発酵法によってD−乳酸を製造するにあたり、安定した高収率および高い光学純度のD−乳酸の生産と共に副生産物の生産を抑制できるD−乳酸の製造方法を提供することにある。   Therefore, an object of the present invention is to produce D-lactic acid that can suppress the production of by-products as well as the production of D-lactic acid with a stable high yield and high optical purity in producing D-lactic acid by fermentation using a microorganism. It is to provide a manufacturing method.

本発明者らは、鋭意研究の結果、発酵原料に含まれるシステインおよびシステイン以外の窒素源を調節することで減らし、本発明を完成するに至った。すなわち、本願発明は以下の通りである。
(1)スポロラクトバチルス属(Genus Sporolactobacillus)に属する細菌を用いた発酵法によるD−乳酸の製造方法であって、0.6mg/L以上のシステインおよび0.1g/L以上0.5g/L以下のシステイン以外の窒素源を含む発酵原料を用いたD−乳酸の製造方法。
(2)前記細菌がスポロラクトバチルス・ラエボラクティカス(Sporolactobacillus laevolacticus)である(1)に記載のD−乳酸の製造方法。
As a result of intensive studies, the present inventors have completed the present invention by reducing cysteine and nitrogen sources other than cysteine contained in the fermentation raw material. That is, the present invention is as follows.
(1) A method for producing D-lactic acid by a fermentation method using a bacterium belonging to the genus Sporolactobacillus, comprising 0.6 mg / L or more of cysteine and 0.1 g / L or more of 0.5 g / L The manufacturing method of D-lactic acid using the fermentation raw material containing nitrogen sources other than L or less cysteine.
(2) The method for producing D-lactic acid according to (1), wherein the bacterium is Sporolactobacillus laevolacticus.

本発明によれば、発酵生産物であるD−乳酸をより低コストで安定に生産することと共に副生産物の少ない高光学純度のD−乳酸の生産が可能となる。本発明によるD−乳酸の製造方法により得られたD−乳酸は、例えば、酸味料、洗浄剤および医薬品、更にはポリ乳酸樹脂等の原料として有用である。   According to the present invention, it is possible to stably produce D-lactic acid, which is a fermentation product, at a lower cost, and to produce D-lactic acid with high optical purity with fewer by-products. D-lactic acid obtained by the method for producing D-lactic acid according to the present invention is useful as a raw material for, for example, acidulants, detergents and pharmaceuticals, and polylactic acid resins.

本発明は、スポロラクトバチルス属(Genus Sporolactobacillus)に属し、D−乳酸を生産する能力を有する細菌(以下、D−乳酸生産菌ともいう)を用いた発酵法によるD−乳酸を製造する方法であって、0.6mg/L以上のシステインおよび0.1g/L以上0.5g/L以下のシステイン以外の窒素源を含む発酵原料を用いたD−乳酸の製造方法である。   The present invention relates to a method for producing D-lactic acid by a fermentation method using a bacterium that belongs to the genus Sporolactobacillus and has the ability to produce D-lactic acid (hereinafter also referred to as D-lactic acid-producing bacterium). It is a method for producing D-lactic acid using a fermentation raw material containing a cysteine of 0.6 mg / L or more and a nitrogen source other than cysteine of 0.1 g / L or more and 0.5 g / L or less.

発酵原料中のシステインは、D−乳酸生産菌の増殖または生育にとって重要であるが、本発明者らは、発酵原料中に0.6mg/L以上のシステインを加えることで、副生産物の生成が抑制される効果があり、発酵原料中のシステイン濃度が0.6mg/L未満である場合、副生産物が多く生成されてしまうことを見出した。ここでいう副生産物としては、有機酸類とアルコール類などが挙げられ、例えば、有機酸としては、ギ酸、酢酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸およびクエン酸等が挙げられ、また、アルコールとしては、エタノール、ブタンジオール等が挙げられ、これら副生産物についてはHPLCまたはGCで測定可能である。本発明における発酵原料中のシステイン濃度の上限としては特に限定はないが、微生物の良好な生育と高濃度の乳酸生産、トータルコストの観点から、2000mg/Lであることが好ましい。また、発酵原料中の好ましいシステイン濃度としては0.6〜1500mg/Lであり、より好ましくは0.62〜1000mg/Lである。   Cysteine in the fermentation raw material is important for the growth or growth of the D-lactic acid-producing bacterium, but the present inventors added 0.6 mg / L or more cysteine to the fermentation raw material to produce a by-product. It has been found that when the cysteine concentration in the fermentation raw material is less than 0.6 mg / L, many by-products are produced. Examples of by-products here include organic acids and alcohols, and examples of organic acids include formic acid, acetic acid, pyruvic acid, succinic acid, malic acid, itaconic acid, and citric acid. Examples of the alcohol include ethanol and butanediol. These by-products can be measured by HPLC or GC. The upper limit of the cysteine concentration in the fermentation raw material in the present invention is not particularly limited, but is preferably 2000 mg / L from the viewpoints of good growth of microorganisms, production of lactic acid at a high concentration, and total cost. Moreover, as a preferable cysteine density | concentration in a fermentation raw material, it is 0.6-1500 mg / L, More preferably, it is 0.62-1000 mg / L.

また、システイン以外の窒素源はD−乳酸生産菌の良好な生育にとって重要であるが、本発明者らは前記システインの濃度と併せて発酵原料中のシステイン以外の窒素源の濃度を0.1g/L以上0.5g/L以下とすることで、副生産物の生産が抑制されることを見出した。ここでいうシステイン以外の窒素源とは、具体的には、アンモニアガス、アンモニア水、アンモニウム塩類、尿素、硝酸塩類あるいは有機窒素源(例えば、油粕類、大豆加水分解液、カゼイン分解物、システイン以外のアミノ酸、ビタミン類、コーンスティープリカー、肉エキス、ペプトン、ポリペプトンS等のタンパク質)、発酵原料中の炭素源(例えば、澱粉糖化液、甘藷糖蜜、甜菜糖蜜、ハイテストモラセス、サトウキビ由来のケーンジュース、ケーンジュース抽出物もしくは濃縮液、ケーンジュースからの精製もしくは結晶化された原料糖または精製糖)に含まれるアミノ酸またはタンパク性の不純物、あるいは酵母エキスなどの各種発酵菌体またはその加水分解物などが挙げられ、これらは単独または組み合わせて使用しても良いが、有機窒素源であることが好ましい。発酵原料中のシステイン以外の窒素源の好ましい濃度としては0.1g/L以上0.45g/L以下である。なお、システイン以外の窒素源には不純物としてシステインが含まれる場合があり、その場合は該窒素源からシステインの含量を差し引いた値をもとに発酵原料中のシステイン以外の窒素源の濃度を計算するものとする。   Moreover, although nitrogen sources other than cysteine are important for good growth of D-lactic acid-producing bacteria, the present inventors set the concentration of nitrogen sources other than cysteine in the fermentation raw material to 0.1 g in addition to the concentration of cysteine. It was found that the production of by-products is suppressed by setting the ratio to / L or more and 0.5 g / L or less. Specific examples of the nitrogen source other than cysteine include ammonia gas, aqueous ammonia, ammonium salts, urea, nitrates, or organic nitrogen sources (for example, oil cakes, soybean hydrolysate, casein degradation products, and cysteine other than cysteine). Amino acids, vitamins, corn steep liquor, meat extract, peptone, polypeptone S, etc.), carbon sources in fermentation raw materials (eg starch saccharified liquid, sweet potato molasses, sugar beet molasses, high test molasses, cane juice from sugarcane Amino acid or proteinous impurities contained in the extract or concentrated liquid of cane juice, raw sugar or purified sugar purified or crystallized from cane juice, or various fermented cells such as yeast extract or hydrolysates thereof, etc. These may be used alone or in combination. Preferably an organic nitrogen source. A preferable concentration of a nitrogen source other than cysteine in the fermentation raw material is 0.1 g / L or more and 0.45 g / L or less. Note that nitrogen sources other than cysteine may contain cysteine as an impurity, in which case the concentration of nitrogen sources other than cysteine in the fermentation raw material is calculated based on the value obtained by subtracting the cysteine content from the nitrogen source. It shall be.

その他、0.6mg/L以上のシステインおよび0.1g/L以上0.5g/L以下のシステイン以外の窒素源を含む発酵原料を使用することにより、乳酸発酵開始から発酵終了までのD−乳酸生産菌の生育速度を遅らせて長時間にわたり高密度化することができ、更に副生産物の生産を抑えて乳酸生産性を向上させることができる。また、どちらの発酵でも細菌の死滅周期を遅らせ、死滅時に発生する副産物の濃度を少なめにすることができ、特に連続発酵では発酵培養液の分離膜として使用する多孔質膜の閉塞を抑えることができ、乳酸発酵の更なる長期化が可能になって、乳酸発酵の生産効率を上げることができる。   In addition, D-lactic acid from the start of lactic acid fermentation to the end of fermentation can be obtained by using a fermentation raw material containing 0.6 mg / L or more of cysteine and a nitrogen source other than cysteine of 0.1 to 0.5 g / L. The growth rate of the producing bacteria can be delayed to increase the density for a long time, and the production of by-products can be suppressed to improve the lactic acid productivity. In both fermentations, the bacterial death cycle can be delayed and the concentration of by-products generated at the time of death can be reduced. In particular, in continuous fermentation, the clogging of the porous membrane used as a separation membrane for fermentation broth can be suppressed. The lactic acid fermentation can be further prolonged and the production efficiency of the lactic acid fermentation can be increased.

本発明において、0.6mg/L以上のシステインおよび0.1g/L以上0.5g/L以下のシステイン以外の窒素源を含む発酵原料とは、乳酸発酵培地の中に0.6mg/L以上のシステインおよび0.1g/L以上0.5g/L以下のシステイン以外の窒素源が含まれることである。該乳酸発酵培地の好ましい具体的な例として、グルコースと0.1g/Lのシステインおよび0.4g/Lの酵母エキスを含む乳酸発酵培地(以下、GYC1と略すことがある。)、グルコース、0.2g/Lのシステインおよび0.1g/Lの酵母エキスを含む乳酸発酵培地(以下、GYC2と略すことがある。)、グルコース、0.4g/Lのシステインおよび0.1g/Lの酵母エキスを含む乳酸発酵培地(以下、GYC3と略すことがある。)、不純物として0.3重量%のタンパク質を含む原料糖100g/Lおよび0.15g/Lの酵母エキスを含む乳酸発酵培地(以下、RSEと略すことがある。)、該原料糖と0.4g/Lのシステインを含む乳酸発酵培地(以下、RSC1と略すことがある。)、該原料糖と1.0g/Lのシステインを含む乳酸発酵培地(以下、RSC2と略すことがある。)、およびグルコースと0.2g/Lのシステイン、0.4g/Lのポリペプトンを含む乳酸発酵培地(以下、GPCと略すことがある。)等が挙げられる。   In the present invention, the fermentation raw material containing 0.6 mg / L or more of cysteine and a nitrogen source other than 0.1 g / L or more and 0.5 g / L or less of cysteine is 0.6 mg / L or more in the lactic acid fermentation medium. And a nitrogen source other than 0.1 g / L to 0.5 g / L of cysteine. Preferable specific examples of the lactic acid fermentation medium include lactic acid fermentation medium (hereinafter sometimes abbreviated as GYC1) containing glucose, 0.1 g / L cysteine and 0.4 g / L yeast extract, glucose, 0. Lactic acid fermentation medium (hereinafter sometimes abbreviated as GYC2) containing 2 g / L cysteine and 0.1 g / L yeast extract, glucose, 0.4 g / L cysteine and 0.1 g / L yeast extract Lactic acid fermentation medium (hereinafter sometimes abbreviated as GYC3), lactic acid fermentation medium (hereinafter referred to as 100 g / L of raw sugar containing 0.3 wt% protein as impurities and 0.15 g / L of yeast extract) RSE may be abbreviated as RSE), lactic acid fermentation medium (hereinafter abbreviated as RSC1) containing the raw sugar and 0.4 g / L of cysteine, and 1.0 g / L of the raw sugar. Lactic acid fermentation medium containing cysteine (hereinafter sometimes abbreviated as RSC2), and lactic acid fermentation medium containing glucose and 0.2 g / L cysteine and 0.4 g / L polypeptone (hereinafter abbreviated as GPC). Etc.).

上記の乳酸発酵培地は、次のようにして調製することができる。例えば、栄養素のうち、炭素源になる糖と窒素源になるものをグループに分け、グループごとにオートクレーブ処理により滅菌し、常温以下の温度まで冷却した後、窒素が各発酵培地に含んだ濃度になるように調製する。   The lactic acid fermentation medium can be prepared as follows. For example, among the nutrients, sugars that become carbon sources and nitrogen sources are divided into groups, sterilized by autoclaving for each group, cooled to a temperature below room temperature, and then the concentration of nitrogen contained in each fermentation medium. Prepare as follows.

本発明では、スポロラクトバチルス属(Genus Sporolactobacillus)に属するD−乳酸生産菌を用いることを特徴とする。該D−乳酸生産菌は、自然環境から単離されたものでもよく、突然変異や遺伝子組換えによって一部性質が改変されたものであってもよい。また、菌株としてATCC等の生物寄託機関より購入することも可能である。   The present invention is characterized by using a D-lactic acid-producing bacterium belonging to the genus Sporolactobacillus. The D-lactic acid-producing bacterium may be isolated from the natural environment, or may be partially modified in nature by mutation or genetic recombination. Moreover, it is also possible to purchase as a strain from a biological depository organization such as ATCC.

本発明において使用されるD−乳酸生産菌のD−乳酸生産能は特に限定されるものではないが、光学純度90%以上のD−乳酸を生産する能力を有するD−乳酸生産菌であることが好ましい。光学純度90%以上のD−乳酸を生産する能力を有するD−乳酸生産菌は、滅菌した原料糖100g/Lの培養液にスポロラクトバチルス属に属する細菌を接種し、37℃で、静置培養を行い、経時的に培養液中の糖濃度を測定し、糖が完全に消費された後の培養液中に生産された乳酸の光学純度を測定し、D−乳酸の光学純度が90%以上であれば、光学純度90%以上のD−乳酸生産菌であると判断することができる。   The D-lactic acid producing ability of the D-lactic acid producing bacterium used in the present invention is not particularly limited, but is a D-lactic acid producing bacterium having an ability to produce D-lactic acid having an optical purity of 90% or more. Is preferred. A D-lactic acid-producing bacterium having an ability to produce D-lactic acid having an optical purity of 90% or higher is inoculated with bacteria belonging to the genus Sporolactocillus in a culture solution of 100 g / L of sterilized raw material sugar, Incubation was performed, the sugar concentration in the culture solution was measured over time, the optical purity of lactic acid produced in the culture solution after the sugar was completely consumed was measured, and the optical purity of D-lactic acid was 90 If it is% or more, it can be judged that it is a D-lactic acid-producing bacterium having an optical purity of 90% or more.

本発明において使用されるD−乳酸生産菌の中でも、スポロラクトバチルス・ラエボラクティカス(Sporolactobacillus laevolacticus)、スポロラクトバチルス・イヌリナス(Sporolactobacillus inulinus)、スポロラクトバチルス・コフエンシス(Sporolactobacillus kofuensis)、スポロラクトバチルス・ナカヤマエ・サブシピ・ナカヤマエ(Sporolactobacillus nakayamae subsp. nakayamae)、スポロラクトバチルス・ナカヤマエ・サブシピ・ラセミカス(Sporolactobacillus nakayamae subsp.racemicus)、スポロラクトバチルス・テラエ(Sporolactobacillus terrae)などが挙げられるが、その中でも、スポロラクトバチルス・ラエボラクティカス(Sporolactobacillus laevolacticus)が好ましく使用できる。また、スポロラクトバチルス・ラエボラクティカスの菌株としては、ATCC23492、ATCC23493、ATCC23494、ATCC23495、ATCC23496、ATCC223549、IAM12326、IAM12327、IAM12328、IAM12329、IAM12330、IAM12331、IAM12379、DSM2315、DSM6477、DSM6510、DSM6511、DSM6763、DSM6764、DSM6771株が具体例として挙げられるが、好ましくはATCC23492である。   Among the D-lactic acid-producing bacteria used in the present invention, Sporolactobacillus lavolacticus, Sporolactobacillus inulinus, Sporolactociloscofuensis (Spololactococcus) Sporolactobacillus sakapie samapi, sama sabai sera, sapora basralus sera, sapora bisra sra sra, sakapi, sama (Sporolactobacillus terrae) etc. are mentioned, Among them, Sporolactobacillus laevolyticus can be preferably used. Moreover, as strains of Sporalactobacillus laevolacticus, ATCC 23492, ATCC 23493, ATCC 23494, ATCC 23495, ATCC 23496, ATCC 223549, IAM 12326, IAM 12327, IAM 12328, IAM 12329, IAM 12330, IAM 12331, IAM 12379, DSM 2315, M14 Specific examples include DSM6763, DSM6764, and DSM6771 strains, and ATCC23492 is preferable.

本発明においてD−乳酸生産菌を発酵培養する際、D−乳酸生産菌を好気的条件下で培養してもよいが、嫌気的条件下で行うことが好ましい。スポロラクトバチルス属に属する細菌は好気性または通気性の微生物であるため、通常、通気などを行うことにより好気的条件下で培養するが、好気的条件下では、グルコース等の糖はピルビン酸からクレブス回路を経て代謝されてしまうため、D−乳酸の収率という観点においては嫌気的条件が好ましく採用される。嫌気的条件下で培養を行うためには、静置して行うこともできるが、不活性ガスを通気しながら振とう培養もしくは攪拌培養を行ってもよい。ここでいう不活性ガスとしては、二酸化炭素、窒素、アンモニア、アルゴン等を用いればよく、通気量、通気手段はD−乳酸生産性を考えて、適宜決めればよい。なお、ここでの窒素は嫌気培養を行うために使用するガスであり、本発明におけるシステイン以外の窒素源には該当しない。   In the present invention, when D-lactic acid-producing bacteria are fermented and cultured, the D-lactic acid-producing bacteria may be cultured under aerobic conditions, but preferably under anaerobic conditions. Since bacteria belonging to the genus Sporolactobacillus are aerobic or aeration microorganisms, they are usually cultured under aerobic conditions by aeration, etc., but under aerobic conditions, sugars such as glucose are not Anaerobic conditions are preferably employed from the viewpoint of the yield of D-lactic acid because it is metabolized from pyruvic acid via the Krebs cycle. In order to carry out the culture under anaerobic conditions, the culture can be carried out by standing, but the shaking culture or the stirring culture may be carried out while passing an inert gas. Carbon dioxide, nitrogen, ammonia, argon or the like may be used as the inert gas here, and the amount of ventilation and the ventilation means may be appropriately determined in consideration of D-lactic acid productivity. Here, nitrogen is a gas used for anaerobic culture and does not correspond to a nitrogen source other than cysteine in the present invention.

また、D−乳酸生産菌を発酵培養する際は発酵原料中に資化可能な炭素源を含み、適温で、炭酸カルシウム、水酸化カルシウム、水酸化ナトリウムまたはアンモニアなどにより中和しながら培養することが好ましい。また、培養時のpHは該D−乳酸生産菌がD−乳酸を生産できる条件であれば特に限定はないが、pH4〜8の範囲内であることが好ましい。また、培養温度は該D−乳酸生産菌がD−乳酸を生産できる条件であれば特に限定はないが、光学純度90%以上の高い光学純度のD−乳酸を生産するための培養温度であることが好ましく、具体的には30℃から45℃までが好ましく、31℃から39℃までがより好ましく、33℃から38℃までがさらに好ましい。   In addition, when fermenting and cultivating D-lactic acid producing bacteria, the fermenting material contains a carbon source that can be assimilated, and cultured at an appropriate temperature while neutralizing with calcium carbonate, calcium hydroxide, sodium hydroxide, ammonia, or the like. Is preferred. The pH during the culture is not particularly limited as long as the D-lactic acid-producing bacterium can produce D-lactic acid, but it is preferably within the range of pH 4-8. The culture temperature is not particularly limited as long as the D-lactic acid-producing bacterium can produce D-lactic acid, but is a culture temperature for producing high optical purity D-lactic acid having an optical purity of 90% or more. Specifically, it is preferably from 30 ° C to 45 ° C, more preferably from 31 ° C to 39 ° C, and further preferably from 33 ° C to 38 ° C.

本発明で使用される発酵原料における炭素源としては、D−乳酸生産菌が資化可能な炭素源であれば特に限定はなく、グルコース、アラビノース、セルビオース、ラクトース、メリビオース、サリシン、イヌリン、マンノース、ラフィノース、トレハロース、マンニトール、ソルビトール、シュクロース、フラクトース、ガラクトース、ラクトース、マルトース等の糖類、これら糖類を含有する澱粉糖化液、甘藷糖蜜、甜菜糖蜜、ハイテストモラセス、ケーンジュース、ケーンジュース抽出物または濃縮液、ケーンジュースからの精製もしくは結晶化された原料糖または精製糖、セルロース由来の糖化液、あるいは糖類以外では酢酸、フマル酸等の有機酸、エタノール等のアルコール類、あるいはグリセリン等が挙げられ、中でもケーンジュースからの精製または結晶化された原料糖は炭素源として好ましく使用される。   The carbon source in the fermentation raw material used in the present invention is not particularly limited as long as it is a carbon source that can be assimilated by a D-lactic acid-producing bacterium. Sugars such as raffinose, trehalose, mannitol, sorbitol, sucrose, fructose, galactose, lactose, maltose, starch saccharified solution containing these sugars, sweet potato molasses, sugar beet molasses, high test molasses, cane juice, cane juice extract or concentrate Liquid, raw sugar or purified sugar purified or crystallized from cane juice, saccharified liquid derived from cellulose, or other than sugar, organic acids such as acetic acid and fumaric acid, alcohols such as ethanol, glycerin, etc. Above all, Kanju Purified or crystallized raw sugar from the scan is used preferably as a carbon source.

前記原料糖としては、ケーンジュースまたはケーン粕に石灰または石灰乳などを加え、加熱して不純物を取り除くまたは連続沈殿させ不純物を除くことで製造される。その後、濃縮させて真空結晶化し、糖蜜と結晶に分離する。その時に結晶として分けられたものを原料糖とする。石灰または石灰乳は不純物を取り除く時に加熱しながら添加しても良い。連続沈殿時および濃縮時には加熱しても良い。真空結晶化して分離された結晶を乾燥してもよい。なお、本発明で用いられる原料糖について特に限定はないが、ムソー株式会社製の“優糖精”が好ましい例として挙げられる。   The raw sugar is produced by adding lime or lime milk to cane juice or cane koji and removing impurities by heating or removing the impurities by continuous precipitation. Then, it is concentrated and vacuum crystallized to separate molasses and crystals. The raw material sugars are then separated as crystals. Lime or lime milk may be added while heating to remove impurities. You may heat at the time of continuous precipitation and concentration. Crystals separated by vacuum crystallization may be dried. In addition, although there is no limitation in particular about the raw material saccharide | sugar used by this invention, the "super-sugar refinement" by Muso Co., Ltd. is mentioned as a preferable example.

本発明で使用される発酵原料における炭素源の使用濃度は特に制限されず、D−乳酸の生産を阻害しない範囲であれば可能な限り高い濃度であることが好ましい。通常、炭素源の濃度は、倍地中に1.6(w/v)%以上30(w/v)%以下が好ましく、より好ましくは5(w/v)%以上20(w/v)%以下である。   The concentration of the carbon source used in the fermentation raw material used in the present invention is not particularly limited, and is preferably as high as possible as long as it does not inhibit the production of D-lactic acid. Usually, the concentration of the carbon source is preferably 1.6 (w / v)% or more and 30 (w / v)% or less, more preferably 5 (w / v)% or more and 20 (w / v) in the medium. % Or less.

また、発酵原料中には無機塩類を含んでもよく、無機塩類としては、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩およびマンガン塩等を適宜添加することができる。   In addition, the fermentation raw material may contain inorganic salts, and as the inorganic salts, phosphates, magnesium salts, calcium salts, iron salts, manganese salts and the like can be appropriately added.

その他、本発明で使用されるD−乳酸生産菌が生育のために特定の栄養素を必要とする場合にはその栄養物を標品もしくはそれを含有する天然物として添加する。また、消泡剤も必要に応じて使用することができる。   In addition, when the D-lactic acid-producing bacterium used in the present invention requires a specific nutrient for growth, the nutrient is added as a preparation or a natural product containing it. Moreover, an antifoamer can also be used as needed.

本発明において前記D−乳酸生産菌を発酵培養する際は、静置もしくは振とう培養、撹拌培養などで行うことができる。さらに、発酵形態としては、従来から知られているいかなる発酵方法、例えば、回分式(Batch)発酵、または流加式(Fed−Batch)発酵、連続発酵、によってでも行うことができるが、発酵生産能力のあるフレッシュな菌体を増殖させつつ行う連続および回分または流加培養操作は、培養管理上、通常、単一の発酵反応槽で行うことが好ましい。しかしながら、菌体を増殖しつつ生産物を生成する連続培養法であれば、発酵反応槽の数は問わない。発酵反応槽の容量が小さい等の理由から、複数の発酵反応槽を用いることもあり得る。この場合、複数の発酵反応槽を配管で並列または直列に接続して連続または流加培養を行っても発酵生産物の高生産性は得られる。   In the present invention, the D-lactic acid-producing bacterium can be fermented and cultured by standing or shaking culture, stirring culture or the like. Furthermore, as a fermentation form, it can be carried out by any conventionally known fermentation method, for example, batch fermentation, fed-batch fermentation, continuous fermentation, or fermentative production. It is preferable that continuous and batch or fed-batch culture operations performed while growing capable fresh cells are usually performed in a single fermentation reaction tank in terms of culture management. However, the number of fermentation reaction tanks is not limited as long as it is a continuous culture method for producing a product while growing cells. A plurality of fermentation reaction tanks may be used because the capacity of the fermentation reaction tank is small. In this case, even if a plurality of fermentation reaction tanks are connected in parallel or in series by piping and continuous or fed-batch culture is performed, high productivity of the fermentation product can be obtained.

本発明を回分式または流加式培養において実施する場合は、培養初期に回分培養または流加培養を行って細菌濃度を高くした後に本培養を開始しても良いし、高濃度の菌体をシードし、培養開始とともに本培養を行っても良い。   When the present invention is carried out in batch-type or fed-batch culture, the main culture may be started after batch culture or fed-batch culture is performed at an early stage of culture to increase the bacterial concentration. You may seed and you may perform main culture with the start of culture | cultivation.

本発明を連続培養において実施する場合は、培養初期にBatch培養またはFed−Batch培養を行って細菌濃度を高くした後に連続培養(引き抜き)を開始しても良いし、高濃度の菌体をシードし、培養開始とともに連続培養を行っても良い。また、菌体を発酵反応槽に維持したままで、発酵反応槽からの発酵培養液の連続的かつ効率的な抜き出しが可能となることから、D−乳酸生産菌を連続的に発酵培養し、十分な増殖を確保した後に発酵原料液組成を変更し、目的とするD−乳酸を効率よく製造することも可能である。連続培養の際の発酵原料供給と発酵培養液の引き抜きの開始時期は、必ずしも同じである必要はなく、発酵原料の供給と発酵培養液の引き抜きは連続的であってもよいし、間欠的であってもよい。発酵原料には、上記に示したような菌体増殖に必要な栄養素を添加し、菌体増殖が連続的に行われるようにすればよい。なお、本発明を連続培養において実施する場合の好ましい連続培養方法としては、WO2007/097260に開示される膜利用連続発酵法が好ましく採用される。   When the present invention is carried out in continuous culture, batch culture or fed-batch culture may be performed at the beginning of the culture to increase the bacterial concentration, and then continuous culture (pullout) may be started, or high-concentration cells may be seeded. And you may perform continuous culture with the start of culture | cultivation. In addition, it is possible to continuously and efficiently extract the fermentation broth from the fermentation reaction tank while maintaining the cells in the fermentation reaction tank. It is also possible to efficiently produce the target D-lactic acid by changing the fermentation raw material liquid composition after ensuring sufficient growth. The fermentation raw material supply and the start of extraction of the fermentation broth during continuous culture do not necessarily have to be the same. The supply of the fermentation raw material and the extraction of the fermentation broth may be continuous or intermittent. There may be. Nutrients necessary for cell growth as described above may be added to the fermentation raw material so that the cell growth is continuously performed. As a preferred continuous culture method when the present invention is carried out in continuous culture, a membrane-based continuous fermentation method disclosed in WO2007 / 097260 is preferably employed.

本発明の発酵培養液中のD−乳酸生産菌の濃度は、発酵培養液の環境が細菌または培養細胞の増殖にとって不適切となって死滅する比率が高くならない範囲で、高い状態で維持することが効率よい生産性を得るのに好ましく、一例として、乾燥重量として5g/L以上に維持することで良好な生産効率が得られる。また、連続発酵装置の運転上の不具合、生産効率の低下を招かなければ、微生物の濃度の上限値は限定されない。   The concentration of the D-lactic acid-producing bacterium in the fermentation broth of the present invention should be maintained at a high level as long as the environment of the fermentation broth is inappropriate for the growth of bacteria or cultured cells and does not increase the rate of death. Is preferable for obtaining efficient productivity, and as an example, good production efficiency can be obtained by maintaining the dry weight at 5 g / L or more. Moreover, the upper limit of the density | concentration of microorganisms will not be limited if the malfunction on the operation | movement of a continuous fermentation apparatus and the fall of production efficiency are not caused.

本発明により製造されたD−乳酸の濾過・分離・精製は、従来知られている濃縮、蒸留および晶析などの方法を組み合わせて行うことができる。   Filtration / separation / purification of D-lactic acid produced according to the present invention can be carried out by a combination of conventionally known methods such as concentration, distillation and crystallization.

D−乳酸の分離・精製方法としては、例えば、濾過・分離発酵液のpHを1以下にしてからジエチルエーテルや酢酸エチル等で抽出する方法、イオン交換樹脂に吸着洗浄した後に溶出する方法、酸触媒の存在下でアルコールと反応させてエステルとし蒸留する方法、およびカルシウム塩やリチウム塩として晶析する方法などが挙げられる。好ましくは、濾過・分離発酵液の水分を蒸発させた濃縮D−乳酸溶液を蒸留操作にかけることができる。ここで、蒸留する際には、蒸留原液の水分濃度が一定になるように水分を供給しながら蒸留することが好ましい。D−乳酸水溶液の留出後は、水分を加熱蒸発することにより濃縮し、目的とする濃度の精製D−乳酸を得ることができる。留出液として低沸点成分(エタノール、酢酸等)を含むD−乳酸水溶液を得た場合は、低沸点成分をD−乳酸濃縮過程で除去することが好ましい態様である。蒸留操作後、留出液について必要に応じて、イオン交換樹脂、活性炭およびクロマト分離等による不純物除去を行い、さらに高純度のD−乳酸を得ることもできる。   Examples of methods for separating and purifying D-lactic acid include, for example, a method in which the pH of the filtered / separated fermentation broth is 1 or less and extraction with diethyl ether, ethyl acetate, or the like, a method in which elution is performed after adsorption washing on an ion exchange resin, Examples thereof include a method of reacting with an alcohol in the presence of a catalyst to distill as an ester, and a method of crystallizing as a calcium salt or a lithium salt. Preferably, the concentrated D-lactic acid solution obtained by evaporating water from the filtered / separated fermentation broth can be subjected to a distillation operation. Here, when distilling, it is preferable to distill while supplying water so that the water concentration of the undistilled stock solution is constant. After distilling off the D-lactic acid aqueous solution, the water can be concentrated by heating to evaporate to obtain purified D-lactic acid having a target concentration. When a D-lactic acid aqueous solution containing a low-boiling component (ethanol, acetic acid, etc.) is obtained as a distillate, it is a preferred embodiment that the low-boiling component is removed during the D-lactic acid concentration process. After the distillation operation, impurities can be removed from the distillate by ion exchange resin, activated carbon, chromatographic separation, or the like, if necessary, to obtain higher purity D-lactic acid.

本発明によるD−乳酸の製造方法によって得られたD−乳酸は、ポリエステル樹脂の原料に用いられ、それらポリエステル樹脂は、射出成形、押出成形、ブロー成形、真空成形、溶融紡糸およびフィルム成形などの任意の成形方法により、所望の形状に成形することができ、機械部品などの樹脂成形品、衣料・産業資材などの繊維、および包装・磁気記録などのフィルムとして使用することができる。本発明によるD−乳酸の製造方法を用いることにより、これら幅広い用途のあるD−乳酸を効率的に製造することができることから、より安価に乳酸を提供することが可能となる。   D-lactic acid obtained by the method for producing D-lactic acid according to the present invention is used as a raw material for a polyester resin, and the polyester resin is used for injection molding, extrusion molding, blow molding, vacuum molding, melt spinning, film molding, and the like. It can be molded into a desired shape by any molding method, and can be used as a resin molded article such as a machine part, a fiber such as clothing or industrial material, and a film such as packaging or magnetic recording. By using the method for producing D-lactic acid according to the present invention, it is possible to efficiently produce D-lactic acid having a wide range of uses, and thus it is possible to provide lactic acid at a lower cost.

以下、本発明のD−乳酸の製造方法をさらに具体的に説明するために回分発酵によるD−乳酸の発酵生産について実施例に基づいて具体的に説明する。本発明は、これらの実施例に限定されない。   Hereinafter, the fermentation production of D-lactic acid by batch fermentation will be specifically described based on Examples in order to more specifically describe the method for producing D-lactic acid of the present invention. The present invention is not limited to these examples.

本発明の実施例では、D−乳酸を生産させる細菌として、スポロラクトバチルス属(Genus Sporolactobacillus)に属するD−乳酸生産菌のうち、乳酸菌であるスポロラクトバチルス・ラエボラクティカス(Sporolactobacillus laevolacticus)ATCC23492株を選定した。発酵原料としては上記の乳酸発酵培地(GYC1、GYC2、GYC3、RSE、RSC1、RSC2またはGPC培地)を用いた。D−乳酸濃度のHPLCによる分析方法は次のとおりである。   In the examples of the present invention, among the D-lactic acid-producing bacteria belonging to the genus Sporolactobacillus, the lactic acid bacterium, Sporolactobacillus laevolacticus, is used as a bacterium that produces D-lactic acid. ) ATCC23492 strain was selected. The lactic acid fermentation medium (GYC1, GYC2, GYC3, RSE, RSC1, RSC2, or GPC medium) described above was used as a fermentation raw material. The method for analyzing the D-lactic acid concentration by HPLC is as follows.

[D−乳酸濃度のHPLCによる分析方法]
培養液を遠心分離し、得られた上清を膜濾過した後、下記に示す条件でHPLC法により乳酸量を測定した。
[Analysis method of D-lactic acid concentration by HPLC]
The culture solution was centrifuged, and the resulting supernatant was subjected to membrane filtration, and then the amount of lactic acid was measured by the HPLC method under the conditions shown below.

[分析条件]
・カラム:Shim−Pack SPR−H(株式会社島津製作所製)
・移動相:5mM p−トルエンスルホン酸(流速0.8mL/min)
・反応液:5mM p−トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
・検出方法:電気伝導度
・温度:45℃。
[Analysis conditions]
Column: Shim-Pack SPR-H (manufactured by Shimadzu Corporation)
-Mobile phase: 5 mM p-toluenesulfonic acid (flow rate 0.8 mL / min)
Reaction solution: 5 mM p-toluenesulfonic acid, 20 mM Bistris, 0.1 mM EDTA · 2Na (flow rate 0.8 mL / min)
-Detection method: electrical conductivity-Temperature: 45 ° C.

また、D−乳酸の光学純度測定は、下記の条件でHPLC法により測定した。
・カラム:TSK−gel Enantio L1(東ソー株式会社製)
・移動相 :1mM 硫酸銅水溶液
・流速:1.0ml/min
・検出方法 :UV254nm
・温度 :30℃。
The optical purity of D-lactic acid was measured by the HPLC method under the following conditions.
Column: TSK-gel Enantio L1 (manufactured by Tosoh Corporation)
-Mobile phase: 1 mM aqueous copper sulfate-Flow rate: 1.0 ml / min
・ Detection method: UV254nm
-Temperature: 30 degreeC.

また、D−乳酸の光学純度は、次式で計算される。
・光学純度(%)=100×(D−L)/(L+D)
ここで、LはL−乳酸の濃度であり、DはD−乳酸の濃度を表す。
Moreover, the optical purity of D-lactic acid is calculated by the following formula.
Optical purity (%) = 100 × (DL) / (L + D)
Here, L represents the concentration of L-lactic acid, and D represents the concentration of D-lactic acid.

D−乳酸生産と同時に生産される副生産物は、有機酸とアルコール類が挙げられる。有機酸としてギ酸、酢酸、ピルビン酸、コハク酸の濃度は上記のD−乳酸濃度の分析時に用いたHPLCにより同様に分析し、F−キット(ロシュ社製)により更に濃度を測定して検定を行った。アルコール類としてエタノールは以下のGCによる方法で測定した。   By-products produced simultaneously with the production of D-lactic acid include organic acids and alcohols. Formic acid, acetic acid, pyruvic acid, and succinic acid as organic acids were analyzed in the same manner by the HPLC used for the analysis of the D-lactic acid concentration described above, and the concentration was further measured by F-kit (Roche). went. Ethanol as an alcohol was measured by the following GC method.

[GCによる分析方法]
培養液を遠心分離し、得られた上清を膜濾過した後、下記に示す条件により測定した。
・装置:GC−2010(株式会社島津製作所製)
・カラム:TC−1;15m*0.53mm*1.5μm(ジーエルサイエンス社製)
・注入方法:スプリット(30:1)
・キャリアガス:ヘリウム
・メイクアップガス:ヘリウム
・気化室温度:200℃
・カラム温度:100℃
・検出器:FID
・検出器温度:200℃
・線速度:59.2cm/sec。
[Analysis method by GC]
The culture solution was centrifuged, and the resulting supernatant was subjected to membrane filtration, and then measured under the following conditions.
・ Device: GC-2010 (manufactured by Shimadzu Corporation)
Column: TC-1; 15 m * 0.53 mm * 1.5 μm (manufactured by GL Sciences Inc.)
・ Injection method: Split (30: 1)
Carrier gas: Helium Makeup gas: Helium Vaporization chamber temperature: 200 ° C
-Column temperature: 100 ° C
・ Detector: FID
-Detector temperature: 200 ° C
-Linear velocity: 59.2 cm / sec.

(参考例1)システイン以外の窒素源に含まれる不純物としてのシステイン含量
以下、本発明の実施例にシステイン以外の窒素源として使用した酵母エキス(BactoTM Yeast Extract(BD社))、ポリペプトンS(日本製薬社)、そして主にスクロースを含み、不純物として0.3重量%のタンパク質を含む原料糖(ムソー株式会社“優糖精”)におけるシステイン含量は、次に示す条件で次のアミノ酸分析計を用いて測定した。
(Reference Example 1) Cysteine content as an impurity contained in a nitrogen source other than cysteine Hereinafter, yeast extract (Bacto Yeast Extract (BD)) used as a nitrogen source other than cysteine in Examples of the present invention, Polypeptone S ( Japan Pharmaceutical Co., Ltd.), and the cysteine content in the raw sugar (Musau Corporation “Yuyakusei”), which mainly contains sucrose and contains 0.3% protein by weight, is determined by the following amino acid analyzer under the following conditions: And measured.

[酵母エキスとポリペプトンSのアミノ酸分析計によるシステインの分析方法]
上記の酵母エキスとポリペプトンSの前処理のため、各0.2201gと0.1229gを採取し、精製水に溶解して酵母エキスは12.01mlに、ポリペプトンSは12.29mlにした。その後、試料溶液450μlを別のチューブに採取し、その溶液に20%スルホサリチル酸50μlを添加して攪拌を行った。続いて、0.22μmのフィルターによりろ過して50μlを採取した。各サンプル濃度を更に10倍したものも用意し、それらを分析試料とし、L−8500形のアミノ酸分析計を用い、次の条件によりシステインの含量を測定した。
[Method of analyzing cysteine by amino acid analyzer of yeast extract and polypeptone S]
For pretreatment of the yeast extract and polypeptone S, 0.2201 g and 0.1229 g of each were collected and dissolved in purified water to make yeast extract 12.12 ml and polypeptone S 12.29 ml. Thereafter, 450 μl of the sample solution was collected in another tube, and 50 μl of 20% sulfosalicylic acid was added to the solution and stirred. Subsequently, 50 μl was collected by filtration through a 0.22 μm filter. Samples with 10 times the concentration of each sample were also prepared, which were used as analysis samples, and the cysteine content was measured under the following conditions using an L-8500 type amino acid analyzer.

[分析条件]
・アミノ酸分析計:L−8500形(株式会社日立製作所製)
・カラム:強酸性イオン交換樹脂 #2620M SC(株式会社日立製作所)4.6mm I.D.×8cm
・移動相:緩衝液PS−1、PS−3、PS−4及びPS−RG(L−8500形日立高速アミノ酸分析計用、和光純薬工業株式会社製)
・移動相流速:0.19mL/min
・反応溶液:ニンヒドリン試液−L8500セット(ニンヒドリン溶液、緩衝液)(L−8500形日立高速アミノ酸分析計用、和光純薬工業株式会社製)
・反応溶液流速:0.2mL/min
・化学反応槽温度:130℃
・反応時間:50秒
・検出波長:570nm、440nm
・試料注入量:50μl。
[Analysis conditions]
・ Amino acid analyzer: Model L-8500 (manufactured by Hitachi, Ltd.)
Column: Strongly acidic ion exchange resin # 2620M SC (Hitachi, Ltd.) 4.6 mm D. × 8cm
Mobile phase: Buffer PS-1, PS-3, PS-4 and PS-RG (for L-8500 Hitachi High-Speed Amino Acid Analyzer, manufactured by Wako Pure Chemical Industries, Ltd.)
-Mobile phase flow rate: 0.19 mL / min
Reaction solution: ninhydrin test solution-L8500 set (ninhydrin solution, buffer solution) (for L-8500 type Hitachi high-speed amino acid analyzer, manufactured by Wako Pure Chemical Industries, Ltd.)
-Reaction solution flow rate: 0.2 mL / min
・ Chemical reactor temperature: 130 ℃
-Reaction time: 50 seconds-Detection wavelength: 570 nm, 440 nm
Sample injection volume: 50 μl.

[原料糖のアミノ酸分析計によるシステインの分析方法]
原料糖の前処理のため、水1Lに100gの原料糖を溶かし、180μlを採取して20%スルホサリチル酸20μlを添加して攪拌を行った。続いて、0.22μmのフィルターによりろ過して25μlを採取し、それを分析試料とし、L−8800A形のアミノ酸分析計を用い、次の条件によりシステインの含量を測定した。
[Method of analyzing cysteine with amino acid analyzer of raw sugar]
For pretreatment of raw sugar, 100 g of raw sugar was dissolved in 1 L of water, 180 μl was collected, and 20 μl of 20% sulfosalicylic acid was added and stirred. Subsequently, 25 μl was collected by filtration through a 0.22 μm filter, and this was used as an analysis sample. Using an L-8800A type amino acid analyzer, the cysteine content was measured under the following conditions.

[分析条件]
・アミノ酸分析計:L−8800A形(株式会社日立製作所製)
・カラム:日立カスタムイオン交換樹脂 #2622(株式会社日立製作所製)6mm×25mm×2本
・アンモニアフィルタカラム:日立カスタムイオン交換樹脂#2650(株式会社日立製作所製)4.6mm×60mm
・移動相:L−8500緩衝液PF−1、PF−2、PF−3、PF−4、L−8500カラム再生液PF(L−8500形日立高速アミノ酸分析計用、和光純薬工業株式会社製)
・反応溶液:ニンヒドリン試液ワコーニンヒドリン試液−L8500セット(ニンヒドリン溶液、緩衝液)(L−8500形日立高速アミノ酸分析計用、和光純薬工業株式会社製)
・化学反応槽温度:135℃
・検出波長:570nm,440nm
・試料注入量:25μl。
[Analysis conditions]
Amino acid analyzer: L-8800A type (manufactured by Hitachi, Ltd.)
Column: Hitachi custom ion exchange resin # 2622 (manufactured by Hitachi, Ltd.) 6 mm × 25 mm × 2 Ammonia filter column: Hitachi custom ion exchange resin # 2650 (manufactured by Hitachi, Ltd.) 4.6 mm × 60 mm
Mobile phase: L-8500 buffer solution PF-1, PF-2, PF-3, PF-4, L-8500 column regeneration solution PF (for L-8500 type Hitachi high-speed amino acid analyzer, Wako Pure Chemical Industries, Ltd. Made)
-Reaction solution: ninhydrin test solution Wakonin hydrin test solution-L8500 set (ninhydrin solution, buffer) (for L-8500 type Hitachi high-speed amino acid analyzer, manufactured by Wako Pure Chemical Industries, Ltd.)
・ Chemical reactor temperature: 135 ℃
・ Detection wavelength: 570 nm, 440 nm
Sample injection volume: 25 μl.

上記分析により、上記の酵母エキスが含むシステインは酵母エキス1gあたり1.11mgであり、ポリペプトンSが含むシステインはポリペプトンS1gあたり0.48mg、原料糖100gが含むシステインは0.48mgであった。   According to the above analysis, the cysteine contained in the yeast extract was 1.11 mg per gram of yeast extract, the cysteine contained in Polypeptone S was 0.48 mg per gram of Polypeptone S, and the cysteine contained in 100 g of raw sugar was 0.48 mg.

(実施例1)バッチ発酵によるD−乳酸の製造(その1)
スポロラクトバチルス・ラエボラクティカス ATCC23492株を、試験管で5mlの窒素ガスでパージしたGYC1倍地で24時間、30℃の温度で静置培養した(前培養)。前培養液を同培地で植菌し、37℃、120rpmで培養終了まで振とう培養した。
(Example 1) Production of D-lactic acid by batch fermentation (part 1)
Sporactobacillus laevolacticus ATCC23492 strain was statically cultured at a temperature of 30 ° C. for 24 hours in a GYC1 medium purged with 5 ml of nitrogen gas in a test tube (preculture). The preculture was inoculated with the same medium and cultured with shaking at 37 ° C. and 120 rpm until the end of the culture.

150時間の発酵試験を行った結果、光学純度の向上が見られて99%以上、かつ生産収率が90%であった。また副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.4g/Lと非常に低濃度であり、比較例と比べて1/3以上に副生産物の生産を削減できた(表1)。   As a result of conducting a fermentation test for 150 hours, the optical purity was improved, and it was 99% or more, and the production yield was 90%. In addition, pyruvic acid, acetic acid, formic acid and ethanol were produced as by-products, but the concentration of by-products was very low at 0.4 g / L, which was more than 1/3 of that of the comparative example. We were able to reduce production (Table 1).

上記のGYC1倍地は、水1Lに100gのグルコースと0.1gのシステイン、システイン以外の窒素源として0.4gの酵母エキス、さらにリン源として0.2gのリン酸二水素カリウムを溶かして調製し、GYC1とした。   The above GYC1 medium is prepared by dissolving 100 g of glucose and 0.1 g of cysteine in 1 L of water, 0.4 g of yeast extract as a nitrogen source other than cysteine, and 0.2 g of potassium dihydrogen phosphate as a phosphorus source. And GYC1.

(実施例2)バッチ発酵によるD−乳酸の製造(その2)
スポロラクトバチルス・ラエボラクティカス ATCC23492株を、試験管で5mlの窒素ガスでパージしたGYC2倍地で24時間、30℃の温度で静置培養した(前培養)。前培養液を同培地で植菌し、37℃、120rpmで培養終了まで振とう培養した。
(Example 2) Production of D-lactic acid by batch fermentation (part 2)
Sporalactobacillus laevolacticus ATCC23492 strain was statically cultured at a temperature of 30 ° C. for 24 hours in a GYC2 medium purged with 5 ml of nitrogen gas in a test tube (preculture). The preculture was inoculated with the same medium and cultured with shaking at 37 ° C. and 120 rpm until the end of the culture.

160時間の発酵試験を行った結果、光学純度の向上が見られて99%以上、かつ生産収率が93%であった。また副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.1g/Lと非常に低濃度であり、比較例と比べて1/15以上に副生産物の生産を削減できた(表1)。   As a result of a 160-hour fermentation test, the optical purity was improved and 99% or more and the production yield was 93%. In addition, pyruvic acid, acetic acid, formic acid and ethanol were produced as by-products, but the concentration of by-products was very low at 0.1 g / L, which was 1/15 or more compared to the comparative example. We were able to reduce production (Table 1).

上記のGYC2倍地は、水1Lに100gのグルコースと0.2gのシステイン、システイン以外の窒素源として0.1gの酵母エキス、0.2gのリン酸二水素カリウムを溶かして調製し、GYC2とした。   The above GYC2 medium is prepared by dissolving 100 g of glucose, 0.2 g of cysteine, 0.1 g of yeast extract as a nitrogen source other than cysteine, and 0.2 g of potassium dihydrogen phosphate in 1 L of water. did.

(実施例3)バッチ発酵によるD−乳酸の製造(その3)
スポロラクトバチルス・ラエボラクティカス ATCC23492株を、試験管で5mlの窒素ガスでパージしたGYC3倍地で24時間、30℃の温度で静置培養した(前培養)。前培養液を同培地で植菌し、37℃、120rpmで培養終了まで振とう培養した。
(Example 3) Production of D-lactic acid by batch fermentation (part 3)
Sporactobacillus laevolacticus ATCC23492 strain was statically cultured at a temperature of 30 ° C. for 24 hours in GYC3 medium purged with 5 ml of nitrogen gas in a test tube (preculture). The preculture was inoculated with the same medium and cultured with shaking at 37 ° C. and 120 rpm until the end of the culture.

150時間の発酵試験を行った結果、光学純度の向上が見られて99%以上、かつ生産収率が95%であった。また副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.1g/Lと非常に低濃度であり、比較例と比べて1/15以上に副生産物の生産を削減できた(表1)。   As a result of performing the fermentation test for 150 hours, the optical purity was improved and 99% or more and the production yield was 95%. In addition, pyruvic acid, acetic acid, formic acid and ethanol were produced as by-products, but the concentration of by-products was very low at 0.1 g / L, which was 1/15 or more compared to the comparative example. We were able to reduce production (Table 1).

上記のGYC3倍地は、水1Lに100gのグルコースと0.4gのシステイン、システイン以外の窒素源として0.1gの酵母エキス、0.2gのリン酸二水素カリウムを溶かして調製し、GYC3とした。   The above GYC3 medium is prepared by dissolving 100 g of glucose, 0.4 g of cysteine, 0.1 g of yeast extract as a nitrogen source other than cysteine, and 0.2 g of potassium dihydrogen phosphate in 1 L of water. did.

(実施例4)バッチ発酵によるD−乳酸の製造(その4)
スポロラクトバチルス・ラエボラクティカス ATCC23492株を、試験管で5mlの窒素ガスでパージしたRSE倍地で24時間、30℃の温度で静置培養した(前培養)。前培養液を同培地で植菌し、37℃、120rpmで培養終了まで振とう培養した。
(Example 4) Production of D-lactic acid by batch fermentation (part 4)
Sporactobacillus laevolacticus ATCC23492 strain was statically cultured at a temperature of 30 ° C. for 24 hours in an RSE medium purged with 5 ml of nitrogen gas in a test tube (preculture). The preculture was inoculated with the same medium and cultured with shaking at 37 ° C. and 120 rpm until the end of the culture.

180時間の発酵試験を行った結果、光学純度の向上が見られて99%以上、かつ生産収率が90%であった。また副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.5g/Lと非常に低濃度であり、比較例と比べて1/3以上に副生産物の生産を削減できた(表1)。   As a result of the 180-hour fermentation test, the optical purity was improved, and it was 99% or more, and the production yield was 90%. In addition, pyruvic acid, acetic acid, formic acid and ethanol were produced as by-products, but the concentration of by-products was very low at 0.5 g / L, which was more than 1/3 of that of the comparative example. We were able to reduce production (Table 1).

上記のRSE培地は、水1Lに100gの原料糖(ムソー株式会社“優糖精”)と0.15gの酵母エキス、0.2gのリン酸二水素カリウムを溶かして調製し、RSEとした。なお、原料糖100gにはシステインが0.48mg含まれているため、RSE培地には0.65mg/Lのシステインが含まれる。また、システイン以外の窒素源は0.45g/L含まれる。   The above-mentioned RSE medium was prepared by dissolving 100 g of raw sugar (Musou Co., Ltd., “Yakusakusei”), 0.15 g of yeast extract and 0.2 g of potassium dihydrogen phosphate in 1 L of water, and RSE was used. Since 100 g of raw sugar contains 0.48 mg of cysteine, the RSE medium contains 0.65 mg / L of cysteine. Moreover, 0.45 g / L of nitrogen sources other than cysteine is contained.

(実施例5)バッチ発酵によるD−乳酸の製造(その5)
スポロラクトバチルス・ラエボラクティカス ATCC23492株を、試験管で5mlの窒素ガスでパージしたGPC倍地で24時間、30℃の温度で静置培養した(前培養)。前培養液を同培地で植菌し、37℃、120rpmで培養終了まで振とう培養した。
(Example 5) Production of D-lactic acid by batch fermentation (part 5)
Sporactobacillus laevolacticus ATCC23492 strain was statically cultured at a temperature of 30 ° C. for 24 hours in a GPC medium purged with 5 ml of nitrogen gas in a test tube (preculture). The preculture was inoculated with the same medium and cultured with shaking at 37 ° C. and 120 rpm until the end of the culture.

160時間の発酵試験を行った結果、光学純度の向上が見られて99%以上、かつ生産収率が90%であった。また副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.5g/Lと非常に低濃度であり、比較例と比べて1/3以上に副生産物の生産を削減できた(表1)。   As a result of a 160-hour fermentation test, the optical purity was improved and 99% or more and the production yield was 90%. In addition, pyruvic acid, acetic acid, formic acid and ethanol were produced as by-products, but the concentration of by-products was very low at 0.5 g / L, which was more than 1/3 of that of the comparative example. We were able to reduce production (Table 1).

上記のGPC倍地は、水1Lに100gのグルコースと0.2gのシステイン、システイン以外の窒素源として0.4gのポリペプトンS、リン源として0.2gのリン酸二水素カリウムを溶かして調製し、GPCとした。   The GPC medium is prepared by dissolving 100 g of glucose and 0.2 g of cysteine in 1 L of water, 0.4 g of polypeptone S as a nitrogen source other than cysteine, and 0.2 g of potassium dihydrogen phosphate as a phosphorus source. GPC.

(実施例6)Fed−Batch発酵によるD−乳酸の製造(その6)
スポロラクトバチルス・ラエボラクティカス ATCC23492株を、試験管で5mlの窒素ガスでパージしたRSE培地で24時間、30℃の温度で静置培養した(前々培養)。前培養液を同培地で植菌し、37℃、120rpmで培養終了まで振とう培養した。残存総糖濃度を測り、残存糖の濃度が0.5g/Lになっていることを確認し、培養液200mlを、別の発酵槽で用意したRSC1培地800mlに植菌し、37℃、120rpmで培養終了まで振とう培養した。
(Example 6) Production of D-lactic acid by Fed-Batch fermentation (Part 6)
Sporalactobacillus laevolacticus ATCC23492 strain was statically cultured at a temperature of 30 ° C. for 24 hours in an RSE medium purged with 5 ml of nitrogen gas in a test tube (pre-culture). The preculture was inoculated with the same medium and cultured with shaking at 37 ° C. and 120 rpm until the end of the culture. The residual total sugar concentration was measured, it was confirmed that the residual sugar concentration was 0.5 g / L, 200 ml of the culture solution was inoculated into 800 ml of RSC1 medium prepared in another fermentor, and 37 ° C., 120 rpm. And shaking culture until the end of the culture.

150時間の発酵試験を行った結果、光学純度の向上が見られて99%以上、かつ生産収率が95%であった。また副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.3g/Lと非常に低濃度であり、比較例と比べて1/5以上に副生産物の生産を削減できた(表1)。   As a result of performing the fermentation test for 150 hours, the optical purity was improved and 99% or more and the production yield was 95%. In addition, pyruvic acid, acetic acid, formic acid and ethanol were produced as by-products, but the concentration of by-products was as low as 0.3 g / L, which was 1/5 or more compared to the comparative example. We were able to reduce production (Table 1).

上記のRSC1培地は、水1Lに、100gの原料糖(ムソー株式会社“優糖精”)、0.4gのシステイン、0.2gのリン酸二水素カリウムを溶かして調製し、RSC1とした。なお、原料糖には0.3重量%のタンパク質が不純物として含まれるため、RSC1培地にはシステイン以外の窒素源が0.3g/L含まれている。   The above RSC1 medium was prepared by dissolving 100 g of raw material sugar (“Musou Co., Ltd.,“ Yakuseisei ”), 0.4 g of cysteine, and 0.2 g of potassium dihydrogen phosphate in 1 L of water, and designated RSC1. Since the raw material sugar contains 0.3% by weight of protein as an impurity, the RSC1 medium contains 0.3 g / L of a nitrogen source other than cysteine.

(実施例7)Fed−Batch発酵によるD−乳酸の製造(その7)
スポロラクトバチルス・ラエボラクティカス ATCC 23492株を、試験管で5mlの窒素ガスでパージしたRSE培地で24時間、30℃の温度で静置培養した(前々培養)。前培養液を同培地で植菌し、37℃、120rpmで培養終了まで振とう培養した。残存総糖濃度を測り、残存糖の濃度が0.5g/Lになっていることを確認し、培養液200mlを、別の発酵槽で用意したRSC2培地800mlに植菌し、37℃、120rpmで培養終了まで振とう培養した。
(Example 7) Production of D-lactic acid by Fed-Batch fermentation (part 7)
Sporactobacillus laevolacticus ATCC 23492 strain was statically cultured at a temperature of 30 ° C. for 24 hours in a RSE medium purged with 5 ml of nitrogen gas in a test tube (pre-culture). The preculture was inoculated with the same medium and cultured with shaking at 37 ° C. and 120 rpm until the end of the culture. The residual total sugar concentration was measured, it was confirmed that the residual sugar concentration was 0.5 g / L, 200 ml of the culture solution was inoculated into 800 ml of RSC2 medium prepared in another fermentor, and 37 ° C., 120 rpm. And shaking culture until the end of the culture.

150時間の発酵試験を行った結果、光学純度の向上が見られて99%以上、かつ生産収率が95%であった。また副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.4g/Lと非常に低濃度であり、比較例と比べて1/3以上に副生産物の生産を削減できた(表1)。   As a result of performing the fermentation test for 150 hours, the optical purity was improved and 99% or more and the production yield was 95%. In addition, pyruvic acid, acetic acid, formic acid and ethanol were produced as by-products, but the concentration of by-products was very low at 0.4 g / L, which was more than 1/3 of that of the comparative example. We were able to reduce production (Table 1).

上記のRSC2培地は、水1Lに、100gの原料糖(ムソー株式会社“優糖精”)、0.4gのシステイン、0.2gのリン酸二水素カリウムを溶かして調製し、RSC2とした。なお、原料糖には0.3重量%のタンパク質が不純物として含まれるため、RSC2培地にはシステイン以外の窒素源が0.3g/L含まれている。   The above RSC2 medium was prepared by dissolving 100 g of raw material sugar (Musau Co., Ltd., “Sugar Seika”), 0.4 g of cysteine, and 0.2 g of potassium dihydrogen phosphate in 1 L of water, and designated as RSC2. Since the raw material sugar contains 0.3% by weight of protein as an impurity, the RSC2 medium contains 0.3 g / L of a nitrogen source other than cysteine.

(比較例1)バッチ発酵によるD−乳酸の製造(その8)
水1Lに100gのグルコースと0.5gの酵母エキスを溶かして作製したGY1培地を使用する他は、実施例1と同様にして、バッチ発酵試験を行った。添加した酵母エキス1gあたりに1.11mgのシステインが含まれることから、GY1培地には0.56mg/Lのシステインが含まれる。
(Comparative Example 1) Production of D-lactic acid by batch fermentation (Part 8)
A batch fermentation test was conducted in the same manner as in Example 1 except that GY1 medium prepared by dissolving 100 g of glucose and 0.5 g of yeast extract in 1 L of water was used. Since 1.11 mg of cysteine is contained per 1 g of added yeast extract, the GY1 medium contains 0.56 mg / L of cysteine.

220時間の発酵試験を行った結果、光学純度が97%以下であり、副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成され、発酵液中の副産物濃度は1.5g/L以上と多く生産された(表1)。   As a result of performing the fermentation test for 220 hours, the optical purity was 97% or less, and pyruvic acid, acetic acid, formic acid and ethanol were produced as by-products, and the by-product concentration in the fermentation broth was 1.5 g / L or more. Many were produced (Table 1).

(比較例2)バッチ発酵によるD−乳酸の製造(その9)
水1Lに100gのグルコースと1gの酵母エキスを溶かして作製したGY2培地を使用する他は、実施例1と同様にして、バッチ発酵試験を行った。添加した酵母エキス1gあたりに1.11mgのシステインが含まれることから、GY2培地には1.11mg/Lのシステインが含まれる。
Comparative Example 2 Production of D-lactic acid by batch fermentation (part 9)
A batch fermentation test was conducted in the same manner as in Example 1 except that a GY2 medium prepared by dissolving 100 g of glucose and 1 g of yeast extract in 1 L of water was used. Since 1.11 mg of cysteine is contained per 1 g of added yeast extract, the GY2 medium contains 1.11 mg / L of cysteine.

180時間の発酵試験を行った結果、光学純度が97.5%であったが、副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成され、発酵液中の副産物濃度は2g/L以上と多く生産された(表1)。   As a result of performing the fermentation test for 180 hours, the optical purity was 97.5%, but pyruvic acid, acetic acid, formic acid and ethanol were produced as by-products, and the by-product concentration in the fermentation broth was 2 g / L or more. (Table 1).

(比較例3)バッチ発酵によるD−乳酸の製造(その10)
水1Lに100gのグルコースと5gの酵母エキスを溶かして作製したGY3培地を使用する他は、実施例1と同様にして、バッチ発酵試験を行った。添加した酵母エキス1gあたりに1.11mgのシステインが含まれることから、GY3培地には5.55mg/Lのシステインが含まれる。
Comparative Example 3 Production of D-lactic acid by batch fermentation (part 10)
A batch fermentation test was conducted in the same manner as in Example 1 except that a GY3 medium prepared by dissolving 100 g of glucose and 5 g of yeast extract in 1 L of water was used. Since 1.11 mg of cysteine is contained per 1 g of yeast extract added, the GY3 medium contains 5.55 mg / L of cysteine.

160時間の発酵試験を行った結果、光学純度が97.9%であったが、副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成され、発酵液中の副産物濃度は5g/L以上と多く生産された(表1)。   As a result of a 160-hour fermentation test, the optical purity was 97.9%, but by-products such as pyruvic acid, acetic acid, formic acid and ethanol were produced, and the by-product concentration in the fermentation broth was 5 g / L or more. (Table 1).

Figure 2010029119
Figure 2010029119

以下、本発明のD−乳酸の製造方法をさらに具体的に説明するためにWO2007/097260に開示される連続発酵装置を用いることによる連続的なD−乳酸の発酵生産について実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されない。   Hereinafter, in order to describe the method for producing D-lactic acid of the present invention more specifically, continuous fermentation production of D-lactic acid by using a continuous fermentation apparatus disclosed in WO2007 / 097260 is specifically described based on Examples. However, the present invention is not limited to these examples.

(実施例8)連続発酵によるD−乳酸の製造(その1)
図1に示す連続発酵装置を稼働させることにより、D−乳酸が連続発酵で得られるかどうかを調べるため、同装置を用いた連続発酵試験を行った。培地にはGYC1を用い、121℃の温度で15分間高圧蒸気滅菌処理して用いた。分離膜エレメントとしては図3に示される形態を採用し、分離膜には、WO2007/097260の参考例2に従って作製したポリフッ化ビニリデン(PVDF)を主成分とする多孔性膜、分離膜エレメント部材には、ステンレスおよびポリサルホン樹脂の成形品を用いた。この多孔性膜の特性を調べたところ、平均細孔径が0.1μmであり、純水透過係数が50×10-9/m/s/paであった。この実施例8における運転条件は、特に断らない限り下記のとおりである。
(Example 8) Production of D-lactic acid by continuous fermentation (part 1)
In order to investigate whether D-lactic acid is obtained by continuous fermentation by operating the continuous fermentation apparatus shown in FIG. 1, a continuous fermentation test using the apparatus was performed. GYC1 was used as the medium, and used after high-pressure steam sterilization at 121 ° C. for 15 minutes. As the separation membrane element, the form shown in FIG. 3 is adopted. As the separation membrane, a porous membrane mainly composed of polyvinylidene fluoride (PVDF) produced according to Reference Example 2 of WO2007 / 097260 is used as a separation membrane element member. Used a molded product of stainless steel and polysulfone resin. When the characteristics of the porous membrane were examined, the average pore diameter was 0.1 μm, and the pure water permeability coefficient was 50 × 10 −9 m 3 / m 2 / s / pa. The operating conditions in Example 8 are as follows unless otherwise specified.

[運転条件]
・発酵反応槽容量:1.5(L)
・使用分離膜:PVDF濾過膜
・膜分離エレメント有効濾過面積:120平方cm
・温度調整:35(℃)
・発酵反応槽通気量:100(mL/分)
・発酵反応槽攪拌速度:800(rpm)
・滅菌:分離膜エレメントを含む培養槽、および使用培地は総て121℃、20分のオートクレーブにより高圧蒸気滅菌
・pH調整:8N 水酸化カルシウムによりpHを6.0に調整
・膜透過水量制御:膜分離槽水頭差により流量を制御(水頭差は2m以内で制御した。)。
[Operating conditions]
・ Fermentation reactor capacity: 1.5 (L)
-Separation membrane used: PVDF filtration membrane-Membrane separation element Effective filtration area: 120 square cm
・ Temperature adjustment: 35 (℃)
-Aeration volume of fermentation reaction tank: 100 (mL / min)
・ Fermentation reactor stirring speed: 800 (rpm)
・ Sterilization: The culture tank containing the separation membrane element and the used medium are all autoclaved at 121 ° C. for 20 minutes. ・ PH adjustment: pH adjusted to 6.0 with 8N calcium hydroxide ・ Membrane permeate flow control: The flow rate was controlled by the membrane separation tank water head difference (water head difference was controlled within 2 m).

発酵培養液に含まれるD−乳酸は、上記HPLC法により乳酸量を測定することで確認した。   D-lactic acid contained in the fermentation broth was confirmed by measuring the amount of lactic acid by the HPLC method.

まず、スポロラクトバチルス・ラエボラクティカス ATCC23492株を、試験管で5mlの窒素ガスでパージした上記比較例2のGY2倍地で24時間、30℃の温度で静置培養した(前々々培養)。得られた培養液を窒素ガスでパージした新鮮な乳酸発酵培地GYC150mlに植菌し、48時間、30℃の温度で静置培養した(前々培養)。前々培養液を、図1に示す連続発酵装置の窒素ガスでパージした1Lの乳酸発酵培地GYC1に植菌し、発酵反応槽1を付属の攪拌機5によって800rpmで攪拌し、発酵反応槽1の通気量の調整と35℃の温度に温度調整を行い、24時間培養を行った(前培養)。前培養完了後直ちに、GYC1倍地の連続供給を行い、連続発酵装置の発酵培養液量を1.5Lとなるように膜透過水量の制御を行いながら連続培養し、37℃での連続発酵によるD−乳酸の製造を行った。このとき、気体供給装置から窒素ガスを発酵反応槽1内に供給し、排出されたガスを回収して再度発酵反応槽1に供給した。すなわち、窒素ガスを含む気体のリサイクル供給を行った。連続発酵試験を行うときの膜透過水量の制御は、水頭差制御装置3により、発酵反応槽水頭を最大2m以内、すなわち膜間差圧が20kPa以内となるように適宜水頭差を変化させることにより行った。適宜、膜透過発酵液中の生産されたD−乳酸濃度および残存グルコース濃度を測定した。   First, Sporalactobacillus laevolacticus ATCC23492 strain was statically cultured at a temperature of 30 ° C. for 24 hours in the GY2 medium of the above Comparative Example 2 purged with 5 ml of nitrogen gas in a test tube (previously) culture). The obtained culture solution was inoculated into 150 ml of a fresh lactic acid fermentation medium GYC purged with nitrogen gas, and statically cultured at a temperature of 30 ° C. for 48 hours (pre-culture). The culture solution was inoculated in 1 L of lactic acid fermentation medium GYC1 purged with nitrogen gas from the continuous fermentation apparatus shown in FIG. 1, and the fermentation reaction tank 1 was stirred at 800 rpm by the attached stirrer 5. The aeration was adjusted and the temperature was adjusted to a temperature of 35 ° C., followed by culturing for 24 hours (preculture). Immediately after completion of the pre-culture, continuously supply GYC 1 medium, continuously culture while controlling the amount of permeated water so that the fermentation culture volume of the continuous fermentation apparatus becomes 1.5 L, and by continuous fermentation at 37 ° C. D-lactic acid was produced. At this time, nitrogen gas was supplied from the gas supply device into the fermentation reaction tank 1, and the discharged gas was recovered and supplied to the fermentation reaction tank 1 again. That is, recycling supply of gas containing nitrogen gas was performed. Control of the amount of permeated water through the continuous fermentation test is performed by appropriately changing the water head difference so that the head of the fermentation reaction tank is within 2 m at maximum, that is, the transmembrane pressure difference is within 20 kPa, by the water head difference control device 3. went. The produced D-lactic acid concentration and residual glucose concentration in the membrane permeation fermentation broth were measured appropriately.

500時間の発酵試験を行った結果、この連続発酵装置を用いることにより、安価で、且つ99%以上の高い光学純度の安定したD−乳酸の連続発酵による製造が可能であることを確認することができた。副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.3g/Lと少なく、比較例と比べて1/5以上に削減することができた(表2)。   As a result of conducting a 500-hour fermentation test, it is confirmed that by using this continuous fermentation apparatus, it is possible to produce inexpensively stable 99% or higher optical purity stable D-lactic acid by continuous fermentation. I was able to. As the by-products, pyruvic acid, acetic acid, formic acid and ethanol were produced, but the concentration of by-products was as low as 0.3 g / L, which could be reduced to 1/5 or more compared to the comparative example ( Table 2).

(実施例9)連続発酵によるD−乳酸の製造(その2)
図2に示す連続発酵装置を稼働させることにより、D−乳酸がで得られるかどうかを調べるため、同装置を用いた連続発酵試験を行った。培地にはGYC3を用い、121℃の温度で15分間高圧蒸気滅菌処理して用いた。分離膜と分離膜エレメントは実施例8のものを使用した。この実施例9における運転条件は、特に断らない限り下記のとおりである。
(Example 9) Production of D-lactic acid by continuous fermentation (part 2)
In order to investigate whether D-lactic acid is obtained by operating the continuous fermentation apparatus shown in FIG. 2, a continuous fermentation test using the same apparatus was performed. GYC3 was used as the medium, and used after high-pressure steam sterilization at 121 ° C. for 15 minutes. The separation membrane and separation membrane element used in Example 8 were used. The operating conditions in Example 9 are as follows unless otherwise specified.

[運転条件]
・発酵反応槽容量:1.5(L)
・使用分離膜:PVDF濾過膜
・膜分離エレメント有効濾過面積:120平方cm
・温度調整:37(℃)
・発酵反応槽通気量:100(L/分)
・発酵反応槽攪拌速度:800(rpm)
・滅菌:分離膜エレメントを含む培養槽、および使用培地は総て121℃、20分のオートクレーブにより高圧蒸気滅菌
・pH調整:8N 水酸化カルシウムによりpHを6.0に調整
・膜透過水量制御:膜分離槽水頭差により流量を制御(水頭差は2m以内で制御した。)。
[Operating conditions]
・ Fermentation reactor capacity: 1.5 (L)
-Separation membrane used: PVDF filtration membrane-Membrane separation element Effective filtration area: 120 square cm
・ Temperature adjustment: 37 (℃)
-Aeration volume of fermentation reaction tank: 100 (L / min)
・ Fermentation reactor stirring speed: 800 (rpm)
・ Sterilization: The culture tank containing the separation membrane element and the medium to be used are all autoclaved at 121 ° C. for 20 minutes. ・ PH adjustment: pH adjusted to 6.0 with 8N calcium hydroxide ・ Membrane permeate flow control: The flow rate was controlled by the membrane separation tank water head difference (water head difference was controlled within 2 m).

生産物であるD−乳酸およびグルコースは、実施例8に示す方法で測定した。   The products D-lactic acid and glucose were measured by the method shown in Example 8.

まず、スポロラクトバチルス・ラエボラクティカス ATCC23492株を、試験管で5mlの窒素ガスでパージしたGY2倍地で24時間、30℃の温度で静置培養した(前々々培養)。得られた培養液を窒素ガスでパージした新鮮な乳酸発酵培地としてGYC3倍地50mlに植菌し、48時間、30℃の温度で静置培養した(前々培養)。前々培養液を、図2に示す膜分離型連続発酵装置の窒素ガスでパージした1Lの乳酸発酵培地GYC3に植菌し、発酵反応槽1を付属の攪拌機5によって800rpmで攪拌し、発酵反応槽1の通気量の調整と37℃の温度に温度調整を行い、24時間培養を行った(前培養)。前培養完了後直ちに、連続・バッチ発酵培地としてGYC3の連続供給を行い、連続発酵装置の発酵培養液量を1.5Lとなるように膜透過水量の制御を行いながら連続培養し、連続発酵によるD−乳酸の製造を行った。このとき、気体供給装置から窒素ガスを発酵反応槽1内に供給し、排出されたガスを回収して再度発酵反応槽1に供給した。すなわち、窒素ガスを含む気体のリサイクル供給を行った。連続発酵試験を行うときの膜透過水量の制御は、水頭差制御装置3により、発酵反応槽水頭を最大2m以内、すなわち膜間差圧が20kPa以内となるように適宜水頭差を変化させることにより行った。適宜、膜透過発酵培養液中の生産されたD−乳酸濃度および残存グルコース濃度を測定した。   First, Sporalactobacillus laevolacticus ATCC23492 strain was statically cultured at a temperature of 30 ° C. for 24 hours in a GY2 medium purged with 5 ml of nitrogen gas in a test tube (pre-culture). The obtained culture solution was inoculated into 50 ml of GYC medium as a fresh lactic acid fermentation medium purged with nitrogen gas, and statically cultured at a temperature of 30 ° C. for 48 hours (pre-culture). The culture broth was inoculated in 1 L of lactic acid fermentation medium GYC3 purged with nitrogen gas from the membrane separation type continuous fermentation apparatus shown in FIG. 2, and the fermentation reaction tank 1 was stirred at 800 rpm by the attached stirrer 5 for fermentation reaction. The aeration rate of the tank 1 was adjusted and the temperature was adjusted to a temperature of 37 ° C., followed by culturing for 24 hours (pre-culture). Immediately after completion of the pre-culture, continuously supply GYC3 as a continuous / batch fermentation medium and continuously culture while controlling the amount of permeated water so that the fermentation culture volume of the continuous fermentation apparatus is 1.5 L. D-lactic acid was produced. At this time, nitrogen gas was supplied into the fermentation reaction tank 1 from the gas supply device, and the discharged gas was recovered and supplied to the fermentation reaction tank 1 again. That is, recycling supply of gas containing nitrogen gas was performed. Control of the amount of permeated water through the continuous fermentation test is performed by appropriately changing the water head difference so that the head of the fermentation reaction tank is within 2 m at maximum, that is, the transmembrane pressure difference is within 20 kPa, by the water head difference control device 3. went. The produced D-lactic acid concentration and residual glucose concentration in the membrane permeation fermentation broth were measured appropriately.

500時間の発酵試験を行った結果、この連続発酵装置を用いることにより、安価で、且つ99%以上の高い光学純度の安定したD−乳酸の連続発酵による製造が可能であることを確認することができた。副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.1g/Lと少なく、比較例と比べて1/15以上に削減することができた(表2)。   As a result of conducting a 500-hour fermentation test, it is confirmed that by using this continuous fermentation apparatus, it is possible to produce inexpensively stable 99% or higher optical purity stable D-lactic acid by continuous fermentation. I was able to. As the by-products, pyruvic acid, acetic acid, formic acid and ethanol were produced, but the concentration of by-products was as low as 0.1 g / L, and could be reduced to 1/15 or more compared to the comparative example ( Table 2).

(実施例10)連続発酵によるD−乳酸の製造(その3)
実施例8で使用した多孔性膜の代わりに、分離膜としてWO2007/097260の参考例13に従って作製したポリフッ化ビニリデン(PVDF)を主成分とする中空糸膜を用いた。分離膜エレメントとしては図4に示される形態を採用した。またGPC培地を用いた他は、実施例8と同様にして、連続発酵試験を行った。
(Example 10) Production of D-lactic acid by continuous fermentation (part 3)
Instead of the porous membrane used in Example 8, a hollow fiber membrane mainly composed of polyvinylidene fluoride (PVDF) produced according to Reference Example 13 of WO2007 / 097260 was used as a separation membrane. The form shown in FIG. 4 was adopted as the separation membrane element. Moreover, the continuous fermentation test was done like Example 8 except having used GPC culture medium.

500時間の発酵試験を行った結果、この連続発酵装置を用いることにより、安価で、且つ99%以上の高い光学純度の安定したD−乳酸の連続発酵による製造が可能であることを確認することができた。副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.45g/Lと少なく、比較例と比べて1/3以上に削減することができた(表2)。   As a result of conducting a 500-hour fermentation test, it is confirmed that by using this continuous fermentation apparatus, it is possible to produce inexpensively stable 99% or higher optical purity stable D-lactic acid by continuous fermentation. I was able to. As by-products, pyruvic acid, acetic acid, formic acid and ethanol were produced, but the concentration of by-products was as low as 0.45 g / L, which could be reduced to 1/3 or more compared to the comparative example ( Table 2).

(実施例11)連続発酵によるD−乳酸の製造(その4)
分離膜エレメントとして実施例10のものを使用し、RSC1培地を使用する他は、実施例9と同様にして、連続発酵試験を行った。
(Example 11) Production of D-lactic acid by continuous fermentation (part 4)
A continuous fermentation test was performed in the same manner as in Example 9 except that the separation membrane element used in Example 10 was used and RSC1 medium was used.

500時間の発酵試験を行った結果、この連続発酵装置を用いることにより、安価で、且つ99%以上の高い光学純度の安定したD−乳酸の連続発酵による製造が可能であることを確認することができた。副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.3g/Lと少なく、比較例と比べて1/5以上に削減することができた(表2)。   As a result of conducting a 500-hour fermentation test, it is confirmed that by using this continuous fermentation apparatus, it is possible to produce inexpensively stable 99% or higher optical purity stable D-lactic acid by continuous fermentation. I was able to. As the by-products, pyruvic acid, acetic acid, formic acid and ethanol were produced, but the concentration of by-products was as low as 0.3 g / L, which could be reduced to 1/5 or more compared to the comparative example ( Table 2).

(実施例12)連続発酵によるD−乳酸の製造(その5)
RSE培地を用いた他は、実施例11と同様にして、連続発酵試験を行った。500時間の発酵試験を行った結果、この連続発酵装置を用いることにより、安価で、且つ99%以上の高い光学純度の安定したD−乳酸の連続発酵による製造が可能であることを確認することができた。副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成されたが、副生産物の濃度は0.45g/Lと少なく、比較例と比べて1/3以上に削減することができた。
(Example 12) Production of D-lactic acid by continuous fermentation (part 5)
A continuous fermentation test was conducted in the same manner as in Example 11 except that the RSE medium was used. As a result of conducting a 500-hour fermentation test, it is confirmed that by using this continuous fermentation apparatus, it is possible to produce inexpensively stable 99% or higher optical purity stable D-lactic acid by continuous fermentation. I was able to. As the by-products, pyruvic acid, acetic acid, formic acid and ethanol were produced, but the concentration of by-products was as low as 0.45 g / L, which could be reduced to 1/3 or more compared to the comparative example.

(比較例4)連続発酵によるD−乳酸の製造(その6)
比較例1のGY1培地を使用する他は、実施例8と同様にして、連続発酵試験を行った。200時間の発酵試験を行った結果、光学純度が88%以下であり、発酵液中の糖も消費されず多くの糖が残存してしまった。副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成され、副生産物の濃度は1.5g/Lと多く生産されていた(表2)。
(Comparative Example 4) Production of D-lactic acid by continuous fermentation (part 6)
A continuous fermentation test was conducted in the same manner as in Example 8 except that the GY1 medium of Comparative Example 1 was used. As a result of performing the fermentation test for 200 hours, the optical purity was 88% or less, and the sugar in the fermentation broth was not consumed, and many sugars remained. As by-products, pyruvic acid, acetic acid, formic acid and ethanol were produced, and the concentration of by-products was as high as 1.5 g / L (Table 2).

(比較例5)連続発酵によるD−乳酸の製造(その7)
比較例2のGY2培地を使用する他は、実施例8と同様にして、連続発酵試験を行った。200時間の発酵試験を行った結果、光学純度が99%であり、発酵液中の糖も消費されず多くの糖が残存してしまった。副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成され、副生産物の濃度は1.7g/Lと多く生産されていた(表2)。
(Comparative Example 5) Production of D-lactic acid by continuous fermentation (part 7)
A continuous fermentation test was performed in the same manner as in Example 8 except that the GY2 medium of Comparative Example 2 was used. As a result of performing the fermentation test for 200 hours, the optical purity was 99%, and the sugar in the fermentation broth was not consumed, and many sugars remained. As by-products, pyruvic acid, acetic acid, formic acid and ethanol were produced, and the concentration of by-products was as high as 1.7 g / L (Table 2).

(比較例6)連続発酵によるD−乳酸の製造(その8)
水1Lに100gの原料糖と1gの酵母エキスを溶かして作製したRSE1培地(システインを1.59mg/L含有する)を使用する他は、実施例8と同様にして、連続発酵試験を行った。200時間の発酵試験を行った結果、光学純度が99.2%であり、発酵液中の糖も消費されず多くの糖が残存してしまった。副生産物としてはピルビン酸、酢酸、ギ酸およびエタノールが生成され、副生産物の濃度は1.7g/Lと多く生産されていた。
(Comparative Example 6) Production of D-lactic acid by continuous fermentation (part 8)
A continuous fermentation test was conducted in the same manner as in Example 8 except that RSE1 medium (containing 1.59 mg / L of cysteine) prepared by dissolving 100 g of raw sugar and 1 g of yeast extract in 1 L of water was used. . As a result of performing the fermentation test for 200 hours, the optical purity was 99.2%, and the sugar in the fermentation broth was not consumed, and many sugars remained. As by-products, pyruvic acid, acetic acid, formic acid, and ethanol were produced, and the concentration of by-products was as high as 1.7 g / L.

Figure 2010029119
Figure 2010029119

実施例および比較例から、バッチ発酵で副生産物の生産を大幅に低減しながら乳酸の生産が可能であることが明らかになった。また、Fed−Batch発酵でも、副生産物生産の低減や高い乳酸生産収率かつ高い光学純度のD−乳酸生産が可能であることが明らかになった。更に、図1および図2の膜分離型の連続発酵装置を用いる連続発酵により、副生産物の生産を大幅に低減しながら乳酸の生産速度や光学純度が大幅に向上することが明らかになった。すなわち、本発明によって開示された多孔性膜を組み込んだ膜分離型の連続発酵装置を用い、膜間差圧を制御することにより、発酵培養液を分離膜によって濾液と未濾過液に分離し、濾液から所望の発酵生産物を回収するとともに、未濾過液を発酵培養液に戻す連続発酵方法を可能とし、微生物量を高く維持しながら、連続発酵によるD−乳酸の製造が可能であることが明らかとなった。更に、低濃度の窒素を含んだ乳酸発酵培地を用いることで今まで行ってきた従来のD−乳酸の製造より低コスト、且つ副生産物の生産を低減し、D−乳酸の光学純度を向上させることと共に高い光学純度のD−乳酸の生産を維持しながらの長期間のD−乳酸の製造が可能であることが明らかとなった。   From the examples and comparative examples, it became clear that batch fermentation can produce lactic acid while significantly reducing the production of by-products. It has also been clarified that F-Batch fermentation can reduce by-product production and produce D-lactic acid with high lactic acid production yield and high optical purity. Furthermore, it has been clarified that the continuous fermentation using the membrane separation type continuous fermentation apparatus of FIGS. 1 and 2 significantly improves the production rate and optical purity of lactic acid while greatly reducing the production of by-products. . That is, using a membrane separation type continuous fermentation apparatus incorporating a porous membrane disclosed by the present invention, by controlling the transmembrane pressure difference, the fermentation broth is separated into a filtrate and an unfiltered liquid by the separation membrane, A desired fermentation product is recovered from the filtrate, and a continuous fermentation method in which the unfiltered solution is returned to the fermentation broth is enabled, and it is possible to produce D-lactic acid by continuous fermentation while maintaining a high amount of microorganisms. It became clear. Furthermore, by using a lactic acid fermentation medium containing a low concentration of nitrogen, the production of D-lactic acid is lower than conventional D-lactic acid production, reducing the production of by-products and improving the optical purity of D-lactic acid. It was revealed that long-term production of D-lactic acid is possible while maintaining the production of high optical purity D-lactic acid.

本発明によるD−乳酸の製造方法によれば、システインと低濃度の窒素を含む発酵培地を用いることと簡便な操作条件で、D−乳酸の高生産性およびD−乳酸の光学純度を向上させることと共に高い光学純度のD−乳酸の生産が可能となり、副生産物の濃度も低減させることも可能となった。広く発酵工業において、発酵生産物であるD−乳酸を高い光学純度での生産および副生産物の濃度の低減、且つ天然バイオマスを用いることによる低コストで安定に生産することが可能となる。本発明によるD−乳酸の製造法により得られたD−乳酸は、例えば、ポリ乳酸樹脂の原料として有用である。   According to the method for producing D-lactic acid according to the present invention, high productivity of D-lactic acid and optical purity of D-lactic acid are improved by using a fermentation medium containing cysteine and low concentration of nitrogen and simple operation conditions. At the same time, production of high optical purity D-lactic acid became possible, and the concentration of by-products could be reduced. Widely in the fermentation industry, it becomes possible to stably produce D-lactic acid, which is a fermentation product, at a low cost by producing high optical purity, reducing the concentration of by-products, and using natural biomass. D-lactic acid obtained by the method for producing D-lactic acid according to the present invention is useful, for example, as a raw material for polylactic acid resin.

図1は、本発明で用いられる膜分離型の連続発酵装置の一つの実施の形態を説明するための概要側面図である。FIG. 1 is a schematic side view for explaining one embodiment of a membrane separation type continuous fermentation apparatus used in the present invention. 図2は、本発明で用いられる他の膜分離型の連続発酵装置の一つの実施の形態を説明するための概要側面図である。FIG. 2 is a schematic side view for explaining one embodiment of another membrane separation type continuous fermentation apparatus used in the present invention. 図3は、本発明で用いられる多孔性膜を利用した分離膜エレメントの一つの実施の形態を説明するための概要斜視図である。FIG. 3 is a schematic perspective view for explaining one embodiment of a separation membrane element using a porous membrane used in the present invention. 図4は、本発明で用いられる中空糸膜を利用した分離膜エレメントの一つの実施の形態を説明するための概要斜視図である。FIG. 4 is a schematic perspective view for explaining one embodiment of a separation membrane element using a hollow fiber membrane used in the present invention.

符号の説明Explanation of symbols

1 発酵反応槽
2 分離膜エレメント
3 水頭差制御装置
4 気体供給装置
5 攪拌機
6 レベルセンサ
7 培地供給ポンプ
8 pH調整溶液供給ポンプ
9 pHセンサ・制御装置
10 温度調節器
11 発酵液循環ポンプ
12 膜分離槽
13 支持板
14 流路材
15 分離膜
16 凹部
17 集水パイプ
18 分離膜束
19 上部樹脂封止層
20 下部樹脂封止層
21 支持フレーム
22 集水パイプ
DESCRIPTION OF SYMBOLS 1 Fermentation reaction tank 2 Separation membrane element 3 Water head difference control device 4 Gas supply device 5 Stirrer 6 Level sensor 7 Medium supply pump 8 pH adjustment solution supply pump 9 pH sensor / control device 10 Temperature controller 11 Fermentation liquid circulation pump 12 Membrane separation Tank 13 Support plate 14 Channel material 15 Separation membrane 16 Concave portion 17 Water collecting pipe 18 Separation membrane bundle 19 Upper resin sealing layer 20 Lower resin sealing layer 21 Support frame 22 Water collection pipe

Claims (2)

スポロラクトバチルス属(Genus Sporolactobacillus)に属する細菌を用いた発酵法によるD−乳酸の製造方法であって、0.6mg/L以上のシステインおよび0.1g/L以上0.5g/L以下のシステイン以外の窒素源を含む発酵原料を用いたD−乳酸の製造方法。   A method for producing D-lactic acid by fermentation using a bacterium belonging to the genus Sporolactobacillus, comprising 0.6 mg / L or more of cysteine and 0.1 g / L or more and 0.5 g / L or less. A method for producing D-lactic acid using a fermentation raw material containing a nitrogen source other than cysteine. 前記細菌がスポロラクトバチルス・ラエボラクティカス(Sporolactobacillus laevolacticus)である請求項1に記載のD−乳酸の製造方法。   The method for producing D-lactic acid according to claim 1, wherein the bacterium is Sporolactobacillus laevolacticus.
JP2008195751A 2008-07-30 2008-07-30 Method for producing D-lactic acid Expired - Fee Related JP5217736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195751A JP5217736B2 (en) 2008-07-30 2008-07-30 Method for producing D-lactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195751A JP5217736B2 (en) 2008-07-30 2008-07-30 Method for producing D-lactic acid

Publications (2)

Publication Number Publication Date
JP2010029119A true JP2010029119A (en) 2010-02-12
JP5217736B2 JP5217736B2 (en) 2013-06-19

Family

ID=41734374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195751A Expired - Fee Related JP5217736B2 (en) 2008-07-30 2008-07-30 Method for producing D-lactic acid

Country Status (1)

Country Link
JP (1) JP5217736B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502677A (en) * 2014-01-17 2017-01-26 上海交通大学 Sporolactobacillus terae and its use
JP2017536093A (en) * 2014-09-30 2017-12-07 アールエヌエー インコーポレイテッドRna Inc. Method for producing microbial preparation and microbial preparation produced thereby
WO2018084813A1 (en) 2016-11-01 2018-05-11 Ptt Global Chemical Public Company Limited Fermentation process for producing d-lactic acid or its salts
CN109880774A (en) * 2019-04-02 2019-06-14 江西科院生物新材料有限公司 A kind of left-handed lactobacillus Hainan subspecies and its application of high yield high-optical-purity lactic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244188A (en) * 1985-08-23 1987-02-26 Daicel Chem Ind Ltd Production of optically active lactic acid
JPH05328993A (en) * 1992-06-04 1993-12-14 Dainippon Ink & Chem Inc Production of mixture of lactic acid isomers different in optical isomerism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244188A (en) * 1985-08-23 1987-02-26 Daicel Chem Ind Ltd Production of optically active lactic acid
JPH05328993A (en) * 1992-06-04 1993-12-14 Dainippon Ink & Chem Inc Production of mixture of lactic acid isomers different in optical isomerism

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013004689; ビタミン,51[3](1977) p.107-110 *
JPN6013004690; 日本栄養・食糧学会誌,41[4](1988) p.324-327 *
JPN6013004691; 歯学,72[1](1984) p.204-205 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502677A (en) * 2014-01-17 2017-01-26 上海交通大学 Sporolactobacillus terae and its use
JP2017536093A (en) * 2014-09-30 2017-12-07 アールエヌエー インコーポレイテッドRna Inc. Method for producing microbial preparation and microbial preparation produced thereby
US10676708B2 (en) 2014-09-30 2020-06-09 Rna Inc. Method for preparing microbial preparation and microbial preparation produced by the same
WO2018084813A1 (en) 2016-11-01 2018-05-11 Ptt Global Chemical Public Company Limited Fermentation process for producing d-lactic acid or its salts
CN109906268A (en) * 2016-11-01 2019-06-18 Ptt全球化学股份有限公司 For producing the fermentation process of D-ALPHA-Hydroxypropionic acid or its salt
JP2019536445A (en) * 2016-11-01 2019-12-19 ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド Fermentation process for producing D-lactic acid or a salt thereof
EP3535384A4 (en) * 2016-11-01 2020-07-15 PTT Global Chemical Public Company Limited Fermentation process for producing d-lactic acid or its salts
CN109880774A (en) * 2019-04-02 2019-06-14 江西科院生物新材料有限公司 A kind of left-handed lactobacillus Hainan subspecies and its application of high yield high-optical-purity lactic acid
CN109880774B (en) * 2019-04-02 2023-01-06 江西科院生物新材料有限公司 High-yield high-optical-purity lactic acid L-lactobacillus Hainan subspecies and application thereof

Also Published As

Publication number Publication date
JP5217736B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
KR101345160B1 (en) Method of producing chemical product and continuous fermentation apparatus
JP5487617B2 (en) Method for producing lactic acid
JP5881135B2 (en) Chemical production method and continuous culture apparatus
EP2505637A1 (en) Novel microbial succinic acid producer
US20060094093A1 (en) Low pH lactic acid fermentation
WO2012077742A1 (en) Method for producing chemical by continuous fermentation
CN109486876A (en) A method of threonine is extracted and is purified in fermentation
CN1353191A (en) Method of preparing fermentation culture medium from renewable raw material
JP5217736B2 (en) Method for producing D-lactic acid
CN101553572A (en) Method of producing chemical product and continuous fermentation apparatus
JP5659466B2 (en) Method and apparatus for producing chemicals by continuous culture
Thongchul Production of lactic acid and polylactic acid for industrial applications
JP5262011B2 (en) Lactic acid production method and production apparatus
TWI607089B (en) Refining method of 1,4-diaminobutane
JP2011188791A (en) Method for operating continuous fermentation apparatus
JP2010126512A (en) Method for producing hydroxycarboxylic acid
US20110318794A1 (en) Method for producing d-lactic acid, and method for increasing optical purity of d-lactic acid or yield of d-lactic acid relative to sugar in lactic acid
AU2011304167B2 (en) Production method for chemicals by continuous fermentation
Gryta et al. The study of glycerol-based fermentation and broth downstream by nanofiltration
JP2009142265A (en) Method for producing lactic acid
AU706876B2 (en) Method for producing L-glutamic acid by continuous fermentation
KR101496503B1 (en) Method for High Cell Density Culturing of Lactic Acid Bacteria and Producing Their Metabolites By Using Bioreactor Equipped with Internal Filter System
JP2011193787A (en) Method for operating continuous fermentation apparatus
JP5593597B2 (en) Method for producing lactic acid
JP2009142210A (en) Method for producing lactic acid by continuous fermentation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5217736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees